JPH07188852A - Steel for nitrided spring excellent in fatigue strength and nitrided spring - Google Patents

Steel for nitrided spring excellent in fatigue strength and nitrided spring

Info

Publication number
JPH07188852A
JPH07188852A JP33868693A JP33868693A JPH07188852A JP H07188852 A JPH07188852 A JP H07188852A JP 33868693 A JP33868693 A JP 33868693A JP 33868693 A JP33868693 A JP 33868693A JP H07188852 A JPH07188852 A JP H07188852A
Authority
JP
Japan
Prior art keywords
spring
steel
nitrided
fatigue strength
fatigue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33868693A
Other languages
Japanese (ja)
Other versions
JP2783145B2 (en
Inventor
Hitoshi Sato
仁資 佐藤
Hiroshi Kuramoto
廣志 藏本
Yasunobu Kawaguchi
康信 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5338686A priority Critical patent/JP2783145B2/en
Publication of JPH07188852A publication Critical patent/JPH07188852A/en
Application granted granted Critical
Publication of JP2783145B2 publication Critical patent/JP2783145B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce a steel for nitrided spring excellent in fatigue strength and the spring by subjecting a low alloy steel material, in which the size of non-metallic inclusions in the cross section in a rolling direction is specified, to nitriding treatment. CONSTITUTION:A steel material, which has a composition containing, by weight, 0.3-0.7% C, 0.8-4% Si, 0.2-1.5% Mn, 0.4-3% Cr, 0.02-0.7% sol.Al, and <20ppm O and further containing one or more kinds among 0.05-0.5% V, 0.05-0.5% Nb, 0.05-0.5% Mo, and 0.1-3% Ni, is hot-rolled and wiredrawn. The resulting wire is formed into spring state, and, after formed into spring state having a structure where the size of non-metallic inclusions in 3600mm<2> cross section in a rolling direction is regulated to <=15mum, the resulting spring is nitrided. By this method, the nitricled spring, in which hardness in the part between the surface and a position at a depth of <=10mum from the surface is regulated to <=900 Vickers hardness Hs and also Vickers hardness Hi in the inner part is regulated to 450-570 and which has excellent fatigue strength, can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐疲労特性に優れた窒
化ばねを得るための鋼およびこの鋼材を用いた窒化ばね
に関し、この窒化ばねは、例えば自動車エンジン用の弁
ばねの如く極めて高い疲労強度の要求されるばね材とし
て有用である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel for obtaining a nitrided spring having excellent fatigue resistance and a nitrided spring using this steel material. The nitrided spring is extremely high, such as a valve spring for an automobile engine. It is useful as a spring material that requires fatigue strength.

【0002】[0002]

【従来の技術】近年自動車の軽量化および高出力化の動
向に伴って、エンジンやサスペンション等に使用される
弁ばねや懸架ばね等のばねにおいても高応力設計が指向
されている。そのためそれらのばねは、負荷応力の増加
に対応するため耐疲労性や耐へたり性に優れたものが強
く望まれている。とりわけ弁ばねには、高い疲労特性が
要求されており、こうした要請に応えるため、JISに
規定されるSWOSC−V(JIS G3566)の鋼
種に対して合金元素の増量、添加により素材の高強度化
を図った鋼材が提案されている(例えば特開昭63−21
6951号公報)。
2. Description of the Related Art In recent years, along with the trend toward lighter weight and higher output of automobiles, springs such as valve springs and suspension springs used in engines, suspensions, etc. are also designed for high stress. Therefore, it is strongly desired that those springs have excellent fatigue resistance and sag resistance in order to cope with an increase in load stress. In particular, valve springs are required to have high fatigue characteristics, and in order to meet such demands, the strength of the material is increased by increasing the amount of alloying elements and adding them to the steel type JIS SWOSC-V (JIS G3566). A steel material aiming at this has been proposed (for example, JP-A-63-21).
6951 publication).

【0003】しかしながら、最近における高疲労強度の
要求はますます厳しくなってきており、前述の如き素材
の高強度化だけではそれらの要望に対応し切れなくなっ
てきている。そこで素材の高強度化に加えて、ばね表層
硬さの大幅向上を狙った窒化処理等の表面硬化処理が弁
ばねの分野においても検討され、それなりの成果を得て
いる(例えば、ばね技術研究会’87年秋期および’9
0年秋期講演会要旨集等)。
However, the recent demand for high fatigue strength is becoming more and more severe, and it is not possible to meet those demands only by increasing the strength of the material as described above. Therefore, in addition to increasing the strength of the material, surface hardening treatment such as nitriding treatment aimed at significantly improving the hardness of the spring surface layer has been studied in the field of valve springs, and some results have been obtained (for example, research on spring technology). Meeting Autumn 1987 and '9
(Abstracts of Autumn Year 0 Lectures).

