JPH032352A - Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire - Google Patents

Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire

Info

Publication number
JPH032352A
JPH032352A JP13553889A JP13553889A JPH032352A JP H032352 A JPH032352 A JP H032352A JP 13553889 A JP13553889 A JP 13553889A JP 13553889 A JP13553889 A JP 13553889A JP H032352 A JPH032352 A JP H032352A
Authority
JP
Japan
Prior art keywords
steel wire
inclusions
spring steel
less
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13553889A
Other languages
Japanese (ja)
Inventor
Yoshiro Koyasu
子安 善郎
Hisashi Uchida
尚志 内田
Tsukasa Takada
高田 司
Toshio Tomono
伴野 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13553889A priority Critical patent/JPH032352A/en
Publication of JPH032352A publication Critical patent/JPH032352A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel wire capable of producing a spring having high anti-fatigue strength required at the time of hardening in the air by specially distributing the chemical components of a steel wire and specifying the amount, size, and composition of nonmetallic inclusions in the steel. CONSTITUTION:This spring steel wire is a steel wire having a composition consisting of, by weight, 0.55-0.70% C, 1.00-2.50% Si, 0.50-1.50% Mn, two or more kinds among 1.00-4.00% Ni, 0.50-2.50% Cr, and 0.10-0.90% Mo, either or both of 0.05-0.50% V and 0.05-0.50% Nb, and the balance Fe and also having a structure in which, as to nonmetallic inclusions, the index of nonviscous inclusions having a ratio of length (l) to width (d), (l/d), of <=5 in the L-section of the wire is regulated to <=10 and also the size of the maximum inclusion among the above nonviscous inclusions is regulated to <=15mu. This steel wire is heated up to >=850 deg.C, cooled in the air at 0.5-40 deg.C/sec cooling rate, and then tempered at 300-600 deg.C, by which the high strength steel wire having required strength can be produced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車のエンジンの弁ばね用等に用いられる疲
労強度の優れたばね鋼線および、ばね用鋼線の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a spring steel wire with excellent fatigue strength used for valve springs of automobile engines, etc., and a method for manufacturing the steel wire for springs.

[従来の技術] 従来自動車のエンジン等に使用されている弁ばねは、J
IS G3561、JIS3565、JIS3566、
等で規定されている、いわゆるオイルテンパー線を冷間
でばねに成型加工して使用されているのが一般的である
[Prior art] Valve springs conventionally used in automobile engines, etc.
IS G3561, JIS3565, JIS3566,
It is common to use so-called oil-tempered wire, which is defined by the above standards, and is cold-formed into springs.

ところで近年自動車エンジンの高出力化、車体の軽量化
のため、エンジン弁ばねの高応力化の要望が極めて高く
、これに対応するため高疲労強度のばねが強く求められ
ているが、これらJISで規定されている既存の材料で
は、この要求を満たすことが難しくなってきている。
By the way, in recent years, as automobile engines have increased in output and vehicle bodies have become lighter, there has been an extremely high demand for higher stress in engine valve springs.In order to meet this demand, there is a strong demand for springs with high fatigue strength. Existing specified materials are becoming increasingly difficult to meet this requirement.

この要求に応えるため、合金元素量を増したばね鋼が提
案されている(例えば特開昭59−177352号公報
、特開昭62−107044号公報、特開昭62−17
7152号公報)。
In order to meet this demand, spring steels with increased amounts of alloying elements have been proposed (for example, JP-A-59-177352, JP-A-62-107044, JP-A-62-17).
Publication No. 7152).

さらに疲労強度を高めるため窒化処理、ショットピーニ
ング等により表面を硬化して使用されるのが一般的にな
りつつある。
Furthermore, in order to increase fatigue strength, it is becoming common to harden the surface by nitriding, shot peening, etc.

このばねに使用されるオイルテンパー線は、鋼線を変態
点以上に加熱後、油中に焼入れ、その後鉛洛中で焼戻し
を行ない強度を調整して製造されるいわゆるOT線であ
る。
The oil-tempered wire used in this spring is a so-called OT wire, which is manufactured by heating a steel wire above its transformation point, quenching it in oil, and then tempering it in lead iron to adjust its strength.

[発明が解決しようとする課題] しかしこれらの鋼によるオイルテンパー線によっても、
益々厳しくなるばねの高疲労強度化の要求を満たすこと
は出来なかった。
[Problem to be solved by the invention] However, even with these oil-tempered wires made of steel,
It was not possible to meet the increasingly strict requirements for higher fatigue strength of springs.

