WO2018074003A1 - High-strength spring, method for producing same, steel for high-strength spring, and method for producing same - Google Patents

High-strength spring, method for producing same, steel for high-strength spring, and method for producing same Download PDF

Info

Publication number
WO2018074003A1
WO2018074003A1 PCT/JP2017/020501 JP2017020501W WO2018074003A1 WO 2018074003 A1 WO2018074003 A1 WO 2018074003A1 JP 2017020501 W JP2017020501 W JP 2017020501W WO 2018074003 A1 WO2018074003 A1 WO 2018074003A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
compound
less
strength
spring
Prior art date
Application number
PCT/JP2017/020501
Other languages
French (fr)
Japanese (ja)
Inventor
渡辺 幹
光樹 蓑口
裕之 大石
Original Assignee
三菱製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017095054A external-priority patent/JP6356309B1/en
Priority to MX2018001995A priority Critical patent/MX2018001995A/en
Priority to EP17835988.1A priority patent/EP3336214B1/en
Priority to CN202210849340.6A priority patent/CN115125455A/en
Priority to CN201780002753.8A priority patent/CN108368580A/en
Priority to US15/749,959 priority patent/US10752971B2/en
Application filed by 三菱製鋼株式会社 filed Critical 三菱製鋼株式会社
Priority to RU2018106084A priority patent/RU2679288C1/en
Priority to CA2995427A priority patent/CA2995427C/en
Priority to BR112018003077-5A priority patent/BR112018003077B1/en
Priority to KR1020187005976A priority patent/KR101947973B1/en
Priority to ES17835988T priority patent/ES2805091T3/en
Priority to PH12018500359A priority patent/PH12018500359A1/en
Publication of WO2018074003A1 publication Critical patent/WO2018074003A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/56Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.7% by weight of carbon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations

Definitions

  • the present invention relates to a high-strength spring, a manufacturing method thereof, a steel for a high-strength spring, and a manufacturing method thereof.
  • High strength springs are used for automobiles. Since the high strength spring has high strength, it can be formed with a thin wire rod, and can contribute to the weight reduction of the automobile and the improvement of the fuel consumption of the automobile. However, when the spring strength is increased, fatigue strength, hydrogen embrittlement resistance, delayed fracture resistance, and the like in a corrosive environment decrease.
  • the spring steel described in Patent Document 1 captures hydrogen entering the steel from the external environment by a hydrogen trap site made of precipitates containing V and the like, and suppresses hydrogen diffusion in the steel. ing.
  • the precipitate contains V and the like.
  • tempering treatment at low temperature is effective, but when the N content is large, low temperature temper embrittlement occurs. As a result, the toughness is lowered, so that the delayed fracture resistance is lowered.
  • the present invention has been made in view of the above problems, and its main object is to provide a high-strength spring excellent in hydrogen embrittlement resistance, corrosion durability, and delayed fracture resistance.
  • C 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0.
  • Nb 0.005 to 0.150%
  • P 0.015% or less
  • S 0.010% or less
  • An Nb compound comprising at least one of Nb carbide, Nb nitride, and Nb carbonitride
  • a high-strength spring is provided.
  • Example 2 is a SEM photograph of a part of the cross section of the steel after tempering according to Example 1; 4 is a SEM photograph of another part of the cross section of the steel after the tempering process according to Example 1. It is a figure which shows the result of the rotation bending fatigue test of Example 1 and Comparative Example 1. It is a figure which shows the result of the endurance test of Example 3 and Comparative Example 2.
  • High strength springs are used as suspension springs for automobiles, for example.
  • high strength means that the tensile strength is 1800 MPa or more.
  • the shape of the test piece used for the measurement of tensile strength conforms to the shape of the No. 4 test piece described in Japanese Industrial Standard (JIS Z2241).
  • the high-strength spring may be a coil spring.
  • the coil spring is manufactured by hot spring molding or cold spring molding.
  • hot spring forming a wire is heat-formed into a coil shape, and then subjected to quenching and tempering.
  • cold spring forming after the wire is quenched and tempered, the wire is cold formed into a coil.
  • the high-strength spring is a coil spring in this embodiment, but may be a leaf spring or the like.
  • the form of the high strength spring is not particularly limited. Further, the use of the high-strength spring is not limited to the automobile suspension system.
  • the high-strength spring is made of high-strength spring steel.
  • High-strength spring steel has been subjected to quenching and tempering and has a martensite structure obtained by quenching.
  • the pearlite structure is dominant before the quenching process
  • the austenite structure is dominant at the quenching temperature
  • the martensite structure is dominant after the quenching process.
  • the high-strength spring steel is not particularly limited as long as it is subjected to quenching or tempering.
  • the high-strength spring steel may have a spring shape (for example, a coil shape).
  • the steel for high-strength springs may have a spring shape, or may have a shape (for example, a rod shape) before being processed into the spring shape.
  • High-strength spring steel is, by mass, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35 to 1.50%, Mo: 0.03 to 0.50%, Cu: 0.05 to 0.50%, Al: 0.005 to 0.100%, V : 0.05 to 0.50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less The remainder consists of Fe and inevitable impurities.
  • each component will be described. In the description of each component, “%” means mass%.
  • C is an element effective for increasing the strength of steel.
  • the C content is 0.40 to 0.50%. If the C content is less than 0.40%, the necessary strength as a spring cannot be obtained. On the other hand, if the C content exceeds 0.50%, the corrosion durability decreases.
  • Si is an element effective for improving the strength of steel by dissolving in ferrite.
  • the Si content is 1.00 to 3.00%. If the Si content is less than 1.00%, the necessary strength as a spring cannot be obtained. On the other hand, when the Si content exceeds 3.00%, when the spring is hot-formed, decarburization of the surface is likely to occur, and the durability of the spring is lowered.
  • Mn is an element effective for improving the hardenability of steel.
  • the Mn content is 0.30 to 1.20%. If the Mn content is less than 0.30%, the effect of improving the hardenability cannot be sufficiently obtained. On the other hand, if the Mn content exceeds 1.20%, the toughness deteriorates.
  • Ni is an element necessary for increasing the corrosion durability of steel.
  • the Ni content is 0.05 to 0.50%. If the Ni content is less than 0.05%, the effect of increasing the corrosion durability of the steel cannot be expected sufficiently. Since Ni is expensive, the upper limit of the Ni content is 0.50%.
  • Cr is an element effective for increasing the strength of steel.
  • the Cr content is 0.35 to 1.50%. If the Cr content is less than 0.35%, the effect of increasing the strength of the steel cannot be expected sufficiently. On the other hand, if the Cr content exceeds 1.50%, the toughness tends to deteriorate.
  • Mo is an element that ensures the hardenability of the steel and increases the strength and toughness of the steel.
  • the Mo content is 0.03 to 0.50%. If the Mo content is less than 0.03%, the effect of adding Mo cannot be expected sufficiently. On the other hand, if the Mo content exceeds 0.50%, the effect of adding Mo is saturated.
  • Cu is a component that increases corrosion durability.
  • the Cu content is 0.05 to 0.50%. If the Cu content is less than 0.05%, the effect of increasing the corrosion durability is not sufficiently exhibited. On the other hand, if the Cu content exceeds 0.50%, problems such as cracking occur during hot rolling.
  • Al is an element necessary for adjusting the deoxidizer and austenite grain size of steel.
  • the Al content is 0.005 to 0.100%. If the Al content is less than 0.005%, the crystal grains cannot be refined. On the other hand, if the Al content exceeds 0.100%, the castability tends to decrease.
  • V is an element effective in increasing the strength of steel and suppressing hydrogen embrittlement.
  • the V content is 0.05 to 0.50%. If the V content is less than 0.05%, the effect of adding V cannot be expected sufficiently. On the other hand, if the V content exceeds 0.50%, carbides that are not dissolved in austenite increase, and the spring characteristics deteriorate.
  • Nb is an element that increases the strength and toughness of steel by refining crystal grains and precipitating fine carbides. Nb is also an element that contributes to fine dispersion of a V compound containing at least one of V carbide and V carbonitride (hereinafter simply referred to as V compound) and increases hydrogen embrittlement resistance.
  • V compound V compound containing at least one of V carbide and V carbonitride
  • the Nb content is 0.005 to 0.150%. If the Nb content is less than 0.005%, the effect of adding Nb cannot be expected sufficiently. On the other hand, if the Nb content exceeds 0.150%, carbides that are not dissolved in austenite increase, and the spring characteristics deteriorate.
  • N is an element that combines with Al or Nb to form AlN or NbN, and is effective in reducing the austenite crystal grain size.
  • the toughness is improved by the refinement.
  • the N content is 0.0100 to 0.0200%. If the N content is 0.0100% or more, the effect of improving toughness is sufficiently exhibited. On the other hand, excessive addition of N causes generation of bubbles on the surface of the steel ingot during solidification and deterioration of the castability of the steel, so the upper limit of the N content is 0.0200%.
  • P is a factor that lowers the impact value by precipitation at the austenite grain boundaries and embrittlement of the grain boundaries. In order to suppress this problem, the P content is limited to 0.015% or less.
  • S is present as an inclusion of MnS in steel, and is a factor that reduces fatigue life and corrosion durability. Inclusions refer to those already made in a molten state of steel. In order to reduce inclusions, the S content is limited to 0.010% or less, preferably 0.005% or less.
  • High strength spring steel finely disperses the V compound as a hydrogen trap site, so that the V compound is dissolved in iron at the quenching temperature, and then the V compound is precipitated around the Nb compound that is finely dispersed in the steel.
  • the high-strength spring steel includes an Nb compound and a V compound that precipitates around the Nb compound.
  • the V compound may be deposited adjacent to the Nb compound, and may not completely surround the Nb compound, but may completely surround it.
  • the Nb compound may be present inside the V compound.
  • the Nb compound is a precipitate that precipitates in iron while the molten steel is solidified.
  • the Nb compound includes at least one of Nb nitride, Nb carbide, and Nb carbonitride.
  • the Nb compound is finely dispersed in the steel before the quenching treatment, and does not dissolve in iron at the quenching temperature, but becomes a starting point for precipitation of the V compound by rapid cooling from the quenching temperature or tempering treatment.
  • Nb nitride that is finely dispersed than Nb carbide and Nb carbonitride is preferably used.
  • the V compound exists as a coarse precipitate in the steel before the quenching treatment, it is dissolved in iron at the quenching temperature, and then precipitated from the Nb compound. Since the Nb compound is finely dispersed, the V compound precipitated from the Nb compound can be finely dispersed.
  • the number of the V compounds can be increased by making the V compound finer, and a high strength spring steel excellent in hydrogen embrittlement resistance can be obtained.
  • the quenching temperature is set to 950 ° C. or higher and 1000 ° C. or lower so that the V compound is dissolved in iron at the quenching temperature.
  • the quenching temperature is higher than the solid solution temperature at which the V compound is dissolved in iron and the V content is 0.50% or less as described above, the V compound is completely dissolved in the iron in the calculation of the solubility product.
  • the quenching temperature is high, an appropriate amount of Nb, Al, N or the like is added in order to suppress coarsening of crystal grains. Thereby, the fall of toughness can be suppressed and the fall of delayed fracture resistance can be suppressed. Therefore, a high-strength spring steel excellent in delayed fracture resistance can be obtained.
  • a composite precipitate is formed by the Nb compound and the V compound precipitated around the Nb compound.
  • the average particle size of the composite precipitate may be 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the number of composite precipitates per unit area may be 100 / mm 2 or more and 100,000 / mm 2 or less.
  • the average particle diameter and the number per unit area are measured using, for example, an SEM (Scanning Electron Microscope).
  • the average particle diameter is obtained as an average value of the measured values by measuring the equivalent area diameter (diameter) of each of the 100 composite precipitates.
  • the number per unit area is determined by measuring the number of composite precipitates present in a region having a total area of 15 mm 2 and dividing the number by the total area.
  • High-strength spring steel has a C content limited to 0.5% or less in order to suppress a decrease in corrosion durability, and ensures the strength of the steel in a range where the C content is 0.5% or less. Therefore, the tempering temperature is limited to less than 390 ° C. Therefore, a high strength spring steel having excellent corrosion durability and strength can be obtained.
  • the lower limit of the tempering temperature is 250 ° C., more preferably 300 ° C., so that the effect of improving the toughness by the tempering treatment can be sufficiently obtained.
  • High strength spring steel contains 0.0100 to 0.0200% N in order to sufficiently disperse nitrides.
  • high strength spring steel contains an appropriate amount of Nb and Al, and N is made harmless by precipitating NbN and AlN instead of N. Thereby, the fall of toughness can be suppressed and the fall of delayed fracture resistance can be suppressed. Therefore, a high-strength spring steel excellent in delayed fracture resistance can be obtained.
  • Example 1 In Example 1, a steel having the following composition was quenched and tempered, and a rotating bending fatigue test piece and a hydrogen embrittlement test piece were produced by machining.
  • the quenching temperature was 950 ° C. and the holding time was 30 minutes.
  • the cooling from the quenching temperature was oil cooling.
  • the tempering temperature was 360 ° C. and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
  • the Vickers hardness of the steel after the tempering treatment was 590 Hv.
  • FIG. 1 is a SEM photograph of a part of the cross section of the steel after the tempering treatment according to Example 1
  • FIG. 2 is a SEM photograph of another part of the steel after the tempering treatment according to Example 1.
  • 1A and FIG. 2A are backscattered electron images
  • FIG. 1B and FIG. 2B are Nb characteristic X-ray maps
  • FIG. 1C and FIG. 2C are N characteristics.
  • 1 (d) and 2 (d) are V characteristic X-ray maps
  • FIGS. 1 (e) and 2 (e) are C characteristic X-ray maps.
  • FIGS. 1 (e) and 2 (e) are C characteristic X-ray maps.
  • the white portion of the reflected electron image indicates the Nb compound, and the black portion around the white indicates the V compound.
  • the brightness of the color represents the amount of the element, and the lighter the color (white), the more the element Large amount.
  • the reflected electron images in FIGS. 1A and 2A are reflected electron images in which the electron beam bounces in the vicinity of the cross section of the steel, and thus represent almost the same size that can be seen on the test surface.
  • 2B to 2E are images of characteristic X-rays generated when an electron beam enters the inside of the steel from a cross section of the steel. Further, a threshold is provided for the intensity of the characteristic X-ray to be detected. Therefore, the image of the characteristic X-ray map is different from the size seen on the test surface.
  • test piece conformed to the shape of the No. 1 test piece described in Japanese Industrial Standard (JIS Z2274).
  • This test piece has a constricted portion called a parallel portion at the center of the round bar.
  • the rotating bending fatigue test piece had a diameter of 15 mm at both ends, a diameter of the parallel part of 8 mm, and a length of the parallel part of 20 mm.
  • the hydrogen embrittlement test piece had a diameter of 10 mm at both ends, a diameter of the parallel part of 4 mm, and a length of the parallel part of 15 mm.
  • Comparative Example 1 In Comparative Example 1, a steel having the following composition was quenched and tempered, and a rotating bending fatigue test piece and a hydrogen embrittlement test piece were produced by machining.
  • the quenching temperature was 900 ° C. and the holding time was 30 minutes.
  • the cooling from the quenching temperature was oil cooling.
  • the tempering temperature was 420 ° C. and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
  • the Vickers hardness of the steel after tempering was 570 Hv.
  • the shape of the test piece was the same as the shape of the test piece of Example 1.
  • FIG. 3 shows the results of the rotating bending fatigue test of Example 1 and Comparative Example 1.
  • the solid line represents the result of the rotational bending fatigue test of Example 1
  • the broken line represents the result of the rotational bending fatigue test of Comparative Example 1.
  • Example 1 was superior in bending fatigue strength to the steel of Comparative Example 1.
  • the unbreaking stress of the test piece of Example 1 was 325 MPa, whereas the unbreaking stress of the test piece of Comparative Example 1 was 240 MPa. Therefore, it was confirmed that the steel of Example 1 was excellent in hydrogen embrittlement resistance, corrosion durability, and delayed fracture resistance compared to the steel of Comparative Example 1.
  • the amount of diffusible hydrogen contained in the test piece was measured.
  • the amount of diffusible hydrogen is obtained from a profile obtained by continuously measuring the amount of hydrogen released from the test piece by gas chromatography while heating the test piece at a constant rate.
  • Hydrogen released at a temperature below 300 ° C. is diffusible hydrogen, and hydrogen released at a temperature of 300 ° C. or higher is non-diffusible hydrogen. Release of diffusible hydrogen is almost completed before the temperature of the test piece reaches 220 ° C, and non-diffusible hydrogen starts to be released when the temperature of the test piece exceeds 400 ° C. Hydrogen trapped at the hydrogen trap site is not released at temperatures below 300 ° C.
  • the diffusible hydrogen content of the test piece of Example 1 was 0.36 mass ppm, whereas the diffusible hydrogen content of the test piece of Comparative Example 1 was 1.87 mass ppm. Therefore, it was confirmed that the steel of Example 1 had more hydrogen trap sites and excellent resistance to hydrogen embrittlement than the steel of Comparative Example 1.
  • Example 2 the steel having the same composition as the steel of Example 1 was subjected to quenching treatment and tempering treatment, a tensile strength test piece was produced by machining, and a tensile test was performed.
  • the quenching temperature was 950 ° C. and the holding time was 30 minutes.
  • the cooling from the quenching temperature was oil cooling.
  • the tempering temperature was 380 ° C. or 350 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
  • JIS Z2241 Japanese Industrial Standard
  • Table 1 shows the tempering temperature, the results of the tensile test, and the Vickers hardness.
  • Example 3 steel having the same composition as that of Example 1 and Example 2 was heat-formed into a coil shape. Thereafter, the obtained molded product was subjected to quenching treatment, tempering treatment, shot peening, and setting to produce a coil spring. Then, the durability test of the obtained coil spring was done.
  • the quenching temperature was 990 ° C. and the holding time was 20 minutes.
  • the cooling from the quenching temperature was oil cooling.
  • the tempering temperature was 360 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
  • the Vickers hardness of the coil spring after the tempering treatment was 580 Hv.
  • Comparative Example 2 steel having the same composition as the steel of Comparative Example 1 was heat-formed into a coil shape in the same manner as in Example 3 to obtain a molded product having the same shape as in Example 3. Thereafter, the obtained molded product was subjected to quenching treatment, tempering treatment, shot peening and setting, and a coil spring having the same shape as that of Example 3 was produced. Then, the durability test of the obtained coil spring was done.
  • the quenching temperature was 940 ° C. and the holding time was 20 minutes.
  • the cooling from the quenching temperature was oil cooling.
  • the tempering temperature was 420 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
  • the Vickers hardness of the coil spring after the tempering treatment was 560 Hv.
  • the stress amplitude was set to 735 MPa ⁇ 525 MPa (maximum stress: 1260 MPa, minimum stress: 210 MPa) and 735 MPa ⁇ 500 MPa (maximum stress: 1235 MPa, minimum stress: 235 MPa).
  • FIG. 4 shows the results of durability tests of Example 3 and Comparative Example 2.
  • the solid line represents the result of the durability test of Example 3
  • the broken line represents the result of the durability test of Comparative Example 2.