【0004】ところが窒化処理を応用した改質技術で
も、表層硬さはせいぜいHv860程度以下であり、又
ばね疲労特性は従来材に比べて改善されるものの、例え
ば応力70±50kgf/mm2 の繰り返し作用を受けると2
×107 回程度以下で折損する。また、疲労特性を一段
と改善するには表層硬さを高めるのが効果的であり、そ
の有効な添加元素としてAlが考えられる。窒化用鋼と
して機械構造部品に広く用いられるJIS SACM6
45等でも、これと同様の目的から0.70〜1.2%
程度のAlを含有させている。
However, even in the modification technique applying the nitriding treatment, the surface hardness is at most about Hv860 or less and the spring fatigue property is improved as compared with the conventional material, but for example, the stress 70 ± 50 kgf / mm 2 is repeated. 2 when affected
Breaks after about 10 7 times or less. Further, increasing the surface hardness is effective for further improving fatigue characteristics, and Al can be considered as an effective additive element. JIS SACM6 widely used for machine structural parts as nitriding steel
Even for 45 etc., from the same purpose as this, 0.70 to 1.2%
Al is contained to some extent.

【0005】しかしながら弁ばねにおいては、非金属介
在物による疲労破壊を防ぐためにAl23 系介在物の
生成源となるAlの添加は極力抑えるべきであり、その
ため製鋼時の脱酸材としてはSiやMnが用いられてい
る。この場合、介在物を低融点の組成に制御して後の熱
間加工で介在物を微細化する方法も試みられているが、
介在物組成を制御するにはある程度の酸素が必要(通常
20〜50ppm程度)であるので、鋼材に含まれる介
在物の絶対個数はAlにより脱酸した鋼(通常20pp
m以下)よりも多く、介在物に起因する折損がしばしば
経験されている。
However, in the valve spring, the addition of Al, which is the source of Al 2 O 3 inclusions, should be suppressed as much as possible in order to prevent fatigue fracture due to non-metallic inclusions. Therefore, as a deoxidizing material during steelmaking, Si or Mn is used. In this case, although a method of controlling the inclusions to have a low melting point composition and refining the inclusions in the subsequent hot working has been attempted,
To control the composition of inclusions, a certain amount of oxygen is necessary (usually about 20 to 50 ppm), so the absolute number of inclusions contained in the steel material is the steel deoxidized by Al (usually 20 pp).
more than m) and fractures due to inclusions are often experienced.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な問
題点に着目してなされたものであって、その目的は、従
来材に比べて一段と優れた疲労強度を有する窒化ばね用
鋼、および該鋼材を用いた高疲労特性の窒化ばねを提供
しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the problems as described above, and an object thereof is a steel for nitrided spring, which has far more excellent fatigue strength than conventional materials, Another object of the present invention is to provide a nitride spring having high fatigue characteristics using the steel material.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る窒化ばね用鋼の構成は、C:0.
3〜0.7% Si:0.8〜4% Mn:0.2〜1.5% Cr:0.4〜3% sol.Al:0.02〜0.7%を含有すると共に、
酸素含有量が20ppm 以下であり、更にV:0.05〜
0.5% Nb:0.05〜0.5% Mo:0.05〜0.5% Ni:0.1〜3%よりなる群から選択される1種以上
の元素を含有し、残部Feおよび不可避不純物からな
り、該鋼材の中心を含む圧延方向断面3600mm2 にお
ける非金属介在物の大きさが15μm以下であるところ
に要旨を有するものである。そして、上記要件を満たす
鋼材製ばねを窒化処理してなり、表面から10μm以内
のビッカース硬さHsが900以上、内部のビッカース
硬さHiが450〜570であるものは、疲労強度の非
常に優れた窒化ばねとなる。
The composition of the steel for nitrided spring according to the present invention, which has been able to solve the above-mentioned problems, has a composition of C: 0.
3 to 0.7% Si: 0.8 to 4% Mn: 0.2 to 1.5% Cr: 0.4 to 3% sol. While containing Al: 0.02-0.7%,
Oxygen content is 20ppm or less, and V: 0.05-
0.5% Nb: 0.05 to 0.5% Mo: 0.05 to 0.5% Ni: 0.1 to 3%, containing at least one element selected from the group consisting of balance Fe And the unavoidable impurities, and the gist is that the size of the nonmetallic inclusions in the rolling direction cross section of 3600 mm 2 including the center of the steel material is 15 μm or less. Then, a steel spring satisfying the above requirements is subjected to nitriding treatment, and the Vickers hardness Hs within 10 μm from the surface is 900 or more and the internal Vickers hardness Hi is 450 to 570, and the fatigue strength is very excellent. It becomes a nitriding spring.