又このオイルテンパー処理工程は、焼入れ媒体に油を使
用しているため作業環境が悪く、熱処理に費用が掛ると
いう問題点を抱えていた。
Furthermore, this oil tempering process has problems in that it uses oil as a quenching medium, resulting in a poor working environment and high heat treatment costs.

[課題を解決するための手段] 本発明者らは上記の問題点を解決するため、ばねの高疲
労強度化を検討し、ばね鋼線の化学成分を適正な配分と
すると共に、鋼中の非金属介在物の量、大きさ、組成を
制御したばね鋼線から、冷間成型用の高強度鋼線を製造
する新しい方法を見出し発明を完成した。
[Means for Solving the Problems] In order to solve the above problems, the present inventors investigated ways to increase the fatigue strength of springs, appropriately distributed the chemical components of the spring steel wire, and He discovered and completed a new method for producing high-strength steel wire for cold forming from spring steel wire in which the amount, size, and composition of nonmetallic inclusions were controlled.

すなわち本発明は重量%で C: 0.55〜0.70%、 Si : 1.00〜
2.50%Mn : 0.50〜1.50% と Ni :  1.00〜4.00%、  Cr :  
0.50〜2.50%Mo :  0.10〜0.90
% のうち2 fmないし3種と、 V : 0.05〜0.50%、 Nb : 0.05
〜0.50%のうち1種ないし2種を含有し、残部は実
質的にFeからなるばね鋼線であり、鋼中に含まれる非
金属介在物は ■ 圧延線材のし断面において、含有する長さρと幅d
の比(JZ/d )が5以下の非粘性介在物指数が10
以下であること ■ 上記非粘性介在物中最大の介在物大きさが15μ以
下であること ■ 又該非粘性介在物が、5i02:30〜70%、^
1203:20%以下、CaO二30%以下、MgO:
30%以下の組成の非粘性介在物であり、 上記ばね鋼線を850℃以上の温度に加熱後、空気中で
0.5〜b 後、300〜600℃の範囲で焼戻すことを特徴とする
冷開成型ばね用鋼線の製造方法である。
That is, in the present invention, C: 0.55 to 0.70% and Si: 1.00 to 1.00% by weight.
2.50%Mn: 0.50-1.50%, Ni: 1.00-4.00%, Cr:
0.50~2.50%Mo: 0.10~0.90
%, 2 fm to 3 types, V: 0.05 to 0.50%, Nb: 0.05
The spring steel wire contains one or two of ~0.50% of Fe, with the remainder essentially consisting of Fe, and the nonmetallic inclusions contained in the steel are: ■ In the cross section of the rolled wire rod, length ρ and width d
The ratio of (JZ/d) is 5 or less and the non-viscous inclusion index is 10
The size of the largest inclusion among the non-viscous inclusions is 15μ or less.■ Also, the non-viscous inclusions are 5i02: 30-70%, ^
1203: 20% or less, CaO2 30% or less, MgO:
It is a non-viscous inclusion having a composition of 30% or less, and is characterized by heating the spring steel wire to a temperature of 850°C or higher, heating it in air for 0.5 to 100°C, and then tempering it in a range of 300 to 600°C. This is a method of manufacturing steel wire for cold-open forming springs.

本発明者らはばねの疲労寿命向上を検討し、鋼の化学成
分、疲労破壊の起点となる介在物の影響、鋼線の製造方
法と、多角的に研究し、上記の化学成分系を見出すと共
に、次の様な実験を行なった。
The present inventors investigated ways to improve the fatigue life of springs, conducted multifaceted research on the chemical composition of steel, the influence of inclusions that are the starting point of fatigue fracture, and the manufacturing method of steel wire, and discovered the above chemical composition system. At the same time, we conducted the following experiments.

第1図は引張強さ230kg/+nm2のの強度を有す
るオイルテンパー線について中村式回転曲げ疲労試験を
行ない、5000万回疲労強度と非粘性介在物指数の関
係を示す図である。非粘性介在物指数は、圧延線材のし
断面において、長さ(fL)と巾(d)の比が1/d≦
5の介在物について、日本ばね工業会「ばね用鋼材にお
ける非金属介在物の顕微鏡試験方法」 (昭和63年1
月20日)によって測定したものである。
FIG. 1 is a diagram showing the relationship between the 50 million times fatigue strength and the non-viscous inclusion index after Nakamura rotary bending fatigue tests were conducted on oil tempered wires having a tensile strength of 230 kg/+nm2. The inviscid inclusion index is determined when the ratio of length (fL) to width (d) is 1/d≦ in the cross section of the rolled wire rod.
Regarding the inclusions in No. 5, the Japan Spring Manufacturers Association "Microscopic test method for non-metallic inclusions in spring steel materials" (1986
20th of the month).

