JP2004010965A - High strength spring steel having excellent corrosion fatigue strength - Google Patents

High strength spring steel having excellent corrosion fatigue strength Download PDF

Info

Publication number
JP2004010965A
JP2004010965A JP2002166201A JP2002166201A JP2004010965A JP 2004010965 A JP2004010965 A JP 2004010965A JP 2002166201 A JP2002166201 A JP 2002166201A JP 2002166201 A JP2002166201 A JP 2002166201A JP 2004010965 A JP2004010965 A JP 2004010965A
Authority
JP
Japan
Prior art keywords
content
corrosion fatigue
fatigue strength
strength
spring steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166201A
Other languages
Japanese (ja)
Other versions
JP3896902B2 (en
Inventor
Kazuyoshi Kimura
木村 和良
Toshimitsu Kimura
木村 利光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2002166201A priority Critical patent/JP3896902B2/en
Publication of JP2004010965A publication Critical patent/JP2004010965A/en
Application granted granted Critical
Publication of JP3896902B2 publication Critical patent/JP3896902B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide high strength spring steel having excellent corrosion fatigue strength which has satisfactory settling resistance, and is free from the problem of ferrite decarburization. <P>SOLUTION: The spring steel has a composition comprising, by weight, 0.38 to 0.48% C, 1.6 to 2.8% Si, ≥4.0 Si/C, 0.6 to 1.2% Mn, ≤0.015% P, ≤0.005% S, 0.15 to 0.45% Cu, 0.05 to 0.30% Ni, ≥0.20% Cu+Ni, 0.10 to 0.30% Cr and ≤0.0012% O, and the balance substantially Fe. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明はばね鋼に関し、特に腐食疲労強度に優れた高強度ばね鋼に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年自動車の燃費の向上が強く求められており、これに伴って自動車の軽量化が求められている。
その一環として、自動車における懸架ばね等の軽量化が求められており、そのための対策が各種講じられている。
【0003】
ここで懸架ばね等の軽量化を達成するためには、ばねの細径化,巻数減等を実現することが必要であるが、その場合ばねにかかる負荷応力が増大する。
従来、この種懸架ばね等のための材料としてSUP7が代表的な材料として用いられているが、負荷応力の増大に伴ってばね鋼の強度を更に高める必要がある。
【0004】
そこでばね鋼のC含有量を高めることにより高強度化は達成できるが、この場合C含有量を高めたことによって腐食疲労強度が低下する問題を生ずる。
この種ばね鋼においては耐食性、特に耐孔食性を低下させないことが重要であるが、C含有量を高めるとその耐食性が低下してしまう。
一方C含有量を低めると、高強度化が実現できないのに加えて、耐へたり特性も劣化してしまう。
【0005】
この場合Si含有量を高めることで耐へたり特性を改善することができるが、Si含有量を多くすると製造工程でフェライト脱炭が生じ易くなる。
而してフェライト脱炭が生じるとばね鋼としての強度に悪影響を与え、また製造性が悪化する外、大気中での疲労特性(大気疲労特性)も劣化する問題を生ずる。
【0006】
【課題を解決するための手段】
本発明の腐食疲労強度に優れた高強度ばね鋼はこのような課題を解決するために案出されたものである。
而して請求項1のものは、ばね鋼の組成を重量%で、C:0.38〜0.48%,Si:1.6〜2.8%,Si/C:≧4.0,Mn:0.6〜1.2%,P:≦0.015%,S:≦0.005%,Cu:0.15〜0.45%,Ni:0.05〜0.30%,Cu+Ni:≧0.20%,Cr:0.10〜0.30%,O:≦0.0012%,残部実質的にFeから成る組成とすることを特徴とする。
【0007】
また請求項2のものは、請求項1において、更にV,Nb,Ti,Alの1種若しくは2種以上を重量%で以下の範囲、V:≦0.20%,Nb:0.020〜0.050%,Ti:0.030〜0.070%,Al:0.010〜0.040%で含有し且つN:≦0.012%,B:0.0005〜0.0030%であることを特徴とする。
【0008】
【作用及び発明の効果】
以上のような本発明は、C含有量を0.48%以下としてC含有量を低減する一方、Si含有量を1.6〜2.8%に調整して、C含有量を低減することによる耐へたり特性の低下をSi含有量の調整によって改善し、所望の耐へたり特性を確保するようにしたものである。