【0008】[0008]

【作用】上記の様に本発明は、C,Si,Mn,Cr,
sol.Al並びに酸素の各含有量が規定されると共
に、V,Nb,MoおよびNiよりなる群から選択され
る元素の1種以上を適量含有する鋼材からなり、且つ該
鋼材の圧延方向断面3600mm2 における非金属介在物
の大きさを15μm以下に特定してなる高疲労特性の窒
化ばね用鋼、並びに該鋼材を窒化処理してなり、表面か
ら10μm以内のビッカース硬さHsが900以上、内
部のビッカース硬さHiが450〜570の窒化ばねを
提供するものであり、この窒化ばねは非常に優れた疲労
特性を有しており、自動車用等の内燃機関用弁ばね等と
して非常に優れた性能を発揮するものである。まず、本
発明で使用する鋼材の成分組成を定めた理由を説明す
る。
As described above, according to the present invention, C, Si, Mn, Cr,
sol. The content of each of Al and oxygen is specified, and the steel is made of a steel material containing an appropriate amount of one or more elements selected from the group consisting of V, Nb, Mo and Ni, and in a rolling direction cross section of 3600 mm 2 . A steel for nitrided spring having high fatigue characteristics in which the size of non-metallic inclusions is specified to be 15 μm or less, and a Vickers hardness Hs of 900 or more within 10 μm from the surface, which is obtained by nitriding the steel. A nitride spring having a hardness Hi of 450 to 570 is provided, and this nitride spring has an extremely excellent fatigue property, and has an extremely excellent performance as a valve spring for an internal combustion engine for automobiles and the like. It is something to demonstrate. First, the reason for defining the component composition of the steel material used in the present invention will be described.

【0009】C:0.3〜0.7% 高応力が負荷されるばね用鋼材として十分な強度を確保
するのに欠くことのできない元素であり、少なくとも
0.3%以上含有させなければならない。しかしなが
ら、多くなり過ぎると、靭性が極端に悪くなってばね成
形時に折損し易くなる他、後述する様な理由から内部硬
さを下げるためにも0.8%以下に抑える必要がある。
C: 0.3 to 0.7% This element is indispensable for ensuring sufficient strength as a spring steel material to which high stress is applied, and it must be contained at least 0.3% or more. . However, if the amount is too large, the toughness is extremely deteriorated and the spring is apt to be broken during spring forming, and it is necessary to suppress the internal hardness to 0.8% or less for the reason described below.

【0010】Si:0.8〜4% 窒化処理後のばねの耐へたり性を向上するために必須の
成分であり、少なくとも0.8%以上含有させなければ
ならない。しかし多過ぎると靭性の低下が著しくなるの
で、4%以下に抑えるべきである。
Si: 0.8-4% This is an essential component for improving the sag resistance of the spring after nitriding treatment, and it must be contained at least 0.8% or more. However, if the amount is too large, the toughness is remarkably deteriorated, so it should be suppressed to 4% or less.

【0011】Mn:0.2〜1.5% 製鋼時の脱酸と靭性向上に有効に作用する元素であり、
これらの作用を有効に発揮させるには0.2%以上含有
させなければならない。しかし、1.5%を超えて過多
に含有させると、製鋼時の熱処理工程でベイナイト等の
過冷却組織が生成し易くなり伸線性が著しく悪化する。
Mn: 0.2-1.5% An element that effectively acts on deoxidation during steelmaking and improvement of toughness.
In order to effectively exhibit these effects, the content must be 0.2% or more. However, if the content exceeds 1.5% and is excessively large, a supercooled structure such as bainite is likely to be generated in the heat treatment step during steel making, and wire drawability is significantly deteriorated.