Abstract

Provided is a high-strength spring containing, by mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35 to 1.50%, Mo: 0.03 to 0.50%, Cu: 0.05 to 0.50%, Al: 0.005 to 0.100%, V: 0.05 to 0.50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, where P is restricted to no more than 0.015% and S is restricted to no more than 0.010%, with Fe and inevitable impurities as the balance. The high-strength spring includes: an Nb compound that contains at least one of an Nb carbide, Nb nitride and Nb carbonitride; and a V compound that is precipitated around the Nb compound and that contains at least one of V carbide and V carbonitride.

Description

高強度ばね、およびその製造方法、ならびに高強度ばね用鋼、およびその製造方法High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
 本発明は、高強度ばね、およびその製造方法、ならびに高強度ばね用鋼、およびその製造方法に関する。 The present invention relates to a high-strength spring, a manufacturing method thereof, a steel for a high-strength spring, and a manufacturing method thereof.
 高強度ばねは、自動車等に用いられる。高強度ばねは、高い強度を有するので、細い線材で形成でき、自動車の軽量化、ひいては自動車の燃費向上に貢献できる。しかし、ばねの強度を上げると、腐食環境下における疲労強度、耐水素脆性、耐遅れ破壊性などが低下する。 High strength springs are used for automobiles. Since the high strength spring has high strength, it can be formed with a thin wire rod, and can contribute to the weight reduction of the automobile and the improvement of the fuel consumption of the automobile. However, when the spring strength is increased, fatigue strength, hydrogen embrittlement resistance, delayed fracture resistance, and the like in a corrosive environment decrease.
 そこで、特許文献1に記載のばね用鋼は、Vなどを含有する析出物からなる水素トラップサイトにより、外部環境から鋼中に侵入する水素を捕捉し、鋼中での水素の拡散を抑制している。 Therefore, the spring steel described in Patent Document 1 captures hydrogen entering the steel from the external environment by a hydrogen trap site made of precipitates containing V and the like, and suppresses hydrogen diffusion in the steel. ing.
日本国特開2001-288539号公報Japanese Unexamined Patent Publication No. 2001-288539
 耐水素脆性を確保するためには、水素トラップサイトとなる析出物の数を増加させることが有効である。析出物はVなどを含有する。 In order to ensure hydrogen embrittlement resistance, it is effective to increase the number of precipitates that become hydrogen trap sites. The precipitate contains V and the like.
 しかし、Vなどの元素の含有量を単に増やしても、粗大な析出物が形成されるだけで、析出物の数が増えないという問題があった。 However, simply increasing the content of elements such as V has a problem that coarse precipitates are formed and the number of precipitates does not increase.
 また、高い強度を得るためには、C含有量の増加が有効であるが、C含有量が多過ぎると腐食耐久性が低下する。 Also, in order to obtain high strength, an increase in the C content is effective, but if the C content is too large, the corrosion durability decreases.
 少ないC含有量で高い強度を得るためには、低温での焼戻し処理が有効であるが、N含有量が多いと、低温焼戻し脆性が生じる。その結果、靱性が低下するため、耐遅れ破壊性が低下する。 In order to obtain high strength with a small C content, tempering treatment at low temperature is effective, but when the N content is large, low temperature temper embrittlement occurs. As a result, the toughness is lowered, so that the delayed fracture resistance is lowered.
 本発明は、上記課題に鑑みてなされたものであって、耐水素脆性、腐食耐久性、および耐遅れ破壊性に優れた高強度ばねの提供を主な目的とする。 The present invention has been made in view of the above problems, and its main object is to provide a high-strength spring excellent in hydrogen embrittlement resistance, corrosion durability, and delayed fracture resistance.
 上記課題を解決するため、本発明の一態様によれば、
 質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなり、
 Nb炭化物、Nb窒化物、およびNb炭窒化物の少なくとも1つを含むNb化合物と、
 前記Nb化合物の周囲に析出する、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物と、
を含む、高強度ばねを提供する。
In order to solve the above problems, according to one aspect of the present invention,
In mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0. 50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less, the balance being Fe and Consisting of inevitable impurities,
An Nb compound comprising at least one of Nb carbide, Nb nitride, and Nb carbonitride;
A V compound containing at least one of V carbide and V carbonitride precipitated around the Nb compound;
A high-strength spring is provided.
 本発明によれば、耐水素脆性、腐食耐久性、および耐遅れ破壊性に優れた高強度ばねならびに高強度ばね用鋼を提供できる。 According to the present invention, it is possible to provide a high-strength spring and a high-strength spring steel excellent in hydrogen embrittlement resistance, corrosion durability, and delayed fracture resistance.
実施例1による焼戻し処理の後の鋼の断面の一部のSEM写真である。2 is a SEM photograph of a part of the cross section of the steel after tempering according to Example 1; 実施例1による焼戻し処理の後の鋼の断面の他の一部のSEM写真である。4 is a SEM photograph of another part of the cross section of the steel after the tempering process according to Example 1. 実施例1および比較例1の回転曲げ疲労試験の結果を示す図である。It is a figure which shows the result of the rotation bending fatigue test of Example 1 and Comparative Example 1. 実施例3および比較例2の耐久試験の結果を示す図である。It is a figure which shows the result of the endurance test of Example 3 and Comparative Example 2.
 以下、本発明を実施するための形態について説明する。 Hereinafter, modes for carrying out the present invention will be described.
 高強度ばねは、例えば自動車の懸架ばねとして用いられる。ここで、高強度とは、引張強度が1800MPa以上であることを意味する。引張強度の測定に用いる試験片の形状は、日本工業規格(JIS Z2241)に記載の4号試験片の形状に準拠する。 High strength springs are used as suspension springs for automobiles, for example. Here, high strength means that the tensile strength is 1800 MPa or more. The shape of the test piece used for the measurement of tensile strength conforms to the shape of the No. 4 test piece described in Japanese Industrial Standard (JIS Z2241).
 高強度ばねは、コイルばねであってよい。コイルばねは、熱間ばね成形や冷間ばね成形などにより製造される。熱間ばね成形は、線材をコイル状に加熱成形してから、焼入れ処理、および焼戻し処理を行う。また、冷間ばね成形は、線材の焼入れ処理や焼戻し処理を行ってから、線材を冷間でコイル状に成形する。 The high-strength spring may be a coil spring. The coil spring is manufactured by hot spring molding or cold spring molding. In hot spring forming, a wire is heat-formed into a coil shape, and then subjected to quenching and tempering. In the cold spring forming, after the wire is quenched and tempered, the wire is cold formed into a coil.
 尚、高強度ばねは、本実施形態ではコイルばねであるが、板ばねなどでもよい。高強度ばねの形態は、特に限定されない。また、高強度ばねの用途も、自動車の懸架装置には限定されない。 The high-strength spring is a coil spring in this embodiment, but may be a leaf spring or the like. The form of the high strength spring is not particularly limited. Further, the use of the high-strength spring is not limited to the automobile suspension system.
 高強度ばねは、高強度ばね用鋼からなる。高強度ばね用鋼は、焼入れ処理や焼戻し処理が施されたものであり、焼入れ処理によって得られるマルテンサイト組織を有する。焼入れ処理の前にはパーライト組織が支配的であり、焼入れ温度ではオーステナイト組織が支配的となり、焼入れ処理の後ではマルテンサイト組織が支配的になる。 The high-strength spring is made of high-strength spring steel. High-strength spring steel has been subjected to quenching and tempering and has a martensite structure obtained by quenching. The pearlite structure is dominant before the quenching process, the austenite structure is dominant at the quenching temperature, and the martensite structure is dominant after the quenching process.
 高強度ばね用鋼は焼入れ処理や焼戻し処理が施されたものであればよく、その形状は特に限定されない。例えば、熱間ばね成形の場合、高強度ばね用鋼は、ばねの形状(例えばコイル状)を有してもよい。一方、冷間ばね成形の場合、高強度ばね用鋼は、ばねの形状を有してもよいし、ばねの形状に加工される前の形状(例えば棒状)を有してもよい。 The high-strength spring steel is not particularly limited as long as it is subjected to quenching or tempering. For example, in the case of hot spring molding, the high-strength spring steel may have a spring shape (for example, a coil shape). On the other hand, in the case of cold spring forming, the steel for high-strength springs may have a spring shape, or may have a shape (for example, a rod shape) before being processed into the spring shape.
 高強度ばね用鋼は、質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなる。以下、各成分について説明する。各成分の説明において、「%」は質量%を意味する。 High-strength spring steel is, by mass, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35 to 1.50%, Mo: 0.03 to 0.50%, Cu: 0.05 to 0.50%, Al: 0.005 to 0.100%, V : 0.05 to 0.50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less The remainder consists of Fe and inevitable impurities. Hereinafter, each component will be described. In the description of each component, “%” means mass%.
 Cは、鋼の強度を高めるのに有効な元素である。C含有量は0.40~0.50%である。C含有量が0.40%未満であると、ばねとしての必要な強度を得ることができない。一方、C含有量が0.50%を越えると、腐食耐久性が低下する。 C is an element effective for increasing the strength of steel. The C content is 0.40 to 0.50%. If the C content is less than 0.40%, the necessary strength as a spring cannot be obtained. On the other hand, if the C content exceeds 0.50%, the corrosion durability decreases.
 Siは、フェライト中に固溶することにより鋼の強度を向上させるのに有効な元素である。Si含有量は1.00~3.00%である。Si含有量が1.00%未満であると、ばねとしての必要な強度を得ることができない。一方、Si含有量が3.00%を超えると、ばねを熱間で加熱成形する際、表面の脱炭が生じ易く、ばねの耐久性が低下する。 Si is an element effective for improving the strength of steel by dissolving in ferrite. The Si content is 1.00 to 3.00%. If the Si content is less than 1.00%, the necessary strength as a spring cannot be obtained. On the other hand, when the Si content exceeds 3.00%, when the spring is hot-formed, decarburization of the surface is likely to occur, and the durability of the spring is lowered.
 Mnは、鋼の焼入れ性を向上させるのに有効な元素である。Mn含有量は、0.30~1.20%である。Mn含有量が0.30%未満であると、焼入れ性を向上させる効果が十分に得られない。一方、Mn含有量が1.20%を超えると、靱性が劣化する。 Mn is an element effective for improving the hardenability of steel. The Mn content is 0.30 to 1.20%. If the Mn content is less than 0.30%, the effect of improving the hardenability cannot be sufficiently obtained. On the other hand, if the Mn content exceeds 1.20%, the toughness deteriorates.
 Niは、鋼の腐食耐久性を増すのに必要な元素である。Ni含有量は、0.05~0.50%である。Ni含有量が0.05%未満であると、鋼の腐食耐久性を増す効果が十分に期待できない。Niは高価であるため、Ni含有量の上限は0.50%とする。 Ni is an element necessary for increasing the corrosion durability of steel. The Ni content is 0.05 to 0.50%. If the Ni content is less than 0.05%, the effect of increasing the corrosion durability of the steel cannot be expected sufficiently. Since Ni is expensive, the upper limit of the Ni content is 0.50%.
