JP5214292B2 - Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same - Google Patents

Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same Download PDF

Info

Publication number
JP5214292B2
JP5214292B2 JP2008071939A JP2008071939A JP5214292B2 JP 5214292 B2 JP5214292 B2 JP 5214292B2 JP 2008071939 A JP2008071939 A JP 2008071939A JP 2008071939 A JP2008071939 A JP 2008071939A JP 5214292 B2 JP5214292 B2 JP 5214292B2
Authority
JP
Japan
Prior art keywords
strength
hydrogen
spring
steel
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008071939A
Other languages
Japanese (ja)
Other versions
JP2008266782A (en
Inventor
淳 杉本
英利 吉川
隆之 榊原
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Aichi Steel Corp
Original Assignee
Chuo Hatsujo KK
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Aichi Steel Corp filed Critical Chuo Hatsujo KK
Priority to JP2008071939A priority Critical patent/JP5214292B2/en
Publication of JP2008266782A publication Critical patent/JP2008266782A/en
Application granted granted Critical
Publication of JP5214292B2 publication Critical patent/JP5214292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、腐食環境下で使用しても強度の低下を小さく抑えることのできるばね用鋼及びそのばね用鋼からなる高強度ばね部品に関する。   The present invention relates to a spring steel that can suppress a decrease in strength even when used in a corrosive environment, and a high-strength spring component made of the spring steel.

自動車用の懸架ばねとしては、板ばねや、丸棒を素材としたばねでねじり応力が負荷されるばね(トーションバー、スタビライザ、(太径)コイルばね等。以下、適宜、丸棒ばねという。)が使用されている。コイルばねは一般的に乗用車に多く使用されており、板ばねはトラックに多く使用されている。この板ばねや丸棒ばねは、自動車の足廻り部品の中では重量的に大きい部品の中の1つであり、従来から軽量化のために高強度化の検討が継続して続けられている部品である。   As suspension springs for automobiles, springs (torsion bars, stabilizers, (large diameter) coil springs, etc.) torsional stress are applied by leaf springs or springs made of round bars. ) Is used. Coil springs are generally used in many passenger cars, and leaf springs are often used in trucks. These leaf springs and round bar springs are one of the heavy parts of automobile undercarriage parts, and the study of increasing strength has been continued for weight reduction. It is a part.

ところが、コイルばね等の丸棒ばねでも、また、板ばねでも同様なことが言えるが、引張強さを高めるために高強度化すると、腐食環境下においては逆に疲労強度が大幅に低下することが知られている。そのため、単純に引張強さを高めるという対策では、問題が解決できないことが、従来の開発において最も大きな課題であった。また、通常、板ばねや丸棒ばねは、塗装して用いられるが、地面に近い部分に取り付けて使用されるため、運転中に石などが当たって表面の塗装が損傷し、そこから腐食が進行して、折損に到る可能性がある。また、冬季には路面凍結を防止するために、腐食の原因となる融雪剤がまかれる場合がある。
このような理由から、高強度化しても腐食疲労強度が低下しにくい鋼材の開発が強く望まれていた。
However, the same can be said for round springs such as coil springs and leaf springs. However, if the strength is increased to increase the tensile strength, the fatigue strength decreases significantly in a corrosive environment. It has been known. Therefore, the biggest problem in the conventional development is that the problem cannot be solved by simply increasing the tensile strength. In general, leaf springs and round bar springs are used by painting, but they are used by being attached to a part close to the ground. There is a possibility that it will break down and lead to breakage. In winter, snow melting agents that cause corrosion may be applied to prevent road surface freezing.
For these reasons, there has been a strong demand for the development of a steel material whose corrosion fatigue strength does not easily decrease even when the strength is increased.

腐食環境下での強度、特に疲労特性の低下は、従来から様々な研究が行われており、腐食反応の進行とともに発生する水素が、鋼中に侵入し、その水素によって材料が脆化することが原因であることが、多数の文献等によって明らかにされてきている。そして、そのための対策として、鋼中の析出物等で侵入した水素をトラップし、鋼中に拡散が起きないようにすることによる改善策等がいくつかの文献で報告されており、例えば特許文献1、2に示されるような技術が報告されている。   Various studies have been conducted on the deterioration of strength, especially fatigue properties, in a corrosive environment. Hydrogen generated as the corrosion reaction progresses penetrates into the steel and the material becomes brittle due to the hydrogen. It has been clarified by many literatures that this is the cause. And as a countermeasure for that, several documents have reported improvement measures by trapping hydrogen invading with precipitates in steel and preventing diffusion in steel, for example, patent documents Techniques as shown in 1 and 2 have been reported.

特開2001−288539号公報JP 2001-288539 A 特開2002−97551号公報JP 2002-97551 A

このうち、特許文献1に記載の発明には、水素の拡散を防止するため侵入した水素をトラップするために析出物が有効であることが開示され、V、Mo、Ti、Nb及びZrの1種又は2種以上を含有する酸化物、炭化物、窒化物を有するばね鋼が高強度化のために有効であることが記載されている。   Among these, the invention described in Patent Document 1 discloses that precipitates are effective for trapping invading hydrogen in order to prevent hydrogen diffusion, and 1 of V, Mo, Ti, Nb and Zr is disclosed. It is described that a spring steel having an oxide, carbide or nitride containing seeds or two or more kinds is effective for increasing the strength.

また、特許文献2には、水素脆性の影響が生じない限界の拡散性水素量を高めるには、焼入れ焼戻し後の旧オ−ステナイト粒のアスペクト比(旧オ−ステナイト粒の長さと幅の比)が2以上、好ましくは4以上とすることが有効であることが記載されている。   Further, in Patent Document 2, in order to increase the limit of diffusible hydrogen content that does not cause the influence of hydrogen embrittlement, the aspect ratio of the prior austenite grains after quenching and tempering (ratio of the length and width of the prior austenite grains). ) Is 2 or more, preferably 4 or more.

しかしながら、従来提案されている前記した高強度ばね鋼の水素脆化に対する対策方法には、以下の問題がある。   However, the conventionally proposed countermeasures against hydrogen embrittlement of the high-strength spring steel have the following problems.

特許文献1には、前記した通り、水素をトラップするサイトとして、V、Mo、Ti、Nb、Zr等の酸化物、炭化物、窒化物等が有効であると記載されている。しかし、これらの元素が添加されたばね鋼は、過去にも既に非常に多数の鋼が開発され、実用化されており、多数の特許が登録されている。   As described above, Patent Document 1 describes that oxides, carbides, nitrides, and the like such as V, Mo, Ti, Nb, and Zr are effective as sites for trapping hydrogen. However, spring steel to which these elements are added has already been developed and put into practical use in the past, and many patents have been registered.

また、特許文献1に記載の対象となる鋼成分は、JISのSUP10も範囲に含まれる非常に広い範囲となっており、かつ前記した通りこの文献に記載のNb、Mo、V等の炭化物形成元素は既に数多くの特許に記載され、これらの炭化物形成元素を含有する鋼は、実際にも開発鋼として製造され、実用化されているのが現状である。   Moreover, the steel component which becomes the object described in Patent Document 1 is in a very wide range including JIS SUP10, and as described above, formation of carbides such as Nb, Mo, V, etc. described in this document. Elements have already been described in numerous patents, and steels containing these carbide-forming elements are actually manufactured and used as developed steels.