【0012】Cr:0.4〜3% 窒化物を生成し易い元素であって、窒化処理による表面
硬さの向上に欠くことのできない元素であり、その効果
は0.4%以上の添加で有効に発揮される。しかしなが
ら3%を超えて過多に含有させると、靭延性が低下し線
材への加工が困難になる。
Cr: 0.4 to 3% This element is an element that easily forms a nitride and is an element that is indispensable for improving the surface hardness by nitriding treatment. The effect is obtained by adding 0.4% or more. Effectively demonstrated. However, if the content exceeds 3% and is excessively contained, the toughness and ductility is deteriorated and it becomes difficult to process the wire rod.

【0013】sol.Al:0.02〜0.7% 前述の如くAlは、従来より金属介在物の生成源となっ
て疲労特性に悪影響を及ぼすことが確認されており、極
力少なくする方が好ましいと考えられていた。しかしな
がら本発明者らが種々研究を重ねたところによると、s
ol.Alは窒化処理による表面硬さの向上に優れた効
果を発揮するので、本発明の目的を果たす上で必須の成
分となる。そして、こうした作用効果を有効に発揮させ
るにはsol.Alを0.02%以上含有させなければ
ならないが、反面、含有量が多くなり過ぎると窒化処理
時の窒化層を十分に深くすることが困難になり、表面硬
化効果が却って低下してくるので0.7%以下に抑えな
ければならない。
Sol. Al: 0.02 to 0.7% As described above, it has been confirmed that Al becomes a generation source of metal inclusions and adversely affects fatigue characteristics, and it is considered preferable to reduce the amount of Al as much as possible. It was However, according to the results of various studies by the present inventors, s
ol. Al exhibits an excellent effect of improving the surface hardness by the nitriding treatment, and is an essential component for achieving the purpose of the present invention. And, in order to effectively exert such action and effect, sol. Although Al must be contained in an amount of 0.02% or more, on the other hand, if the content is too large, it becomes difficult to deepen the nitriding layer at the time of nitriding treatment, and the surface hardening effect rather deteriorates. It must be kept below 0.7%.

【0014】V:0.05〜5%,Nb:0.05〜
0.5%,Mo:0.05〜0.5%,Ni:0.1〜
3%よりなる群から選択される元素を1種以上 いずれも焼入れ・焼戻し等の熱処理後の靭延性を高める
ため、少なくとも1種を上記の下限値以上含有させなけ
ればならない。しかしながら、V,Nb,Moの含有量
が上限値を超えると、巨大な炭化物や窒化物が生成し易
くなって疲労特性を著しく悪化させ、またNi量が上限
値を超えると、熱間圧延時にベイナイト組織やマルテン
サイト組織が生成し易くなって靭延性を悪化させるの
で、夫々上限値以下に抑えなければならない。
V: 0.05 to 5%, Nb: 0.05 to
0.5%, Mo: 0.05 to 0.5%, Ni: 0.1
At least one element selected from the group consisting of 3% should be contained in order to increase the toughness and ductility after heat treatment such as quenching and tempering. However, if the content of V, Nb, Mo exceeds the upper limit value, huge carbides and nitrides are likely to be formed, which significantly deteriorates the fatigue properties, and if the Ni content exceeds the upper limit value, during hot rolling. Since a bainite structure and a martensite structure are likely to be formed and the toughness and ductility are deteriorated, they must be suppressed to the respective upper limits or less.

【0015】本発明に係る弁ばね用鋼材の必須構成元素
は以上の通りであり、残部は鉄および不可避不純物から
なるものであるが、不可避不純物として混入してくる酸
素については、その含有量を20ppm 以下に抑えること
が必須の要件となる。しかして該酸素含有量が20ppm
を超えるものでは、酸化物系介在物量が増大して該介在
物に起因する疲労破壊を起こし易くなり、本発明の前記
目的を果たせなくなるからである。
The essential constituent elements of the steel material for a valve spring according to the present invention are as described above, and the balance is composed of iron and unavoidable impurities. Regarding oxygen mixed in as unavoidable impurities, its content is An essential requirement is to keep it below 20 ppm. And the oxygen content is 20ppm
This is because if the content exceeds the above range, the amount of oxide-based inclusions increases and fatigue fracture due to the inclusions is likely to occur, and the above-mentioned object of the present invention cannot be achieved.