【0009】
但し本発明ではSi/Cの比率が重要で、このSi/C比が4.0未満であるとC含有量を0.48%以下に低減しても十分な腐食疲労強度が得られず、また耐へたり特性も所望の特性が得られない。
【0010】
本発明では、C含有量の低減によって腐食疲労強度を高め、またSiの含有量を調整することで耐へたり特性を高めるものであるが、Siの含有量が多くなると前述したフェライト脱炭が生じ易くなる。
そこで本発明では脱炭抑制成分としてCu+Niを所定量添加する。
【0011】
以上によって本発明によれば、高強度で腐食疲労強度も強く、また耐へたり特性も良好で、フェライト脱炭も抑制されて製造性が良好なばね鋼を得ることができる。
【0012】
本発明においてはまた、必要に応じてV,Nb,Ti,Al,N,Bを含有させることができ、これによってばね鋼の特性を更に良好となすことができる。
【0013】
次に本発明における各化学成分の限定理由を以下に詳述する。
C:0.38〜0.48%
Cは0.38%未満では所望のばね強度が得られないため0.38%以上とする。
一方0.48%を超えると焼入れ焼戻し後の靭性が低下し腐食疲労強度,耐遅れ破壊性が劣化する。また0.48%を超えると圧延後の硬さが硬くなり過ぎ製造性を低下させる。そこで本発明では0.48%を上限とする。
【0014】
Si:1.6〜2.8%
Siは1.6%未満ではばねとして必要な強度及び耐へたり特性を確保できないため1.6%以上とする。
一方2.8%以下としたのは脆化を防止するためであり、また表層部脱炭に伴う被削性及び加工性の劣化を防止するために2.8%を上限とする。
【0015】
Mn:0.6〜1.2%
Mnは脱酸及びSによる害を阻止し、また焼入れ性も確保し強度低下を防ぐため、0.6%以上とする。
一方1.2%以下としたのは、脆化及び加工性の劣化を防止するためである。
【0016】
P:≦0.015%
Pは結晶粒界に偏析し結晶粒界を脆弱化させ、遅れ破壊を生じさせるため0.015%以下とする。
【0017】
S:≦0.005%
Sは鋼中に存在するとMnSの介在物の形態をとり、大気疲労特性及び腐食疲労強度を低下させるため極力低減させることが望ましい。従って影響を軽減させるため上限を0.005%とする。
【0018】
Cu:0.15〜0.45%
Cuは耐食性を高める上で有効であり、またフェライト脱炭の抑制にも有効であるため0.15%以上添加し、耐食性の向上効果と脱炭抑制効果とを得る。
一方0.45%より多く添加すると熱間加工性が損なわれるため上限を0.45%とする。
【0019】
Ni:0.05〜0.30%
Niは耐食性を高める上で有効であり、またフェライト脱炭の抑制にも有効であるため0.05%以上添加し、耐食性の向上効果と脱炭抑制効果とを得る。
一方0.30%より多く添加するとコストが高くなるため、上限を0.30%とする。
またCuとNiとを複合(Cu+Ni≧0.20%)して加えることによりフェライト脱炭を抑制し、本発明の意図した効果が得られるばかりでなく、遅れ破壊強度劣化を抑制する効果も得られる。
【0020】
Cr:0.10〜0.30%
Crは焼入れ性の調整に有効であるが、0.10%未満では焼入れ性の向上効果が得られないため0.10%以上とする。
一方0.30%を超えると圧延後に硬くなり過ぎ、加工性を損なうため上限を0.30%とする。
【0021】
O:≦0.0012%
Oを多量に含有すると酸化物系の介在物が発生し、大気疲労特性及び腐食疲労強度を低下させるため上限を0.0012%とする。
【0022】
V:≦0.20%
Vは結晶粒微細化に有効であり、析出硬化に寄与し耐へたり特性を向上させる。但しVの炭化物は鋼表面で局部電極となり腐食ピットを形成し、亀裂破壊の起点となるため0.20%以下とする。また0.20%を超えると圧延後に硬くなり過ぎ加工性を損なう。
【0023】
Nb:0.020〜0.050%
Nbは結晶粒微細化に有効であり、析出硬化に寄与し耐へたり特性を向上させる。結晶粒を微細にし、耐へたり特性を向上させるため0.020%以上含有させる。一方0.050%を超えるとその効果は飽和するだけでなく、熱間及び冷間加工性を低下させるため、上限を0.050%とする。
【0024】
Ti:0.030〜0.070%
Al:0.010〜0.040%
Nbと同様、Ti,Alは結晶粒微細化に有効であり、析出硬化に寄与し耐へたり特性を向上させる。結晶粒を微細にし、耐へたり特性を向上させるためTiは0.030%以上、Alは0.010%以上含有させる。
一方Tiは0.070%、Alは0.040%を超えるとその効果は飽和するだけでなく、熱間及び冷間加工性を低下させるため、上限をそれぞれTiは0.070%,Alは0.040%とする。
尚酸化物系の介在物を生成するため、酸素(O)を12ppm以下とするのが望ましい。
【0025】
N:≦0.012%
NはTiN系の介在物を生成し、鋼の大気疲労特性及び腐食疲労強度を低下させるため0.012%以下とする。
【0026】
B:0.0005〜0.0030%
Bは鋼の結晶粒界に優先析出し、P,Sの結晶粒偏析を防止し遅れ破壊強度を向上させる。この効果を得るためには0.0005%以上が必要である。
一方0.0030%を超えると結晶粒界にB構成物を形成し、焼入れ性を低減させ靭性を損なうため、上限を0.0030%とする。
【0027】
【実施例】
次に本発明の実施例を以下に具体的に詳述する。
表1に示す化学組成の鋼を溶製して腐食疲労強度試験用,耐へたり特性測定用,脱炭測定用の各試験体を製造した(表中比較例No.33はSUP7)。
尚、腐食疲労強度試験用の試験体は実体ばねとし、以下の条件で且つ以下の形状で製造した。
【0028】
圧延により製造した素材から線径12.5mmまで伸線加工し、その後熱間にて下記形状のコイルばねを成形した。
線径:12.5mm
コイル径:110.0mm
自由高さ:382mm
有効巻き数:5.39巻
そしてばね成形後、各コイルばねの硬さがHRC52となるように焼入れ焼戻し処理を施し、更に疲労強度を向上させるためにショットピーニング及び耐へたり特性を確保するためにセッチングを施して実体ばねを製造し、試験体とした。
【0029】
【表1】