このような状況を考えると、特許文献1には、従来技術に比較して明確に優れているばね鋼の仕様が具体的に明らかにされているとは判断できず、当業者が特許文献1を参照しても最適な成分範囲、製造条件を把握できないという問題がある。   Considering such a situation, it cannot be determined in Patent Document 1 that the specifications of the spring steel, which is clearly superior to the prior art, are specifically disclosed. There is a problem that the optimum component range and manufacturing conditions cannot be grasped even if reference is made.

また、特許文献2には、焼入れ焼戻し後において、旧オ−ステナイト粒のアスペクト比が2以上、好ましくは4以上が望ましいと記載されており、そのために700〜900℃の未再結晶温度域において30%以上の圧下率を与え、加工直後にすぐに焼入れを行うことによりその組織が得られると記載されている。しかし、このような加工熱処理による強度向上方法は、従来からオースフォームとしてよく知られており、当業者が従来の加工熱処理技術との差異を明確に把握することができないという問題がある。   Patent Document 2 describes that after quenching and tempering, the aspect ratio of prior austenite grains is preferably 2 or more, and preferably 4 or more. Therefore, in the non-recrystallization temperature range of 700 to 900 ° C. It is described that the structure can be obtained by giving a rolling reduction of 30% or more and quenching immediately after processing. However, such a strength improvement method by thermomechanical processing is conventionally well known as ausfoam, and there is a problem that a person skilled in the art cannot clearly grasp the difference from the conventional thermomechanical processing technology.

さらに、特許文献1、2には、非常に広い範囲の成分からなる鋼が漠然と記載されており、特に特許文献2では、JISの炭素鋼、合金鋼まで含まれる極めて広い範囲となっているため、当業者でも真に水素脆性に強い成分領域を正確に見極めることができないという問題があった。   Furthermore, in Patent Documents 1 and 2, steels composed of a very wide range of components are described vaguely. In particular, Patent Document 2 has a very wide range including JIS carbon steels and alloy steels. However, there is a problem that even those skilled in the art cannot accurately determine a component region that is truly resistant to hydrogen embrittlement.

本発明は、以上説明した問題点を解決するために成されたものであり、鋼中に水素が侵入しても水素脆化が起こりにくく、高引張強度域で優れた腐食疲労強度を確保でき、かつ具体的な最適成分範囲を明確にした高強度ばね用鋼及びそれを用いた高強度ばね部品を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even if hydrogen enters the steel, hydrogen embrittlement hardly occurs, and excellent corrosion fatigue strength can be secured in a high tensile strength region. An object of the present invention is to provide a high-strength spring steel and a high-strength spring component using the same, in which a specific optimum component range is clarified.

本発明は、ばね形状に成形し、焼入れ処理後の焼戻し時において、390℃以上の温度で処理することにより作製する高強度ばね部品に用いるばね用鋼であって、
質量%で、C:0.50〜0.65%、Si:0.55〜0.90%、Mn:0.40〜1.20%、Cu:0.20〜0.40%、Ni:0.20〜0.50%、Cr:0.60〜1.10%、V:0.08〜0.30%を含有し、残部がFe及び不純物元素からなることを特徴とする耐水素脆性、腐食疲労強度の優れたばね用鋼にある(請求項1)。
The present invention is a spring steel used for a high-strength spring component formed by forming into a spring shape and processing at a temperature of 390 ° C. or higher during tempering after quenching,
In mass%, C: 0.50 to 0.65%, Si: 0.55 to 0.90%, Mn: 0.40 to 1.20%, Cu: 0.20 to 0.40%, Ni: Hydrogen embrittlement resistance characterized by containing 0.20 to 0.50%, Cr: 0.60 to 1.10%, V: 0.08 to 0.30%, and the balance consisting of Fe and impurity elements The spring steel has excellent corrosion fatigue strength (Claim 1).

従来、ばね鋼は、そのSi含有率でみると、SUP6、SUP7、SUP12に代表されるSiを1.2〜2.2%含有する高Siの材料と、その他のSiを他の炭素鋼やSCr、SCMといった合金鋼の多くがそうであるように、0.25%程度しか含有しない低Siの材料の2種類に大きく分かれていた。そして、中間量のSi量のばね鋼については、海外の規格を含めても全く規格化されておらず、かつ使用されていなかった。   Conventionally, spring steel has a high Si material containing 1.2 to 2.2% of Si represented by SUP6, SUP7, and SUP12, and other carbon steels in terms of Si content. As is the case with many alloy steels such as SCr and SCM, it was largely divided into two types of low-Si materials containing only about 0.25%. And about the amount of Si spring steel of intermediate amount, even if it includes foreign standards, it was not standardized at all and was not used.

本発明者等は、従来のこのような使用状況に左右されることなく、Siだけでなく他元素も含め、幅広い成分範囲で、耐水素脆性及び腐食疲労強度を改善する成分領域がないか検討した。その結果、Siについては従来全く使用されていなかった、0.7%程度の中間の含有率とするのが最も適していること、Siの効果をより高めるためには、同時にCu、Ni、Cr、Vの添加が必要なことを見出したものである。以下、さらに詳細に説明する。   The present inventors examined whether there is a component area that improves hydrogen embrittlement resistance and corrosion fatigue strength in a wide component range including not only Si but also other elements, regardless of the conventional usage situation. did. As a result, it is most suitable to have an intermediate content of about 0.7%, which has not been used for Si at all. In order to further enhance the effect of Si, at the same time, Cu, Ni, Cr , V has been found to be necessary. This will be described in more detail below.

(1)焼戻し温度と拡散性水素量の関係
拡散性水素とは、多数の文献に記載されているように、鋼材中を室温で動く(拡散する)ことのできる水素のことを言い、その量は鋼材を300℃程度まで加熱した際に鋼材から放出される水素量を測定することによって求めることができる。拡散性水素量が多いということは、それだけ多くの自由に拡散できる水素が鋼材に侵入していることを意味しており、当然鋼材に与える水素脆化の影響も大きくなると考えられる。
(1) Relationship between the tempering temperature and the amount of diffusible hydrogen As described in many literatures, diffusible hydrogen refers to hydrogen that can move (diffuse) in steel at room temperature. Can be determined by measuring the amount of hydrogen released from the steel when the steel is heated to about 300 ° C. A large amount of diffusible hydrogen means that a large amount of freely diffusible hydrogen has infiltrated into the steel material, and it is natural that the influence of hydrogen embrittlement on the steel material will also increase.

そこで、本発明者等は、多種類の成分からなる鋼材について、一定の条件で意図的に水素を侵入させた鋼材について、成分、焼戻し後の硬さ、焼戻し温度等の条件と拡散性水素量の関係を調査した。その結果、後述する実施例1における図1に示すように、390℃以上に焼戻した場合において、その後に意図的に水素を侵入させた場合でも拡散性水素の量を抑えることができること、焼戻し軟化抵抗を高める効果を有するSiを添加した鋼は、同じ硬さ狙いでも焼戻し温度を高めに設定することができるため、水素脆化による強度低下を抑えることができることを見出した。   Therefore, the present inventors, for steel materials composed of many kinds of components, for steel materials intentionally infiltrated with hydrogen under certain conditions, conditions such as components, hardness after tempering, tempering temperature and the amount of diffusible hydrogen The relationship was investigated. As a result, as shown in FIG. 1 in Example 1 to be described later, when tempering to 390 ° C. or higher, the amount of diffusible hydrogen can be suppressed even when hydrogen is intentionally intruded thereafter, temper softening It has been found that steel added with Si having an effect of increasing resistance can suppress a decrease in strength due to hydrogen embrittlement because the tempering temperature can be set high even when aiming at the same hardness.