【0016】更に本発明では、耐疲労特性を高めるため
の他の要件として、疲労破壊の起点となる鋼中の非金属
介在物サイズを極力小さくすることが必要であり、目的
達成のための基準として、上記成分組成の要件を満たす
鋼線材の中心を含む圧延方向断面3600mm2 内におけ
る非金属介在物の大きさを15μm以下にすることが必
須となる。しかして15μmを超える粗大な非金属介在
物は、疲労破壊の起点となって繰り返し応力を受けたと
きに折損を生じる原因になるからである。
Further, in the present invention, as another requirement for enhancing the fatigue resistance, it is necessary to reduce the size of non-metallic inclusions in the steel which is the starting point of fatigue fracture as much as possible. As a result, it is essential that the size of the non-metallic inclusions in the rolling direction cross section of 3600 mm 2 including the center of the steel wire rod satisfying the requirements of the above composition be 15 μm or less. Coarse non-metallic inclusions having a size of more than 15 μm then become a starting point of fatigue fracture and cause breakage when subjected to repeated stress.

【0017】尚、15μm以下の微細な非金属介在物が
疲労破壊の起点となることは殆ど無いが、その絶対数が
多過ぎると靭性に悪影響を及ぼすことは否めないので、
好ましくは同断面3600mm2 内において、5〜15
μmの大きさの非金属介在物の総数を50以下に抑える
ことが望ましい。
It should be noted that fine non-metallic inclusions of 15 μm or less rarely become the starting point of fatigue fracture, but if the absolute number is too large, it cannot be denied that the toughness is adversely affected.
Preferably, within the same cross section of 3600 mm 2 , 5 to 15
It is desirable to suppress the total number of non-metallic inclusions having a size of μm to 50 or less.

【0018】本発明に係る窒化ばねは、上記要件を満足
する鋼線材を常法に従って窒化処理し、表層部を集中的
に硬質化することにより、表面から10μm以内のビッ
カース硬さHsを900以上とすると共に、内部のビッ
カース硬さHiを450〜570の範囲にすることによ
って得られる。表面から10μm以内のビッカース硬さ
Hsが900未満では、表面のマトリックスを起点とす
る疲労破壊が起こり易くなり、また内部硬さがHv45
0未満では、内部のマトリックスを起点とする疲労破壊
が起こり易くなるばかりでなく耐へたり性も悪くなり、
逆にHv570を超えると、内部で介在物起点の折損が
起こり易くなり、いずれも満足のいく疲労寿命が得られ
なくなる。尚、窒化層の深さは特に限定されないが、表
面および内部起点での疲労寿命のばらつきを抑えるため
には、該窒化層深さを40μm以上とすることが望まし
い。
The nitrided spring according to the present invention has a Vickers hardness Hs within 10 μm from the surface of 900 or more by subjecting a steel wire satisfying the above requirements to a nitriding treatment according to a conventional method to intensively harden the surface layer portion. And the internal Vickers hardness Hi in the range of 450 to 570. If the Vickers hardness Hs within 10 μm from the surface is less than 900, fatigue fracture starting from the surface matrix is likely to occur, and the internal hardness is Hv45.
If it is less than 0, not only fatigue fracture starting from the internal matrix tends to occur, but also the sag resistance deteriorates,
On the other hand, if it exceeds Hv570, breakage of the origin of the inclusions is likely to occur inside, and any satisfactory fatigue life cannot be obtained. Although the depth of the nitride layer is not particularly limited, it is desirable that the depth of the nitride layer be 40 μm or more in order to suppress the variation of the fatigue life at the surface and the internal origin.

【0019】[0019]

【実施例】次に本発明の実施例を示すが、本発明はもと
より下記実施例によって制限を受けるものではなく、前
後記の趣旨に適合し得る範囲で適当に変更を加えて実施
することも勿論可能であり、それらはいずれも本発明の
技術的範囲に含まれる。
EXAMPLES Next, examples of the present invention will be shown, but the present invention is not limited by the following examples, and may be carried out with appropriate modifications within a range compatible with the gist of the preceding and following description. Of course, it is possible, and all of them are included in the technical scope of the present invention.