Figure 2004010965
【0030】
また腐食疲労強度試験は以下に示すように塩水噴霧,大気中加振,恒温恒湿槽放置を順に行ってこれを1サイクルとし、そしてこれを繰り返して試験体が破断した時点の大気中加振回数の合計を求めて評価を行った。
但し評価は表1の従来鋼の大気中加振回数を1.0として、これに対する比率で表した。
【0031】
<腐食疲労強度試験>
▲1▼塩水噴霧
(5%NaCl,35℃×30min)

▲2▼大気中加振
(3000回,30min)

▲3▼恒温恒湿槽放置
(26℃,95%×23hr)
【0032】
一方耐へたり特性(残留剪断歪み)の測定は、図1(B)に示す試験体10を以下の条件で製造し、これを図1(A)に示す重錘式捩りクリープ試験機12を用いて測定することにより行った。
【0033】
直径20mmの棒材から、図1(B)に示す形状の試験体10を切り出し、試験体の硬さがHRC52となるように焼入れ焼戻し処理を施して、試験体10とした。
【0034】
即ち80℃の温度条件の下でアーム14の基端に試験体10の一端を固定する一方、アーム14の先端に重錘16を吊り下げ、72時間後のアーム14の先端の変位をダイヤルゲージ18で計測することにより行った。
尚図中20は試験片保持台であり、22はジャッキである。
【0035】
また表層部脱炭(フェライト脱炭)の測定は、次の条件で製造した試験体について、以下のようにEPMA装置で線分析を行い評価した。
【0036】
圧延用素材を加熱温度1200℃,終止温度950℃,圧延後の冷却速度1℃/secの条件にて直径13mmの線材に圧延し、そしてこれよりサンプルを切り出して試験体とした。
そしてその横断面を鏡面研磨し、表層部分のC濃度分布をEPMA装置にて測定した。
【0037】
これらの結果が表1及び図2〜図4に併せて示してある。
尚、図2は表1で得られた結果に基づいてC量或いはSi/C比と腐食疲労強度比との関係を、図3は同じく表1で得られた結果に基づいてSi含有量或いはSi/C比と耐へたり特性(残留剪断歪み)との関係を、更に図4はCu+Ni含有量と脱炭深さとの関係をそれぞれ表したものである。
【0038】
図2(A)及び表1に表れているように、C量については本発明の上限値である0.48%超では腐食疲労強度比が1.0より低く、腐食疲労強度が低下するのに対し、C量を0.48%以下に抑えることで、腐食疲労強度比が目標値である1.0以上となり、腐食疲労強度が良好であることが分る。
【0039】
但し図2(B)に表れているように、Si/C比が4.0より小さいと腐食疲労強度比は1.0よりも小さく十分でないこと、逆にSi/C比を4.0以上にすることで腐食疲労強度比が1.0以上となり、腐食疲労強度が良好となることが分る。
【0040】
一方耐へたり特性については、図3(A)からSi含有量を本発明の下限値である1.6%以上とすることで1.0×10−3よりも良好となること、更にこの場合においてもSi/C比が重要で((B)参照)、Si/C比を4.0以上とすることで、耐へたり特性が良好となることが分る。
【0041】
図4は脱炭深さに対するCu+Ni含有量の影響を示したもので、この図4に表れているように、Cu+Ni含有量を多くすることで脱炭深さは小さくなっている。即ちフェライト脱炭が抑制される傾向にあることが分る。
【0042】
但しSi含有量が本発明の上限値である2.8%よりも多い3.0%のものの場合、Cu+Ni含有量の増加につれて脱炭深さは小さくなっているものの、全体のレベルは従来鋼のもの(48μm)に比べて脱炭深さが深く、不十分なものとなっている。
【0043】
これに対しSi含有量が本発明の範囲内にあるものについては、Cu+Ni含有量を0.20%以上とすることで脱炭深さが従来鋼のそれに比べて小さく、またその脱炭深さはCu+Ni含有量を0.20%よりも多くしてもその効果はほぼ0.20%で飽和し、Cu+Ni含有量が0.20%以上の範囲内で脱炭深さが何れも良好な値を示していることが分る。
【0044】
また表1の発明例No.19〜23に示しているように、V,Nb,Ti,Al,N,B等を本発明の範囲内で含有させることで、ばね鋼として必要な良好な特性が得られることが分る。
【0045】
以上本発明の実施例を詳述したがこれはあくまで一例示であり、本発明はその主旨を逸脱しない範囲において種々変更を加えた態様で実施可能である。
【図面の簡単な説明】
【図1】本発明の実施例のばね鋼の耐へたり特性の測定に用いた試験機を試験体とともに示す説明図である。
【図2】本発明の実施例において得られたC含有量,Si/C比と腐食疲労強度比との関係を表した図である。
【図3】本発明の実施例において得られたSi含有量,Si/C比と残留剪断歪みとの関係を表した図である。
【図4】本発明の実施例において得られたCu+Ni含有量と脱炭深さとの関係を表した図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spring steel, and more particularly to a high-strength spring steel having excellent corrosion fatigue strength.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, there has been a strong demand for improving the fuel efficiency of automobiles, and in connection with this, weight reduction of automobiles has been demanded.
As part of this, weight reduction of suspension springs and the like in automobiles is required, and various measures are taken for that purpose.
[0003]
Here, in order to achieve weight reduction of the suspension spring or the like, it is necessary to reduce the diameter of the spring, reduce the number of turns, etc., but in this case, the load stress applied to the spring increases.
Conventionally, SUP7 has been used as a typical material for this type of suspension spring and the like, but it is necessary to further increase the strength of the spring steel as the load stress increases.
[0004]
Therefore, the strength can be increased by increasing the C content of the spring steel. In this case, however, there is a problem that the corrosion fatigue strength is decreased by increasing the C content.
In this kind of spring steel, it is important not to lower the corrosion resistance, particularly pitting corrosion resistance. However, if the C content is increased, the corrosion resistance is lowered.
On the other hand, when the C content is lowered, not only high strength cannot be realized, but also the sag resistance characteristics deteriorate.
[0005]
In this case, the sag resistance can be improved by increasing the Si content, but if the Si content is increased, ferrite decarburization is likely to occur in the manufacturing process.
Thus, when ferritic decarburization occurs, the strength as a spring steel is adversely affected. In addition to the deterioration of manufacturability, there is a problem that fatigue characteristics in the atmosphere (atmospheric fatigue characteristics) are also deteriorated.
[0006]
[Means for Solving the Problems]
The high-strength spring steel excellent in corrosion fatigue strength of the present invention has been devised to solve such problems.
