JP2004179747A - クランプ回路 - Google Patents

クランプ回路 Download PDF

Info

Publication number
JP2004179747A
JP2004179747A JP2002340848A JP2002340848A JP2004179747A JP 2004179747 A JP2004179747 A JP 2004179747A JP 2002340848 A JP2002340848 A JP 2002340848A JP 2002340848 A JP2002340848 A JP 2002340848A JP 2004179747 A JP2004179747 A JP 2004179747A
Authority
JP
Japan
Prior art keywords
voltage
terminal
transistor
clamp
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002340848A
Other languages
English (en)
Other versions
JP3906784B2 (ja
Inventor
Shinichi Noda
真一 野田
Hideaki Ishihara
秀昭 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002340848A priority Critical patent/JP3906784B2/ja
Publication of JP2004179747A publication Critical patent/JP2004179747A/ja
Application granted granted Critical
Publication of JP3906784B2 publication Critical patent/JP3906784B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
  • Manipulation Of Pulses (AREA)

Abstract

【課題】低消費電力モードにおける消費電流を低減すること。
【解決手段】通常モードでは、切替回路18においてアナログスイッチ19がオン、20がオフとなり、コンパレータ16、21の出力信号がトランジスタQ1、Q2のゲートに与えられる。スタンバイモードでは、アナログスイッチ19がオフ、20がオンとなり、端子6、7がアナログ信号入力端子またはディジタル信号入力端子として機能設定されている場合には、トランジスタQ1、Q2のゲートに電圧VDD−VT、VTが与えられ、端子6、7がディジタル信号出力端子として機能設定されている場合には、トランジスタQ1、Q2のゲートに電圧VDD、0Vが与えられる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、通常モードでの動作と低消費電力モードでの動作とが可能な半導体集積回路装置の信号端子の電圧を所定のクランプ電圧以下に制限するクランプ回路に関する。
【0002】
【発明が解決しようとする課題】
近年、半導体集積回路装置(IC)について、その動作速度をより速めるとともにチップ面積をより縮小化することを目的として製造工程の微細化が進んでいる。しかし、この微細化に伴って、例えばMOSデバイスの場合ゲート酸化膜の膜厚が薄くなるため、素子耐圧が低下して十分な素子寿命を確保することができなくなる。このため、外部信号入出力端子と内部回路との間に設けられたバッファ回路またはインターフェース回路に用いられる素子の耐圧を高めたり、これらの回路にクランプ回路を付加することが行われている。この場合、素子の高耐圧化はこれまで用いてきた製造プロセスの変更を伴うため、各入出力端子に対応させてクランプ回路を付加することで外部からの過大な電圧に対し保護することが好ましい。
【0003】