なお、Siは、焼戻し軟化抵抗を高めるという点のみを重視するならば、0.9%を超えての添加も可能であるが、Siを多量に添加すると、フェライト脱炭が生じやすくなり、特に圧延による断面減少率が小さくなる厚物の板ばねや太径のコイルばね、トーションバー、スタビライザの場合には、最終製品に脱炭層が残り易いため、別の理由によって疲労強度が低下することになるので、従来の高Siばね鋼並の添加は望ましくない。   Note that Si can be added in excess of 0.9% if only the point of increasing the temper softening resistance is important. However, when a large amount of Si is added, ferrite decarburization is likely to occur. In the case of thick leaf springs, large-diameter coil springs, torsion bars, and stabilizers that have a reduced cross-sectional reduction ratio due to rolling, the decarburized layer tends to remain in the final product, so that fatigue strength decreases for another reason. Therefore, the addition of the conventional high Si spring steel is not desirable.

そこで、本発明者等は、脱炭量に及ぼすSi量の影響を詳細に調査した。その結果、後述する実施例1における図2に示す通り、Si量が0.9%以下であれば問題となるような脱炭は生じないことを確認したものである。なお、同図は、加熱後に板厚18mmの板材に圧延した後の冷却速度に相当する速度で冷却した後のフェライト脱炭量を示したものである。   Therefore, the present inventors investigated in detail the influence of the Si amount on the decarburization amount. As a result, as shown in FIG. 2 in Example 1 to be described later, it was confirmed that decarburization causing a problem would not occur if the Si amount was 0.9% or less. The figure shows the amount of ferrite decarburized after cooling at a rate corresponding to the cooling rate after rolling into a plate having a thickness of 18 mm after heating.

(2)Si以外の元素の影響
腐食疲労強度の向上を図るためには、腐食されやすい環境下で使用された場合でも鋼材自体の耐食性に優れ腐食進行に対する抵抗を高めておくことが必要である。従って、Siの添加によって、焼戻し軟化抵抗を高めておくだけでなく、腐食に対する抵抗を高める元素を添加しておくことが必要である。
(2) Influence of elements other than Si In order to improve the corrosion fatigue strength, it is necessary to have excellent corrosion resistance of the steel itself even when used in an environment susceptible to corrosion, and to increase the resistance to corrosion progression. . Therefore, it is necessary not only to increase the temper softening resistance by adding Si, but also to add an element that increases the resistance to corrosion.

この点に関し、本発明者等は多種類の成分の鋼を試験的に溶解し、調査した結果、耐食性を向上させ、万が一腐食された場合であってもその腐食ピット深さを小さく抑えるためには、Ni、Cuの少量添加が極めて有効であること、さらに、後述するように、Bを添加した方が腐食疲労寿命を改善できることを確認したものである。   In this regard, the present inventors have experimentally melted and investigated a variety of steel components to improve the corrosion resistance and to reduce the depth of the corrosion pit even if it is corroded. Has confirmed that addition of a small amount of Ni and Cu is extremely effective, and that, as will be described later, the addition of B can improve the corrosion fatigue life.

本発明はこれらの知見を得ることにより、発明を完成させることに成功したものである。
なお、以上検討した結果得られるばね用鋼は、意図的に水素を鋼材中に侵入させる処理(以下、水素チャージと記す。)を行った後の曲げ破断強度、ねじり破断トルクにて比較すると、大きな効果を示す。すなわち、後述する実施例1における図3、図4に示すように、従来鋼であるSUP9、SUP10や本発明の一部の条件を満足しない比較鋼と比べると、HV500を超える高硬さ領域での強度低下が著しく小さくなり、従来鋼に比較して、高い引張強度でも安心して使用できるという効果を有する。
The present invention has succeeded in completing the invention by obtaining these findings.
In addition, the spring steel obtained as a result of the above examination is compared with the bending rupture strength and torsional rupture torque after intentionally invading hydrogen into the steel material (hereinafter referred to as hydrogen charge). Shows great effect. That is, as shown in FIGS. 3 and 4 in Example 1 to be described later, in comparison with conventional steels SUP9 and SUP10 and comparative steels that do not satisfy some conditions of the present invention, in a high hardness region exceeding HV500. As a result, the decrease in strength of the steel is remarkably reduced, and there is an effect that it can be used safely even with high tensile strength as compared with conventional steel.

次に上記ばね用鋼について、各成分毎に添加量の範囲を限定した理由について説明する。
C:0.50〜0.65%
Cは、焼入れ焼戻し処理後に高強度ばね部品として必要な強度、硬さを確保するために不可欠となる元素であり、最低でも0.50%以上の含有が必要である。しかしながら、多量に含有させると高強度での使用時に靭性が低下するため、上限を0.65%とした。
Next, the reason for limiting the range of addition amount for each component in the spring steel will be described.
C: 0.50 to 0.65%
C is an element that is indispensable for securing the strength and hardness necessary for a high-strength spring part after quenching and tempering treatment, and it is necessary to contain at least 0.50% or more. However, if it is contained in a large amount, the toughness decreases when used at high strength, so the upper limit was made 0.65%.

Si:0.50〜0.90%
Siは、本発明のポイントとなる元素である。Siは、脱酸のために必要となる元素としてよく知られているが、脱酸のためだけならば、0.25%程度でも十分である。本発明では、脱酸のために必要な量を超えて添加することにより、焼戻し時の軟化抵抗性を高め、同じ硬さ狙いであってもより高い焼戻し温度に調整可能とする。その結果、ばね用鋼中に存在する拡散性水素量の増加を抑制し、水素による脆化を防止して、腐食疲労強度の改善を可能とするものである。そして、このような効果を得るためには、最低でも0.50%以上、好ましくは0.55%以上含有させる必要がある。しかしながら、従来の高Siばね鋼並の量まで増量すると、特に厚物や太径のばね用鋼においては、圧延による断面減少率が大きくとれないことや、圧延後の冷却速度が低下すること等の理由から、フェライト脱炭が増加し、かえって強度が低下するおそれがあることから、上限を0.90%とした。
Si: 0.50-0.90%
Si is an element that is a point of the present invention. Si is well known as an element required for deoxidation, but if it is only for deoxidation, about 0.25% is sufficient. In the present invention, by adding more than the amount necessary for deoxidation, the softening resistance at the time of tempering is increased, and even when aiming at the same hardness, it is possible to adjust to a higher tempering temperature. As a result, an increase in the amount of diffusible hydrogen present in the spring steel is suppressed, embrittlement due to hydrogen is prevented, and corrosion fatigue strength can be improved. And in order to acquire such an effect, it is necessary to make it contain at least 0.50% or more, preferably 0.55% or more. However, when the amount is increased to the same level as that of conventional high Si spring steel, particularly in thick and thick spring steels, the reduction rate of the cross-section due to rolling cannot be increased, and the cooling rate after rolling decreases. For this reason, ferrite decarburization increases and the strength may rather decrease, so the upper limit was made 0.90%.

Mn:0.40〜1.20%
Mnは、板厚に応じて必要となる焼入性を確保するために必要不可欠となる元素である。必要な焼入性を確保するために添加すべきMnの含有率は、Mn以外の添加成分や製造する板ばねの厚さや、丸棒材の直径等のばね部品の寸法によっても変化するが、0.40%未満になると、必要な焼入性を確保することが難しくなるため、含有率の下限を0.40%とした。しかしながら、Mnは多量に含有させると、焼割れが発生しやすくなって、製造性が低下するため、上限を1.20%とした。
Mn: 0.40 to 1.20%
Mn is an element that is indispensable for ensuring the hardenability required depending on the plate thickness. The content of Mn to be added to ensure the necessary hardenability changes depending on the additive components other than Mn, the thickness of the leaf spring to be manufactured, and the dimensions of the spring parts such as the diameter of the round bar, If it becomes less than 0.40%, it becomes difficult to ensure the necessary hardenability, so the lower limit of the content rate was set to 0.40%. However, if Mn is contained in a large amount, it becomes easy to cause cracking and the productivity decreases, so the upper limit was made 1.20%.