【0020】実施例1 表1に示す化学組成の鋼を溶製し、熱間圧延により直径
7mmの線材とした後、焼鈍→皮削り→パテンティング
→伸線→焼入れ焼戻し→ばね成形→窒化の各処理を順次
経て直径3.2mmのばね用素線を作製し、表2に示す
諸元のばねを製造した。これらの内、V,Nb無添加の
比較鋼No.8はばね成形中に折損が多発し、またNi
またはCr含有量の高い比較鋼No.9,10は伸線加
工中に断線が多発し、いずれもばね成形できなかった。
ばね成形することのできたものについては、ショットピ
ーニング処理を施してからばね疲労試験を行なうと共
に、ばね素線の硬さ分布を測定した。それらの結果並び
に線材としての非金属介在物の大きさ測定結果を表3に
一括して示す。
Example 1 Steels having the chemical compositions shown in Table 1 were melted and hot-rolled into a wire having a diameter of 7 mm, which was then annealed → skinned → patenting → wire drawing → quenching and tempering → spring forming → nitriding. Through each treatment in order, a spring wire having a diameter of 3.2 mm was produced, and a spring having the specifications shown in Table 2 was produced. Of these, comparative steel No. No. 8 had many breakages during spring forming, and Ni
Or comparative steel No. 3 having a high Cr content. Nos. 9 and 10 were frequently broken during wire drawing and could not be spring formed.
For those that could be spring-formed, a shot peening treatment was performed and then a spring fatigue test was performed and the hardness distribution of the spring wire was measured. Table 3 collectively shows the results and the results of measuring the size of non-metallic inclusions as wire rods.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【表3】 [Table 3]

【0024】表3からも明らかである様に、本発明の規
定要件を満たす実施例ばねは、いずれも5×107 回の
繰り返し応力を受けた時にも折損を起こさないが、粗大
な介在物を含む比較鋼No.4および酸素含有量の多い
比較鋼No.5は、介在物起点の破壊により3×107
回以下で折損を起こしている。また、Al無添加の比較
鋼No.6では表面起点の破壊により早期折損が生じて
おり、一方過度にAlを含有する比較鋼No.7および
Si含有量の低い比較鋼No.11では、内部マトリッ
クスの破壊によりフィッシュアイ折損を起こしている。
As is clear from Table 3, each of the springs of the examples satisfying the specified requirements of the present invention does not break even when subjected to repeated stress of 5 × 10 7 times, but coarse inclusions. Comparative steel No. including 4 and comparative steel No. 4 having a high oxygen content. 5 is 3 × 10 7 due to the fracture of the origin of inclusions.
Breakage occurs less than the number of times. In addition, the comparative steel No. In Comparative Steel No. 6, Comparative Example No. 6 in which early fracture occurred due to the destruction of the surface starting point, on the other hand, was excessively contained Al. 7 and comparative steel No. 7 having a low Si content. In No. 11, breakage of the internal matrix causes breakage of the fish eye.

【0025】実施例2 表1に示したNo.1の鋼材から製造したばねを使用
し、窒化条件のみを変えて表4に示すばねを作製し、夫
々について実施例1と同様にして疲労試験を行なった。
結果を、ばねの表面硬さ等と共に表4に示す。
Example 2 No. 1 shown in Table 1 Using the spring manufactured from the steel material of No. 1 and changing only the nitriding conditions, the springs shown in Table 4 were manufactured, and the fatigue test was performed for each of them in the same manner as in Example 1.
The results are shown in Table 4 together with the surface hardness of the spring.

【0026】[0026]

【表4】 [Table 4]

【0027】表4からも明らかである様に、Hsの低い
No.1cは表面折損により疲労寿命が短く、Hiが高
すぎるNo.1dは介在物起点の破壊により2×107
回以下で折損を起こしている。またHiの低いNo.1
eでは、内部のマトリックスから疲労破壊を起こしてお
り、やはり寿命が短い。これらに対し、本発明の規定要
件を全て満足するNo.1a,1bでは、70×55kg
f/mm2 の応力で5×107 回以上の疲労寿命を有してお
り、従来材よりも疲労強度が著しく向上していることが
分かる。
As is clear from Table 4, No. 1 having a low Hs. No. 1c has a short fatigue life due to surface breakage, and Hi is too high. 1d is 2 × 10 7 due to the destruction of the origin of inclusions.
Breakage occurs less than the number of times. In addition, No. 1
In the case of e, fatigue fracture has occurred from the internal matrix and the life is also short. On the other hand, No. 1 that satisfies all of the prescribed requirements of the present invention. 70 × 55 kg for 1a and 1b
It has a fatigue life of 5 × 10 7 times or more at a stress of f / mm 2 , and it can be seen that the fatigue strength is remarkably improved as compared with the conventional material.