ところで、ICの中にあってもマイクロプロセッサなどは、内部機能を最大限使用可能な通常モードに加え、消費電力を低減するために各部の機能を極力停止させる低消費電力モードを備えている。マイクロプロセッサが低消費電力モード例えばスタンバイモードに移行すると、クロック、CPU、A/Dコンバータなどが停止する他、I/Oポートは通常モード時の出力状態を保持し或いはハイインピーダンス状態となる。
【0004】
しかしながら、スタンバイモードにおいても各端子に外部から過大な電圧が印加される虞があるため、クランプ回路は動作させておく必要がある。クランプ回路は各入出力端子ごとに設けられているが、従来のクランプ回路はコンパレータなどを用いているため消費電流が大きく、低消費電力モードを備えたICでは採用し辛かった。
【0005】
本発明は上記事情に鑑みてなされたもので、その目的は、半導体集積回路装置の低消費電力モードにおいて消費電流を低減できるクランプ回路を提供することにある。
【0006】
【課題を解決するための手段】
請求項1に記載した手段によれば、半導体集積回路装置の各信号端子と内部の電圧出力回路との間にそれぞれトランジスタが接続され、各トランジスタは、半導体集積回路装置が通常モードにある場合にあっては各信号端子に対応して設けられた比較回路が出力するオン指令信号によりオンオフ動作し、半導体集積回路装置が低消費電力モードにある場合にあっては基準電圧生成回路が出力する一定の基準電圧によりオンオフ動作する。
【0007】
すなわち、通常モードの場合には比較回路が動作状態となり、その比較回路は信号端子電圧が第1のクランプ電圧よりも高い時にオン指令信号を出力し、上記トランジスタをオンして端子電圧を第1のクランプ電圧に引き戻す。一方、低消費電力モードの場合には比較回路は動作を停止し、信号端子電圧が第2のクランプ電圧よりも高い時に上記トランジスタがオンして端子電圧を第2のクランプ電圧に引き戻す。
【0008】
このような手段によれば、通常モードの場合に、信号端子電圧を第1のクランプ電圧に高精度にクランプすることができる。また、低消費電力モードの場合に、信号端子電圧を第2のクランプ電圧にクランプすることができるとともに、比較回路の動作が停止してクランプ回路の消費電流を低減することができる。
【0009】
さらに、低消費電力モードの場合には、オペアンプや高精度の基準電圧発生回路などが停止するので使用できる基準電圧が限られる一方で、信号入出力機能も停止する。このため、第2のクランプ電圧は、第1のクランプ電圧ほどの高精度は必要とされず、電源電圧やトランジスタのオン制御電圧(つまりゲート・ソース間電圧またはベース・エミッタ間電圧)などを利用して生成可能な電圧とすることができる。
【0010】
請求項2に記載した手段によれば、通常モードの場合、信号端子を通して当該半導体集積回路装置の電源電圧に等しい電圧が入力された時には上記トランジスタがオンしないため、クランプ電圧の影響を受けることなく電源電圧までの電圧を入出力することができる。また、第1のクランプ電圧は、半導体集積回路装置の素子耐圧に応じて電源電圧に極力近く設定されているので、各素子を過電圧から保護できる。
【0011】
一方、低消費電力モードの場合、信号端子がディジタル信号出力端子として機能している場合においては、第2のクランプ電圧は電源電圧よりも高く設定されているので、自ら出力した電圧により上記トランジスタがオンして内部リークが生じることを防止できる。これに対し、信号端子がディジタル信号入力端子またはアナログ信号入力端子として機能している場合においては、内部リークは発生し得ず、第2のクランプ電圧は電源電圧に等しく設定されているので、外部から上記トランジスタに印加される電圧を極力下げて各素子を過電圧から保護することができる。
【0012】
請求項3に記載した手段によれば、信号端子と電源線との間に、ゲートとドレインが接続されたFETまたはダイオード接続されたバイポーラトランジスタが接続されているので、信号端子と電圧出力回路との間に接続されたトランジスタに印加される電圧を制限することができる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態について図面を参照しながら説明する。