この図から非粘性介在物指数が10以下とすることによ
り、疲労強度が向上することが判る。
From this figure, it can be seen that fatigue strength is improved by setting the inviscid inclusion index to 10 or less.

第2図は、5000万回疲労寿命付近の試験応力で試験
し、破断に至った試験片の破壊起点を観察し、疲労起点
が介在物であった場合その介在物の大きさで疲労寿命を
層別して示した図である。介在物の大きさは上記の介在
物顕微鏡試験方法で介在物の大きさを測定する方法に従
って測定した。
Figure 2 shows the fracture origin of a test piece that was tested at a test stress near the 50 million-cycle fatigue life and observed the fracture origin, and if the fatigue origin was an inclusion, the fatigue life was determined by the size of the inclusion. It is a diagram shown in stratification. The size of the inclusions was measured according to the method for measuring the size of inclusions using the inclusion microscopy test method described above.

第2図から介在物の大きさを15μ以下にすることによ
り疲労寿命が極めて高(なることが判る。すなわち疲労
破壊の起点となる非粘性介在物の最大の大きさを15μ
以下にすることが重要である。
From Figure 2, it can be seen that by reducing the size of inclusions to 15μ or less, the fatigue life becomes extremely long.In other words, the maximum size of non-viscous inclusions that become the starting point of fatigue fracture is
It is important to do the following:

更にこれらの非金属介在物の組成を分析した結果、介在
物の組成が、5i(h:30〜70%、AJ2203 
: 20%以下、CaO: 30%以下、MgO: 3
0%以下となっている場合に、非粘性介在物指数が10
以下となり且つ、大きさは15μ以下となることを見出
した。
Further analysis of the composition of these nonmetallic inclusions revealed that the composition of the inclusions was 5i (h: 30-70%, AJ2203
: 20% or less, CaO: 30% or less, MgO: 3
0% or less, the non-viscous inclusion index is 10
It has been found that the size is 15μ or less.

さらに上記の成分と介在物を有するばね鋼から冷間成型
用の鋼線を製造する場合、油中へ焼入することなく空気
中で0.5〜b 却速度で冷却し、その後300〜δOO℃の温度で焼戻
しすることにより、必要な強度を有する高強度鋼線を製
造できることを見出し本発明を完成したものである。
Furthermore, when manufacturing steel wire for cold forming from spring steel having the above components and inclusions, it is cooled in air at a cooling rate of 0.5 to δOO without quenching in oil, and then 300 to δOO The present invention was completed by discovering that a high-strength steel wire having the necessary strength can be produced by tempering at a temperature of .degree.

[作  用] 以下に本発明の構成要件の限定理由について説明する。[For production] The reasons for limiting the constituent elements of the present invention will be explained below.

Cは熱処理によりばねとして必要な強度を得るための元
素であり、0.55%未満では強度が得られず、一方0
.70%を越すと靭性、延性の低下が著しく、その結果
冷間でのばねへの成型が困難となるので避けなければな
らない。
C is an element used to obtain the strength necessary for springs through heat treatment, and if it is less than 0.55%, the strength cannot be obtained;
.. If it exceeds 70%, the toughness and ductility will drop significantly, and as a result, cold forming into a spring will become difficult, so it must be avoided.

Stは脱酸作用と共に、フェライト地に固溶し、強度を
上げ、耐へたり性を確保するため1.00%以上必要で
あるが2.50%を越すと、靭性の低下をもたらすと共
に、製造時の脱炭が激しくなり良好な圧延線材が製造で
きなくなるので避けなければならない。
St has a deoxidizing effect and is solid-solved in the ferrite base, increasing strength and ensuring resistance to sagging, so 1.00% or more is necessary; however, if it exceeds 2.50%, it causes a decrease in toughness and This must be avoided since decarburization during production becomes severe and it becomes impossible to produce good rolled wire rods.