 Crは、鋼の強度を高めるのに有効な元素である。Cr含有量は、0.35~1.50%である。Cr含有量が0.35%未満であると、鋼の強度を高める効果が十分に期待できない。一方、Cr含有量が1.50%を超えると靭性が劣化しやすい。 Cr is an element effective for increasing the strength of steel. The Cr content is 0.35 to 1.50%. If the Cr content is less than 0.35%, the effect of increasing the strength of the steel cannot be expected sufficiently. On the other hand, if the Cr content exceeds 1.50%, the toughness tends to deteriorate.
 Moは、鋼の焼入性を確保し、鋼の強度と靭性を高める元素である。Mo含有量は0.03~0.50%である。Mo含有量が0.03%未満であると、Moを添加する効果が十分に期待できない。一方、Mo含有量が0.50%を超えると、Moを添加する効果が飽和する。 Mo is an element that ensures the hardenability of the steel and increases the strength and toughness of the steel. The Mo content is 0.03 to 0.50%. If the Mo content is less than 0.03%, the effect of adding Mo cannot be expected sufficiently. On the other hand, if the Mo content exceeds 0.50%, the effect of adding Mo is saturated.
 Cuは、腐食耐久性を増す成分である。Cu含有量は0.05~0.50%である。Cu含有量が0.05%未満であると、腐食耐久性を増す効果が十分に表れない。一方、Cu含有量が0.50%を超えると、熱間圧延時に割れ等の問題が生じる。 Cu is a component that increases corrosion durability. The Cu content is 0.05 to 0.50%. If the Cu content is less than 0.05%, the effect of increasing the corrosion durability is not sufficiently exhibited. On the other hand, if the Cu content exceeds 0.50%, problems such as cracking occur during hot rolling.
 Alは、鋼の脱酸剤およびオーステナイト結晶粒度の調整を図るために必要な元素である。Al含有量は、0.005~0.100%である。Al含有量が0.005%未満であると、結晶粒の微細化が図れない。一方、Al含有量が0.100%を超えると、鋳造性が低下しやすい。 Al is an element necessary for adjusting the deoxidizer and austenite grain size of steel. The Al content is 0.005 to 0.100%. If the Al content is less than 0.005%, the crystal grains cannot be refined. On the other hand, if the Al content exceeds 0.100%, the castability tends to decrease.
 Vは、鋼の強度を高め、また水素脆化を抑制するのに有効な元素である。V含有量は0.05~0.50%である。V含有量が0.05%未満であると、Vを添加する効果が十分に期待できない。一方、V含有量が0.50%を超えると、オーステナイト中に溶解されない炭化物が増加し、ばね特性が劣化する。 V is an element effective in increasing the strength of steel and suppressing hydrogen embrittlement. The V content is 0.05 to 0.50%. If the V content is less than 0.05%, the effect of adding V cannot be expected sufficiently. On the other hand, if the V content exceeds 0.50%, carbides that are not dissolved in austenite increase, and the spring characteristics deteriorate.
 Nbは、結晶粒の微細化および微細炭化物の析出により鋼の強度と靭性を高める元素である。また、Nbは、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物(以下、単に、V化合物という)の微細分散に寄与し、耐水素脆性を増大する元素でもある。Nb含有量は0.005~0.150%である。Nb含有量が0.005%未満であると、Nbを添加する効果が十分に期待できない。一方、Nb含有量が0.150%を超えると、オーステナイト中に溶解されない炭化物が増加し、ばね特性が劣化する。 Nb is an element that increases the strength and toughness of steel by refining crystal grains and precipitating fine carbides. Nb is also an element that contributes to fine dispersion of a V compound containing at least one of V carbide and V carbonitride (hereinafter simply referred to as V compound) and increases hydrogen embrittlement resistance. The Nb content is 0.005 to 0.150%. If the Nb content is less than 0.005%, the effect of adding Nb cannot be expected sufficiently. On the other hand, if the Nb content exceeds 0.150%, carbides that are not dissolved in austenite increase, and the spring characteristics deteriorate.
 Nは、AlやNbと結合してAlN、NbNを形成し、オーステナイト結晶粒度の微細化に効果のある元素である。その微細化によって靭性が向上する。N含有量は0.0100~0.0200%である。N含有量が0.0100%以上であると、靱性を向上する効果が十分に表れる。一方、Nの過剰な添加は凝固時の鋼塊表面での気泡の発生や鋼の鋳造性の劣化を招くため、N含有量の上限は0.0200%とする。 N is an element that combines with Al or Nb to form AlN or NbN, and is effective in reducing the austenite crystal grain size. The toughness is improved by the refinement. The N content is 0.0100 to 0.0200%. If the N content is 0.0100% or more, the effect of improving toughness is sufficiently exhibited. On the other hand, excessive addition of N causes generation of bubbles on the surface of the steel ingot during solidification and deterioration of the castability of the steel, so the upper limit of the N content is 0.0200%.
 Pは、オーステナイト粒界に析出して粒界を脆化することにより衝撃値を低下させる要因となる。この問題を抑制するため、P含有量は0.015%以下に制限する。 P is a factor that lowers the impact value by precipitation at the austenite grain boundaries and embrittlement of the grain boundaries. In order to suppress this problem, the P content is limited to 0.015% or less.
 Sは、鋼中ではMnSの介在物として存在し、疲労寿命および腐食耐久性を低下させる要因となる。介在物とは、鋼が溶けた状態で既に出来ているものをいう。介在物を減らすため、S含有量は0.010%以下、好ましくは0.005%以下に制限する。 S is present as an inclusion of MnS in steel, and is a factor that reduces fatigue life and corrosion durability. Inclusions refer to those already made in a molten state of steel. In order to reduce inclusions, the S content is limited to 0.010% or less, preferably 0.005% or less.
 高強度ばね用鋼は、水素トラップサイトとしてのV化合物を微細分散させるため、焼入れ温度でV化合物を鉄中に固溶させ、その後、鋼中に微細分散するNb化合物の周囲にV化合物を析出させて製造する。従って、高強度ばね用鋼は、Nb化合物と、Nb化合物の周囲に析出するV化合物とを含む。V化合物は、Nb化合物に隣接して析出していればよく、Nb化合物の周囲を完全に囲んでいなくてもよいが完全に囲んでいてもよい。高強度ばね用鋼において、Nb化合物は、V化合物の内部に存在していてもよい。 High strength spring steel finely disperses the V compound as a hydrogen trap site, so that the V compound is dissolved in iron at the quenching temperature, and then the V compound is precipitated around the Nb compound that is finely dispersed in the steel. To manufacture. Accordingly, the high-strength spring steel includes an Nb compound and a V compound that precipitates around the Nb compound. The V compound may be deposited adjacent to the Nb compound, and may not completely surround the Nb compound, but may completely surround it. In the high strength spring steel, the Nb compound may be present inside the V compound.
 Nb化合物は、溶鋼が凝固する途中で鉄中に析出する析出物である。Nb化合物は、Nb窒化物、Nb炭化物、およびNb炭窒化物の少なくとも1つを含む。Nb化合物は、焼入れ処理の前に鋼中に微細分散しており、焼入れ温度で鉄中に固溶することなく、焼入れ温度からの急冷や焼戻し処理でV化合物が析出する起点となる。V化合物が析出する起点としては、好ましくは、Nb炭化物およびNb炭窒化物よりも微細に分散しているNb窒化物が用いられる。 The Nb compound is a precipitate that precipitates in iron while the molten steel is solidified. The Nb compound includes at least one of Nb nitride, Nb carbide, and Nb carbonitride. The Nb compound is finely dispersed in the steel before the quenching treatment, and does not dissolve in iron at the quenching temperature, but becomes a starting point for precipitation of the V compound by rapid cooling from the quenching temperature or tempering treatment. As the starting point for depositing the V compound, Nb nitride that is finely dispersed than Nb carbide and Nb carbonitride is preferably used.
 V化合物は、焼入れ処理の前に鋼中に粗大析出物として存在しているので、焼入れ温度で鉄中に固溶させ、その後にNb化合物を起点として析出させる。Nb化合物は、微細分散しているので、Nb化合物を起点として析出するV化合物を微細分散できる。V化合物の微細化によってその数を増加でき、耐水素脆性に優れた高強度ばね用鋼が得られる。 Since the V compound exists as a coarse precipitate in the steel before the quenching treatment, it is dissolved in iron at the quenching temperature, and then precipitated from the Nb compound. Since the Nb compound is finely dispersed, the V compound precipitated from the Nb compound can be finely dispersed. The number of the V compounds can be increased by making the V compound finer, and a high strength spring steel excellent in hydrogen embrittlement resistance can be obtained.
 V化合物が焼入れ温度で鉄中に固溶するように、焼入れ温度は950℃以上1000℃以下とされる。当該焼入れ温度はV化合物が鉄に固溶する固溶温度よりも高く、V含有量が上述の如く0.50%以下である場合、溶解度積の計算では、V化合物は鉄に完全に固溶する。焼入れ温度が高温であるので、結晶粒の粗大化を抑制するため、Nb、Al、Nなどが適量添加されている。これにより、靱性の低下が抑制でき、耐遅れ破壊性の低下が抑制できる。よって、耐遅れ破壊性に優れた高強度ばね用鋼が得られる。 The quenching temperature is set to 950 ° C. or higher and 1000 ° C. or lower so that the V compound is dissolved in iron at the quenching temperature. When the quenching temperature is higher than the solid solution temperature at which the V compound is dissolved in iron and the V content is 0.50% or less as described above, the V compound is completely dissolved in the iron in the calculation of the solubility product. To do. Since the quenching temperature is high, an appropriate amount of Nb, Al, N or the like is added in order to suppress coarsening of crystal grains. Thereby, the fall of toughness can be suppressed and the fall of delayed fracture resistance can be suppressed. Therefore, a high-strength spring steel excellent in delayed fracture resistance can be obtained.
 Nb化合物と、Nb化合物の周囲に析出するV化合物とで、複合析出物が形成される。複合析出物の平均粒径は、0.01μm以上、1μm以下であってよい。また、複合析出物の単位面積当たりの個数は、100個/mm以上、100000個/mm以下であってよい。平均粒径や単位面積当たりの個数は、例えばSEM(Scanning Electron Microscope)を用いて測定する。平均粒径は、100個の複合析出物のそれぞれの面積相当径(直径)を測定し、その測定値の平均値として求める。単位面積当たりの個数は、合計の面積が15mmである領域に存在する複合析出物の個数を測定し、その個数を合計の面積で除して求める。 A composite precipitate is formed by the Nb compound and the V compound precipitated around the Nb compound. The average particle size of the composite precipitate may be 0.01 μm or more and 1 μm or less. The number of composite precipitates per unit area may be 100 / mm 2 or more and 100,000 / mm 2 or less. The average particle diameter and the number per unit area are measured using, for example, an SEM (Scanning Electron Microscope). The average particle diameter is obtained as an average value of the measured values by measuring the equivalent area diameter (diameter) of each of the 100 composite precipitates. The number per unit area is determined by measuring the number of composite precipitates present in a region having a total area of 15 mm 2 and dividing the number by the total area.