図1は、半導体集積回路装置(IC)の内部に形成されたクランプ回路の電気的構成を示している。このIC1は、車両のECU(Electronic Control Unit) 内の制御基板に搭載されている。この制御基板には電源IC(図示せず)も搭載されており、IC1はこの電源ICから電源端子2、3を介して電源電圧VDDの供給を受けて動作するようになっている。この電源電圧VDDは、例えば5V±5%の電圧精度を有している。各電源端子2、3は、IC1の内部においてそれぞれ高電位側の電源線4、低電位側の電源線5(GND)に接続されている。
【0014】
IC1は、CMOSプロセスにより製造されており、図示しないCPU、メモリ、A/Dコンバータ、入出力ポートをはじめ各種のアナログ回路およびディジタル回路を備えている。IC1内のMOSトランジスタは低耐圧デバイス工程により製造されているので、ゲート・ソース間およびドレイン・ソース間の耐圧は高電位側が5V+10%(=5.5V)、低電位側が−10%(=−0.5V)となっている。
【0015】
IC1の端子6、7は、汎用入出力ポートに対するディジタル信号の入出力端子とA/Dコンバータに対するアナログ信号の入力端子とを兼ねた信号端子である。ディジタル信号入力端子、ディジタル信号出力端子、アナログ信号入力端子の何れとして用いるかは、プログラムによって設定できるようになっている。上記制御基板上においてIC1の端子6、7には、電流制限用の抵抗R1、R2が接続されている。なお、図1には2つの端子6、7のみを示しているが、実際のICでは汎用入出力ポートの数やA/Dコンバータのチャンネル数に応じてさらに多くの端子が設けられている。
【0016】
IC1は、車載用であるため消費電流の低減化要求が厳しく、全ての内部機能を使用可能な通常モードに加え、各部の機能を極力停止させるスタンバイモード(低消費電力モード)を備えている。通常モードの場合、図1に示す電圧Eは電源電圧VDD、電圧ENは0Vとされ、スタンバイモードの場合、電圧Eは電源電圧0V、電圧ENはVDDとされる。
【0017】
クランプ回路は、端子6、7に対し共通に用いられる電圧出力回路8を備えている。電圧出力回路8の出力線9と端子6との間には、Pチャネル型トランジスタQ1とNチャネル型トランジスタQ2とが並列に接続されており、端子6と電源線4との間、端子6と電源線5との間には、それぞれゲートとドレインとが接続されたPチャネル型トランジスタQ3、Nチャネル型トランジスタQ4が接続されている。端子7についても同様に、出力線9と端子7との間にPチャネル型トランジスタQ5とNチャネル型トランジスタQ6とが並列に接続されており、端子7と電源線4との間、端子7と電源線5との間には、それぞれゲートとドレインとが接続されたPチャネル型トランジスタQ7、Nチャネル型トランジスタQ8が接続されている。
【0018】
トランジスタQ1、Q2の各ゲートには、それぞれ制御回路10、11からゲート電圧が与えられるようになっており、トランジスタQ5、Q6の各ゲートにも端子7に関して制御回路10、11と同様の回路(図1には示さず)によってゲート電圧が与えられるようになっている。
【0019】
上記電圧出力回路8は、3つの電圧出力回路12、13、14から構成されている。電圧出力回路12は、ボルテージフォロアの接続形態を持つオペアンプ15と、このオペアンプ15の出力端子と出力線9との間に接続されたPチャネル型トランジスタQ9とから構成されている。オペアンプ15は、電圧Eを電源電圧として動作し、その非反転入力端子は電源線4に接続されている。トランジスタQ9のゲートには電圧ENが与えられている。
【0020】
電圧出力回路13は、ゲートとドレインとが接続されソースが電源線5に接続されたNチャネル型トランジスタQ10と、このトランジスタQ10と出力線9との間に接続されたPチャネル型トランジスタQ11とから構成されている。トランジスタQ11のゲートには電圧Eが与えられている。
【0021】
電圧出力回路14は、ゲートとドレインとが接続されたPチャネル型トランジスタQ12と、このトランジスタQ12と出力線9との間に接続されたNチャネル型トランジスタQ13とから構成されている。トランジスタQ12のソースには図示しないNチャネル型トランジスタのゲート電位である電圧VTが与えられ、トランジスタQ13のゲートには電圧ENが与えられている。