Cu:0.20〜0.40%
Cuは腐食環境において生成する腐食ピットの成長を抑制し、腐食疲労強度を高めるために不可欠となる元素であり、最低でも0.20%以上含有させる必要がある。しかし、多量に含有させると前記効果が飽和するとともに、熱間加工性が低下して製造性が低下するため、上限を0.40%とした。
Cu: 0.20 to 0.40%
Cu is an element indispensable for suppressing the growth of corrosion pits generated in a corrosive environment and increasing the corrosion fatigue strength, and it is necessary to contain at least 0.20% or more. However, when the content is large, the above effects are saturated, and hot workability is lowered and productivity is lowered. Therefore, the upper limit is set to 0.40%.

Ni:0.20〜0.50%
NiもCuと同様に、腐食環境において生成する腐食ピットの成長を抑制する効果があり、そのために0.20%以上の含有が必要である。しかし、多量に添加しても前記効果が飽和するとともにコスト高の原因となるため、上限を0.50%とした。
Ni: 0.20 to 0.50%
Ni, like Cu, has an effect of suppressing the growth of corrosion pits generated in a corrosive environment. For this reason, it is necessary to contain 0.20% or more. However, even if added in a large amount, the above effect is saturated and the cost is increased, so the upper limit was made 0.50%.

Cr:0.60〜1.10%
Crは、Mnと同様に焼入性向上に効果のある元素であるとともに、本発明においては、Siほどの効果はないものの、焼戻し軟化抵抗向上にも効果のある元素である。さらに、Crは、Cu、Niと同様に腐食ピットの成長を抑制し、耐食性向上にも効果がある。従って、そのために必要な量だけ含有させる必要があり、下限を0.60%とした。しかし、多量に含有させると焼割れが生じやすくなるため、上限を1.10%とした。
Cr: 0.60 to 1.10%
Cr is an element that is effective in improving hardenability like Mn, and in the present invention, it is an element that is also effective in improving temper softening resistance, although it is not as effective as Si. Further, Cr, like Cu and Ni, suppresses the growth of corrosion pits and is effective in improving corrosion resistance. Therefore, it is necessary to contain only the necessary amount for that purpose, and the lower limit is made 0.60%. However, if it is contained in a large amount, it tends to cause burning cracks, so the upper limit was made 1.10%.

V:0.05〜0.30%
Vは、焼入焼戻し後の組織を微細化し、強度、靭性のバランスが優れ、耐力を高めるために不可欠となる元素である。そして組織を微細化し、前記効果を十分に得るためには、焼入後の結晶粒を微細化することが不可欠であり、そのためにVの添加は必須であるため下限を0.05%とした。しかし、多量に添加しても効果が飽和するとともにコスト高の原因となるため、上限を0.30%とした。
V: 0.05-0.30%
V is an element that is indispensable for refining the structure after quenching and tempering, providing an excellent balance between strength and toughness and increasing proof stress. And in order to refine the structure and sufficiently obtain the above effect, it is indispensable to refine the crystal grains after quenching, and therefore the addition of V is essential, so the lower limit was made 0.05% . However, even if added in a large amount, the effect is saturated and the cost is increased, so the upper limit was made 0.30%.

次に、請求項2に記載の発明は、上記した請求項1に記載のばね用鋼に含有する各成分に加えて、さらに、B:0.0005〜0.0050%、Ti:0.010〜0.070%を含有することを特徴とするものである。その限定理由について説明する。   Next, in addition to the components contained in the spring steel according to the first aspect, the invention according to the second aspect further includes B: 0.0005 to 0.0050%, Ti: 0.010. -0.070% is contained, It is characterized by the above-mentioned. The reason for the limitation will be described.

B:0.0005〜0.0050%
Bは、焼入性向上に効果のある元素であり、本発明でもそのために少量添加するものである。但し、焼入性の向上のみであれば、MnやCrの増量でも効果が得られるが、Bは粒界強度の向上という効果があり、この効果によって上述のごとく腐食環境下での疲労強度を改善する効果がある。従って、要求特性にもよるが少量添加することが望ましい。そして、添加による効果を得るためには、最低でも0.0005%以上含有させる必要がある。しかし、Bはきわめて少量の含有で効果を得られる元素であり、多量に含有させてもその効果が飽和するため、上限を0.0050%とした。
B: 0.0005 to 0.0050%
B is an element effective in improving hardenability, and is added in a small amount for this purpose in the present invention. However, if only hardenability is improved, an effect can be obtained by increasing the amount of Mn and Cr, but B has an effect of improving the grain boundary strength, and as a result, the fatigue strength in a corrosive environment is improved as described above. There is an effect to improve. Therefore, it is desirable to add a small amount depending on the required characteristics. And in order to acquire the effect by addition, it is necessary to make it contain 0.0005% or more at least. However, B is an element that can obtain an effect when contained in a very small amount, and even if contained in a large amount, the effect is saturated, so the upper limit was made 0.0050%.

Ti:0.010〜0.070%
BはNと非常に結合しやすい元素であり、不純物として含有するNと結合し、BNとなって存在した場合には、Bの焼入性向上効果、粒界強化効果が得られなくなる。そこで、Tiを添加し、TiNを形成して、BNの生成を防止する必要がある。この効果を得るためには、最低でもTiを0.010%以上含有させる必要がある。しかし、Tiを多量に添加すると粗大なTiNが生成しやすくなり、疲労強度低下の原因となるため、上限を0.070%とした。
なお、請求項1、2には記載していないが、鋼の製造時に必須の工程である脱酸処理に必要な量のAl(0.040%以下程度)を不純物として含有しても勿論良い。
Ti: 0.010 to 0.070%
B is an element that is very easy to bond with N. When B is combined with N contained as an impurity and exists as BN, the effect of improving the hardenability of B and the effect of strengthening the grain boundary cannot be obtained. Therefore, it is necessary to add Ti and form TiN to prevent the generation of BN. In order to obtain this effect, it is necessary to contain at least 0.010% Ti. However, when Ti is added in a large amount, coarse TiN is likely to be generated, which causes a decrease in fatigue strength, so the upper limit was made 0.070%.
Although not described in claims 1 and 2, it is of course possible to contain as an impurity an amount of Al (about 0.040% or less) necessary for deoxidation, which is an essential step in the production of steel. .

次に、請求項3に記載の発明は、上述の請求項1又は2に記載のばね用鋼を用いて成形されたことを特徴とする耐水素脆性、腐食疲労強度の優れた高強度ばね部品にある。
既に説明しているように、請求項1又は請求項2に記載のばね用鋼は、Si添加による焼戻し軟化抵抗性の向上及びNi、Cuの添加による耐食性の改善によって、耐水素脆性、腐食疲労強度を改善できるばね用鋼としている。そのため、このばね用鋼から製造したばね部品は、この2特性が共に優れたものとすることができる。
Next, the invention according to claim 3 is a high-strength spring component excellent in hydrogen embrittlement resistance and corrosion fatigue strength, characterized by being formed using the spring steel according to claim 1 or 2 described above. It is in.
As described above, the spring steel according to claim 1 or 2 is improved in resistance to temper softening due to addition of Si and improved in corrosion resistance due to addition of Ni and Cu. Spring steel that can improve strength. Therefore, the spring part manufactured from this spring steel can be excellent in both of these two characteristics.