 高強度ばね用鋼は、腐食耐久性の低下を抑制するためにC含有量を0.5%以下に制限しており、C含有量が0.5%以下の範囲で鋼の強度を確保するために焼戻し温度を390℃未満に制限してある。よって、腐食耐久性および強度に優れた高強度ばね用鋼が得られる。尚、焼戻し処理による靱性向上の効果が十分に得られるように、焼戻し温度の下限は250℃、より好ましくは300℃とされる。 High-strength spring steel has a C content limited to 0.5% or less in order to suppress a decrease in corrosion durability, and ensures the strength of the steel in a range where the C content is 0.5% or less. Therefore, the tempering temperature is limited to less than 390 ° C. Therefore, a high strength spring steel having excellent corrosion durability and strength can be obtained. In addition, the lower limit of the tempering temperature is 250 ° C., more preferably 300 ° C., so that the effect of improving the toughness by the tempering treatment can be sufficiently obtained.
 高強度ばね用鋼は、窒化物を十分に微細分散させるため、Nを0.0100~0.0200%含んでいる。高強度ばね用鋼は、Nによる低温焼戻し脆性を抑制するため、NbやAlを適量含み、Nの代わりにNbNやAlNを析出させることで、Nを無害化してある。これにより、靱性の低下が抑制でき、耐遅れ破壊性の低下が抑制できる。よって、耐遅れ破壊性に優れた高強度ばね用鋼が得られる。 High strength spring steel contains 0.0100 to 0.0200% N in order to sufficiently disperse nitrides. In order to suppress low temperature temper embrittlement by N, high strength spring steel contains an appropriate amount of Nb and Al, and N is made harmless by precipitating NbN and AlN instead of N. Thereby, the fall of toughness can be suppressed and the fall of delayed fracture resistance can be suppressed. Therefore, a high-strength spring steel excellent in delayed fracture resistance can be obtained.
 以下、具体的な実施例や比較例などについて説明する。 Specific examples and comparative examples will be described below.
 [実施例1]
 実施例1では、下記組成の鋼に対し焼入れ処理、焼戻し処理を施し、機械加工で回転曲げ疲労試験片、水素脆化試験片を作製した。
[Example 1]
In Example 1, a steel having the following composition was quenched and tempered, and a rotating bending fatigue test piece and a hydrogen embrittlement test piece were produced by machining.
 鋼としては、質量%で、C:0.44%、Si:1.75%、Mn:0.45%、Ni:0.25%、Cr:0.75%、Mo:0.08%、Cu:0.35%、Al:0.023%、V:0.25%、Nb:0.020%、N:0.0130%含有し、P:0.010%以下、S:0.003%以下に制限し、残部はFeおよび不可避的不純物からなる鋼を用いた。 As steel, C: 0.44%, Si: 1.75%, Mn: 0.45%, Ni: 0.25%, Cr: 0.75%, Mo: 0.08%, Cu: 0.35%, Al: 0.023%, V: 0.25%, Nb: 0.020%, N: 0.0130%, P: 0.010% or less, S: 0.003 %, And the balance was steel made of Fe and inevitable impurities.
 焼入れ温度は950℃とし、その保持時間は30分とした。焼入れ温度からの冷却は、油冷とした。 The quenching temperature was 950 ° C. and the holding time was 30 minutes. The cooling from the quenching temperature was oil cooling.
 焼戻し温度は360℃とし、その保持時間は1時間とした。焼戻し温度からの冷却は、空冷とした。 The tempering temperature was 360 ° C. and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
 焼戻し処理の後の鋼のビッカース硬度は、590Hvであった。 The Vickers hardness of the steel after the tempering treatment was 590 Hv.
 また、得られた鋼を電子顕微鏡で観察した。図1は、実施例1による焼戻し処理の後の鋼の断面の一部のSEM写真であり、図2は、実施例1による焼戻し処理の後の鋼の断面の他の一部のSEM写真である。図1(a)および図2(a)は反射電子像、図1(b)および図2(b)はNbの特性X線マップ、図1(c)および図2(c)はNの特性X線マップ、図1(d)および図2(d)はVの特性X線マップ、図1(e)および図2(e)はCの特性X線マップである。なお、図1(a)および図2(a)中、反射電子像の白色部分がNb化合物を示し、白色の周囲の黒色部分がV化合物を示す。図1(b)~(e)および図2(b)~(e)中、各元素の特性X線マップにおいて、色の明るさは元素量を表しており、色が明るい(白い)ほど元素量が多い。図1(a)および図2(a)の反射電子像は、電子線が鋼の断面近傍で跳ね返る反射電子の像であるため、被検面に見えるほぼそのままの大きさを表している。一方、図1(b)~(e)および図2(b)~(e)の特性X線マップは、電子線が鋼の断面から鋼の内部に入り込み発生した特性X線の像である。また、検出する特性X線の強度には閾値が設けられている。そのため、特性X線マップの像は、被検面に見える大きさとは異なったものとなる。 Moreover, the obtained steel was observed with an electron microscope. FIG. 1 is a SEM photograph of a part of the cross section of the steel after the tempering treatment according to Example 1, and FIG. 2 is a SEM photograph of another part of the steel after the tempering treatment according to Example 1. is there. 1A and FIG. 2A are backscattered electron images, FIG. 1B and FIG. 2B are Nb characteristic X-ray maps, and FIG. 1C and FIG. 2C are N characteristics. 1 (d) and 2 (d) are V characteristic X-ray maps, and FIGS. 1 (e) and 2 (e) are C characteristic X-ray maps. In FIGS. 1A and 2A, the white portion of the reflected electron image indicates the Nb compound, and the black portion around the white indicates the V compound. In FIGS. 1B to 1E and FIGS. 2B to 2E, in the characteristic X-ray map of each element, the brightness of the color represents the amount of the element, and the lighter the color (white), the more the element Large amount. The reflected electron images in FIGS. 1A and 2A are reflected electron images in which the electron beam bounces in the vicinity of the cross section of the steel, and thus represent almost the same size that can be seen on the test surface. On the other hand, the characteristic X-ray maps of FIGS. 1B to 1E and FIGS. 2B to 2E are images of characteristic X-rays generated when an electron beam enters the inside of the steel from a cross section of the steel. Further, a threshold is provided for the intensity of the characteristic X-ray to be detected. Therefore, the image of the characteristic X-ray map is different from the size seen on the test surface.
 図1(a)の反射電子像から明らかなように、実施例1の鋼では、周囲よりもVの濃度が高い部分(黒い部分)が存在し、その黒い部分の内側に、黒い部分の外側よりもNbの濃度が高い部分(白い部分)が存在していることが観察された。そして、図1(b)~図1(e)の特性X線マップより、図1(a)の黒い部分と白い部分とには、NおよびCの濃度が高い部分がそれぞれ存在し、Nの濃度が高い部分とCの濃度が高い部分とが少なくとも重複していることが観察された。よって、実施例1の鋼は、焼戻し処理後、少なくともNb炭窒化物の周囲を囲うように少なくともV炭窒化物が析出しているといえる。 As apparent from the backscattered electron image of FIG. 1 (a), in the steel of Example 1, there is a portion (black portion) having a higher V concentration than the surroundings, and inside the black portion, outside the black portion. It was observed that there was a portion (white portion) with a higher Nb concentration. From the characteristic X-ray maps of FIGS. 1 (b) to 1 (e), the black and white portions in FIG. 1 (a) have portions with high N and C concentrations, respectively. It was observed that the high concentration portion and the high C concentration portion overlap at least. Therefore, in the steel of Example 1, it can be said that at least V carbonitride is precipitated so as to surround at least the periphery of Nb carbonitride after the tempering treatment.
 図2(a)の反射電子像から明らかなように、実施例1の鋼の他の部分でも、周囲よりもVの濃度が高い部分(黒い部分)が存在し、その黒い部分の内側に、黒い部分の外側よりもNbの濃度が高い部分(白い部分)が存在していることが観察された。そして、図2(b)~図2(e)の特性X線マップより、図2(a)の黒い部分と白い部分とには、NおよびCの濃度が高い部分がそれぞれ存在し、Nの濃度が高い部分とCの濃度が高い部分とが少なくとも重複していることが観察された。よって、実施例1の鋼は、焼戻し処理後、少なくともV炭窒化物が少なくともNb炭窒化物の周囲を囲うように析出しているといえる。 As apparent from the backscattered electron image of FIG. 2 (a), in other parts of the steel of Example 1, there is a part (black part) having a higher concentration of V than the surroundings, and inside the black part, It was observed that a portion (white portion) having a higher Nb concentration than the outside of the black portion was present. From the characteristic X-ray maps of FIGS. 2 (b) to 2 (e), the black and white portions in FIG. 2 (a) have high N and C concentrations, respectively. It was observed that the high concentration portion and the high C concentration portion overlap at least. Therefore, it can be said that the steel of Example 1 is precipitated so that at least V carbonitride surrounds at least the periphery of Nb carbonitride after the tempering treatment.
 よって、実施例1の鋼は、焼戻し処理後、Nb化合物の周囲を囲うようにV化合物が析出していることが確認できた。 Therefore, in the steel of Example 1, it was confirmed that the V compound was deposited so as to surround the periphery of the Nb compound after the tempering treatment.
 試験片の形状は、日本工業規格(JIS Z2274)に記載の1号試験片の形状に準拠した。この試験片は、丸棒の中央部に、平行部と呼ばれるくびれ部を有するものである。 The shape of the test piece conformed to the shape of the No. 1 test piece described in Japanese Industrial Standard (JIS Z2274). This test piece has a constricted portion called a parallel portion at the center of the round bar.
 回転曲げ疲労試験片は、両端部の直径が15mm、平行部の直径が8mm、平行部の長さが20mmとした。 The rotating bending fatigue test piece had a diameter of 15 mm at both ends, a diameter of the parallel part of 8 mm, and a length of the parallel part of 20 mm.
 水素脆化試験片は、両端部の直径が10mm、平行部の直径が4mm、平行部の長さが15mmとした。 The hydrogen embrittlement test piece had a diameter of 10 mm at both ends, a diameter of the parallel part of 4 mm, and a length of the parallel part of 15 mm.
 [比較例1]
 比較例1では、下記組成の鋼に対し焼入れ処理、焼戻し処理を施し、機械加工で回転曲げ疲労試験片、水素脆化試験片を作製した。
[Comparative Example 1]
In Comparative Example 1, a steel having the following composition was quenched and tempered, and a rotating bending fatigue test piece and a hydrogen embrittlement test piece were produced by machining.
 鋼としては、質量%で、C:0.52%、Si:1.50%、Mn:0.45%、Ni:0.26%、Cr:0.80%、Mo:0.09%、Cu:0.12%、Al:0.023%、V:0.16%、Nb:0.025%、N:0.0120%、P:0.010%、S:0.009%含有し、残部はFeおよび不可避的不純物からなる鋼を用いた。 As steel, in mass%, C: 0.52%, Si: 1.50%, Mn: 0.45%, Ni: 0.26%, Cr: 0.80%, Mo: 0.09%, Cu: 0.12%, Al: 0.023%, V: 0.16%, Nb: 0.025%, N: 0.0120%, P: 0.010%, S: 0.009% The balance was steel made of Fe and inevitable impurities.
 焼入れ温度は900℃とし、その保持時間は30分とした。焼入れ温度からの冷却は、油冷とした。 The quenching temperature was 900 ° C. and the holding time was 30 minutes. The cooling from the quenching temperature was oil cooling.
 焼戻し温度は420℃とし、その保持時間は1時間とした。焼戻し温度からの冷却は、空冷とした。 The tempering temperature was 420 ° C. and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
 焼戻し処理の後の鋼のビッカース硬度は、570Hvであった。 The Vickers hardness of the steel after tempering was 570 Hv.
 試験片の形状は、実施例1の試験片の形状と同様とした。 The shape of the test piece was the same as the shape of the test piece of Example 1.
 [回転曲げ疲労試験]
 回転曲げ疲労試験では、一定の曲げモーメントを作用させた試験片を3000rpmで回転させることで、正弦波応力を試験片に負荷し、試験片が破断するまでの応力の繰り返し回数を調べた。
[Rotating bending fatigue test]
In the rotating bending fatigue test, a test piece to which a constant bending moment was applied was rotated at 3000 rpm, a sine wave stress was applied to the test piece, and the number of repeated stresses until the test piece broke was examined.
 図3は、実施例1および比較例1の回転曲げ疲労試験の結果を示す。図3において、実線は実施例1の回転曲げ疲労試験の結果を、破線は比較例1の回転曲げ疲労試験の結果を表す。 FIG. 3 shows the results of the rotating bending fatigue test of Example 1 and Comparative Example 1. In FIG. 3, the solid line represents the result of the rotational bending fatigue test of Example 1, and the broken line represents the result of the rotational bending fatigue test of Comparative Example 1.