【0022】
上記制御回路10は、電圧Eを電源電圧として動作するコンパレータ16(比較回路に相当)と、基準電圧生成回路17と、切替回路18とから構成されている。コンパレータ16の非反転入力端子、反転入力端子は、それぞれ電源線4、端子6に接続されている。コンパレータ16は、オフセット電圧Voffsetを有しており、反転入力端子の電圧が非反転入力端子の電圧よりもオフセット電圧Voffset以上高くなると出力電圧が5V(Hレベル)から0V(Lレベル)に反転するように構成されている。
【0023】
基準電圧生成回路17は、ソースが共通に接続されたPチャネル型トランジスタQ14、Q15から構成されている。トランジスタQ14のドレインは電源線4に接続されており、トランジスタQ15のドレインには図示しないPチャネル型トランジスタのゲート電位である電圧VDD−VTが与えられている。トランジスタQ14、Q15の各ゲートには、それぞれ後述する信号A、AN(図2参照)が与えられている。
【0024】
切替回路18は、トランジスタQ16、Q17からなるアナログスイッチ19と、トランジスタQ18、Q19からなるアナログスイッチ20とから構成されている。アナログスイッチ19、20の各入力端子は、それぞれコンパレータ16の出力端子、基準電圧生成回路17の出力端子(トランジスタQ14、Q15のソース)に接続されており、各出力端子は共通に接続されてトランジスタQ1のゲートに接続されている。トランジスタQ16とQ19のゲート、トランジスタQ17とQ18のゲートには、それぞれ後述する信号BN、B(図2参照)が与えられている。
【0025】
制御回路11も、制御回路10とほぼ同様に、電圧Eを電源電圧として動作するコンパレータ21(比較回路に相当)と、基準電圧生成回路22と、切替回路18とから構成されている。ここで、コンパレータ21の非反転入力端子、反転入力端子は、それぞれ電源線5、端子6に接続されている。このコンパレータ21は、オフセット電圧Voffsetを有しており、反転入力端子の電圧が非反転入力端子の電圧よりもオフセット電圧Voffset以上低くなると出力電圧が0V(Lレベル)から5V(Hレベル)に反転するように構成されている。
【0026】
また、基準電圧生成回路22を構成するNチャネル型トランジスタQ20のドレインは電源線5に接続されており、Nチャネル型トランジスタQ21のドレインには図示しないNチャネル型トランジスタのゲート電位である電圧VTが与えられている。トランジスタQ20、Q21の各ゲートには、それぞれ信号AN、Aが与えられている。
【0027】
図2は、上述した信号A、AN、B、BNを生成する信号生成回路の構成を示している。NOR回路23にはポートコントロールレジスタからの信号PCRと信号OE(アウトプットイネーブル)とが入力されており、当該NOR回路23の出力信号が信号ANとなり、インバータ24を通した後の信号が信号Aとなっている。NAND回路25には信号CLPE(クランプイネーブル)と信号STBY(スタンドバイ)とが入力されており、当該NAND回路25の出力信号が信号BNとなり、インバータ26を通した後の信号が信号Bとなっている。
【0028】
次に、クランプ回路の動作について図3も参照しながら説明する。
図3(a)は、図2に示す信号生成回路における信号PCRと信号OEに対する信号A、ANの論理を示しており、図3(b)は、信号STBYと信号CLPEに対する信号B、BNの論理を示している。
【0029】
信号PCRは端子6、7の入出力機能を決定するもので、Lレベルに設定すると汎用入出力ポートの端子として機能し、Hレベルに設定するとA/Dコンバータへの入力端子として機能する。信号OEは、端子6、7が汎用入力ポートと汎用出力ポートの何れとして機能するかを決定するもので、Lレベルに設定すると汎用出力ポートの端子として機能し、Hレベルに設定すると汎用入力ポートの端子として機能する。
【0030】
信号STBYは、IC1の動作モードを決定するもので、Lレベルに設定するとスタンバイモードにより動作し、Hレベルに設定すると通常モードにより動作する。また、信号CLPEは、コンパレータ16、21を用いたクランプ動作とコンパレータ16、21を用いないクランプ動作の何れを使用するかを決定するもので、Lレベルに設定するとコンパレータ16、21を用いないクランプ動作を行い、Hレベルに設定するとコンパレータ16、21を用いたクランプ動作を行う。これらの信号PCR、OE、STBY、CLPEは、図示しないCPUが実行するプログラムによって設定できるようになっている。
【0031】
以下、この図3(a)、(b)に示す動作表に従って、IC1の動作モードに分けてクランプ動作を説明する。なお、ここでは主として端子6に係るクランプ動作を説明するが、端子7についてのクランプ動作も同様となる。
【0032】
(1)通常モードの場合
IC1が通常モードで動作している場合には、端子6は外部回路との間で信号の入出力を行っているので、クランプ電圧VCLMPH 、VCLMPL は、端子6の電圧Vin1 に影響を及ぼさない電圧であって且つIC1内のトランジスタを確実に保護できる電圧でなければならない。
【0033】
例えば、A/Dコンバータは0VからVDD(5V)の電圧範囲内の電圧に対し所定の分解能によりA/D変換を実行するようになっているため、高電位側のクランプ電圧VCLMPH (第1のクランプ電圧に相当)は、端子6の電圧Vin1 が5Vに等しい時にトランジスタQ1がオンしない電圧であって且つ可能な限りに近い5Vに近い電圧に設定する必要がある。また、低電位側のクランプ電圧VCLMPL は、端子6の電圧Vin1 が0Vに等しい時にトランジスタQ2がオンしない電圧であって且つ可能な限りに近い0Vに近い電圧に設定する必要がある。
【0034】
IC1が通常モードにある場合、電圧EがVDD、電圧ENが0Vとなり、CPUは信号STBYをHレベルにする。これにより、コンパレータ16、21および電圧出力回路12のオペアンプ15が動作状態となり、電圧出力回路12のトランジスタQ9がオン、電圧出力回路13のトランジスタQ11と電圧出力回路14のトランジスタQ13がオフとなる。信号CLPEがHレベルの場合、切替回路18においてアナログスイッチ19がオン、アナログスイッチ20がオフとなり、コンパレータ16、21の出力信号がトランジスタQ1、Q2のゲートに与えられる。
【0035】
上述したようにコンパレータ16、21はオフセット電圧Voffset(例えば0.1V)を有しており、端子6の電圧Vin1 がクランプ電圧VCLMPH =VDD+Voffset=5.1V以上になるとコンパレータ16の出力信号がLレベルになり、トランジスタQ1がオンする。この時、トランジスタQ2はオフ状態を保持している。
【0036】
トランジスタQ1がオンすることにより、外部回路から抵抗R1、端子6、トランジスタQ1、トランジスタQ9を介してオペアンプ15に電流が流れ込む。トランジスタQ1のオン抵抗は抵抗R1よりも十分に低いので、この電流によって抵抗R1に電圧降下が生じ、端子電圧Vin1 はオペアンプ15の出力電圧VDDに向かって低下する。そして、端子電圧Vin1 がクランプ電圧VCLMPH 未満になると再びトランジスタQ1がオフとなる。これにより、端子電圧Vin1 はクランプ電圧VCLMPH 以下に制限される。
【0037】
一方、端子6の電圧Vin1 がクランプ電圧VCLMPL =−Voffset=−0.1V以下になるとコンパレータ21の出力信号がHレベルになり、トランジスタQ2がオンする。この時、トランジスタQ1はオフ状態を保持している。トランジスタQ2がオンすることにより、オペアンプ15からトランジスタQ9、トランジスタQ2、端子6、抵抗R1を介して外部回路に電流が流れる。トランジスタQ2のオン抵抗も抵抗R1よりも十分に低いので、この電流によって抵抗R1に電圧降下が生じ、端子電圧Vin1 はオペアンプ15の出力電圧VDDに向かって上昇する。そして、端子電圧Vin1 がクランプ電圧VCLMPL を超えると再びトランジスタQ2がオフとなる。これにより、端子電圧Vin1 はクランプ電圧VCLMPL 以上に制限される。
【0038】
通常モードでは、クランプ電圧VCLMPH 、VCLMPL は端子6、7の入出力機能設定状態によらず一定であり、端子6の電圧Vin1 、端子7の電圧Vin2 は−0.1Vから5.1Vの電圧範囲に制限される。従って、上記低耐圧デバイス工程で製造される素子を確実に保護することができる。
【0039】
(2)スタンバイモードの場合
IC1がスタンバイモードで動作している場合には、IC1の消費電流が厳しく制限されるので、端子6、7に対し設けられているコンパレータ16、21の動作を停止し、替わりに基準電圧生成回路17、22で生成される一定の電圧を用いてトランジスタQ1、Q2、Q5、Q6を制御する。
【0040】
スタンバイモードでは、電圧Eが0V、電圧ENがVDDとなり、CPUは信号STBYをLレベルにする。これにより、コンパレータ16、21および電圧出力回路12のオペアンプ15が動作停止状態となり、電圧出力回路12のトランジスタQ9がオフ、電圧出力回路13のトランジスタQ11と電圧出力回路14のトランジスタQ13とがオンとなる。切替回路18においてアナログスイッチ19がオフ、アナログスイッチ20がオンとなり、基準電圧生成回路17、22の出力電圧がゲート電圧としてトランジスタQ1、Q2に与えられる。この場合には、以下に説明するように端子6(端子7についても同様)の入出力機能設定状態によりゲート電圧が異なる。
【0041】
▲1▼端子6がアナログ信号入力端子またはディジタル信号入力端子として機能設定されている場合
基準電圧生成回路17においてトランジスタQ14がオフ、トランジスタQ15がオンとなり、電圧VDD−VT(基準電圧に相当)がトランジスタQ1のゲートに与えられる。また、基準電圧生成回路22においてトランジスタQ20がオフ、トランジスタQ21がオンとなり、電圧VTがトランジスタQ2のゲートに与えられる。
【0042】
トランジスタQ1がオンするゲート・ソース間電圧はVTに等しいため、端子6の電圧Vin1 がVDD(5V)以上になるとトランジスタQ1がオンとなり、外部回路から抵抗R1、端子6、トランジスタQ1、Q11、Q10を介して電源線5に電流が流れ込む。また、トランジスタQ2がオンするゲート・ソース間電圧もVTに等しいため、端子6の電圧Vin1 が0V以下になるとトランジスタQ2がオンとなり、電位VTからトランジスタQ12、Q13、Q2、端子6、抵抗R1を介して外部回路に電流が流れる。
【0043】
入出力動作が停止しているスタンバイモードでは、5V付近または0V付近の電圧がクランプ動作による影響を受けても良いので、上述したように高電位側のクランプ電圧VCLMPH (第2のクランプ電圧に相当)をVDD(5V)、低電位側のクランプ電圧VCLMPL を0Vとすることができる。これにより、端子6の電圧Vin1 、端子7の電圧Vin2 は0Vから5Vの電圧範囲に制限され、上記低耐圧デバイス工程で製造される素子を確実に保護することができる。
【0044】
この場合、仮にトランジスタQ1、Q2に印加するゲート電圧をそれぞれVDD、0Vとすると、高電位側のクランプ電圧VCLMPH がVDD+VT、低電位側のクランプ電圧VCLMPL が−VTとなる。しかし、このゲート電圧の設定では、電圧VTが0.5Vより高いと、上記低耐圧デバイス工程で製造される素子を保護することができなくなる。
【0045】
また、スタンバイモードでは、オペアンプ等を極力停止させる必要があり任意の電圧を生成することが難しい。基準電圧生成回路17、22が出力する電圧VDD−VT、VTは、MOSトランジスタのゲート・ソース間電圧VTを利用しているため消費電流を殆ど増やすことなく生成でき、且つ低耐圧デバイス工程で製造される素子を保護可能なクランプ電圧VCLMPH 、VCLMPL を設定できる点において好ましい電圧となっている。
【0046】
▲2▼端子6がディジタル信号出力端子として機能設定されている場合
基準電圧生成回路17においてトランジスタQ14がオン、トランジスタQ15がオフとなり、電圧VDD(基準電圧に相当)がトランジスタQ1のゲートに与えられる。また、基準電圧生成回路22においてトランジスタQ20がオン、トランジスタQ21がオフとなり、電圧0VがトランジスタQ2のゲートに与えられる。