Thus, in the first aspect, the composition of the spring steel is, by weight, C: 0.38 to 0.48%, Si: 1.6 to 2.8%, Si / C: ≧ 4.0, Mn: 0.6 to 1.2%, P: ≦ 0.015%, S: ≦ 0.005%, Cu: 0.15 to 0.45%, Ni: 0.05 to 0.30%, Cu + Ni : ≧ 0.20%, Cr: 0.10 to 0.30%, O: ≦ 0.0012%, the balance being substantially composed of Fe.
[0007]
Further, according to claim 2, in claim 1, one or more of V, Nb, Ti and Al are further contained in the following ranges in terms of% by weight, V: ≦ 0.20%, Nb: 0.020˜ 0.050%, Ti: 0.030-0.070%, Al: 0.010-0.040% and N: ≦ 0.012%, B: 0.0005-0.0030% It is characterized by that.
[0008]
[Operation and effect of the invention]
The present invention as described above reduces the C content by reducing the C content to 0.48% or less, while reducing the C content by adjusting the Si content to 1.6 to 2.8%. The deterioration of the sag resistance due to the above is improved by adjusting the Si content so as to ensure the desired sag resistance.
[0009]
However, the ratio of Si / C is important in the present invention, and if this Si / C ratio is less than 4.0, sufficient corrosion fatigue strength cannot be obtained even if the C content is reduced to 0.48% or less. Also, the desired sag characteristics cannot be obtained.
[0010]
In the present invention, the corrosion fatigue strength is increased by reducing the C content, and the sag resistance is enhanced by adjusting the Si content. However, when the Si content is increased, the above-described ferrite decarburization is performed. It tends to occur.
Therefore, in the present invention, a predetermined amount of Cu + Ni is added as a decarburization suppressing component.
[0011]
As described above, according to the present invention, it is possible to obtain a spring steel having high strength, strong corrosion fatigue strength, good sag resistance, good ferrite decarburization, and good manufacturability.
[0012]
In the present invention, V, Nb, Ti, Al, N, and B can be contained as necessary, and the characteristics of the spring steel can be further improved.
[0013]
Next, the reasons for limiting each chemical component in the present invention will be described in detail below.
C: 0.38 to 0.48%
If C is less than 0.38%, the desired spring strength cannot be obtained.
On the other hand, if it exceeds 0.48%, the toughness after quenching and tempering decreases, and the corrosion fatigue strength and delayed fracture resistance deteriorate. On the other hand, if it exceeds 0.48%, the hardness after rolling becomes too hard and the productivity is lowered. Therefore, in the present invention, the upper limit is 0.48%.
[0014]
Si: 1.6 to 2.8%
If Si is less than 1.6%, the strength and sag resistance required for the spring cannot be ensured, so 1.6% or more.
On the other hand, the content of 2.8% or less is to prevent embrittlement, and to prevent deterioration of machinability and workability associated with surface layer decarburization, the upper limit is 2.8%.
[0015]
Mn: 0.6 to 1.2%
Mn is made 0.6% or more in order to prevent deoxidation and damage caused by S, and to secure hardenability and prevent strength reduction.
On the other hand, the content of 1.2% or less is to prevent embrittlement and deterioration of workability.
[0016]
P: ≦ 0.015%
P segregates at the crystal grain boundary, weakens the crystal grain boundary, and causes delayed fracture.
[0017]
S: ≦ 0.005%
When S is present in steel, it takes the form of inclusions of MnS, and it is desirable to reduce it as much as possible in order to reduce atmospheric fatigue characteristics and corrosion fatigue strength. Therefore, the upper limit is made 0.005% in order to reduce the influence.
[0018]
Cu: 0.15-0.45%
Cu is effective in enhancing corrosion resistance, and is also effective in suppressing ferrite decarburization, so 0.15% or more is added to obtain an effect of improving corrosion resistance and an effect of suppressing decarburization.
On the other hand, if adding more than 0.45%, hot workability is impaired, so the upper limit is made 0.45%.
[0019]
Ni: 0.05-0.30%
Ni is effective in enhancing the corrosion resistance, and is also effective in suppressing ferrite decarburization, so 0.05% or more is added to obtain an effect of improving corrosion resistance and an effect of suppressing decarburization.
On the other hand, if the addition is more than 0.30%, the cost increases, so the upper limit is made 0.30%.