【0028】[0028]

【発明の効果】本発明は以上の様に構成されており、用
いる鋼材の成分組成を特定すると共に、圧延方向断面に
おける非金属介在物の大きさを特定することにより、高
い疲労強度の窒化ばねを与える鋼材を得ることができ、
又この鋼材を窒化処理することによって、内燃機関用弁
ばね等として非常に優れた疲労特性を備えた窒化ばねを
提供し得ることになった。
The present invention is constituted as described above, and by specifying the composition of the steel material to be used and the size of the non-metallic inclusions in the cross section in the rolling direction, the nitrided spring having high fatigue strength is obtained. You can get the steel material that gives
By nitriding this steel material, it is possible to provide a nitriding spring having very excellent fatigue characteristics as a valve spring for an internal combustion engine.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.3〜0.7%(重量%を意味す
る、以下同じ) Si:0.8〜4% Mn:0.2〜1.5% Cr:0.4〜3% sol.Al:0.02〜0.7%を含有すると共に、
酸素含有量が20ppm 以下であり、更にV:0.05〜
0.5% Nb:0.05〜0.5% Mo:0.05〜0.5% Ni:0.1〜3%よりなる群から選択される元素を1
種以上含有し、残部Feおよび不可避不純物からなり、
該鋼材の中心を含む圧延方向断面3600mm2 における
非金属介在物の大きさが15μm以下であることを特徴
とする疲労強度の優れた窒化ばね用鋼。
1. C: 0.3 to 0.7% (meaning weight%; the same applies hereinafter) Si: 0.8 to 4% Mn: 0.2 to 1.5% Cr: 0.4 to 3 % Sol. While containing Al: 0.02-0.7%,
Oxygen content is 20ppm or less, and V: 0.05-
0.5% Nb: 0.05 to 0.5% Mo: 0.05 to 0.5% Ni: 1 to 3 selected from the group consisting of 0.1 to 3%
Contains at least one species and consists of the balance Fe and inevitable impurities,
A steel for nitrided spring having excellent fatigue strength, characterized in that the size of the non-metallic inclusions in the rolling direction cross section of 3600 mm 2 including the center of the steel material is 15 μm or less.
【請求項2】 請求項1記載の要件を満たす鋼材製ばね
を窒化処理してなり、表面から10μm以内のビッカー
ス硬さHsが900以上、内部のビッカース硬さHiが
450〜570であることを特徴とする疲労強度の優れ
た窒化ばね。
2. A steel spring satisfying the requirements of claim 1 is nitrided, and the Vickers hardness Hs within 10 μm from the surface is 900 or more, and the internal Vickers hardness Hi is 450 to 570. A nitride spring with excellent fatigue strength.
JP5338686A 1993-12-28 1993-12-28 Steel for nitrided spring and nitrided spring with excellent fatigue strength Expired - Lifetime JP2783145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5338686A JP2783145B2 (en) 1993-12-28 1993-12-28 Steel for nitrided spring and nitrided spring with excellent fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5338686A JP2783145B2 (en) 1993-12-28 1993-12-28 Steel for nitrided spring and nitrided spring with excellent fatigue strength

Publications (2)

Publication Number Publication Date
JPH07188852A true JPH07188852A (en) 1995-07-25
JP2783145B2 JP2783145B2 (en) 1998-08-06

Family

ID=18320505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5338686A Expired - Lifetime JP2783145B2 (en) 1993-12-28 1993-12-28 Steel for nitrided spring and nitrided spring with excellent fatigue strength

Country Status (1)

Country Link
JP (1) JP2783145B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884399A1 (en) * 1997-06-04 1998-12-16 Ascometal Process for the manufacturing of a steel spring, the obtained product and the steel used for manufacturing said spring
FR2784119A1 (en) * 1998-10-01 2000-04-07 Nippon Steel Corp High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents
EP1143025A1 (en) * 2000-03-15 2001-10-10 Federal-Mogul Burscheid GmbH Piston ring and manufacturing method
WO2002002840A1 (en) * 2000-07-04 2002-01-10 Robert Bosch Gmbh Coil spring from an alloy steel and method for producing such coil springs
WO2003083151A1 (en) * 2002-04-02 2003-10-09 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
JP2010133011A (en) * 2008-12-02 2010-06-17 Benteler Automobiltechnik Gmbh Method for manufacturing chassis component having more excellent long term durability limit, and chassis component
WO2010108528A1 (en) * 2009-03-26 2010-09-30 Federal-Mogul Burscheid Gmbh Nitratable steel material composition for producing piston rings and cylindrical sleeves
DE19983148B3 (en) * 1999-02-19 2012-03-15 Suncall Corporation Spring surface treatment processes
CN113122779A (en) * 2021-04-26 2021-07-16 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1619264B1 (en) * 2003-03-28 2012-09-26 Kabushiki Kaisha Kobe Seiko Sho Steel wire for high strength spring excellent in workability and high strength spring
JP4357977B2 (en) * 2004-02-04 2009-11-04 住友電工スチールワイヤー株式会社 Steel wire for spring