最後に、第4の発明は、請求項3において、ばね形状に成形し、焼入れ処理後の焼戻し時において、390℃以上の温度で処理することにより作製したことを特徴とする耐水素脆性、腐食疲労強度の高強度ばね部品にある。   Finally, the fourth invention is the hydrogen embrittlement resistance and corrosion according to claim 3, which is formed by forming into a spring shape and processing at a temperature of 390 ° C. or higher during tempering after quenching. It is in high strength spring parts with fatigue strength.

ここで、処理温度を390℃以上とした理由について説明する。
耐水素脆性が改善されるかどうかは、侵入した水素のうち自由に動くことのできる水素、すなわち拡散性水素と言われている量によって決定されると言われている。本発明者等は、様々な条件で製造したばね用鋼について、意図的にばね用鋼中に水素を侵入させる処理(水素チャージ)を施し、拡散性水素量がどう変化するかについて調査した。その結果、前記した通り焼戻し温度を高くするほど、拡散性水素量が低下するという関係が得られること、拡散性水素量が小さいほど、水素チャージ後における高硬度域での曲げ破断強度、ねじり破断トルクの低下が小さく抑えられることを見出したものである(図1、図3、図4参照)。
Here, the reason why the processing temperature is set to 390 ° C. or higher will be described.
Whether the hydrogen embrittlement resistance is improved is said to be determined by the amount of hydrogen that can move freely among the invading hydrogen, that is, the amount called diffusible hydrogen. The inventors of the present invention investigated how the amount of diffusible hydrogen changes by intentionally applying a treatment (hydrogen charge) for intruding hydrogen into the spring steel with respect to the spring steel manufactured under various conditions. As a result, as described above, the higher the tempering temperature, the lower the amount of diffusible hydrogen, the lower the amount of diffusible hydrogen, the lower the amount of diffusible hydrogen, the higher the bending rupture strength after hydrogen charging, the torsional fracture It has been found that the decrease in torque can be kept small (see FIGS. 1, 3, and 4).

そして、図1より、焼戻し温度が390℃以上になると拡散性水素量はかなり減少し、さらに焼戻し温度を高めてもその変化は小さいことから、下限の温度を390℃に設定した。望ましくは下限を400℃とするのが良い。なお、設計応力が高まり、硬さの狙い値が高くなっている中で、焼戻し温度を390℃以上としても狙いの硬さを確保できるようにするために、Si等の焼戻し軟化抵抗を高める元素が必須となることは、既に前記した通りである。   From FIG. 1, when the tempering temperature is 390 ° C. or higher, the amount of diffusible hydrogen is considerably reduced, and even if the tempering temperature is further increased, the change is small, so the lower limit temperature was set to 390 ° C. Preferably, the lower limit is 400 ° C. An element that increases temper softening resistance, such as Si, in order to ensure the target hardness even when the tempering temperature is set to 390 ° C. or higher while the design stress increases and the target value of hardness is high. As described above, is essential.

なお、焼戻し温度を390℃以上とした方が拡散性水素量が低下する理由については明確ではないが、高い温度で焼戻した組織の方が、水素がトラップされやすい特徴を有しているためと推定される。   The reason why the amount of diffusible hydrogen decreases when the tempering temperature is set to 390 ° C. or higher is not clear, but the structure tempered at a high temperature has a characteristic that hydrogen is easily trapped. Presumed.

(実施例1)
本例は、本発明のばね用鋼にかかる実施例及び比較例について説明する。
まず、表1に示す化学成分を有するばね用鋼(試料E1〜試料E10、及び試料C11〜試料C19)を用意した。
表1に示すばね用鋼のうち、上記試料E1〜試料E10は本発明鋼であり、上記試料C11〜試料C17は一部の成分又は焼戻し条件が本発明とは異なる比較鋼であり、試料C18は従来鋼であるSUP9、試料C19は従来鋼であるSUP10である。
Example 1
In this example, an example and a comparative example according to the spring steel of the present invention will be described.
First, spring steels (samples E1 to E10 and samples C11 to C19) having chemical components shown in Table 1 were prepared.
Among the spring steels shown in Table 1, the above samples E1 to E10 are steels of the present invention, and the above samples C11 to C17 are comparative steels having some components or tempering conditions different from those of the present invention, and sample C18. Is SUP9 which is a conventional steel, and sample C19 is SUP10 which is a conventional steel.

Figure 0005214292
Figure 0005214292

表1に示す成分のばね用鋼は、試作用の真空誘導溶解炉を用いて溶製し、得られたばね用鋼塊からφ18mmの丸棒と、幅70mm、厚さ12mmの板材に鍛伸加工し、焼ならし処理を施した後、後述する各種試験片に加工した。各試験片について、脱炭試験、拡散性水素量の測定、破断強度の測定、腐食疲労試験を実施し、評価を行った。結果を表2に示す。   The spring steels with the components shown in Table 1 were melted using a prototype vacuum induction melting furnace, and the obtained steel ingots were forged into a 18 mm round bar and a plate with a width of 70 mm and a thickness of 12 mm. And after performing the normalization process, it processed into the various test pieces mentioned later. About each test piece, the decarburization test, the measurement of the amount of diffusible hydrogen, the measurement of breaking strength, and the corrosion fatigue test were implemented and evaluated. The results are shown in Table 2.

次に、評価方法について説明する。
<脱炭試験>
脱炭試験は、φ18mmの丸棒から直径8mm、高さ12mmの円柱型試験片を作製(試験前の脱炭量は0)し、900℃に加熱した後、あらかじめ測定しておいた板材(板厚18mm)及び丸棒材(直径35mm)の熱間圧延後の冷却曲線と同等の冷却速度になるよう速度を制御した冷却処理を実施することにより行った。そして、冷却終了後の試験片を切断・研磨してナイタールでエッチングし、顕微鏡でフェライト脱炭深さを測定した。結果を表2及び図2に示す。なお、脱炭に問題のないSi量の上限を正確に把握するため、表1に示す鋼に加えSi:0.90%の鋼(0.53C−0.90Si−0.65Mn−0.015P−0.010S−0.30Cu−0.40Ni−0.90Cr−0.20V)を追加して評価した(試料C99とする)。図2は、Si含有率と脱炭量との関係を示すものであり、同図は、横軸にSi含有率(%)をとり、縦軸に脱炭量(DM−F(mm))をとった。
Next, the evaluation method will be described.
<Decarburization test>
In the decarburization test, a cylindrical test piece having a diameter of 8 mm and a height of 12 mm was prepared from a round bar having a diameter of 18 mm (the decarburization amount before the test was 0), heated to 900 ° C., and a plate material previously measured ( The thickness was 18 mm) and a round bar (diameter 35 mm) was performed by carrying out a cooling process in which the speed was controlled so that the cooling speed was equivalent to the cooling curve after hot rolling. And the test piece after completion | finish of cooling was cut | disconnected and grind | polished, it etched with nital, and the ferrite decarburization depth was measured with the microscope. The results are shown in Table 2 and FIG. In addition, in order to accurately grasp the upper limit of the amount of Si that causes no problem in decarburization, in addition to the steel shown in Table 1, Si: 0.90% steel (0.53C-0.90Si-0.65Mn-0.015P -0.010S-0.30Cu-0.40Ni-0.90Cr-0.20V) was added for evaluation (referred to as sample C99). FIG. 2 shows the relationship between the Si content rate and the decarburization amount. In the figure, the horizontal axis represents the Si content rate (%), and the vertical axis represents the decarburization amount (DM-F (mm)). I took.