Further, by adding Cu and Ni in combination (Cu + Ni ≧ 0.20%), ferrite decarburization is suppressed, and not only the intended effect of the present invention is obtained, but also the effect of suppressing delayed fracture strength deterioration is obtained. It is done.
[0020]
Cr: 0.10 to 0.30%
Cr is effective for adjusting the hardenability, but if it is less than 0.10%, the effect of improving the hardenability cannot be obtained, so the content is made 0.10% or more.
On the other hand, if it exceeds 0.30%, it becomes too hard after rolling, and the workability is impaired, so the upper limit is made 0.30%.
[0021]
O: ≦ 0.0012%
If O is contained in a large amount, oxide-based inclusions are generated, and the upper limit is made 0.0012% in order to reduce atmospheric fatigue characteristics and corrosion fatigue strength.
[0022]
V: ≦ 0.20%
V is effective for crystal grain refinement, contributes to precipitation hardening, and improves sag resistance. However, the carbide of V becomes a local electrode on the steel surface, forms corrosion pits, and becomes a starting point of crack fracture, so it is made 0.20% or less. On the other hand, if it exceeds 0.20%, it becomes too hard after rolling and the workability is impaired.
[0023]
Nb: 0.020 to 0.050%
Nb is effective for refining crystal grains, contributes to precipitation hardening, and improves sag resistance. In order to make the crystal grains fine and improve sag resistance, 0.020% or more is contained. On the other hand, if it exceeds 0.050%, the effect is not only saturated, but also the hot and cold workability is lowered, so the upper limit is made 0.050%.
[0024]
Ti: 0.030 to 0.070%
Al: 0.010 to 0.040%
Like Nb, Ti and Al are effective for refining crystal grains, contribute to precipitation hardening, and improve sag resistance. In order to refine the crystal grains and improve the sag resistance, Ti is contained by 0.030% or more, and Al is contained by 0.010% or more.
On the other hand, when Ti exceeds 0.070% and Al exceeds 0.040%, not only the effect is saturated, but also the hot and cold workability is lowered. 0.040%.
In order to generate oxide inclusions, oxygen (O) is desirably 12 ppm or less.
[0025]
N: ≦ 0.012%
N forms TiN-based inclusions and decreases the atmospheric fatigue characteristics and corrosion fatigue strength of steel to 0.012% or less.
[0026]
B: 0.0005 to 0.0030%
B preferentially precipitates at the grain boundaries of the steel and prevents segregation of P and S crystal grains and improves delayed fracture strength. In order to obtain this effect, 0.0005% or more is necessary.
On the other hand, if it exceeds 0.0030%, a B component is formed at the crystal grain boundary, the hardenability is reduced and the toughness is impaired, so the upper limit is made 0.0030%.
[0027]
【Example】
Next, examples of the present invention will be described in detail below.
Steels having the chemical composition shown in Table 1 were melted to produce specimens for corrosion fatigue strength test, sag resistance measurement, and decarburization measurement (Comparative Example No. 33 in the table is SUP7).
The test body for the corrosion fatigue strength test was a solid spring and was manufactured under the following conditions and in the following shape.
[0028]
A wire spring was drawn from a material produced by rolling to a wire diameter of 12.5 mm, and then a coil spring having the following shape was formed hot.
Wire diameter: 12.5mm
Coil diameter: 110.0mm
Free height: 382mm
Effective number of turns: 5.39, and after forming the spring, quenching and tempering are performed so that the hardness of each coil spring is HRC52, and shot peening and sag resistance are ensured to further improve fatigue strength. A solid spring was manufactured by setting the material to obtain a test body.
[0029]
[Table 1]
Figure 2004010965
[0030]
As shown below, the corrosion fatigue strength test is carried out in the order of salt spray, atmospheric vibration, and standing in a constant temperature and humidity chamber to make this a cycle, and this is repeated in the atmosphere when the specimen breaks. The total number of times was calculated and evaluated.
However, the evaluation was expressed as a ratio with respect to 1.0 in which the number of vibrations of the conventional steel in Table 1 in the atmosphere was 1.0.
[0031]
<Corrosion fatigue strength test>
(1) Salt spray (5% NaCl, 35 ° C. × 30 min)