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220579A (en) * 1993-01-22 1994-08-09 Sumitomo Metal Ind Ltd Soft-nitriding steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06220579A (en) * 1993-01-22 1994-08-09 Sumitomo Metal Ind Ltd Soft-nitriding steel

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884399A1 (en) * 1997-06-04 1998-12-16 Ascometal Process for the manufacturing of a steel spring, the obtained product and the steel used for manufacturing said spring
FR2784119A1 (en) * 1998-10-01 2000-04-07 Nippon Steel Corp High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents
DE19983148B3 (en) * 1999-02-19 2012-03-15 Suncall Corporation Spring surface treatment processes
EP1143025A1 (en) * 2000-03-15 2001-10-10 Federal-Mogul Burscheid GmbH Piston ring and manufacturing method
WO2002002840A1 (en) * 2000-07-04 2002-01-10 Robert Bosch Gmbh Coil spring from an alloy steel and method for producing such coil springs
US7597768B2 (en) 2002-04-02 2009-10-06 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring and method of making thereof
CN1327024C (en) * 2002-04-02 2007-07-18 株式会社神户制钢所 Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
US7763123B2 (en) 2002-04-02 2010-07-27 Kabushiki Kaisha Kobe Seiko Sho Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
WO2003083151A1 (en) * 2002-04-02 2003-10-09 Kabushiki Kaisha Kobe Seiko Sho Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring
JP2010133011A (en) * 2008-12-02 2010-06-17 Benteler Automobiltechnik Gmbh Method for manufacturing chassis component having more excellent long term durability limit, and chassis component
WO2010108528A1 (en) * 2009-03-26 2010-09-30 Federal-Mogul Burscheid Gmbh Nitratable steel material composition for producing piston rings and cylindrical sleeves
US8317938B2 (en) 2009-03-26 2012-11-27 Federal-Mogul Burscheid Gmbh Nitratable steel material composition for producing piston rings and cylindrical sleeves
CN113122779A (en) * 2021-04-26 2021-07-16 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof
CN113122779B (en) * 2021-04-26 2022-06-07 江苏沙钢集团淮钢特钢股份有限公司 Fine-grain normalizing-free tool steel and production method thereof

Also Published As

Publication number Publication date
JP2783145B2 (en) 1998-08-06

Similar Documents

Publication Publication Date Title
EP2096184B1 (en) Steel wire for spring excellent in fatigue property and drawing property
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
KR20050105281A (en) Steel wire for high strength spring excellent in workability and high strength spring
JPH0545660B2 (en)
JP3671688B2 (en) Non-heat treated steel for hot forging for fracture split type connecting rods with excellent fracture splitting
JP2783145B2 (en) Steel for nitrided spring and nitrided spring with excellent fatigue strength
JP4415219B2 (en) Age hardened steel
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JPH0421757A (en) High surface pressure gear
JPH05214484A (en) High strength spring steel and its production
JP2003105496A (en) Spring steel having low decarburization and excellent delayed fracture resistance
JPH06306542A (en) Spring steel excellent in fatigue strength and steel wire for spring
JPS62274051A (en) Steel excellent in fatigue resistance and sag resistance and steel wire for valve spring using same
JP2610965B2 (en) High fatigue strength spring steel
JP2004190116A (en) Steel wire for spring
JP3075314B2 (en) Manufacturing method of steel wire for ultra high strength spring
JPH08170152A (en) Spring excellent in fatigue characteristic
JP4515347B2 (en) Method for determining fatigue resistance of spring steel wires and spring steel wires
JP3142689B2 (en) Spring with excellent fatigue strength
JP2661911B2 (en) High strength spring steel wire
JP3064672B2 (en) High strength spring steel
JP2989766B2 (en) Case hardened steel with excellent fatigue properties and machinability
JPH0570890A (en) Steel for high strength bolt excellent in delayed fracture resistance
JPH032352A (en) Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire
JPH01184259A (en) High-strength spring steel

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980421