Mnは脱酸および焼入性を高め強度と靭性を確保するた
め必要な元素で、このため0.50%以上必要である。
Mn is an element necessary to improve deoxidation and hardenability and ensure strength and toughness, and for this reason, it is necessary to have a content of 0.50% or more.

1.50%を越すと、製造時の困難性が増すと共に鋼線
の靭性が損われるので避けなければならない。
If it exceeds 1.50%, the difficulty in manufacturing increases and the toughness of the steel wire is impaired, so it must be avoided.

Ni、Cr、Moは焼入性を上げあるいは焼戻し軟化抵
抗を高め、あるいは微細な炭化物を析出することにより
、ばねの強度と靭性を向上せしめる元素で2種ないし3
種を複合添加することが有効である。
Ni, Cr, and Mo are two or three elements that improve the strength and toughness of the spring by increasing hardenability, tempering softening resistance, or precipitating fine carbides.
It is effective to add seeds in combination.

このためNiは1.00〜4.00%添加する必要があ
る。1.00%未満ではその効果が現れず、また4、0
0%を越えて添加してもそれ以上の効果が得られないの
で特許請求の範囲から除いた。
Therefore, it is necessary to add 1.00 to 4.00% of Ni. If it is less than 1.00%, the effect will not appear, and if it is less than 4.0%, the effect will not appear.
Even if it is added in an amount exceeding 0%, no further effect can be obtained, so it is excluded from the scope of the claims.

Crは0.50%以上必要であり、2.50%を越すと
へたり性が劣化するので避けなければならない。
Cr must be contained in an amount of 0.50% or more, and if it exceeds 2.50%, the settling property deteriorates, so it must be avoided.

Moは焼戻し軟化抵抗を高め、また微細な炭化物を析出
することによりばねに強度と靭性を付与するために必要
な元素で、そのためには0.1θ%以上必要である。0
.90%を越えて添加してもそれ以上の効果が得られな
いため特許請求の範囲から除いた。
Mo is an element necessary for increasing resistance to temper softening and imparting strength and toughness to the spring by precipitating fine carbides, and for this purpose, it is necessary in an amount of 0.1 θ% or more. 0
.. Even if it is added in an amount exceeding 90%, no further effect can be obtained, so it is excluded from the scope of the claims.

Nb、 Vは結晶粒の微細化、析出硬化により、強度の
向上、へたり性の改善を行なうため添加する元素で0.
05%以上必要である。また0、50%を越えて添加し
ても効果は飽和しているため、特許請求の範囲から除い
た。
Nb and V are elements added to improve strength and set property by refining crystal grains and precipitation hardening.
0.05% or more is required. Moreover, even if it is added in an amount exceeding 0.50%, the effect is saturated, so it is excluded from the scope of the claims.

次に本発明では介在物の形態、量さらに組成を規定して
いる。これは上述のように鋼の成分を規定し、後に述べ
る方法でばねを製造した場合に疲労破壊の起点となる硬
質の介在物を少なくすることにより疲労特性を向上せし
めるための技術であり、本発明のポイントの一つである
Next, the present invention specifies the form, amount, and composition of inclusions. This is a technology that improves fatigue properties by specifying the composition of steel as described above and reducing the hard inclusions that become the starting point of fatigue fracture when manufacturing springs using the method described later. This is one of the points of the invention.

圧延線材のし断面において、長さ(fL)と巾(d)の
比がλ/d≦5の介在物について、日本ばね工業会「ば
ね用鋼材における非金属介在物の顕微鏡試験方法」 (
昭和63年1月20日)によって測定した非粘性介在物
指数が10を越えた場合、および非粘性非金属介在物中
の最大の介在物の大きさが15μを越えた場合、疲労特
性が低下するのでさけなければならない。
Regarding inclusions with a ratio of length (fL) to width (d) of λ/d≦5 in the cross section of a rolled wire rod, the Japan Spring Manufacturers Association "Microscopic test method for nonmetallic inclusions in spring steel materials" (
(January 20, 1988) when the non-viscous inclusion index exceeds 10, and when the size of the largest inclusion among the non-viscous non-metallic inclusions exceeds 15μ, the fatigue properties deteriorate. Therefore, you must avoid it.

介在物の組成としては、5i02が30〜70%を含ん
でいることが必要である。30%未満では鋼中の酸化物
が増加し、又7o%を越えた場合、硬質な5i02が多
過ぎて疲労強度が低下する。
The composition of the inclusions needs to contain 30 to 70% 5i02. If it is less than 30%, oxides in the steel will increase, and if it exceeds 70%, there will be too much hard 5i02, resulting in a decrease in fatigue strength.