(2) Excitation in the atmosphere (3000 times, 30 min)

(3) Leave in a constant temperature and humidity chamber (26 ° C, 95% x 23 hours)
[0032]
On the other hand, the measurement of the sag resistance (residual shear strain) is performed by manufacturing the test body 10 shown in FIG. 1B under the following conditions and using the weight-type torsional creep test machine 12 shown in FIG. It was performed by using and measuring.
[0033]
A test body 10 having a shape shown in FIG. 1B was cut out from a rod having a diameter of 20 mm, and subjected to quenching and tempering treatment so that the hardness of the test body was HRC52.
[0034]
That is, one end of the test body 10 is fixed to the base end of the arm 14 under a temperature condition of 80 ° C., while the weight 16 is suspended from the tip of the arm 14, and the displacement of the tip of the arm 14 after 72 hours is measured with a dial gauge. This was done by measuring at 18.
In the figure, 20 is a specimen holder and 22 is a jack.
[0035]
Moreover, the measurement of surface part decarburization (ferrite decarburization) evaluated the test body manufactured on the following conditions by performing a line analysis with an EPMA apparatus as follows.
[0036]
The rolling material was rolled into a wire having a diameter of 13 mm under the conditions of a heating temperature of 1200 ° C., an end temperature of 950 ° C., and a cooling rate after rolling of 1 ° C./sec.
And the cross section was mirror-polished and C concentration distribution of the surface layer part was measured with the EPMA apparatus.
[0037]
These results are shown together in Table 1 and FIGS.
2 shows the relationship between the C amount or Si / C ratio and the corrosion fatigue strength ratio based on the results obtained in Table 1, and FIG. 3 shows the Si content or the relationship between the results obtained in Table 1. FIG. 4 shows the relationship between the Si / C ratio and sag resistance (residual shear strain), and FIG. 4 shows the relationship between the Cu + Ni content and the decarburization depth.
[0038]
As shown in FIG. 2 (A) and Table 1, when the amount of C exceeds 0.48% which is the upper limit of the present invention, the corrosion fatigue strength ratio is lower than 1.0, and the corrosion fatigue strength decreases. On the other hand, by suppressing the C content to 0.48% or less, it can be seen that the corrosion fatigue strength ratio becomes 1.0 or more, which is the target value, and the corrosion fatigue strength is good.
[0039]
However, as shown in FIG. 2B, if the Si / C ratio is less than 4.0, the corrosion fatigue strength ratio is less than 1.0 and is not sufficient, and conversely, the Si / C ratio is 4.0 or more. It can be seen that the corrosion fatigue strength ratio is 1.0 or more, and the corrosion fatigue strength is improved.
[0040]
On the other hand, with respect to sag resistance, it is better than 1.0 × 10 −3 by setting the Si content to 1.6% or more, which is the lower limit of the present invention, from FIG. Even in this case, the Si / C ratio is important (see (B)), and it can be seen that when the Si / C ratio is 4.0 or more, the sag resistance is improved.
[0041]
FIG. 4 shows the influence of the Cu + Ni content on the decarburization depth. As shown in FIG. 4, the decarburization depth is reduced by increasing the Cu + Ni content. That is, it can be seen that ferrite decarburization tends to be suppressed.
[0042]
However, in the case where the Si content is 3.0%, which is higher than the upper limit of 2.8% of the present invention, the decarburization depth decreases as the Cu + Ni content increases, but the overall level is the conventional steel. Decarburization depth is deeper than that (48 μm), which is insufficient.
[0043]
On the other hand, in the case where the Si content is within the range of the present invention, the decarburization depth is smaller than that of the conventional steel by setting the Cu + Ni content to 0.20% or more, and the decarburization depth. Even if the Cu + Ni content is more than 0.20%, the effect is saturated at about 0.20%, and the decarburization depth is good in the range where the Cu + Ni content is 0.20% or more. It can be seen that
[0044]
Inventive example Nos. As shown to 19-23, it turns out that the favorable characteristic required as spring steel is acquired by containing V, Nb, Ti, Al, N, B, etc. within the scope of the present invention.
[0045]
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be implemented in a mode in which various changes are made without departing from the gist of the present invention.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a test machine used for measuring the sag resistance characteristics of a spring steel according to an embodiment of the present invention together with a specimen.
FIG. 2 is a diagram showing the relationship between C content, Si / C ratio and corrosion fatigue strength ratio obtained in an example of the present invention.
FIG. 3 is a graph showing the relationship between Si content, Si / C ratio and residual shear strain obtained in an example of the present invention.
FIG. 4 is a graph showing the relationship between the Cu + Ni content and the decarburization depth obtained in the examples of the present invention.