なお、脱炭の程度によっては、疲労強度への影響が無視できないものとなるため、一部の試料については、幅70mm×厚さ18mmの板材、及び直径35mmの丸棒材を圧延により製造してフェライト脱炭深さの確認を行った。また、それと共に、上記板材を用いて板ばねを製造し、635±500MPaの応力で4点曲げ疲労試験を実施した。破断するまでの繰返し回数を疲労寿命として、10万回以上の寿命が得られるか否かの確認を行った。   Depending on the degree of decarburization, the effect on fatigue strength cannot be ignored. Therefore, for some samples, a 70 mm wide x 18 mm thick plate and a 35 mm diameter round bar are produced by rolling. The ferrite decarburization depth was confirmed. Along with this, a leaf spring was manufactured using the above plate material, and a four-point bending fatigue test was performed at a stress of 635 ± 500 MPa. It was confirmed whether or not a life of 100,000 times or more could be obtained with the number of repetitions until the fracture occurred as the fatigue life.

<拡散性水素量>
拡散性水素量は、前記した鍛伸加工した板材を用い、寸法が30mm×30mm×8mmの板状試験片を作製し、この試験片を焼入焼戻ししたものを試験片として準備した。そして、この試験片を20%チオシアン酸アンモニウム水溶液に30分間浸漬させることによって水素チャージを実施し、浸漬が終了した後5分後に100℃/hrの速度で加熱して、加熱途中に放出されるばね用鋼中の拡散性水素量を測定した。なお、5分後としたのは、試験後の時間にバラツキがあると、拡散性水素量の値が変化する可能性があるからである。結果を図1に示す。図1は焼戻し温度と拡散性水素量との関係を示すものである。同図は横軸に焼戻し温度(℃)をとり、縦軸に拡散性水素量(質量ppm)をとった。
<Diffusion hydrogen content>
The amount of diffusible hydrogen was prepared by preparing a plate-shaped test piece having dimensions of 30 mm × 30 mm × 8 mm using the forged and stretched plate material, and quenching and tempering the test piece. Then, hydrogen charging is performed by immersing this test piece in a 20% aqueous ammonium thiocyanate solution for 30 minutes. After completion of the immersion, the sample is heated at a rate of 100 ° C./hr 5 minutes and released during the heating. The amount of diffusible hydrogen in the spring steel was measured. The reason for 5 minutes later is that there is a possibility that the value of the amount of diffusible hydrogen may change if there is variation in the time after the test. The results are shown in FIG. FIG. 1 shows the relationship between the tempering temperature and the amount of diffusible hydrogen. In the figure, the horizontal axis represents the tempering temperature (° C.), and the vertical axis represents the amount of diffusible hydrogen (mass ppm).

<破断強度>
また、前記の鍛伸加工した板材を用いて、幅30mm×厚さ8mm×長さ180mmの板状試験片を加工し、これに焼入焼戻ししたものを試験片として準備した。そしてこれに前記の水素チャージを実施し、浸漬終了後、5分後に3点曲げ試験を実施し、曲げ破断強度を測定した。結果を図3に示す。図3は、水素チャージ後における硬さと曲げ破断強度の関係を示すものである。同図は、横軸に硬さ(HV)をとり、縦軸に曲げ破断強度(MPa)をとった。また、同図には、本例と同様にして作製した試料につき、水素チャージをしていない場合についても同様の試験を行い、同図にA、Bとして記載した(表には示していない)。直線Aが本発明鋼の水素チャージをしていないものであり、点線Bが従来鋼(SUP9,SUP10)の水素チャージをしていないものであり、一点鎖線Cが比較鋼・従来鋼の水素チャージをしたものであり(一部表には示していない)、領域Dが本発明鋼の水素チャージをしたものである。
<Break strength>
Further, a plate-like test piece having a width of 30 mm, a thickness of 8 mm, and a length of 180 mm was processed using the forged and stretched plate material, and a hardened and tempered sample was prepared as a test piece. Then, the above-described hydrogen charging was performed, and a three-point bending test was performed 5 minutes after the completion of immersion, and the bending fracture strength was measured. The results are shown in FIG. FIG. 3 shows the relationship between hardness and bending rupture strength after hydrogen charging. In the figure, the horizontal axis represents hardness (HV) and the vertical axis represents bending fracture strength (MPa). Further, in the same figure, the same test was performed for the sample prepared in the same manner as in this example even when it was not charged with hydrogen, and indicated as A and B in the same figure (not shown in the table). . The straight line A is not hydrogen-charged of the steel of the present invention, the dotted line B is not hydrogen-charged of the conventional steel (SUP9, SUP10), and the alternate long and short dash line C is hydrogen-charged of the comparative steel and conventional steel The region D is a hydrogen-charged steel of the present invention.

また、φ18mmの鍛伸加工材を用いて平行部直径9mmの丸棒試験片を加工し、これに焼入焼戻ししたものを試験片として準備した。そしてこれに前記の水素チャージを実施し、浸漬終了後、5分後にねじり試験を実施し、破断トルクを測定した。結果を図4に示す。図4は、硬さとねじり破断トルクとの関係を示すものである。同図は、横軸にねらい硬さ(HV)をとり、縦軸にねじり破断トルク(N・m)をとった。また、同図には、本例と同様にして作製した試料につき、水素チャージをしていない場合についても同様の試験を行い、同図にE、Fとして記載した(表には示していない)。直線Eが本発明鋼の水素チャージをしていないものであり、点線Fが従来鋼(SUP9,SUP10)の水素チャージをしていないものであり、点線Gが比較鋼・従来鋼の水素チャージをしたものであり(一部表には示していない)、領域Hが本発明鋼の水素チャージをしたものである。
これらの結果より、本発明鋼は、HV500を超える高硬さ領域での強度低下が著しく小さくなり、従来鋼に比較して、高い強度でも安心して使用できるという効果を有することがわかる。
Moreover, the round bar test piece of parallel part diameter 9mm was processed using the forging processed material of (phi) 18mm, and what hardened and tempered to this was prepared as a test piece. Then, the above hydrogen charge was performed, and after the immersion, a torsion test was performed 5 minutes later, and the breaking torque was measured. The results are shown in FIG. FIG. 4 shows the relationship between hardness and torsional breaking torque. In the figure, the horizontal axis represents the target hardness (HV), and the vertical axis represents the torsional breaking torque (N · m). Further, in the same figure, the same test was performed for the sample prepared in the same manner as in this example, even when the sample was not charged with hydrogen, and indicated as E and F in the same figure (not shown in the table). . The straight line E is not hydrogen-charged of the steel of the present invention, the dotted line F is not hydrogen-charged of the conventional steel (SUP9, SUP10), and the dotted line G is hydrogen-charged of the comparative steel and conventional steel. (Partly not shown in the table), region H is the hydrogen-charged steel of the present invention.
From these results, it can be seen that the steel according to the present invention has an effect that the strength decrease in the high hardness region exceeding HV500 is remarkably reduced, and that it can be used safely even at high strength as compared with the conventional steel.