 図3から明らかなように、実施例1の鋼は、比較例1の鋼に比べ、曲げ疲労強度に優れていることが確認できた。 As is clear from FIG. 3, it was confirmed that the steel of Example 1 was superior in bending fatigue strength to the steel of Comparative Example 1.
 [水素脆化試験]
 水素脆化試験では、電解液中に試験片の平行部を浸漬し、48時間の間、電解液の電界によって発生する水素を試験片にチャージし、その後、電解液中に平行部を浸漬した状態で試験片に荷重をかけ、破断しない最大応力を調べた。電解液としては、チオシアン酸アンモニウムを5%含む、50℃の水溶液を用いた。試験片に荷重をかける試験機としては、てこ式の定荷重試験機を用いた。破断しない最大応力(以下、「未破断応力」と呼ぶ。)を確認するための試験時間は96時間とした。この水素脆化試験は、腐食耐久試験や耐遅れ破壊試験を兼ねており、チオシアン酸アンモニウムを5%含む水溶液は電解液と腐食液とを兼ねている。
[Hydrogen embrittlement test]
In the hydrogen embrittlement test, the parallel part of the test piece was immersed in the electrolytic solution, and the hydrogen generated by the electric field of the electrolytic solution was charged into the test piece for 48 hours, and then the parallel part was immersed in the electrolytic solution. A load was applied to the test piece in the state, and the maximum stress that did not break was examined. As the electrolytic solution, a 50 ° C. aqueous solution containing 5% ammonium thiocyanate was used. As a tester for applying a load to the test piece, a lever type constant load tester was used. The test time for confirming the maximum stress that does not break (hereinafter referred to as “unbreaking stress”) was 96 hours. This hydrogen embrittlement test also serves as a corrosion endurance test and a delayed fracture resistance test, and an aqueous solution containing 5% ammonium thiocyanate serves as both an electrolytic solution and a corrosive solution.
 実施例1の試験片の未破断応力が325MPaであったのに対し、比較例1の試験片の未破断応力は240MPaであった。従って、実施例1の鋼は、比較例1の鋼に比べ、耐水素脆性や腐食耐久性、耐遅れ破壊性に優れていることが確認できた。 The unbreaking stress of the test piece of Example 1 was 325 MPa, whereas the unbreaking stress of the test piece of Comparative Example 1 was 240 MPa. Therefore, it was confirmed that the steel of Example 1 was excellent in hydrogen embrittlement resistance, corrosion durability, and delayed fracture resistance compared to the steel of Comparative Example 1.
 水素脆化試験の後、試験片に含まれる拡散性水素量を測定した。拡散性水素量は、試験片を加熱して試験片の温度を一定速度で昇温しながら、試験片から放出される水素量をガスクロマトグラフィ法で連続測定し、そのプロファイルから求める。 After the hydrogen embrittlement test, the amount of diffusible hydrogen contained in the test piece was measured. The amount of diffusible hydrogen is obtained from a profile obtained by continuously measuring the amount of hydrogen released from the test piece by gas chromatography while heating the test piece at a constant rate.
 300℃未満の温度で放出される水素が拡散性水素であり、300℃以上の温度で放出される水素が非拡散性水素である。試験片の温度が220℃に達する前に拡散性水素の放出がほぼ終わり、試験片の温度が400℃を超えると非拡散性水素が放出され始める。水素トラップサイトで捕捉された水素は、300℃未満の温度では放出されない。 Hydrogen released at a temperature below 300 ° C. is diffusible hydrogen, and hydrogen released at a temperature of 300 ° C. or higher is non-diffusible hydrogen. Release of diffusible hydrogen is almost completed before the temperature of the test piece reaches 220 ° C, and non-diffusible hydrogen starts to be released when the temperature of the test piece exceeds 400 ° C. Hydrogen trapped at the hydrogen trap site is not released at temperatures below 300 ° C.
 実施例1の試験片の拡散性水素量が0.36質量ppmであったのに対し、比較例1の試験片の拡散性水素量は1.87質量ppmであった。従って、実施例1の鋼は、比較例1の鋼に比べ、水素トラップサイトが多く、耐水素脆性に優れていることが確認できた。 The diffusible hydrogen content of the test piece of Example 1 was 0.36 mass ppm, whereas the diffusible hydrogen content of the test piece of Comparative Example 1 was 1.87 mass ppm. Therefore, it was confirmed that the steel of Example 1 had more hydrogen trap sites and excellent resistance to hydrogen embrittlement than the steel of Comparative Example 1.
 [実施例2]
 実施例2では、実施例1の鋼と同一の組成の鋼に対し焼入れ処理、焼戻し処理を施し、機械加工で引張強度試験片を作製し、引張試験を行った。
[Example 2]
In Example 2, the steel having the same composition as the steel of Example 1 was subjected to quenching treatment and tempering treatment, a tensile strength test piece was produced by machining, and a tensile test was performed.
 焼入れ温度は950℃とし、その保持時間は30分とした。焼入れ温度からの冷却は、油冷とした。 The quenching temperature was 950 ° C. and the holding time was 30 minutes. The cooling from the quenching temperature was oil cooling.
 焼戻し温度は380℃または350℃とし、その保持時間は1時間とした。焼戻し温度からの冷却は、空冷とした。 The tempering temperature was 380 ° C. or 350 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling.
 引張試験片の形状は、日本工業規格(JIS Z2241)に記載の4号試験片の形状に準拠した。 The shape of the tensile test piece conformed to the shape of the No. 4 test piece described in Japanese Industrial Standard (JIS Z2241).
 引張試験では、引張強度、0.2%耐力、破断伸び、絞りなどを測定した。 In the tensile test, tensile strength, 0.2% proof stress, elongation at break, drawing, etc. were measured.
 焼戻し温度、引張試験の結果、およびビッカース硬度を表1に示す。 Table 1 shows the tempering temperature, the results of the tensile test, and the Vickers hardness.
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例2の鋼は高強度を有していることが確認できた。
Figure JPOXMLDOC01-appb-T000001
As is apparent from Table 1, it was confirmed that the steel of Example 2 had high strength.
[実施例3]
 実施例3では、実施例1および実施例2の鋼と同一の組成の鋼をコイル状に加熱成形した。その後、得られた成形品を焼入れ処理、焼戻し処理、ショットピーニングおよびセッチングを施し、コイルばねを作製した。その後、得られたコイルばねの耐久試験を行った。焼入れ温度は990℃とし、その保持時間は20分とした。焼入れ温度からの冷却は、油冷とした。焼戻し温度は360℃とし、その保持時間は1時間とした。焼戻し温度からの冷却は、空冷とした。焼戻し処理の後のコイルばねのビッカース硬度は、580Hvであった。
[Example 3]
In Example 3, steel having the same composition as that of Example 1 and Example 2 was heat-formed into a coil shape. Thereafter, the obtained molded product was subjected to quenching treatment, tempering treatment, shot peening, and setting to produce a coil spring. Then, the durability test of the obtained coil spring was done. The quenching temperature was 990 ° C. and the holding time was 20 minutes. The cooling from the quenching temperature was oil cooling. The tempering temperature was 360 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling. The Vickers hardness of the coil spring after the tempering treatment was 580 Hv.
[比較例2]
 比較例2では、比較例1の鋼と同一の組成の鋼を、実施例3と同様に、コイル状に加熱成形し、実施例3と同一形状の成形品を得た。その後、得られた成形品を焼入れ処理、焼戻し処理、ショットピーニングおよびセッチングを施し、実施例3と同一形状のコイルばねを作製した。その後、得られたコイルばねの耐久試験を行った。焼入れ温度は940℃とし、その保持時間は20分とした。焼入れ温度からの冷却は、油冷とした。焼戻し温度は420℃とし、その保持時間は1時間とした。焼戻し温度からの冷却は、空冷とした。焼戻し処理の後のコイルばねのビッカース硬度は、560Hvであった。
[Comparative Example 2]
In Comparative Example 2, steel having the same composition as the steel of Comparative Example 1 was heat-formed into a coil shape in the same manner as in Example 3 to obtain a molded product having the same shape as in Example 3. Thereafter, the obtained molded product was subjected to quenching treatment, tempering treatment, shot peening and setting, and a coil spring having the same shape as that of Example 3 was produced. Then, the durability test of the obtained coil spring was done. The quenching temperature was 940 ° C. and the holding time was 20 minutes. The cooling from the quenching temperature was oil cooling. The tempering temperature was 420 ° C., and the holding time was 1 hour. Cooling from the tempering temperature was air cooling. The Vickers hardness of the coil spring after the tempering treatment was 560 Hv.
[耐久試験]
 耐久試験では、平均応力を735MPaとして、コイルばねに種々の応力振幅で繰り返し応力を負荷し、コイルばねが破断するまでの応力の繰り返し回数を調べた。なお、実施例3は、応力振幅を、735MPa±620MPa(最大応力:1355MPa、最小応力:115MPa)と、735MPa±550MPa(最大応力:1285MPa、最小応力:185MPa)とした。比較例2は、応力振幅を、735MPa±525MPa(最大応力:1260MPa、最小応力:210MPa)と、735MPa±500MPa(最大応力:1235MPa、最小応力:235MPa)とした。
[An endurance test]
In the endurance test, the average stress was set to 735 MPa, repeated stress was applied to the coil spring with various stress amplitudes, and the number of repeated stresses until the coil spring broke was examined. In Example 3, the stress amplitude was set to 735 MPa ± 620 MPa (maximum stress: 1355 MPa, minimum stress: 115 MPa) and 735 MPa ± 550 MPa (maximum stress: 1285 MPa, minimum stress: 185 MPa). In Comparative Example 2, the stress amplitude was set to 735 MPa ± 525 MPa (maximum stress: 1260 MPa, minimum stress: 210 MPa) and 735 MPa ± 500 MPa (maximum stress: 1235 MPa, minimum stress: 235 MPa).
 図4は、実施例3および比較例2の耐久試験の結果を示す。なお、図4において、実線は実施例3の耐久試験の結果を、破線は比較例2の耐久試験の結果を表す。図4から明らかなように、実施例3のコイルばねは、比較例2のコイルばねに比べ、耐久性に優れていることが確認できた。 FIG. 4 shows the results of durability tests of Example 3 and Comparative Example 2. In FIG. 4, the solid line represents the result of the durability test of Example 3, and the broken line represents the result of the durability test of Comparative Example 2. As is clear from FIG. 4, it was confirmed that the coil spring of Example 3 was superior in durability to the coil spring of Comparative Example 2.
 以上、高強度ばねの実施形態などについて説明したが、本発明は上記実施形態などに限定されず、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、改良が可能である。 Although the embodiments of the high-strength spring have been described above, the present invention is not limited to the above-described embodiments and the like, and various modifications and improvements are possible within the scope of the gist of the present invention described in the claims. It is.
 本出願は、2016年10月19日に日本国特許庁に出願した特願2016-205535号、2017年3月27日に日本国特許庁に出願した特願2017-061981号、および2017年5月11日に日本国特許庁に出願した特願2017-095054号に基づく優先権を主張するものであり、特願2016-205535号、特願2017-061981号、および特願2017-095054号の全内容を本出願に援用する。 This application includes Japanese Patent Application No. 2016-205535 filed with the Japan Patent Office on October 19, 2016, Japanese Patent Application No. 2017-061981 filed with the Japan Patent Office on March 27, 2017, and May 2017 This application claims priority based on Japanese Patent Application No. 2017-095054 filed with the Japan Patent Office on May 11, and is based on Japanese Patent Application Nos. The entire contents are incorporated into this application.