Claims (2)

重量%で、
C:0.38〜0.48%
Si:1.6〜2.8%
Si/C:≧4.0
Mn:0.6〜1.2%
P:≦0.015%
S:≦0.005%
Cu:0.15〜0.45%
Ni:0.05〜0.30%
Cu+Ni:≧0.20%
Cr:0.10〜0.30%
O:≦0.0012%
残部実質的にFeから成ることを特徴とする腐食疲労強度に優れた高強度ばね鋼。
% By weight
C: 0.38 to 0.48%
Si: 1.6 to 2.8%
Si / C: ≧ 4.0
Mn: 0.6 to 1.2%
P: ≦ 0.015%
S: ≦ 0.005%
Cu: 0.15-0.45%
Ni: 0.05-0.30%
Cu + Ni: ≧ 0.20%
Cr: 0.10 to 0.30%
O: ≦ 0.0012%
A high-strength spring steel excellent in corrosion fatigue strength, characterized in that the balance is substantially made of Fe.
請求項1において、更にV,Nb,Ti,Alの1種若しくは2種以上を重量%で以下の範囲
V:≦0.20%
Nb:0.020〜0.050%
Ti:0.030〜0.070%
Al:0.010〜0.040%
で含有し且つ
N:≦0.012%
B:0.0005〜0.0030%
であることを特徴とする腐食疲労強度に優れた高強度ばね鋼。
In claim 1, further, one or more of V, Nb, Ti, and Al, in the following range by weight% V: ≤ 0.20%
Nb: 0.020 to 0.050%
Ti: 0.030 to 0.070%
Al: 0.010 to 0.040%
And N: ≦ 0.012%
B: 0.0005 to 0.0030%
A high-strength spring steel with excellent corrosion fatigue strength.
JP2002166201A 2002-06-06 2002-06-06 High-strength spring steel with excellent corrosion fatigue strength Expired - Fee Related JP3896902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166201A JP3896902B2 (en) 2002-06-06 2002-06-06 High-strength spring steel with excellent corrosion fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166201A JP3896902B2 (en) 2002-06-06 2002-06-06 High-strength spring steel with excellent corrosion fatigue strength

Publications (2)

Publication Number Publication Date
JP2004010965A true JP2004010965A (en) 2004-01-15
JP3896902B2 JP3896902B2 (en) 2007-03-22

Family

ID=30433851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166201A Expired - Fee Related JP3896902B2 (en) 2002-06-06 2002-06-06 High-strength spring steel with excellent corrosion fatigue strength

Country Status (1)