Al2O5については20%をこえると硬質の介在物の
量が増すので避けなければならない。
As for Al2O5, if it exceeds 20%, the amount of hard inclusions will increase, so it must be avoided.

CaOの含有量が30%を越えると硬質の介在物となる
ので適正な範囲は30%以下である。
If the CaO content exceeds 30%, hard inclusions will result, so the appropriate range is 30% or less.

MgOについては30%を越えると硬質なMgO系介在
物となるのでその範囲を30%以下とした。
Regarding MgO, if it exceeds 30%, hard MgO-based inclusions will result, so the range was set to 30% or less.

本ばね用銅から冷開成型用の鋼線を製造する場合、従来
の油中に焼入れ、その後鉛浴中で焼戻しをすることによ
り、いわゆるOT線を製造していた方法に代り、加熱後
単に空気中で冷却することにより焼入を行なう。
When manufacturing steel wire for cold open forming from copper for springs, instead of the conventional method of manufacturing so-called OT wire by quenching it in oil and then tempering it in a lead bath, it is possible to simply Hardening is performed by cooling in air.

この場合加熱の温度は850℃以上が必要である。加熱
の温度がこれ以下では十分な強度と靭性が得られないの
で避けなければならない。
In this case, the heating temperature needs to be 850°C or higher. If the heating temperature is lower than this, sufficient strength and toughness cannot be obtained, so it must be avoided.

冷却は0.5〜b で行なう。冷却速度が0.5℃/sec未満では焼入後
十分な強度が得られないし、また一方40’C/sec
を越すと焼割れ等のトラブルの原因となるので何れも避
けなければならない。
Cooling is performed at 0.5-b. If the cooling rate is less than 0.5°C/sec, sufficient strength cannot be obtained after quenching;
If the temperature is exceeded, problems such as quench cracking may occur, so both must be avoided.

焼戻し温度は300〜600℃の範囲である。The tempering temperature ranges from 300 to 600°C.

300℃未満では必要以上に強度が出過ぎて、靭性が損
われるので避けなければならない。一方600℃を越す
と急激に強度が低下するので、特許請求の範囲から除い
た。
If the temperature is less than 300°C, the strength will be too high and the toughness will be impaired, so it must be avoided. On the other hand, if the temperature exceeds 600°C, the strength decreases rapidly, so it is excluded from the scope of claims.

[実施例] 以下に実施例を挙げてさらに詳細に説明する。[Example] A more detailed explanation will be given below with reference to Examples.

第1表に示した化学成分を有する鋼を、120し転炉、
取鍋精練、連続鋳造法により溶製、鋳造後直径8.35
mnの線材に圧延した。
Steel having the chemical composition shown in Table 1 is heated to 120% and converted into a converter.
Ladle scouring, melting by continuous casting method, diameter 8.35 after casting
It was rolled into a wire rod of 100 mn.

この線材を焼鈍、酸洗、潤滑処理後伸線した。この伸線
材を連続炉で加熱冷却、焼戻しを行なった。
This wire rod was annealed, pickled, and lubricated, and then drawn. This drawn wire material was heated, cooled, and tempered in a continuous furnace.

このようにして製造した鋼線からばねに冷間で成型、低
温焼鈍、窒化、ショットピーニング、セッチング等を経
て自動車用の弁ばねに加工した。
The steel wire produced in this manner was cold-formed into springs, subjected to low-temperature annealing, nitriding, shot peening, setting, etc., and processed into valve springs for automobiles.

このばねについて、平均広カフ 0 kg/mm.応力
振幅50 kg/mu++2で疲労試験をした結果を第
1表に示す。
For this spring, average wide cuff 0 kg/mm. Table 1 shows the results of a fatigue test conducted at a stress amplitude of 50 kg/mu++2.

第1表に示す如く本発明になる弁ばねは、5000万回
を越えても折損することがなかった。
As shown in Table 1, the valve spring of the present invention did not break even after being used over 50 million times.

[発明の効果] 以上詳しく説明した如く、本発明はばねの疲労寿命向上
に成功したもので、疲労強度が向上した結果、ばねの設
計応力を高くとることができ、ばねの@量化、体積の低
減等を通じて自動車の性能向上、さらにこの高疲労寿命
ばねを加工するための鋼線の製造にあたって、空気中で
焼入することがかのうとなり、製造工程の簡略化も同時
に達成することができる等顕著な効果がある。
[Effects of the invention] As explained in detail above, the present invention has succeeded in improving the fatigue life of the spring.As a result of the improved fatigue strength, the design stress of the spring can be increased, and the spring's @quantization and volume can be increased. It is remarkable that the performance of automobiles is improved through reduction of fatigue life, etc. Furthermore, when manufacturing the steel wire for processing these high fatigue life springs, it is possible to quench it in air, which makes it possible to simultaneously achieve the simplification of the manufacturing process. It has a great effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は引張り強さ230kg/mm2の強度を有する
オイルテンパー線についての疲労強度と非粘性介在物指
数の関係を示す図、 第2図はS000万回疲労寿命付近の試験応力で試験し
、破断した破面の起点部の介在物の大きさと疲労寿命の
関係を示す図である。 ばね用鋼材における非金属介在物の 顕微鏡試験法(日本ばね工業会 S63.1.203
Figure 1 shows the relationship between fatigue strength and non-viscous inclusion index for an oil tempered wire with a tensile strength of 230 kg/mm2. FIG. 3 is a diagram showing the relationship between the size of inclusions at the starting point of a fracture surface and fatigue life. Microscopic testing method for non-metallic inclusions in spring steel materials (Japan Spring Industry Association S63.1.203

Claims (1)

【特許請求の範囲】 1、重量%で C:0.55〜0.70%、Si:1.00〜2.50
%Mn:0.50〜1.50% と、 Ni:1.00〜4.00%、Cr:0.50〜2.5
0%Mo:0.10〜0.90%のうち2種ないし3種
と、 V:0.05〜0.50%、Nb:0.05〜0.50
%のうち1種ないし2種を含有し、残部は実質的にFe
からなる圧延線材において、非金属介在物が圧延線材の
L断面において、長さlと幅dの比(l/d)が5以下
の非粘性介在物指数が10以下であり、かつ該非粘性介
在物中最大の介在物大きさが15μ以下であることを特
徴とする高疲労強度ばね鋼線。 2、非粘性介在物が、SiO_2:30〜70%、Al
_2O_3:20%以下、CaO:30%以下、MgO
:30%以下の組成の非粘性介在物である請求項1に記
載の高疲労強度ばね鋼線。 3、請求項1または2記載のばね鋼線を850℃以上の
温度に加熱後、空気中で0.5〜40℃/secの冷却
速度で冷却しその後300〜600℃の範囲で焼戻すこ
とを特徴とする冷間成型ばね用鋼線の製造方法。
[Claims] 1. C: 0.55-0.70%, Si: 1.00-2.50 in weight%
%Mn: 0.50-1.50%, Ni: 1.00-4.00%, Cr: 0.50-2.5
0% Mo: 2 or 3 of 0.10-0.90%, V: 0.05-0.50%, Nb: 0.05-0.50
%, and the remainder is substantially Fe.
In the rolled wire rod, the non-metallic inclusions have a ratio of length l to width d (l/d) of 5 or less and a non-viscous inclusion index of 10 or less in the L cross section of the rolled wire rod, and the non-viscous inclusions A high fatigue strength spring steel wire characterized in that the largest inclusion size in the wire is 15μ or less. 2. Inviscid inclusions are SiO_2: 30-70%, Al
_2O_3: 20% or less, CaO: 30% or less, MgO
The high fatigue strength spring steel wire according to claim 1, wherein the spring steel wire has a composition of 30% or less of non-viscous inclusions. 3. After heating the spring steel wire according to claim 1 or 2 to a temperature of 850°C or higher, cooling it in air at a cooling rate of 0.5 to 40°C/sec, and then tempering in the range of 300 to 600°C. A method for producing steel wire for cold-formed springs, characterized by:
JP13553889A 1989-05-29 1989-05-29 Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire Pending JPH032352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13553889A JPH032352A (en) 1989-05-29 1989-05-29 Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13553889A JPH032352A (en) 1989-05-29 1989-05-29 Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire

Publications (1)

Publication Number Publication Date
JPH032352A true JPH032352A (en) 1991-01-08

Family

ID=15154123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13553889A Pending JPH032352A (en) 1989-05-29 1989-05-29 Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire

Country Status (1)

Country Link
JP (1) JPH032352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158226A (en) * 1992-11-24 1994-06-07 Nippon Steel Corp Spring steel excellent in fatigue characteristic
WO1995026422A1 (en) * 1994-03-28 1995-10-05 Nippon Steel Corporation High-strength steel wire material of excellent fatigue characteristics and high-strength steel wire
FR2784119A1 (en) * 1998-10-01 2000-04-07 Nippon Steel Corp High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents
JP2009024245A (en) * 2007-07-23 2009-02-05 Kobe Steel Ltd Wire rod for spring with excellent fatigue characteristic
WO2010092067A1 (en) * 2009-02-10 2010-08-19 Gebr. Schmachtenberg Gmbh Steel alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107044A (en) * 1985-11-05 1987-05-18 Nippon Steel Corp Spring steel having superior fatigue strength
JPS62170460A (en) * 1986-01-21 1987-07-27 Honda Motor Co Ltd High strength valve spring steel and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62107044A (en) * 1985-11-05 1987-05-18 Nippon Steel Corp Spring steel having superior fatigue strength
JPS62170460A (en) * 1986-01-21 1987-07-27 Honda Motor Co Ltd High strength valve spring steel and its manufacture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06158226A (en) * 1992-11-24 1994-06-07 Nippon Steel Corp Spring steel excellent in fatigue characteristic
WO1995026422A1 (en) * 1994-03-28 1995-10-05 Nippon Steel Corporation High-strength steel wire material of excellent fatigue characteristics and high-strength steel wire
US5725689A (en) * 1994-03-28 1998-03-10 Nippon Steel Corporation Steel wire of high strength excellent in fatigue characteristics
CN1043062C (en) * 1994-03-28 1999-04-21 新日本制铁株式会社 High-strength steel wire material of excellent fatigue characteristics and high-strength steel wire
FR2784119A1 (en) * 1998-10-01 2000-04-07 Nippon Steel Corp High strength steel wire, especially for helical springs in high performance vehicles and machines, has controlled silicon, manganese and chromium contents and low aluminum, impurity and coarse inclusion contents
JP2009024245A (en) * 2007-07-23 2009-02-05 Kobe Steel Ltd Wire rod for spring with excellent fatigue characteristic
JP4694537B2 (en) * 2007-07-23 2011-06-08 株式会社神戸製鋼所 Spring wire with excellent fatigue characteristics
WO2010092067A1 (en) * 2009-02-10 2010-08-19 Gebr. Schmachtenberg Gmbh Steel alloy

Similar Documents

Publication Publication Date Title
US7763123B2 (en) Spring produced by a process comprising coiling a hard drawn steel wire excellent in fatigue strength and resistance to setting
CN110863158B (en) High-performance Mn-Cr series steel for wind power output gear and production method thereof
JP5195009B2 (en) Steel wire rod excellent in cold forgeability after annealing and manufacturing method thereof
MX2014011861A (en) Steel wire rod or steel bar having excellent cold forgeability.
JPH0257637A (en) Manufacture of spring with high fatigue strength and steel wire for spring for use therein
JP3246210B2 (en) High strength and high toughness hot-dip coated steel wire and method for producing the same
JPH05214484A (en) High strength spring steel and its production
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JPH09143610A (en) Hot forged non-heat treated steel having high fatigue strength and its production
JP2000119805A (en) Steel wire rod excellent in wire drawability
JPH07188852A (en) Steel for nitrided spring excellent in fatigue strength and nitrided spring
JPH032352A (en) Production of spring steel wire with high anti-fatigue strength and cold forming spring steel wire
JP5941439B2 (en) Coil spring and manufacturing method thereof
WO2015152063A1 (en) High-strength steel material having excellent fatigue characteristics
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
KR20100019603A (en) Wire for valve spring having excellent tensile strength and fatigue strength and manufacturing method thereeof
KR100957306B1 (en) Forging steel using high frequency heat treatment and method for manufacturing the same
JP2004190116A (en) Steel wire for spring
JP2610965B2 (en) High fatigue strength spring steel
JPH046211A (en) Production of steel wire for spring having excellent fatigue strength
CN112442629B (en) Medium-carbon steel for mechanical structure and manufacturing method thereof
JP2004183065A (en) High strength steel for induction hardening, and production method therefor
JPH1150191A (en) Carburized axial parts and production thereof
JPH04247824A (en) Manufacture of high strength spring
JPS6130653A (en) High strength spring steel