Claims (4)

  1.  質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなり、
     Nb炭化物、Nb窒化物、およびNb炭窒化物の少なくとも1つを含むNb化合物と、
     前記Nb化合物の周囲に析出する、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物と、
    を含む、高強度ばね。
    In mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0. 50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less, the balance being Fe and Consisting of inevitable impurities,
    An Nb compound comprising at least one of Nb carbide, Nb nitride, and Nb carbonitride;
    A V compound containing at least one of V carbide and V carbonitride precipitated around the Nb compound;
    Including high strength springs.
  2.  質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなる鋼に対し、焼入れ温度が950℃以上1000℃以下である焼入れ処理、および焼戻し温度が250℃以上390℃未満である焼戻し処理を行い、
     前記焼入れ温度で、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物をFe中に固溶させ、その後、Nb炭化物、Nb窒化物、およびNb炭窒化物の少なくとも1つを含むNb化合物の周囲に前記V化合物を析出させる、高強度ばねの製造方法。
    In mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0. 50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less, the balance being Fe and A steel composed of inevitable impurities is subjected to a quenching process in which the quenching temperature is 950 ° C. or more and 1000 ° C. or less, and a tempering process in which the tempering temperature is 250 ° C. or more and less than 390 ° C.,
    The V compound containing at least one of V carbide and V carbonitride is dissolved in Fe at the quenching temperature, and then the Nb compound containing at least one of Nb carbide, Nb nitride, and Nb carbonitride is used. A method for producing a high-strength spring, in which the V compound is deposited around.
  3.  質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなり、
     Nb炭化物、Nb窒化物、およびNb炭窒化物の少なくとも1つを含むNb化合物と、
     前記Nb化合物の周囲に析出する、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物と、
    を含む、高強度ばね用鋼。
    In mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0. 50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less, the balance being Fe and Consisting of inevitable impurities,
    An Nb compound comprising at least one of Nb carbide, Nb nitride, and Nb carbonitride;
    A V compound containing at least one of V carbide and V carbonitride precipitated around the Nb compound;
    Including high strength spring steel.
  4.  質量%で、C:0.40~0.50%、Si:1.00~3.00%、Mn:0.30~1.20%、Ni:0.05~0.50%、Cr:0.35~1.50%、Mo:0.03~0.50%、Cu:0.05~0.50%、Al:0.005~0.100%、V:0.05~0.50%、Nb:0.005~0.150%、N:0.0100~0.0200%含有し、P:0.015%以下、S:0.010%以下に制限し、残部はFeおよび不可避的不純物からなる鋼に対し、焼入れ温度が950℃以上1000℃以下である焼入れ処理、および焼戻し温度が250℃以上390℃未満である焼戻し処理を行い、
     前記焼入れ温度で、V炭化物およびV炭窒化物の少なくとも一方を含むV化合物をFe中に固溶させ、その後、Nb炭化物、Nb窒化物、およびNb炭窒化物の少なくとも1つを含むNb化合物の周囲に前記V化合物を析出させる、高強度ばね用鋼の製造方法。
    In mass%, C: 0.40 to 0.50%, Si: 1.00 to 3.00%, Mn: 0.30 to 1.20%, Ni: 0.05 to 0.50%, Cr: 0.35-1.50%, Mo: 0.03-0.50%, Cu: 0.05-0.50%, Al: 0.005-0.100%, V: 0.05-0. 50%, Nb: 0.005 to 0.150%, N: 0.0100 to 0.0200%, P: 0.015% or less, S: 0.010% or less, the balance being Fe and A steel composed of inevitable impurities is subjected to a quenching process in which the quenching temperature is 950 ° C. or more and 1000 ° C. or less, and a tempering process in which the tempering temperature is 250 ° C. or more and less than 390 ° C.,
    The V compound containing at least one of V carbide and V carbonitride is dissolved in Fe at the quenching temperature, and then the Nb compound containing at least one of Nb carbide, Nb nitride, and Nb carbonitride is used. A method for producing a steel for high-strength springs, in which the V compound is precipitated around.
PCT/JP2017/020501 2016-10-19 2017-06-01 High-strength spring, method for producing same, steel for high-strength spring, and method for producing same WO2018074003A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
ES17835988T ES2805091T3 (en) 2016-10-19 2017-06-01 High-strength spring, production procedure thereof, high-strength spring steel, and production procedure thereof
EP17835988.1A EP3336214B1 (en) 2016-10-19 2017-06-01 High-strength spring, method for producing same, steel for high-strength spring, and method for producing same
CN202210849340.6A CN115125455A (en) 2016-10-19 2017-06-01 High-strength spring and method for producing same, and steel for high-strength spring and method for producing same
CN201780002753.8A CN108368580A (en) 2016-10-19 2017-06-01 High-strength spring and its manufacturing method and high-strength spring steel and its manufacturing method
US15/749,959 US10752971B2 (en) 2016-10-19 2017-06-01 High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same
MX2018001995A MX2018001995A (en) 2016-10-19 2017-06-01 High-strength spring, method for producing same, steel for high-strength spring, and method for producing same.
RU2018106084A RU2679288C1 (en) 2016-10-19 2017-06-01 High strength spring, method for its manufacture, steel for high strength spring and method for its manufacture
CA2995427A CA2995427C (en) 2016-10-19 2017-06-01 High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same
BR112018003077-5A BR112018003077B1 (en) 2016-10-19 2017-06-01 HIGH RESISTANCE SPRING, MANUFACTURING METHOD, HIGH RESISTANCE SPRING STEEL AND MANUFACTURING METHOD
KR1020187005976A KR101947973B1 (en) 2016-10-19 2017-06-01 High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same
PH12018500359A PH12018500359A1 (en) 2016-10-19 2018-02-15 High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2016205535 2016-10-19
JP2016-205535 2016-10-19
JP2017061981 2017-03-27
JP2017-061981 2017-03-27
JP2017095054A JP6356309B1 (en) 2016-10-19 2017-05-11 High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
JP2017-095054 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018074003A1 true WO2018074003A1 (en) 2018-04-26