Country Link
JP (1) JP3896902B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
EP2017358A2 (en) 2007-07-20 2009-01-21 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
JP2009046764A (en) * 2007-07-20 2009-03-05 Kobe Steel Ltd Steel wire material for spring having excellent corrosion fatigue property
WO2012063620A1 (en) * 2010-11-11 2012-05-18 日本発條株式会社 High-strength spring steel, method for producing high-strength spring, and high-strength spring
KR101353649B1 (en) 2011-12-23 2014-01-20 주식회사 포스코 Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring
JP2014162949A (en) * 2013-02-25 2014-09-08 Nippon Steel & Sumitomo Metal Spring steel excellent in corrosion resistance characteristic and spring steel material
WO2014196308A1 (en) * 2013-06-04 2014-12-11 中央発條株式会社 Steel for springs, spring, and spring production method
US9005378B2 (en) 2007-09-10 2015-04-14 Kobe Steel, Ltd. Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing same
EP3296414A4 (en) * 2015-05-15 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Spring steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4900516B2 (en) 2010-03-29 2012-03-21 Jfeスチール株式会社 Spring steel and manufacturing method thereof

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1801253A1 (en) * 2004-08-26 2007-06-27 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
EP1801253A4 (en) * 2004-08-26 2008-04-23 Daido Steel Co Ltd Steel for high strength spring, and high strength spring and method for manufacture thereof
JPWO2006022009A1 (en) * 2004-08-26 2008-05-08 大同特殊鋼株式会社 Steel for high strength spring, high strength spring and method for producing the same
JP4588030B2 (en) * 2004-08-26 2010-11-24 大同特殊鋼株式会社 Steel for high strength spring, high strength spring and method for producing the same
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
US8382918B2 (en) 2007-07-20 2013-02-26 Kobe Steel, Ltd. Steel wire material for spring and its producing method
EP2017358A2 (en) 2007-07-20 2009-01-21 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
JP2009046764A (en) * 2007-07-20 2009-03-05 Kobe Steel Ltd Steel wire material for spring having excellent corrosion fatigue property
EP2017358A3 (en) * 2007-07-20 2009-04-29 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
EP2374904A1 (en) 2007-07-20 2011-10-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire material for spring and its producing method
US9005378B2 (en) 2007-09-10 2015-04-14 Kobe Steel, Ltd. Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing same
JP2012102378A (en) * 2010-11-11 2012-05-31 Nhk Spring Co Ltd Steel for high strength spring, method for producing high strength spring, and high strength spring
WO2012063620A1 (en) * 2010-11-11 2012-05-18 日本発條株式会社 High-strength spring steel, method for producing high-strength spring, and high-strength spring
US9404547B2 (en) 2010-11-11 2016-08-02 Nhk Spring Co., Ltd. Steel for high-strength spring, method for producing same, and high-strength spring
KR101353649B1 (en) 2011-12-23 2014-01-20 주식회사 포스코 Wire rod and steel wire having high corrosion resistance, method of manufacturing spring and steel wire for spring
JP2014162949A (en) * 2013-02-25 2014-09-08 Nippon Steel & Sumitomo Metal Spring steel excellent in corrosion resistance characteristic and spring steel material
WO2014196308A1 (en) * 2013-06-04 2014-12-11 中央発條株式会社 Steel for springs, spring, and spring production method
JPWO2014196308A1 (en) * 2013-06-04 2017-02-23 中央発條株式会社 Spring steel, spring and spring manufacturing method
EP3296414A4 (en) * 2015-05-15 2018-12-05 Nippon Steel & Sumitomo Metal Corporation Spring steel
US10724125B2 (en) 2015-05-15 2020-07-28 Nippon Steel Corporation Spring steel

Also Published As

Publication number Publication date
JP3896902B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP4588030B2 (en) Steel for high strength spring, high strength spring and method for producing the same
KR101768785B1 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
US8328169B2 (en) Spring steel and spring having superior corrosion fatigue strength
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
EP2058414A1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
JP6027302B2 (en) High strength tempered spring steel
JP5543814B2 (en) Steel plate for heat treatment and method for producing steel member
JP3896902B2 (en) High-strength spring steel with excellent corrosion fatigue strength
JP5655627B2 (en) High strength spring steel with excellent hydrogen embrittlement resistance
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JP3918587B2 (en) Spring steel for cold forming
JP2004027334A (en) Steel for induction tempering and method of producing the same
JP2013036087A (en) Material for spring and manufacturing method thereof, and spring
JP6453693B2 (en) Heat treated steel wire with excellent fatigue characteristics
JP5214292B2 (en) Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same
JP2008280612A (en) High-strength steel sheet having excellent internal fatigue damage resistance, and method for producing the same
JP4044460B2 (en) Cold forming spring steel
JP2004190116A (en) Steel wire for spring
JP2017179423A (en) Steel wire with excellent fatigue characteristics, and method for producing the same
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP5299104B2 (en) Induction hardening steel
JP2006328513A (en) Induction-hardened steel component with axial part having excellent static strength and fatigue property
JPH10183302A (en) Steel for suspension spring excellent in delayed fracture resistance
JP2003293085A (en) Hard drawn spring having excellent fatigue strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3896902

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees