KR20060129019A - Steel wire for spring - Google Patents
Steel wire for spring Download PDFInfo
- Publication number
- KR20060129019A KR20060129019A KR1020067016315A KR20067016315A KR20060129019A KR 20060129019 A KR20060129019 A KR 20060129019A KR 1020067016315 A KR1020067016315 A KR 1020067016315A KR 20067016315 A KR20067016315 A KR 20067016315A KR 20060129019 A KR20060129019 A KR 20060129019A
- Authority
- KR
- South Korea
- Prior art keywords
- steel wire
- spring
- mass
- steel
- impurities
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 149
- 239000010959 steel Substances 0.000 title claims abstract description 149
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 238000005496 tempering Methods 0.000 claims abstract description 30
- 238000010791 quenching Methods 0.000 claims abstract description 28
- 230000000171 quenching effect Effects 0.000 claims abstract description 28
- 239000012535 impurity Substances 0.000 claims abstract description 21
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 21
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 20
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 20
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 27
- 229910001566 austenite Inorganic materials 0.000 claims description 24
- 238000000059 patterning Methods 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 21
- 238000004519 manufacturing process Methods 0.000 claims description 15
- 229910000639 Spring steel Inorganic materials 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 14
- 229910052799 carbon Inorganic materials 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 11
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052721 tungsten Inorganic materials 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 8
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000005121 nitriding Methods 0.000 description 18
- 238000012545 processing Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000003921 oil Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 235000020186 condensed milk Nutrition 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000021167 banquet Nutrition 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- QKJXFFMKZPQALO-UHFFFAOYSA-N chromium;iron;methane;silicon Chemical compound C.[Si].[Cr].[Fe] QKJXFFMKZPQALO-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000009661 fatigue test Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
- C21D1/20—Isothermal quenching, e.g. bainitic hardening
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/25—Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/525—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/30—Ferrous alloys, e.g. steel alloys containing chromium with cobalt
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Heat Treatment Of Steel (AREA)
- Springs (AREA)
Abstract
Description
본 발명은, 담금질 뜨임(quenching tempering)에 의해 뜨임 마텐자이트(tempering martensite) 조직을 가지는 스프링용 강선, 이 스프링용 강선의 제조에 적합한 스프링용 강선의 제조방법, 및 이 강선에 의해 제조된 스프링에 관한 것이다. 특히, 자동차의 엔진 밸브 스프링이나 변속기(transmission) 내부 등에 이용되는 스프링에 적합한 고강도로 피로특성이 우수한 고인성(高靭性)의 스프링용 강선에 관한 것이다.The present invention relates to a spring steel wire having a tempering martensite structure by quenching tempering, a method for producing a spring steel wire suitable for the production of this spring steel wire, and a spring produced by the steel wire It is about. In particular, the present invention relates to a high-strength spring steel wire having excellent fatigue characteristics with a high strength suitable for a spring used for an engine valve spring or a transmission inside an automobile.
자동차의 저연비화(低燃費化)에 대응해서, 최근, 자동차의 엔진이나 변속기 등의 부품의 소형 경량화가 진행되고 있다. 그것에 수반하여, 엔진의 밸브 스프링이나 변속기용 스프링 등의 스프링에 부하되는 응력은 매년 심해지고 있으며, 이용되는 스프링재료에도 한층 더 피로특성의 향상이 요구되고 있다. 이들 엔진의 밸브 스프링이나 변속기용 스프링에는, 종래, 실리콘크롬계의 오일템퍼선(Oil Temper Wire)이 이용되고 있으며, 예를 들면, 특허문헌 1~3에 기재된 것이 공지되어 있다.In response to the low fuel consumption of automobiles, in recent years, miniaturization and weight reduction of components such as engines and transmissions of automobiles have been advanced. In connection with this, the stress applied to springs, such as an engine valve spring and a transmission spring, is increasing year by year, and the spring material used is further required to improve fatigue characteristics. Conventionally, silicon chrome oil temper wires are used for valve springs and transmission springs of these engines. For example, those described in Patent Documents 1 to 3 are known.
[특허문헌 1][Patent Document 1]
일본국 특허제2842579호 공보Japanese Patent No. 2842579
[특허문헌 2][Patent Document 2]
일본국 특개2002-194496호 공보 Japanese Patent Application Laid-Open No. 2002-194496
[특허문헌 3][Patent Document 3]
일본국 특허제3045795호 공보Japanese Patent No. 3045795
그러나, 엔진의 밸브 스프링이나 변속기용 스프링 등의 스프링에 요구되는 특성은, 최근 엄격해지고 있으며, 스프링용 강선 및 스프링에 대해서 가일층의 개선이 요구되고 있다. 특히, 스프링용 강선 및 스프링은, 피로특성과 인성을 보다 밸런스 있게 구비하는 것이 요망되고 있다.However, the characteristics required for springs such as valve springs of engines and springs for transmissions have become strict in recent years, and further improvements are required for spring steel wires and springs. In particular, it is desired that the spring steel wire and the spring have more balanced fatigue characteristics and toughness.
한편, 최근, 피로강도(피로한도) 향상의 요망에 수반하여, 스프링 가공한 후에 스프링에 고온(구체적으로는 420~480℃정도)의 열처리(질화처리)가 실시되고 있다.On the other hand, in recent years, with the request of improving fatigue strength (fatigue limit), after a spring process, the spring is heat-treated (nitriding treatment) of high temperature (specifically, about 420-480 degreeC).
특허문헌 1에 기재된 기술에서는, 강선의 C(탄소)의 함유량을 0.3-0.5중량%로 함으로서 인성의 향상을 도모하고 있다. 그러나, 탄소의 함유량을 0.50중량%미만이라고 하는 저량으로 함으로서 내열성이 저하되기 때문에, 가령, 이 강선을 스프링 가공한 스프링에 상기 고온의 질화처리를 실시하는 것으로 하면, 피로강도가 저하되어서, 스프링으로서 사용했을 때, 내부 절손(折損)의 원인으로 된다.In the technique of patent document 1, toughness is aimed at by making content of C (carbon) of a steel wire into 0.3-0.5 weight%. However, since the heat resistance is lowered by lowering the content of carbon to less than 0.50% by weight, for example, when the steel wire is subjected to the high temperature nitriding treatment on the spring, the fatigue strength is lowered. When used, it causes internal breakage.
특허문헌 2에 기재된 기술에서는, 담금질 후의 오스테나이트(austenite)의 평균결정입경을 1.0~7.0㎛라고 하는 미세화 조직으로 함으로서 피로강도의 향상을 도모하고 있다. 그러나, 오스테나이트 결정입경을 보다 작게 하기 위해서, 담금질할 때의 온도를 저온으로 하면, 미고용(未固溶)탄화물이 잔존해서, 인성을 저하시키는 요인으로 된다. 또, 인성이 저하됨으로서, 강선의 스프링 가공 시에 절손이 생기기 쉬워지며, 스프링의 양산성에 악영향을 미친다.In the technique described in Patent Literature 2, fatigue strength is improved by setting the average grain size of austenite after quenching to a microstructure of 1.0 to 7.0 µm. However, in order to make austenite grain size smaller, when the temperature at the time of quenching is made low, unsolubilized carbide will remain and it will become a factor which reduces toughness. Moreover, since toughness falls, breakage tends to occur at the time of steel working of a spring, and it adversely affects the mass productivity of a spring.
특허문헌 3에 기재된 기술에서는, 오일템퍼 시에 의도적으로 강선의 표면을 탈탄(脫炭)시킴으로서 표면경도를 저하시켜서 스프링 가공성의 향상을 도모하는 것이지만, 표면에 균일한 탈탄층을 얻는 것은 곤란하며, 강선이나 스프링의 대량생산에 부적당하다. 또, 강선의 가열 시(오일템퍼 시)에 산소농도를 제어해야 하며, 비용의 상승을 수반한다.In the technique described in Patent Literature 3, the surface hardness is reduced by intentionally decarburizing the surface of the steel wire during oil tempering, thereby improving the spring workability, but it is difficult to obtain a uniform decarburized layer on the surface. Unsuitable for mass production of steel wires or springs. In addition, the oxygen concentration must be controlled at the time of heating the steel wire (oil tempering), which entails an increase in cost.
또한, 어느 문헌에 기재된 기술도, 강선의 스프링 가공 후에 실시되는 질화처리 후에 있어서 재료(스프링) 내부의 비틀림방향의 내력(耐力), 즉, 스프링의 전단항복응력에 대해서 검토되어 있지 않다.In addition, neither of the techniques described in the literature has been examined for the internal stress in the torsional direction inside the material (spring), that is, the shear yield stress of the spring after the nitriding treatment performed after the spring processing of the steel wire.
그래서, 본 발명의 주된 목적은, 피로강도와 인성과의 쌍방이 우수한 고강도의 스프링 강선을 제공하는 데에 있다. 또, 본 발명의 다른 목적은, 상기 스프링용 강선에 의해 제작된 스프링, 및 상기 스프링용 강선의 제조에 적합한 제조방법을 제공하는 데에 있다.Then, the main object of this invention is to provide the high strength spring steel wire which is excellent in both fatigue strength and toughness. Another object of the present invention is to provide a spring manufactured by the spring steel wire and a manufacturing method suitable for the production of the spring steel wire.
본 발명 스프링용 강선은, 담금질 뜨임 후의 강선의 단면수축값과, 상기 담금질 뜨임 후에 질화처리에 상당하는 열처리를 실시한 강선의 전단항복응력을 특정의 값으로 규정함으로서 상기의 목적을 달성한다.The steel wire for spring of this invention achieves the said objective by defining the cross-sectional shrinkage value of the steel wire after quenching tempering, and the shear yield stress of the steel wire which performed the heat processing corresponded to the nitriding treatment after said quenching tempering to a specific value.
즉, 본 발명은, 담금질 뜨임에 의해 뜨임 마텐자이트 조직을 가지는 스프링용 강선이다. 이 스프링용 강선은, 단면수축값이 40%이상이며, 420℃이상 480℃이하에서 2시간 이상의 열처리를 실시한 후의 강선의 전단항복응력이 1000MPa이상인 것을 특징으로 한다.That is, this invention is a steel wire for spring which has a tempered martensite structure by hardening tempering. The steel wire for spring has a cross-sectional shrinkage of 40% or more and a shear yield stress of the steel wire after heat treatment for 2 hours or more at 420 ° C or more and 480 ° C or less is 1000 MPa or more.
상기 스프링용 강선은, 특히 이하의 1~6 중 어느 하나의 화학성분으로 이루어지는 것이 보다 바람직하다.As for the said steel wire for spring, it is more preferable to consist especially in any one of the following 1-6 chemical components.
1. 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.1~0.7%, Cr: 0.70~1.50%, Co: 0.02~1.00%를 함유하고, 잔부가 Fe 및 불순물1.% by mass C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%, Co: 0.02 to 1.00%, the balance being Fe and impurities
2. 질량%로, C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%를 함유하고, 잔부가 Fe 및 불순물2. By mass%, C: 0.50-0.75%, Si: 1.80-2.70%, Mn: more than 0.7-1.5%, Cr: 0.70-1.50%, and remainder is Fe and an impurity
3. 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%와, Ni: 0.1~1.0% 및 Co: 0.02~1.00% 중 적어도 한쪽의 원소를 함유하고, 잔부가 Fe 및 불순물3. As mass%, at least of C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: over 0.7 to 1.5%, Cr: 0.70 to 1.50%, Ni: 0.1 to 1.0% and Co: 0.02 to 1.00% It contains one element, and the balance is Fe and impurities
4. 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.1~0.7%, Cr: 0.70~1.50%, Co: 0.02~1.00%와, 질량%로 V: 0.05~0.50%, Mo: 0.05~0.50%, W: 0.05~0.15%, Nb: 0.05~0.15%, 및 Ti: 0.01~0.20%로 이루어지는 5개의 원소군으로부터 선택되는 1종 이상의 원소를 함유하고, 잔부가 Fe 및 불순물4.% by mass C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%, Co: 0.02 to 1.00% and V by mass: 0.05 to 0.50% , Mo: 0.05% to 0.50%, W: 0.05% to 0.15%, Nb: 0.05% to 0.15%, and Ti: 0.01% to 0.20%. impurities
5. 질량%로, C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%와, 질량%로 V: 0.05~0.50%, Mo: 0.05~0.50%, W: 0.05~0.15%, Nb: 0.05~0.15%, 및 Ti: 0.01~0.20%로 이루어지는 5개의 원소군으로부터 선택되는 1종 이상의 원소를 함유하고, 잔부가 Fe 및 불순물5. By mass%, C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: over 0.7 to 1.5%, Cr: 0.70 to 1.50%, and by mass% V: 0.05 to 0.50%, Mo: 0.05 to At least one element selected from the group of five elements consisting of 0.50%, W: 0.05-0.15%, Nb: 0.05-0.15%, and Ti: 0.01-0.20%, with the balance being Fe and impurities
6. 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%와, Ni: 0.1~1.0% 및 Co: 0.02~1.00% 중 적어도 한쪽의 원소와, 질량%로 V: 0.05~0.50%, Mo: 0.05~0.50%, W: 0.05~0.15%, Nb: 0.05~0.15%, 및 Ti: 0.01~0.20%로 이루어지는 5개의 원소군으로부터 선택되는 1종 이상의 원소를 함유하고, 잔부가 Fe 및 불순물6. By mass%, at least of C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: over 0.7 to 1.5%, Cr: 0.70 to 1.50%, Ni: 0.1 to 1.0% and Co: 0.02 to 1.00% From one element and five element groups consisting of V: 0.05-0.50%, Mo: 0.05-0.50%, W: 0.05-0.15%, Nb: 0.05-0.15%, and Ti: 0.01-0.20% Contains at least one element selected, and the balance is Fe and impurities
또, 상기 본 발명 스프링용 강선의 제조에 적합한 제조방법으로서, 이하를 제안한다. 즉, 본 발명 스프링용 강선의 제조방법은, 이하의 (A)~(C) 중 어느 하나에 기재된 화학성분의 강재(鋼材)를 패턴팅(patenting)하는 공정과, 상기 패턴팅된 강재를 신선가공하는 공정과, 상기 신선가공된 강선에 담금질 뜨임을 실시하는 공정을 구비한다. 상기 패턴팅은, 900~1050℃에서 60~180초 동안 가열하는 오스테나이트화 공정과, 상기 오스테나이트화 공정 후에 600~750℃에서 20~100초 동안 가열하는 항온변태(恒溫變態)공정을 구비하는 것으로 한다.Moreover, as a manufacturing method suitable for manufacture of the said steel wire for springs of this invention, the following is proposed. That is, the manufacturing method of the steel wire for springs of this invention is a process of patterning the steel materials of the chemical component as described in any one of the following (A)-(C), and drawing the said patterned steel material. And a step of performing quenching and tempering on the freshly processed steel wire. The patterning, the austenitization step of heating for 60 to 180 seconds at 900 ~ 1050 ℃, and the constant temperature transformation step of heating for 20 to 100 seconds at 600 ~ 750 ℃ after the austenitization process I shall do it.
(A) 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.1~0.7%, Cr: 0.70~1.50%, Co: 0.02~1.00%를 함유하고, 잔부가 Fe 및 불순물로 이루어지는 강재(A) Mass: C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: 0.1 to 0.7%, Cr: 0.70 to 1.50%, Co: 0.02 to 1.00%, the balance being Fe and impurities Steel
(B) 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%를 함유하고, 잔부가 Fe 및 불순물로 이루어지는 강재(B) Steel material containing C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: over 0.7 to 1.5%, Cr: 0.70 to 1.50% by mass, and the balance being Fe and impurities
(C) 질량%로 C: 0.50~0.75%, Si: 1.80~2.70%, Mn: 0.7초과~1.5%, Cr: 0.70~1.50%와, Ni: 0.1~1.0% 및 Co: 0.02~1.00% 중 적어도 한쪽의 원소를 함유하고, 잔부가 Fe 및 불순물로 이루어지는 강재(C) in mass% in C: 0.50 to 0.75%, Si: 1.80 to 2.70%, Mn: over 0.7 to 1.5%, Cr: 0.70 to 1.50%, Ni: 0.1 to 1.0% and Co: 0.02 to 1.00% Steel material containing at least one element and remainder consisting of Fe and impurities
상기 (A)~(C)의 화학성분에 부가해서, 강재는, 또한, 질량%로 V: 0.05~0.50%, Mo: 0.05~0.50%, W: 0.05~0.15%, Nb: 0.05~0.15%, 및 Ti: 0.01~0.20%로 이루어지는 5개의 원소군으로부터 선택되는 1종 이상의 원소를 함유하고 있어도 된다.In addition to the chemical components of the above (A) to (C), the steel material is also in mass%, V: 0.05-0.50%, Mo: 0.05-0.50%, W: 0.05-0.15%, Nb: 0.05-0.15% , And Ti: may contain at least one element selected from five element groups consisting of 0.01 to 0.20%.
이하, 본 발명을 보다 상세히 설명한다. Hereinafter, the present invention will be described in more detail.
(피로특성의 향상)(Improved fatigue characteristic)
스프링의 피로특성을 향상시키기 위해서는, 스프링의 피로파괴를 억제하는 것이 요망된다. 스프링을 반복 사용하는 경우, 이 스프링에는, 인장방향 및 압축방향과 동시에 전단방향으로 반복 응력이 부가된다. 이와 같이 외적으로 부가되는 반복 응력에 의해서, 스프링은, 국소적, 혹은 집중적으로 반복해서 미끄러짐 변형(소성변형)을 일으키고, 스프링의 표면 근방에 요철을 생성하여 균열이 발생되어서 파괴에 이르는, 즉, 피로파괴로 된다. 따라서, 스프링의 피로파괴를 억제하기 위해서는, 상기 국소적, 혹은 집중적인 소성변형을 억제하는 것이 효과적이다. 이와 같은 소성변형을 억제하기 위해서, 종래, 강선을 스프링 가공한 후에 질화처리 등의 열처리를 실시하여 스프링의 표면경도를 높여서, 피로한도를 향상시키는 것이 실시되고 있다. 그러나, 스프링에 큰 응력이 부가되는 상태로 사용되도록 되어 온 요즈음, 단지 피로한도를 높게 한 것만으로는, 스프링이 영구변형되어서 사용할 수 없는 경우가 있다. 이것은, 상기 질화처리 등의 열처리에 의해 형성된 스프링 표층의 고경도의 질화층이 영구변형되지 않아도, 상기 큰 응력에 의해 스프링 내부의 강도가 저하되어서 영구변형되어 버리기 때문이라고 사료된다. 그런 연유로, 스프링은, 고강도인 것에 부가해서, 피로한도뿐만이 아니라, 비틀림내력, 즉, 전단항복응력 그 자체를 향상시키는 것이 요망된다. 그래서, 본 발명자들이 여러 가지 검토했던바, 상기 질화처리 등의 열처리 후에 있어서, 재료(스프링) 내부가 적절한 비틀림내력이 있으면 됨을 알게 되었다. 구체적으로는, 상기 질화처리 등의 열처리를 실시한 후에 스프링의 전단항복응력이 1000MPa이상이면, 스프링의 피로특성을 향상시킬 수 있음을 알게 되었다. 이 식견에 의거하여, 본 발명 스프링용 강선은, 담금질 뜨임 후에 특정한 열처리를 실시한 후의 강선의 전단항복응력을 1000MPa이상으로 규정한다.In order to improve the fatigue characteristics of the spring, it is desired to suppress the fatigue fracture of the spring. When the spring is used repeatedly, the spring is subjected to cyclic stress in the shear direction simultaneously with the tension direction and the compression direction. In this way, due to the externally added cyclic stress, the spring causes the sliding deformation (plastic deformation) locally or intensively repeatedly, generates irregularities in the vicinity of the surface of the spring, and cracks occur, leading to breakage, that is, Fatigue failure. Therefore, in order to suppress fatigue failure of the spring, it is effective to suppress the local or intensive plastic deformation. In order to suppress such plastic deformation, conventionally, after steel-stretching a steel wire, it heat-processes, such as nitriding, and raises the surface hardness of a spring, and improves a fatigue limit. However, these days, the spring is permanently deformed and cannot be used only by increasing the fatigue limit. It is considered that this is because even if the hardened nitride layer of the spring surface layer formed by the heat treatment such as the nitriding treatment is not permanently deformed, the strength inside the spring is deteriorated due to the large stress, thereby causing permanent deformation. For such reasons, in addition to being high in strength, it is desired to improve not only the fatigue limit but also the torsional resistance, that is, the shear yield stress itself. Thus, the inventors have studied variously and found that after the heat treatment of the nitriding treatment or the like, the inside of the material (spring) should have an appropriate torsional strength. Specifically, it has been found that the fatigue properties of the spring can be improved if the shear yield stress of the spring is higher than 1000 MPa after the heat treatment such as nitriding treatment. Based on this knowledge, the spring steel wire of this invention defines the shear yield stress of the steel wire after specific heat processing after quenching tempering to 1000 Mpa or more.
(고인성)(Toughness)
강선이 아무리 고강도이어도, 인성이 낮으면 스프링 가공 시에 강선이 절손을 일으켜서, 스프링의 양산성을 저해하게 된다. 또, 재료로 되는 강선의 인성 저하에 의해, 스프링의 피로특성도 저하되어 버린다. 그래서, 본 발명자들이 여러 가지 검토했던바, 담금질 뜨임 후의 강선의 단면수축값을 40%이상으로 하는 것이 스프링 가공 시에 있어서의 강선의 절손의 방지에 효과적이며, 스프링의 양산성이 우수하다고 하는 식견을 얻었다. 이 식견에 의거하여, 본 발명은, 강선의 단면수축값을 40%이상으로 규정한다. 단면수축값이 40%미만에서는, 스프링 가공 시에 강선의 절손을 일으키기 쉽고, 스프링의 양산성에 지장을 초래할 우려가 있다. 또한, 단면수축값은, 담금질 뜨임 후에 강선에 상기 질화처리에 상당하는 420℃이상 480℃이하에서 2시간 이상이라고 하는 특정한 열처리를 실시함으로서, 약간 저하하는 경우도 있다. 그러나, 상술한 바와 같이, 단면수축값이 40%이상이면, 상기 열처리 후에 있어서도, 강선은, 단면수축값을 35%이상으로 유지할 수 있으며, 이 강선에 의해 얻어진 스프링은, 높은 피로특성을 얻을 수 있다.No matter how high the steel wire is, even if the toughness is low, the steel wire breaks at the time of spring processing, thereby impairing the mass productivity of the spring. Moreover, the fatigue property of a spring will also fall by the fall of the toughness of the steel wire used as a material. Therefore, the inventors have studied variously, and it has been found that setting the cross-sectional shrinkage value of the steel wire after quenching to 40% or more is effective in preventing the breakage of the steel wire at the time of spring processing and excellent in the mass productivity of the spring. Got. Based on this knowledge, the present invention defines the section shrinkage value of the steel wire to be 40% or more. When the cross-sectional shrinkage value is less than 40%, breakage of the steel wire is likely to occur at the time of spring machining, and there is a risk of disturbing the mass productivity of the spring. In addition, the cross-sectional shrinkage value may decrease slightly by subjecting the steel wire to a specific heat treatment of 420 ° C or more and 480 ° C or less corresponding to the nitriding treatment for 2 hours or more after quenching and tempering. However, as described above, if the cross-sectional shrinkage value is 40% or more, the steel wire can maintain the cross-sectional shrinkage value of 35% or more even after the heat treatment, and the spring obtained by the steel wire can obtain high fatigue characteristics. have.
이와 같이 본 발명 스프링용 강선은, 단면수축값, 및 이 강선에 질화처리에 상당하는 열처리를 실시한 후의 전단항복응력을 규정함으로서, 본 발명 강선이나 본 발명 강선에 의해 얻어지는 스프링의 고피로강도와 고인성과의 양립을 도모한다.Thus, the steel wire for spring of this invention defines the cross-sectional shrinkage value, and the shear yield stress after heat-processing corresponded to nitriding treatment to this steel wire, and the fatigue strength and the high fatigue strength of the spring obtained by this steel wire and this steel wire are We try to balance performance.
상기 피로특성과 인성과의 쌍방이 우수한 본 발명 스프링용 강선 및 스프링을 얻기 위하여, 이 강선의 최적인 화학성분 및 제조조건, 특히 패턴팅 조건을 규정한다.In order to obtain the steel wire for the present invention and the spring excellent in both the fatigue properties and the toughness, the optimum chemical composition and manufacturing conditions, especially patterning conditions of the steel wire is specified.
<화학성분><Chemical composition>
우선, 강선을 스프링 가공한 후에 스프링에 실시되는 질화처리 등의 열처리에 의해, 스프링의 표면경도를 향상시킴으로서 스프링의 피로한도를 향상시킬 수 있는 반면, 스프링의 내부 경도가 저하됨으로서, 사용 시에 내부 절손이 생기는 경우가 있다. 그래서, 본 발명에서는, 스프링에 가공되는 강선의 모상(母相)의 내열성을 향상시키기 위하여, C, Si를 소정의 범위(질량%) 함유하는 것으로 한다. 또, 강선에 뜨임을 실시했을 때에, 강선 조직 중에 탄화물을 형성시켜서 강선의 연화저항을 높이기 위해서 Cr을 소정량 함유한다. 연화저항의 증대에는, Cr을 소정량 함유하는 데에 부가해서, 또한 Mo, V, Nb, W, Ti를 소정량 함유하는 것도 효과적이다. 그리고, 본 발명 강선이나 본 발명 강선에 의해 얻어지는 스프링의 전단항복응력의 향상에는, Co: 0.02~1.00질량%를 함유하거나, 또는 Mn을 넉넉히 함유하는(0.7초과~1.5질량%) 것이 유효함을 발견하였다. 그래서, Mn, Co의 함유량을 규정한다. 상세한 성분범위 및 범위의 한정 이유는, 후술한다.First, after the steel wire is subjected to spring processing, heat treatment such as nitriding treatment performed on the spring improves the spring fatigue limit by improving the surface hardness of the spring. Loss may occur. Therefore, in this invention, in order to improve the heat resistance of the mother phase of the steel wire processed by a spring, it shall contain C and Si in a predetermined range (mass%). Further, when tempering the steel wire, a predetermined amount of Cr is contained in order to form carbide in the steel wire structure to increase the softening resistance of the steel wire. It is also effective to increase the softening resistance in addition to containing a predetermined amount of Cr and to further contain a predetermined amount of Mo, V, Nb, W, and Ti. In addition, it is effective to improve the shear yield stress of the spring of the steel wire of the present invention or the steel wire of the present invention, which contains 0.02 to 1.00 mass% of Co or abundantly Mn (greater than 0.7 to 1.5 mass%). Found. Therefore, content of Mn and Co is prescribed | regulated. The detailed component range and the reason for limitation of a range are mentioned later.
<제조조건><Production Conditions>
본 발명 스프링용 강선은, 상기 화학성분을 가지는 강재에 용제 → 열간단조(熱間鍛造) → 열간압연 → 패턴팅 → 신선 → 담금질 뜨임을 실시함으로서 얻어진다.The steel wire for a spring of this invention is obtained by performing a solvent → hot forging → hot rolling → patterning → drawing → quenching tempering to steel materials which have the said chemical component.
(패턴팅 조건)(Patterning condition)
본 발명에서는, 신선가공 전에 있어서 특정조건의 패턴팅을 실시함으로서, 강재 조직을 충분히 오스테나이트화해서, 미고용탄화물을 용해시키는 동시에, 적절한 항온변태에 의해 균일적인 펄라이트(perlite) 조직을 얻는다. 오스테나이트화가 불충분하면, 강선의 인성이나 전단항복응력을 저하시키는 요인으로 된다. 그래서, 충분히 오스테나이트화하기 위해서는, 900~1050℃의 온도에서 60~180초 동안 가열하는 것이 적합하다. 가열온도가 900℃미만인 경우, 또는 가열온도가 900~1050℃에서 가열시간이 60초 미만인 경우, 충분한 오스테나이트화를 하지 못하고, 미고용탄화물이 잔존해 버린다. 또, 가열온도가 1050℃보다 높은 경우, 또는 가열온도가 900~1050℃에서 가열시간이 180초보다 긴 경우는, 오스테나이트입자가 조대화(粗大化)되어 버려서, 변태 시에 마텐자이트가 생성되기 쉬워지며, 신선가공 시, 그 신선성을 저해시켜 버린다.In the present invention, the patterning of specific conditions is performed prior to drawing, thereby sufficiently austenitizing the steel structure, dissolving the unsolubilized carbide, and obtaining a uniform perlite structure by appropriate constant temperature transformation. Insufficient austenitization causes a decrease in the toughness of the steel wire and the shear yield stress. Therefore, in order to fully austenitize, it is suitable to heat for 60 to 180 seconds at the temperature of 900-1050 degreeC. If the heating temperature is less than 900 ° C., or if the heating time is less than 60 seconds at the heating temperature of 900 to 1050 ° C., sufficient austenitization cannot be performed, and the unsolubilized carbide remains. When the heating temperature is higher than 1050 ° C or the heating time is longer than 180 seconds at the heating temperature of 900 to 1050 ° C, the austenite particles are coarsened and martensite is formed during transformation. It is easy to produce, and at the time of fresh processing, the freshness is impaired.
오스테나이트화 후에 실시하는 강재의 항온변태는, 600~750℃에서 20~100초 동안 가열하는 것이 적합하다. 가열온도가 750℃보다 높은 경우, 또는 가열온도가 600~750℃에서 가열시간이 100초보다 긴 경우는, 강재 조직에 있어서 시멘타이트(cementite)가 구상화(球狀化)되어서, 강재의 신선성을 저해시키는 요인으로 된다. 한편, 가열온도가 600℃보다 낮은 경우, 또는 가열온도가 600~750℃에서 가열시간이 20초보다 짧은 경우, 펄라이트에의 변태가 완료되지 않고, 마텐자이트가 생성됨으로서, 신선성을 저해시켜 버리는 요인으로 된다.It is preferable that the constant temperature transformation of the steel material performed after austenitization is heated at 600-750 degreeC for 20 to 100 second. When the heating temperature is higher than 750 ° C. or when the heating time is longer than 100 seconds at the heating temperature of 600 to 750 ° C., cementite is spheroidized in the steel structure, resulting in the freshness of the steel. It becomes a factor to inhibit. On the other hand, when the heating temperature is lower than 600 ° C. or when the heating time is shorter than 20 seconds at the heating temperature of 600 to 750 ° C., transformation to pearlite is not completed and martensite is produced, thereby inhibiting freshness. It becomes a factor to throw away.
(담금질, 뜨임)(Quenching, tempering)
상기 패턴팅이 실시된 강재를 신선해서 얻어진 강선에 담금질을 실시할 때의 온도가 너무 낮으면, 강선 조직에 미고용탄화물이 잔존해서 강선의 인성을 저하시킨다. 반대로, 담금질 시의 온도가 너무 높으면, 오스테나이트 결정립이 성장되어서 대형화함으로서, 이 강선이나 이 강선에 의해 얻어진 스프링의 피로한도를 저하시킨다. 따라서, 담금질 시의 온도는, 850℃초과 1050℃미만으로 하는 것이 바람직하다.If the temperature at the time of quenching the steel wire obtained by drawing the said patterning steel is too low, unsoluble carbide will remain in a steel wire structure, and the toughness of steel wire will fall. On the contrary, if the temperature at the time of quenching is too high, austenite crystal grains grow and enlarge, thereby reducing the fatigue limit of the steel wire or the spring obtained by the steel wire. Therefore, it is preferable that the temperature at the time of quenching shall be more than 850 degreeC and less than 1050 degreeC.
<조직><Organization>
본 발명 스프링용 강선은, 뜨임 마텐자이트 조직을 가지는 것으로 한다. 또, 담금질 뜨임 후의 강선의 오스테나이트 결정립(구오스테나이트 결정립)을 미세화하면, 이 강선이나 이 강선에 의해 얻어진 스프링은, 반복 응력이 부가되어도, 국소적, 집중적으로 미끄러짐 변형이 생기기 어려워진다. 즉, 강선이나 스프링의 전단항복응력을 향상시킬 수 있기 때문에, 결과적으로 오스테나이트 결정립(구오스테나이트 결정립)을 미세화하는 것은, 피로특성의 향상에 기여시킬 수 있다.The steel wire for spring of this invention shall have a tempered martensite structure. Further, if the austenite grains (former austenite grains) of the steel wire after quenching and tempering are refined, the steel wire and the spring obtained by the steel wire become difficult to produce localized and concentrated slipping deformation even if cyclic stress is applied. That is, the shear yield stress of the steel wire and the spring can be improved, and as a result, finer austenite grains (former austenite grains) can contribute to the improvement of the fatigue characteristics.
구체적으로는, 오스테나이트 결정립(구오스테나이트 결정립)의 평균결정입경을 3.0~7.0㎛로 하는 것이 바람직하다. 평균결정입경은, 강재에 실시하는 패턴팅의 온도를 변화시킴으로서 변화시킬 수 있다. 보다 상세하게는, 패턴팅에 있어서 오스테나이트화할 때의 온도를 낮게 하면, 결정입경은 작아지며, 동일온도를 높게 하면 결정입경은 커지는 경향이 있다. 평균결정입경이 3.0㎛미만에서는, 오스테나이트화의 온도가 낮기 때문에, 미고용탄화물이 잔존해서 강선의 인성이 저하되기 쉽다. 또, 평균결정입경이 7.0㎛초과에서는, 강선이나 강선에 의해 얻어진 스프링의 피로한도가 향상되기 어렵다. 또한, 평균결정입경은, 신선한 강선에 담금질 뜨임 후에 측정한 값으로 한다Specifically, the average grain size of the austenite grains (former austenite grains) is preferably 3.0 to 7.0 µm. The average grain size can be changed by changing the temperature of the patterning performed on steel materials. More specifically, when the temperature at the time of austenitization is lowered in patterning, the grain size decreases, and when the same temperature is increased, the grain size tends to increase. If the average crystal grain size is less than 3.0 µm, the austenitization temperature is low, so that the unsolubilized carbide remains and the toughness of the steel wire tends to decrease. In addition, when the average grain size exceeds 7.0 µm, the fatigue limit of the spring obtained by the steel wire or the steel wire is hardly improved. In addition, an average grain size shall be the value measured after tempering by fresh steel wire.
이하, 본 발명에 있어서의 구성원소의 선정 및 성분범위를 한정하는 이유를 서술한다. 또한, 원소의 근처에 기재되는 수치의 단위는, 질량%이다.Hereinafter, the reason for selecting the member element and limiting the component range in the present invention will be described. In addition, the unit of the numerical value described in the vicinity of an element is mass%.
C: 0.50~0.75C: 0.50-0.75
C는 강철의 강도를 결정하는 중요한 원소이며, 탄소의 함유량이 강철 전체에 대해서 0.50질량%미만에서는 충분한 강도의 강선을 얻지 못하고, 0.75질량%를 초과하면 인성을 손상시키기 때문에, 탄소의 함유량은, 0.50질량%이상 0.75질량%이하로 한다.C is an important element for determining the strength of steel, and if the content of carbon is less than 0.50% by mass with respect to the whole steel, steel wire of sufficient strength is not obtained, and if it exceeds 0.75% by mass, the toughness is impaired. 0.50 mass% or more and 0.75 mass% or less.
Si: 1.80~2.70Si: 1.80 ~ 2.70
Si는 강재의 용해정련(溶解精鍊) 시에 탈산제로서 사용된다. 또, Si는, 페라이트(ferrite) 속에 고용해서 내열성을 향상시키고, 스프링 가공 후에 스프링에 실시되는 응력제거소둔이나 질화처리 등의 열처리에 의한 강선(스프링) 내부의 경도 저하를 방지하는 효과가 있다. 내열성을 유지하기 위해서는 1.80질량%이상 필요하며, 2.70질량%를 초과하면 인성이 저하되기 때문에, Si의 함유량은, 1.80질량%이상 2.70질량%이하로 한다.Si is used as a deoxidizer at the time of dissolution refining of steel materials. In addition, Si has an effect of improving the heat resistance by dissolving in ferrite to prevent a decrease in hardness inside the steel wire (spring) by heat treatment such as stress relief annealing or nitriding treatment performed on the spring after spring processing. In order to maintain heat resistance, 1.80 mass% or more is required, and when it exceeds 2.70 mass%, toughness will fall, Therefore, content of Si shall be 1.80 mass% or more and 2.70 mass% or less.
Mn: 0.1~1.5Mn: 0.1 ~ 1.5
Mn은 Si와 마찬가지로 용해정련 시의 탈산제로서 사용된다. 그런 연유로, 탈산제에 필요한 Mn의 함유량으로서 하한을 0.1질량%로 한다. 또, Mn은, 강선의 담금질성을 향상시키고, 강선의 강도를 높이는 동시에, 강선이나 강선에 의해 얻어진 스프링의 전단항복응력을 향상시키는 효과가 있다. 그러나, Mn의 함유량이 강철 전체에 대해서 1.5질량%초과이면, 패턴팅 시에 강재에 마텐자이트가 생성되기 쉬워지며, 신선 시에 단선(斷線)의 원인으로 되기 때문에, Mn의 함유량의 상한을 1.5질량%로 한다. 특히, 강철에 후술하는 Co를 함유하는 경우, Mn의 함유량은 0.1~0.7질량%로 낮게 하고 있어도 되며, Co를 함유하지 않는 경우, 0.7초과~1.5질량%로서, Mn을 넉넉히 함유하는 것이 바람직하다. Mn을 넉넉히 함유하는 동시에 Co를 함유해도 된다.Mn, like Si, is used as a deoxidizer in dissolution refining. In such condensed milk, the lower limit is made 0.1 mass% as the content of Mn required for the deoxidizer. In addition, Mn improves the hardenability of the steel wire, increases the strength of the steel wire, and has an effect of improving the shear yield stress of the spring obtained by the steel wire or the steel wire. However, if the content of Mn is more than 1.5% by mass with respect to the whole steel, martensite is easily formed in the steel material during patterning, and the upper limit of the content of Mn is caused because it causes disconnection at the time of drawing. Let 1.5 mass%. In particular, in the case of containing Co described later in steel, the content of Mn may be as low as 0.1 to 0.7% by mass, and when not containing Co, it is preferable to contain Mn sufficiently as over 0.7 to 1.5% by mass. . It may contain Co sufficiently and contain Mn.
Cr: 0.70~1.50Cr: 0.70-1.50
Cr은 강철의 담금질성을 향상시키고, 연화저항을 증가시키기 때문에, 스프링 가공 후, 스프링에 템퍼처리나 질화처리 등의 열처리를 실시할 때의 스프링의 연화방지에 유효하다. Cr의 함유량이 강철 전체에 대해서 0.70질량%미만이면 연화방지에 충분한 효과를 얻을 수 없기 때문에, Cr의 함유량은 0.70질량%이상으로 하고, 1.50질량%를 초과하면, 패턴팅 시에 마텐자이트가 발생하기 쉬워지며, 신선 시에 단선의 원인으로 되는 동시에, 패턴팅(오일템퍼) 후의 강재의 인성을 저하시키는 요인으로 된다. 따라서 Cr의 함유량은, 0.70~1.50%로 규정한다.Since Cr improves hardenability of steel and increases softening resistance, it is effective for preventing the softening of the spring when the spring is subjected to heat treatment such as tempering treatment or nitriding treatment after the spring processing. If the content of Cr is less than 0.70% by mass relative to the whole steel, sufficient effect for the prevention of softening cannot be obtained. Therefore, the content of Cr is 0.70% by mass or more, and if it exceeds 1.50% by mass, martensite is formed during patterning. It becomes easy to generate | occur | produce, and becomes a cause of disconnection at the time of drawing, and becomes a factor which reduces the toughness of steel materials after patterning (oil tempering). Therefore, content of Cr is prescribed | regulated to 0.70 to 1.50%.
Co: 0.02~1.00Co: 0.02 ~ 1.00
Co는, 강철에 소량 함유시킴으로써, 강선이나 스프링의 전단항복응력을 향상시킨다. 또, Co는, 내열성을 향상시키는 효과가 있으며, 스프링 가공 후 템퍼처리나 질화처리한 스프링의 연화방지에 효과가 있다. 또한, Co의 함유가 소량인 경우, 강선의 인성을 저하시키지 않는다. Co의 함유량이 0.02질량%미만에서는, 상기 강선이나 스프링의 전단항복응력의 향상이나 강선의 내열성의 향상 등과 같은 효과가 얻어지기 어렵고, Co의 함유량이 1.00질량% 초과 부가해도, 1.00질량%이하 함유시켰을 경우와 비교해서 Co를 함유시킨 것에 의한 효과는 변함없이, 강선 제조나 스프링 제조가 고비용으로 되기 때문에, Co의 함유량은, 0.02질량%이상 1.00질량%이하로 한다. 또한, 강철에 Co를 함유하는 경우, 상술한 바와 같이 Mn의 함유량을 0.1~0.7질량%로 낮게 해도 된다.Co contains a small amount in steel to improve the shear yield stress of the steel wire and the spring. Moreover, Co has the effect of improving heat resistance, and is effective in preventing the softening of the tempered or nitrided spring after the spring processing. In addition, when the Co content is small, the toughness of the steel wire is not lowered. If the Co content is less than 0.02% by mass, it is difficult to obtain effects such as improvement of the shear yield stress of the steel wire or the spring, improvement of heat resistance of the steel wire, and even if Co content is added more than 1.00% by mass, 1.00% by mass or less Compared with the case where it is made, the effect by containing Co does not change, but since steel wire manufacture and spring manufacture become expensive, Co content is made into 0.02 mass% or more and 1.00 mass% or less. In addition, when Co is contained in steel, content of Mn may be made low as 0.1-0.7 mass% as mentioned above.
Ni: 0.1~1.0Ni: 0.1 ~ 1.0
Ni를 강철에 함유시킴으로써, 강선의 내식성 및 인성을 향상시키는 효과가 있다. Ni의 함유량이 0.1질량%미만에서는, 상기 강선 효과가 얻어지기 어렵고, Ni의 함유량이 1.0질량%를 초과해도 강선 제조가 고비용으로 될 뿐으로, 강선의 인성의 가일층의 향상효과를 얻을 수 없다. 그런 연유로, Ni의 함유량은, 0.1질량%이상 1.0질량%이하로 한다.By containing Ni in steel, there exists an effect which improves the corrosion resistance and toughness of steel wire. If the content of Ni is less than 0.1% by mass, the steel wire effect is hardly obtained, and even if the content of Ni exceeds 1.0% by mass, the steel wire production becomes expensive, and further improvement effects of the toughness of the steel wire cannot be obtained. In such condensed milk, the content of Ni is made 0.1 mass% or more and 1.0 mass% or less.
Mo, V: 0.05~0.50Mo, V: 0.05-0.50
W, Nb: 0.05~0.15W, Nb: 0.05-0.15
이들 원소는, 강선의 뜨임 시에 강선 조직에 있어서 탄화물을 형성하고, 강선의 연화저항을 증가시키는 경향이 있다. Mo의 함유량, V의 함유량, W의 함유량, Nb의 함유량이 각각 강철 전체에 대해서 0.05질량%미만에서는 상기 효과가 얻어지기 어렵다. 또, Mo의 함유량이 0.50질량%를 초과하는 경우, V의 함유량이 0.50질량%를 초과하는 경우, W의 함유량이 0.15질량%를 초과하는 경우, Nb의 함유량이 0.15질량%를 초과하는 경우는, 모두 강선의 인성을 저하시키기 쉽다.These elements tend to form carbides in the wire structure when the wire is tempered and to increase the softening resistance of the wire. When content of Mo, content of V, content of W, and content of Nb are less than 0.05 mass% with respect to the whole steel, respectively, the said effect is hard to be acquired. Moreover, when content of Mo exceeds 0.50 mass%, When content of V exceeds 0.50 mass%, When content of W exceeds 0.15 mass%, When content of Nb exceeds 0.15 mass%, Both of them tend to lower the toughness of the steel wire.
Ti: 0.01~0.20Ti: 0.01 ~ 0.20
Ti는, 뜨임 시에 탄화물을 형성하고, 강선의 연화저항을 증가시키는 효과가 있다. Ti의 함유량이 0.01질량%미만에서는 상기 효과를 얻지 못하고, Ti의 함유량이 0.20질량%초과에서는 강선 조직에 있어서 고융점의 비금속개재물 TiO가 형성되어서, 강선의 인성을 저하시키기 쉽다. 따라서, Ti의 함유량은, 0.01질량%이상 0.20질량%이하로 한다.Ti has an effect of forming carbide at tempering and increasing softening resistance of the steel wire. If the content of Ti is less than 0.01% by mass, the above effect cannot be obtained. If the content of Ti is more than 0.20% by mass, the high-melting point nonmetallic inclusion TiO is formed in the steel wire structure, thereby reducing the toughness of the steel wire. Therefore, content of Ti is made into 0.01 mass% or more and 0.20 mass% or less.
본 발명 스프링용 강선의 강선 긴쪽방향(신선방향)으로 수직인 횡단면의 형상은, 원형은 물론이거니와, 타원, 사다리꼴, 정사각형, 직사각형과 같은 이형(異形) 단면의 형상이어도 된다.The shape of the cross section perpendicular to the steel wire longitudinal direction (new wire direction) of the steel wire for spring of the present invention may be a shape of an unshaped cross section such as an ellipse, a trapezoid, a square, a rectangle, as well as a circular shape.
본 발명 스프링은, 상기 스프링용 강선에 코일링(coiling) 등의 스프링 가공을 실시함으로써 얻을 수 있다. 특히, 본 발명 스프링용 강선을 스프링 가공한 후, 얻어진 스프링에 질화처리 등의 열처리를 실시함으로서, 스프링의 표면경도가 향상되어서 우수한 피로한도를 가질 수 있다.The spring of the present invention can be obtained by subjecting the spring steel wire to spring processing such as coiling. In particular, after the spring steel wire of the present invention is subjected to spring processing, the obtained spring is subjected to heat treatment such as nitriding treatment, whereby the surface hardness of the spring is improved, and thus the fatigue limit can be excellent.
<발명의 실시의 형태><Embodiment of the Invention>
이하, 본 발명의 실시의 형태를 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described.
표 1에 나타내는 화학성분과 잔부가 Fe 및 불순물로 이루어지는 강재를 진공용해로에 의해 용제하고, 열간단조, 열간압연에 의해 ø6.5㎜의 선재를 제작하였다. 그 후, 이 선재에 패턴팅(오스테나이트화 → 항온변태), 필링(peeling), 소둔, 신선가공을 실시함으로써 ø3.0㎜의 와이어를 얻었다. 표 2에 패턴팅 조건을 나타낸다. 본 예에 있어서 ø6.5㎜의 선재에 대해서 실시한 패턴팅은, 표 2에 나타내는 바와 같이 선재를 오스테나이트화하는 조건으로서, 선재의 가열시간 및 유지시간이 다른 복수의 조건을 준비하고, 선재를 오스테나이트화한 후에 선재를 항온변태시키는 조건으로서, 선재의 가열시간 및 유지시간이 다른 복수의 조건을 복수 준비하였다.The steel material which consists of a chemical component shown in Table 1, and remainder Fe and an impurity was melted by the vacuum melting furnace, and the wire rod of ø6.5 mm was produced by hot forging and hot rolling. Subsequently, a wire having a diameter of 3.0 mm was obtained by subjecting the wire to patterning (austenitic → constant temperature transformation), peeling, annealing, and drawing. Table 2 shows the patterning conditions. In this example, the patterning performed on the wire rod of ø6.5 mm is a condition for austenizing the wire rod as shown in Table 2, and a plurality of conditions in which the heating time and the holding time of the wire rod are prepared are prepared. As a condition for constant temperature transformation of the wire rod after austenitization, a plurality of conditions having different heating time and holding time of the wire rod were prepared.
얻어진 와이어(ø3.0㎜)에 담금질 뜨임을 실시하였다. 담금질은, 표 3에 나타내는 조건으로 실시하고, 뜨임은, 어느 와이어에 있어서나 가열온도를 450~530℃로서 실시하였다. 담금질 뜨임 후의 와이어에 있어서 단면수축값(RA) 및 오스테나이트 결정립(구오스테나이트 결정립)의 평균결정입경(평균γ입경)을 측정하였다. 그 결과를 표 3에 나타낸다. 또한, 와이어의 담금질온도를 변화시킴으로서, 오스테나이트 결정립(구오스테나이트 결정립)의 평균결정입경을 변화시켰다. 오스테나이트 결정립의 평균결정입경은, JIS G0522에 규정되어 있는 절단(切斷)법에 의해 산출하였다.Quenching and tempering was performed to the obtained wire (ø3.0 mm). Quenching was performed on the conditions shown in Table 3, and tempering performed the heating temperature as 450-530 degreeC in any wire. In the wire after quenching and tempering, the average crystal grain size (average? Particle size) of the cross-sectional shrinkage value RA and austenite grains (former austenite grains) was measured. The results are shown in Table 3. Also, by changing the quenching temperature of the wire, the average grain size of the austenite grains (former austenite grains) was changed. The average grain size of the austenite grains was calculated by the cutting method specified in JIS G0522.
또, 담금질 뜨임 후, 이 와이어에 질화처리에 상당하는 열처리(420℃×2시간, 또는 480℃×2시간)를 실시한 강선에 대해서, 전단항복응력 및 피로특성(피로한도)을 측정하였다. 표 3에 그 결과를 나타낸다. 상기 열처리를 실시한 강선의 전단항복응력은, 샘플길이 10Od(d: 샘플직경)로 연회시험을 실시하고, 토크(torque)-θ곡선으로부터 구하였다. 피로한도는, 나카무라식 회전굽힘 피로시험에 의해 평가를 실시하였다.After quenching and tempering, the shear yield stress and fatigue characteristics (fatigue limit) were measured for the steel wire subjected to heat treatment (420 ° C. × 2 hours, or 480 ° C. × 2 hours) corresponding to the nitriding treatment. The results are shown in Table 3. The shear yield stress of the steel wire subjected to the heat treatment was subjected to a banquet test with a sample length of 10 Od (d: sample diameter), and was determined from a torque-θ curve. The fatigue limit was evaluated by the Nakamura rotary bending fatigue test.
표 3에 나타내는 바와 같이, 단면수축값(RA)이 40%이상, 질화처리에 상당하는 열처리 후의 전단항복응력이 1000MPa이상인 시료 No.13~21의 강선은, 모두 피로한도가 높음을 알 수 있다. 또, 이들 강선은, 전단항복응력이 높기 때문에, 영구변형에도 우수하다고 사료된다. 따라서, 본 발명 스프링용 강선은, 높은 인성을 구비하면서, 피로특성이 우수함을 알 수 있다.As shown in Table 3, it can be seen that all the steel wires of Sample Nos. 13 to 21 whose cross-sectional shrinkage values (RA) are 40% or more and the shear yield stress after heat treatment corresponding to the nitriding treatment are 1000 MPa or more. . Moreover, these steel wires are considered to be excellent in permanent deformation because of their high shear yield stress. Therefore, it turns out that the steel wire for springs of this invention is excellent in a fatigue characteristic, having high toughness.
이것에 대하여, 시료 No.1~4, 6, 8은, 질화처리에 상당하는 열처리 후의 전단항복응력이 낮고, 피로한도가 낮은 결과로 되었다. 특히, 시료 No.2, 4는, 단면수축값도 낮고, 인성이 뒤떨어졌다. 또, 시료 No.5, 7은, 패턴팅 시에 선재 조직에 마텐자이트가 발생하고, 다음 공정의 필링에 의해 단선이 다수 발생되었기 때문에 실험을 중지하였다. 시료 No.11은, 열처리 후의 전단항복응력이 낮을 뿐만 아니라,강철 전체에 대한 V의 함유량이 많기 때문에, 강선의 단면수축이 저하되어서, 피로한도가 낮아졌다. 시료 No.12는, 열처리 후의 전단항복응력이 낮을 뿐만 아니라, Ti의 함유량이 많기 때문에 Ti계 개재물에 의한 절손 때문에 피로한도가 저하되었다.On the other hand, Sample Nos. 1 to 4, 6, and 8 resulted in low shear yield stress after heat treatment corresponding to nitriding treatment and low fatigue limit. In particular, sample Nos. 2 and 4 also had low cross-sectional shrinkage values, and were inferior in toughness. In addition, the samples No. 5 and 7 stopped the experiment because martensite was generated in the wire structure during patterning, and a large number of disconnections were generated by the peeling of the next step. Sample No. 11 had not only a low shear yield stress after heat treatment, but also a large amount of V in the steel, so that the cross-sectional shrinkage of the steel wire was lowered and the fatigue limit was lowered. Sample No. 12 had a low shear yield stress after heat treatment and a high Ti content, resulting in a lower fatigue limit due to breakage caused by Ti-based inclusions.
시료 No.9는, 열처리 후의 전단항복응력이 낮을 뿐만 아니라, 오스테나이트 결정립(구오스테나이트 결정립)의 평균입경이 작았기 때문에, 단면수축도 낮아졌다. 한편, 시료 No.10은, 열처리 후의 전단항복응력이 낮을 뿐만 아니라, 오스테나이트 결정립(구오스테나이트 결정립)의 평균입경이 컸기 때문에 피로한도가 저하되었다.Sample No. 9 had a low shear yield stress after heat treatment and a small average particle diameter of the austenite grains (former austenite grains), resulting in lower cross-sectional shrinkage. On the other hand, in sample No. 10, the shear yield stress after heat treatment was low, and the fatigue limit was lowered because the average particle diameter of the austenite grains (former austenite grains) was large.
표 1의 샘플 K의 화학성분을 가지는 강재에 대해서, 상기와 마찬가지로, ø6.5㎜의 선재를 제작하고, 상기와 마찬가지로 해서 ø3.0㎜의 와이어를 준비하였다. 이때, 패턴팅의 조건을 표 2에 나타내는 바와 같이 변화시켰다. 얻어진 와이어에 담금질 뜨임을 실시하고(담금질: 940℃, 뜨임: 450~530℃), 얻어진 와이어의 단면수축값(RA) 및 오스테나이트 결정립(구오스테나이트 결정립)의 평균입경을 측정하였다. 그 결과를 표 4에 나타낸다. 또, 와이어에 담금질 뜨임을 실시한 후, 질화처리에 상당하는 열처리(420℃×2시간, 또는 480℃×2시간)를 실시한 강선에 대해서, 전단항복응력, 피로특성(피로한도)을 측정하였다. 그 결과도 아울러서 표 4에 나타낸다. 각 물성의 측정은, 상기와 마찬가지로 해서 실시하였다.About the steel material which has the chemical component of the sample K of Table 1, the wire rod of ø6.5 mm was produced similarly to the above, and the wire of ø3.0 mm was prepared similarly to the above. At this time, the conditions of patterning were changed as shown in Table 2. Quenching tempering was performed to the obtained wire (quenching: 940 degreeC, tempering: 450-530 degreeC), and the average particle diameter of the cross-sectional shrinkage value (RA) and austenite crystal grain (former austenite crystal grain) of the obtained wire were measured. The results are shown in Table 4. In addition, the shear yield stress and the fatigue characteristic (fatigue limit) were measured for the steel wire subjected to the heat treatment (420 ° C. × 2 hours, or 480 ° C. × 2 hours) corresponding to the nitriding treatment after quenching the wire. The results are also shown in Table 4. The measurement of each physical property was performed similarly to the above.
표 4에 나타내는 바와 같이, 특정조건(오스테나이트화: 900~1050℃에서 60~180초 동안, 항온변태: 600~750℃에서 20~100초 동안)으로 패턴팅을 실시한 시료 No.22, 23은 모두, 피로한도가 높음을 알 수 있다.As shown in Table 4, samples No. 22 and 23 subjected to patterning under specific conditions (austenitic: from 60 to 180 seconds at 900 to 1050 ° C and constant temperature transformation from 20 to 100 seconds at 600 to 750 ° C) In all, it can be seen that the fatigue limit is high.
이것에 대하여, 시료 No.25, 27~29는 모두, 패턴팅했을 때에 선재 조직에 마텐자이트가 발생하고, 신선 공정에서 단선이 다수 발생되었기 때문에, 실험을 중지하였다. 시료 No.24, 26은, 미고용탄화물이 잔존했기 때문에, 와이어의 단면수축이 저하되어 피로한도가 저하되었다. 또, 시료 No.24, 26은, 전단항복응력도 낮았다. 시료 No.30, 31은, 선재 조직에 있어서 시멘타이트가 구상화되었기 때문에, 미고용탄화물이 잔존하게 되며, 단면수축이 저하되는 동시에, 강선의 전단항복응력도 작았다.On the other hand, since all the samples No. 25 and 27-29 had martensite generate | occur | produced in the wire structure when patterning, and many disconnection generate | occur | produced in the drawing process, the experiment was stopped. In samples Nos. 24 and 26, unsolubilized carbide remained, so that the cross-sectional shrinkage of the wire decreased and the fatigue limit decreased. In addition, samples No. 24 and 26 had low shear yield stress. In sample Nos. 30 and 31, since cementite was spheroidized in the wire structure, unsolubilized carbide remained, the section shrinkage decreased, and the shear yield stress of the steel wire was also small.
본 발명 스프링용 강선은, 피로특성 및 인성이 우수하기 때문에, 피로강도가 요구되는 부위에 사용되는 스프링의 재료에 최적이다.Since the steel wire for springs of this invention is excellent in a fatigue characteristic and toughness, it is suitable for the material of the spring used for the site | part to which fatigue strength is calculated | required.
Claims (13)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004027891A JP4357977B2 (en) | 2004-02-04 | 2004-02-04 | Steel wire for spring |
JPJP-P-2004-00027891 | 2004-02-04 | ||
PCT/JP2005/001703 WO2005075695A1 (en) | 2004-02-04 | 2005-02-04 | Steel wire for spring |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060129019A true KR20060129019A (en) | 2006-12-14 |
KR101096888B1 KR101096888B1 (en) | 2011-12-22 |
Family
ID=34835907
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067016315A KR101096888B1 (en) | 2004-02-04 | 2006-08-14 | Steel wire for spring |
Country Status (6)
Country | Link |
---|---|
US (1) | US20080271824A1 (en) |
EP (1) | EP1731625B1 (en) |
JP (1) | JP4357977B2 (en) |
KR (1) | KR101096888B1 (en) |
CN (1) | CN100449026C (en) |
WO (1) | WO2005075695A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190044993A (en) | 2017-10-23 | 2019-05-02 | (주)포스코케미칼 | Thermal spray materials for Flange repair of RH Snorkel |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007114491A1 (en) * | 2006-03-31 | 2007-10-11 | Nippon Steel Corporation | Heat-treatment steel for high-strength spring |
WO2010055943A1 (en) * | 2008-11-17 | 2010-05-20 | 財団法人電気磁気材料研究所 | High-hardness constant-modulus alloy insensitive to magnetism, process for producing same, balance spring, mechanical driving device, and watch |
DE102009042954A1 (en) * | 2009-09-24 | 2011-04-07 | Webasto Ag | Control rod for an adjustable closing element of a vehicle roof |
US8328169B2 (en) * | 2009-09-29 | 2012-12-11 | Chuo Hatsujo Kabushiki Kaisha | Spring steel and spring having superior corrosion fatigue strength |
JP5711539B2 (en) | 2011-01-06 | 2015-05-07 | 中央発條株式会社 | Spring with excellent corrosion fatigue strength |
KR101289104B1 (en) | 2011-11-08 | 2013-07-23 | 주식회사 포스코 | Wire rod, steel wire and manufacturing method of steel wire |
JP6208611B2 (en) | 2014-03-31 | 2017-10-04 | 株式会社神戸製鋼所 | High strength steel with excellent fatigue properties |
WO2016001706A1 (en) * | 2014-07-03 | 2016-01-07 | Arcelormittal | Method for producing a high strength steel sheet having improved strength and formability and obtained sheet |
US10844920B2 (en) | 2015-09-04 | 2020-11-24 | Nippon Steel Corporation | Spring steel wire and spring |
CN105648332A (en) * | 2016-01-27 | 2016-06-08 | 太仓捷公精密金属材料有限公司 | High-performance spring steel |
KR102120699B1 (en) * | 2018-08-21 | 2020-06-09 | 주식회사 포스코 | Wire rod and steel wire for spring with improved toughness and corrosion fatigue resistance and method for manufacturing the same |
CN109972038B (en) * | 2019-04-01 | 2021-07-20 | 宝钢特钢韶关有限公司 | Steel for ultra-deep well drill rod joint and manufacturing method thereof |
WO2021002074A1 (en) | 2019-07-01 | 2021-01-07 | 住友電気工業株式会社 | Steel wire and spring |
DE112021001187T5 (en) * | 2020-02-21 | 2022-12-15 | Nippon Steel Corporation | DAMPER SPRING |
CN112143869B (en) * | 2020-09-27 | 2022-08-12 | 广州市奥赛钢线科技有限公司 | Preparation process of quenched and tempered spring steel wire with tensile strength of 2300-2400 MPa |
CN114318125A (en) * | 2020-09-30 | 2022-04-12 | 宝山钢铁股份有限公司 | High-strength and high-toughness alloy tool steel wire and manufacturing method thereof |
CN112427484B (en) * | 2020-11-11 | 2022-07-26 | 南京工程学院 | Method for manufacturing stainless spring steel wire through recrystallization annealing regulation and control |
KR102492641B1 (en) * | 2020-12-17 | 2023-01-30 | 주식회사 포스코 | Wire rod and steel wire for spring, spring with improved fatigue resistance and nitriding properties, and the method for manufacturing the same |
CN113881897A (en) * | 2021-09-29 | 2022-01-04 | 东莞市锦中秀寝具用品有限公司 | High-strength alloy material for spring and high-strength spring |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2842579B2 (en) * | 1991-10-02 | 1999-01-06 | 株式会社 神戸製鋼所 | High strength spring steel with excellent fatigue strength |
JP2783145B2 (en) * | 1993-12-28 | 1998-08-06 | 株式会社神戸製鋼所 | Steel for nitrided spring and nitrided spring with excellent fatigue strength |
JP3426463B2 (en) * | 1997-03-12 | 2003-07-14 | 本田技研工業株式会社 | Oil tempered wire for springs with excellent delayed fracture resistance |
US6224686B1 (en) * | 1998-02-27 | 2001-05-01 | Chuo Hatsujo Kabushiki Kaisha | High-strength valve spring and it's manufacturing method |
JPH11246943A (en) * | 1998-02-27 | 1999-09-14 | Chuo Spring Co Ltd | High strength valve spring and its manufacture |
JP2000017388A (en) * | 1998-04-30 | 2000-01-18 | Sumitomo Electric Ind Ltd | Oil tempered steel wire for spring |
JP3595901B2 (en) * | 1998-10-01 | 2004-12-02 | 鈴木金属工業株式会社 | High strength steel wire for spring and manufacturing method thereof |
JP2001247934A (en) * | 2000-03-03 | 2001-09-14 | Sumitomo Electric Ind Ltd | Steel wire for spring, its producing method and spring |
JP2003213372A (en) * | 2002-01-25 | 2003-07-30 | Sumitomo Denko Steel Wire Kk | Steel wire for spring and spring |
JP4062612B2 (en) * | 2002-04-02 | 2008-03-19 | 株式会社神戸製鋼所 | Steel wire for hard springs and hard springs with excellent fatigue strength and sag resistance |
JP3975110B2 (en) * | 2002-04-16 | 2007-09-12 | 住友電工スチールワイヤー株式会社 | Steel wire, manufacturing method thereof and spring |
JP2004190116A (en) * | 2002-12-13 | 2004-07-08 | Sumitomo Denko Steel Wire Kk | Steel wire for spring |
EP1619264B1 (en) * | 2003-03-28 | 2012-09-26 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for high strength spring excellent in workability and high strength spring |
-
2004
- 2004-02-04 JP JP2004027891A patent/JP4357977B2/en not_active Expired - Fee Related
-
2005
- 2005-02-04 CN CNB2005800039621A patent/CN100449026C/en not_active Expired - Fee Related
- 2005-02-04 EP EP05709768.5A patent/EP1731625B1/en not_active Not-in-force
- 2005-02-04 US US10/588,287 patent/US20080271824A1/en not_active Abandoned
- 2005-02-04 WO PCT/JP2005/001703 patent/WO2005075695A1/en active Application Filing
-
2006
- 2006-08-14 KR KR1020067016315A patent/KR101096888B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190044993A (en) | 2017-10-23 | 2019-05-02 | (주)포스코케미칼 | Thermal spray materials for Flange repair of RH Snorkel |
Also Published As
Publication number | Publication date |
---|---|
CN1914347A (en) | 2007-02-14 |
EP1731625A4 (en) | 2012-03-28 |
EP1731625A1 (en) | 2006-12-13 |
JP4357977B2 (en) | 2009-11-04 |
KR101096888B1 (en) | 2011-12-22 |
JP2005220392A (en) | 2005-08-18 |
US20080271824A1 (en) | 2008-11-06 |
CN100449026C (en) | 2009-01-07 |
WO2005075695A1 (en) | 2005-08-18 |
EP1731625B1 (en) | 2019-10-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101096888B1 (en) | Steel wire for spring | |
US8382918B2 (en) | Steel wire material for spring and its producing method | |
US7815750B2 (en) | Method of production of steel soft nitrided machine part | |
JP2010163689A (en) | Oil-tempered wire, method for manufacturing the same, and spring | |
KR20080040697A (en) | Oil-tempered wire and process for producing the same | |
JP4631618B2 (en) | Manufacturing method of steel parts for bearings with excellent fatigue characteristics | |
KR101789944B1 (en) | Coil spring, and method for manufacturing same | |
JP2004027334A (en) | Steel for induction tempering and method of producing the same | |
WO2018180342A1 (en) | Shaft member | |
JP6969683B2 (en) | Manufacturing method of induction material for induction hardened crankshaft and induction hardened crankshaft | |
WO2019244504A1 (en) | Method for producing machine components | |
JP5583352B2 (en) | Induction hardening steel and induction hardening parts with excellent static torsional fracture strength and torsional fatigue strength | |
JP4487748B2 (en) | Manufacturing method of bearing parts | |
JP4757831B2 (en) | Induction hardening part and manufacturing method thereof | |
JP2004190116A (en) | Steel wire for spring | |
JP3975110B2 (en) | Steel wire, manufacturing method thereof and spring | |
JP2005048211A (en) | Method for producing steel excellent in fatigue characteristic | |
JP2004124190A (en) | Induction-tempered steel having excellent twisting property | |
JP2005060721A (en) | Steel material superior in delayed fracture resistance and fatigue characteristic, and manufacturing method therefor | |
JPH10237589A (en) | Martensitic non-heat treated steel excellent in machinability and having high strength and high toughness, and its production | |
JPH11246943A (en) | High strength valve spring and its manufacture | |
JP6394844B1 (en) | Shaft member | |
JP2008088482A (en) | Roller or ball in bearing having excellent rolling fatigue property and crushing strength, and bearing | |
WO2024106398A1 (en) | Hot-forged untempered steel and method for producing same | |
JP2023144640A (en) | Steel for nitriding having excellent cold forging property and cold forged nitrided component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141120 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151118 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20161122 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171120 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20181129 Year of fee payment: 8 |
|
FPAY | Annual fee payment |
Payment date: 20191202 Year of fee payment: 9 |