Family

ID=62019104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020501 WO2018074003A1 (en) 2016-10-19 2017-06-01 High-strength spring, method for producing same, steel for high-strength spring, and method for producing same

Country Status (5)

Country Link
EP (1) EP3336214B1 (en)
KR (1) KR101947973B1 (en)
CN (1) CN115125455A (en)
BR (1) BR112018003077B1 (en)
WO (1) WO2018074003A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747610B (en) * 2020-11-13 2021-11-21 中國鋼鐵股份有限公司 Detection method of silo weighing system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320827A (en) * 1992-05-26 1993-12-07 Kobe Steel Ltd Steel for spring excellent in fatigue property and steel wire for spring as well as spring
JP2001131699A (en) * 1999-10-29 2001-05-15 Mitsubishi Seiko Muroran Tokushuko Kk Steel for high strength spring
JP2001288539A (en) 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
JP2016125119A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Hollow seamless steel pipe for spring

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5776267A (en) * 1995-10-27 1998-07-07 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and fatigue
JP3474373B2 (en) * 1995-10-27 2003-12-08 株式会社神戸製鋼所 Spring steel with excellent hydrogen embrittlement resistance and fatigue properties
JP4008391B2 (en) * 2003-07-11 2007-11-14 株式会社神戸製鋼所 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same
JP5064060B2 (en) * 2007-02-22 2012-10-31 新日本製鐵株式会社 Steel wire for high-strength spring, high-strength spring, and manufacturing method thereof
JP5146063B2 (en) * 2007-04-12 2013-02-20 新日鐵住金株式会社 High strength steel with excellent internal fatigue damage resistance and method for producing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05320827A (en) * 1992-05-26 1993-12-07 Kobe Steel Ltd Steel for spring excellent in fatigue property and steel wire for spring as well as spring
JP2001131699A (en) * 1999-10-29 2001-05-15 Mitsubishi Seiko Muroran Tokushuko Kk Steel for high strength spring
JP2001288539A (en) 2000-04-05 2001-10-19 Nippon Steel Corp Spring steel excellent in hydrogen fatigue resistance and its production method
WO2006022009A1 (en) * 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha Steel for high strength spring, and high strength spring and method for manufacture thereof
JP2016125119A (en) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 Hollow seamless steel pipe for spring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3336214A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747610B (en) * 2020-11-13 2021-11-21 中國鋼鐵股份有限公司 Detection method of silo weighing system

Also Published As

Publication number Publication date
KR20180050305A (en) 2018-05-14
EP3336214A1 (en) 2018-06-20
CN115125455A (en) 2022-09-30
KR101947973B1 (en) 2019-02-13
EP3336214B1 (en) 2020-05-13
EP3336214A4 (en) 2018-09-26
BR112018003077A2 (en) 2018-10-02
BR112018003077B1 (en) 2023-01-17

Similar Documents

Publication Publication Date Title
JP6461360B2 (en) Spring steel wire and spring
JP5591130B2 (en) Steel wire for high strength spring
JP4423254B2 (en) High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP6447799B1 (en) Rolled wire rod for spring steel
JP3764715B2 (en) Steel wire for high-strength cold forming spring and its manufacturing method
JP4478072B2 (en) High strength spring steel
JP4868935B2 (en) High strength spring steel wire with excellent sag resistance
JP2007191776A (en) High-strength spring steel superior in brittle fracture resistance and manufacturing method therefor
WO2011078165A1 (en) High-strength spring steel
JPWO2018211779A1 (en) Oil tempered wire
JP5353161B2 (en) High strength spring steel with excellent delayed fracture resistance and method for producing the same
JP6798557B2 (en) steel
JP2004263201A (en) High strength steel having excellent fatigue strength, and its production method
JP6436232B2 (en) Spring steel
JP4994932B2 (en) Oil tempered wire and method for producing oil tempered wire
JP6356309B1 (en) High-strength spring, method for manufacturing the same, steel for high-strength spring, and method for manufacturing the same
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JP4657128B2 (en) High strength structural steel with excellent hydrogen embrittlement resistance and toughness and its manufacturing method
WO2018074003A1 (en) High-strength spring, method for producing same, steel for high-strength spring, and method for producing same
JP2012140675A (en) Case-hardening steel excellent in cold-workability, and high fatigue-resistant strength carburized material
JP2002180199A (en) Steel for spring having excellent permanent set resistance, steel wire for spring and spring
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP2011214118A (en) Spring steel wire having excellent durability and settling resistance, and spring using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12018500359

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/001995

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2018106084

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 20187005976

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017835988

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2995427

Country of ref document: CA

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018003077

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17835988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018003077

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180216

NENP Non-entry into the national phase

Ref country code: DE