<腐食疲労試験>
腐食疲労試験は、まず、幅70mm、厚さ12mmの板材から幅30mm、厚さ8mm、長さ300mmの板ばねを準備し、焼入焼戻し及びショットピーニング処理を施した後、JASO M 609−91(自動車用材料腐食試験方法)の基準に準拠した方法で腐食処理を実施した。その後、735±100MPaの応力で4点曲げ疲労試験を実施し、腐食疲労寿命を測定することにより評価した。試験終了後、破断した試験片の破壊起点となった腐食ピット深さを測定した。
また、一部の試料について、直径32mm、長さ905mmのトーションバーを製造した後、塩水噴霧(5%食塩水、35℃)を168時間実施した。その後、589±500N/mm2の応力でねじり疲労試験を実施し、腐食疲労寿命を測定することにより評価した。
<Corrosion fatigue test>
In the corrosion fatigue test, first, a plate spring having a width of 30 mm, a thickness of 8 mm, and a length of 300 mm is prepared from a plate material having a width of 70 mm and a thickness of 12 mm, subjected to quenching and tempering and shot peening, and then subjected to JASO M 609-91. Corrosion treatment was carried out by a method based on the standard of (Automobile Material Corrosion Test Method). Thereafter, a four-point bending fatigue test was performed at a stress of 735 ± 100 MPa, and evaluation was performed by measuring the corrosion fatigue life. After the test was completed, the depth of the corrosion pit that was the starting point of the fractured specimen was measured.
In addition, after producing a torsion bar having a diameter of 32 mm and a length of 905 mm for some samples, salt spray (5% saline, 35 ° C.) was performed for 168 hours. Thereafter, a torsional fatigue test was performed at a stress of 589 ± 500 N / mm 2 and the corrosion fatigue life was measured and evaluated.

なお、上記板ばね及びトーションバーは、硬さの狙い値をHV520とし、鋼種毎に硬さの狙い値に合わせて焼戻し温度を調整した。但し、一部の試験片については、焼戻し温度による影響を評価するために、意図的に焼戻し温度を変化させて評価した。また、焼入温度は930℃で一定とした。焼戻し温度及び硬度を表2に併せて示す。   In addition, the said plate spring and the torsion bar made HV520 the target value of hardness, and adjusted the tempering temperature according to the target value of hardness for every steel type. However, some test pieces were evaluated by intentionally changing the tempering temperature in order to evaluate the influence of the tempering temperature. The quenching temperature was constant at 930 ° C. Table 2 shows the tempering temperature and hardness.

Figure 0005214292
Figure 0005214292

表2の結果から明らかなように、本発明の比較例としての試料C11はSi含有率が高いためフェライト脱炭量が増加し、板ばね疲労寿命及び腐食疲労寿命が低下したものである。また、本発明の比較例としての試料C12は、Si含有率が低いため狙い硬さを得るための焼戻し温度が低くなり、拡散性水素量が増加して、曲げ破断強度、ねじり破断トルク、腐食疲労寿命がともに低下したものである。   As is apparent from the results in Table 2, since the sample C11 as a comparative example of the present invention has a high Si content, the amount of ferrite decarburization is increased, and the leaf spring fatigue life and the corrosion fatigue life are decreased. Sample C12 as a comparative example of the present invention has a low Si content, so the tempering temperature for obtaining the desired hardness is low, the amount of diffusible hydrogen is increased, bending rupture strength, torsion rupture torque, corrosion Both fatigue lives are reduced.

また、本発明の比較例としての試料C13、試料C14、試料C15は、腐食ピットの成長を抑制し、耐食性を改善する元素であるCu、Ni、Crの含有率がそれぞれ低い。そのため、疲労試験後にピット深さが深いことが確認され、腐食疲労寿命が劣る。   Samples C13, C14, and C15 as comparative examples of the present invention have low contents of Cu, Ni, and Cr, which are elements that suppress the growth of corrosion pits and improve corrosion resistance. Therefore, it is confirmed that the pit depth is deep after the fatigue test, and the corrosion fatigue life is inferior.

さらに、本発明の比較例としての試料C16、試料C17は、成分範囲は請求の範囲の条件を満足しているが、意図的に焼戻し温度を390℃未満とした例である。焼戻し温度が高い場合と比較して硬さは若干高くなるものの、拡散性水素量が増加して耐水素脆性が低下し、腐食疲労寿命、曲げ破断強度がともに劣る。   Furthermore, Sample C16 and Sample C17 as comparative examples of the present invention are examples in which the tempering temperature is intentionally less than 390 ° C. although the component ranges satisfy the conditions of the claims. Although the hardness is slightly higher than when the tempering temperature is high, the amount of diffusible hydrogen is increased, the hydrogen embrittlement resistance is lowered, and the corrosion fatigue life and bending fracture strength are both inferior.

一方従来鋼である試料C18、試料C19は、本発明鋼のように焼戻し軟化抵抗を高める元素の添加が十分でない。そのため、所定の硬さを得るための焼戻し温度が低くなり、拡散性水素量が多くなってしまうとともに、Cu等の腐食ピットの成長を抑制する元素の添加が十分でないことから、水素チャージ後の曲げ破断強度、ねじり破断トルク、腐食疲労寿命等が大きく劣る。   On the other hand, Sample C18 and Sample C19, which are conventional steels, do not have sufficient elements added to increase the temper softening resistance like the steels of the present invention. Therefore, the tempering temperature for obtaining a predetermined hardness is lowered, the amount of diffusible hydrogen is increased, and addition of an element that suppresses the growth of corrosion pits such as Cu is not sufficient. Bending rupture strength, torsional rupture torque, corrosion fatigue life, etc. are greatly inferior.

それに対し、本発明の実施例としての試料E1〜試料E10は、脱炭量の大幅な増加を伴わないように調整しつつ、Si等の焼戻し軟化抵抗を高める元素を適量添加するとともに、腐食ピットを抑制する元素も添加したことによって、水素の存在に対する抵抗力を大幅に改善し、耐水素脆性、腐食疲労強度が共に大きく優れるものである。   On the other hand, samples E1 to E10 as examples of the present invention were adjusted so as not to cause a significant increase in the amount of decarburization, while adding an appropriate amount of an element that enhances temper softening resistance such as Si, and corrosion pits. The addition of an element that suppresses hydrogen greatly improves the resistance to the presence of hydrogen, and both the resistance to hydrogen embrittlement and the corrosion fatigue strength are greatly improved.

また、特にTiを少量添加した上でBを添加した場合には、粒界強度が強化できることから、より優れた腐食疲労寿命を得られることが確認できた。   In particular, when B was added after adding a small amount of Ti, it was confirmed that the grain boundary strength could be strengthened, so that a better corrosion fatigue life could be obtained.

以上、説明したように、本発明は、Si量が0.7%付近という、ばね用鋼では従来使用されていなかった成分系を新規に提案することによって、フェライト脱炭量の増加による疲労特性低下を招くことなく、耐水素脆性を大幅に改善できることを可能としたものである。この技術はトーションバー、スタビライザ、コイルばね等の丸棒を素材としたねじり応力が負荷される丸棒ばねや、板ばねの軽量化を実現するためになくてはならない重要技術であり、トラック等の、板ばねや丸棒ばねを使用する自動車の燃費向上に大きく貢献できるという顕著な効果を有するものである。   As described above, the present invention proposes a new component system that has not been conventionally used in spring steels with a Si content of around 0.7%, thereby increasing fatigue characteristics due to an increase in the amount of ferrite decarburization. The hydrogen embrittlement resistance can be greatly improved without causing a decrease. This technology is an indispensable technology for reducing the weight of round bar springs that use torsional stress such as torsion bars, stabilizers, coil springs, etc. This has a remarkable effect that it can greatly contribute to the improvement of fuel consumption of automobiles using leaf springs and round bar springs.

実施例1における、焼戻し温度と拡散性水素量の関係を説明する図。The figure explaining the relationship between the tempering temperature and the amount of diffusible hydrogen in Example 1. FIG. 実施例1における、Si含有率と脱炭量との関係を説明する図。The figure explaining the relationship between Si content rate and the amount of decarburization in Example 1. FIG. 実施例1における、水素チャージ後における硬さと曲げ破断強度の関係を説明する図。The figure explaining the relationship between the hardness after hydrogen charge and bending breaking strength in Example 1. FIG. 実施例1における、水素チャージ後における硬さとねじり破断トルクとの関係を説明する図。The figure explaining the relationship between the hardness after hydrogen charge and torsional rupture torque in Example 1. FIG.

Claims (4)

ばね形状に成形し、焼入れ処理後の焼戻し時において、390℃以上の温度で処理することにより作製する高強度ばね部品に用いるばね用鋼であって、
質量%で、C:0.50〜0.65%、Si:0.55〜0.90%、Mn:0.40〜1.20%、Cu:0.20〜0.40%、Ni:0.20〜0.50%、Cr:0.60〜1.10%、V:0.08〜0.30%を含有し、残部がFe及び不純物元素からなることを特徴とする耐水素脆性、腐食疲労強度の優れたばね用鋼。
A spring steel used for a high-strength spring component produced by forming into a spring shape and processing at a temperature of 390 ° C. or higher at the time of tempering after quenching,
In mass%, C: 0.50 to 0.65%, Si: 0.55 to 0.90%, Mn: 0.40 to 1.20%, Cu: 0.20 to 0.40%, Ni: Hydrogen embrittlement resistance characterized by containing 0.20 to 0.50%, Cr: 0.60 to 1.10%, V: 0.08 to 0.30%, and the balance consisting of Fe and impurity elements Spring steel with excellent corrosion fatigue strength.
請求項1において、さらにB:0.0005〜0.0050%、Ti:0.010〜0.070%を含有することを特徴とする耐水素脆性、腐食疲労強度の優れたばね用鋼。   The spring steel having excellent hydrogen embrittlement resistance and corrosion fatigue strength according to claim 1, further comprising B: 0.0005 to 0.0050% and Ti: 0.010 to 0.070%. 請求項1又は2に記載のばね用鋼を用いて成形されたことを特徴とする耐水素脆性、腐食疲労強度の優れた高強度ばね部品。   A high-strength spring component excellent in hydrogen embrittlement resistance and corrosion fatigue strength, characterized by being formed using the spring steel according to claim 1. 請求項3において、上記高強度ばね部品は、ばね形状に成形し、焼入れ処理後の焼戻し時において、390℃以上の温度で処理することにより作製したことを特徴とする耐水素脆性、腐食疲労強度の優れた高強度ばね部品。   4. The hydrogen embrittlement resistance and corrosion fatigue strength according to claim 3, wherein the high-strength spring component is formed by forming into a spring shape and processing at a temperature of 390 ° C. or higher during tempering after quenching. Excellent high-strength spring parts.
JP2008071939A 2007-03-23 2008-03-19 Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same Active JP5214292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008071939A JP5214292B2 (en) 2007-03-23 2008-03-19 Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007075996 2007-03-23
JP2007075996 2007-03-23
JP2008071939A JP5214292B2 (en) 2007-03-23 2008-03-19 Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same

Publications (2)

Publication Number Publication Date
JP2008266782A JP2008266782A (en) 2008-11-06
JP5214292B2 true JP5214292B2 (en) 2013-06-19

Family

ID=40046649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008071939A Active JP5214292B2 (en) 2007-03-23 2008-03-19 Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same

Country Status (1)

Country Link
JP (1) JP5214292B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520591B2 (en) * 2009-12-18 2014-06-11 愛知製鋼株式会社 Steel and leaf spring parts for high fatigue strength leaf springs
JP5418199B2 (en) * 2009-12-18 2014-02-19 愛知製鋼株式会社 Steel and leaf spring parts for leaf springs with excellent strength and toughness
JP7020255B2 (en) * 2018-04-04 2022-02-16 日本製鉄株式会社 Hydrogen filling method and hydrogen embrittlement characteristic evaluation method
CN111979388A (en) * 2020-07-28 2020-11-24 常州龙腾光热科技股份有限公司 Manufacturing method of 65Mn spring plate of trough type solar heat collector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921370B2 (en) * 1976-11-02 1984-05-19 新日本製鐵株式会社 Manufacturing method for highly ductile and high tensile strength wire with excellent stress corrosion cracking resistance
JPS5864353A (en) * 1981-10-12 1983-04-16 Kobe Steel Ltd Steel wire for spring
JPS60116720A (en) * 1983-11-28 1985-06-24 Sumitomo Metal Ind Ltd Manufacture of spring having superior sag resistance
JPH08295984A (en) * 1995-04-25 1996-11-12 Aichi Steel Works Ltd Steel for flat spring, excellent in delayed fracture resistance
JP4464524B2 (en) * 2000-04-05 2010-05-19 新日本製鐵株式会社 Spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP4116762B2 (en) * 2000-09-25 2008-07-09 新日本製鐵株式会社 High strength spring steel excellent in hydrogen fatigue resistance and method for producing the same
JP2003105485A (en) * 2001-09-26 2003-04-09 Nippon Steel Corp High strength spring steel having excellent hydrogen fatigue cracking resistance, and production method therefor

Also Published As

Publication number Publication date
JP2008266782A (en) 2008-11-06

Similar Documents

Publication Publication Date Title
JP5064060B2 (en) Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof
JP5520591B2 (en) Steel and leaf spring parts for high fatigue strength leaf springs
CN111164230B (en) Wire rod and steel wire for spring having excellent corrosion and fatigue resistance, and method for producing same
JP5306845B2 (en) Steel for vehicle high strength stabilizer excellent in corrosion resistance and low temperature toughness, its manufacturing method and stabilizer
EP2708612A1 (en) Steel for automotive suspension spring component, automotive suspension spring component, and manufacturing method for same
WO2012121115A1 (en) Spring and manufacturing method thereof
JP2842579B2 (en) High strength spring steel with excellent fatigue strength
JP6027302B2 (en) High strength tempered spring steel
WO2006022009A1 (en) Steel for high strength spring, and high strength spring and method for manufacture thereof
WO2014097872A1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
CA2755760C (en) Electric resistance welded steel pipe excellent in deformability and fatigue properties after quenching
WO2015146141A1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP5214292B2 (en) Spring steel with excellent hydrogen embrittlement resistance and corrosion fatigue strength, and high-strength spring parts using the same
JP5653020B2 (en) Spring steel and springs with excellent corrosion fatigue strength
US9540704B2 (en) Method of making quenched and tempered steel pipe with high fatigue life
JP5941439B2 (en) Coil spring and manufacturing method thereof
JP3918587B2 (en) Spring steel for cold forming
JP3896902B2 (en) High-strength spring steel with excellent corrosion fatigue strength
JP2021167444A (en) Compression coil spring
JP4044460B2 (en) Cold forming spring steel
JP2020509158A (en) Spring wire and steel wire excellent in corrosion fatigue resistance, and their manufacturing methods
WO2004055226A1 (en) Steel wire for spring
EP1584700A1 (en) High-strength steel product excelling in fatigue strength and process for producing the same
JP4975261B2 (en) Manufacturing method of high strength steel with excellent delayed fracture resistance
JP2005350736A (en) High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250