【0047】
トランジスタQ1、Q2がオンするゲート・ソース間電圧はVTに等しいため、端子6の電圧Vin1 がVDD+VT以上になるとトランジスタQ1がオンとなり、電圧Vin1 が−VT以下になるとトランジスタQ2がオンとなる。トランジスタQ1またはQ2がオンした時の電圧制限動作は、上述した▲1▼の場合と同様である。
【0048】
ここで、クランプ電圧VCLMPH (第2のクランプ電圧に相当)をVDD+VT、クランプ電圧VCLMPL を−VTとしたのは、上記▲1▼のようにクランプ電圧VCLMPH をVDD、クランプ電圧VCLMPL を0Vとすると、自ら出力する電圧VDD、0VによってトランジスタQ1、Q2がオンする場合が生じ、IC1において内部リークが発生して消費電流が増大する可能性があるからである。その一方で、端子6の出力インピーダンスは低く、端子電圧Vin1 は自ら出力する電圧VDD、0Vとなるため、外部回路からの過電圧が端子電圧Vin1 に現れにくく保護上の問題も生じにくい。
【0049】
以上説明したように、IC1が通常モードの場合、コンパレータ16、21が動作状態となり、端子電圧Vin1 、Vin2 を低電位側のクランプ電圧VCLMPL から高電位側のクランプ電圧VCLMPH までの電圧範囲に制限することができる。クランプ電圧VCLMPL 、VCLMPH は、コンパレータ16、21のオフセット電圧あるいは非反転入力端子に与える基準電圧を変えることにより、精度良く且つ任意の値に設定することができる。本実施形態では−0.1Vと5.1Vに設定したので、0Vから5Vの範囲内の入力電圧に影響を及ぼすことなく過電圧からトランジスタを保護することができる。
【0050】
一方、スタンバイモードの場合には、端子6、7それぞれに設けられたコンパレータ16、21への電源供給を停止し、基準電圧生成回路17、22が生成する一定電圧を用いてクランプ電圧VCLMPL 、VCLMPH を設定するので、クランプ回路の消費電流を低減することができる。
【0051】
スタンバイモードの場合には、オペアンプや高精度の基準電圧発生回路などが停止するので使用できる基準電圧が限られる一方で、IC1の信号入出力機能も停止する。このため、スタンバイモードにおけるクランプ電圧VCLMPL 、VCLMPH は通常モードにおけるクランプ電圧VCLMPL 、VCLMPH ほどの精度は必要とされず、電源電圧(0V、5V)やトランジスタのゲート・ソース間電圧VTを利用して生成可能な電圧とすることができる。
【0052】
スタンバイモードであって端子6、7がディジタル信号入力端子またはアナログ信号入力端子として機能している場合においては、クランプ電圧VCLMPH 、VCLMPL は5V、0Vに設定されているので、トランジスタを過電圧から確実に保護することができる。
【0053】
また、スタンバイモードであって端子6、7がディジタル信号出力端子として機能している場合においては、クランプ電圧VCLMPH はVDDよりも高く設定され、VCLMPL は0Vよりも低く設定されているので、自ら出力したHレベル、Lレベルの電圧による内部リークの発生を防止できる。この場合、端子電圧Vin1 、Vin2 は自ら出力する電圧VDD、0Vに制限されるので、トランジスタを過電圧から保護することができる。
【0054】
端子6、7と電源線4および5との間には、ゲート・ドレイン間が接続されたトランジスタQ3、Q4、Q7、Q8が接続されているので、トランジスタQ1、Q2、Q5、Q6に印加される電圧を制限することができる。
【0055】
なお、本発明は上記し且つ図面に示す実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
IC1はバイポーラプロセスにより製造されていても良い。この場合には、上述した電圧VTに替えてトランジスタのベース・エミッタ間電圧VBEを用いる。
低電位側の過電圧が印加される虞がない場合には、トランジスタQ2、Q4、Q6、Q8および制御回路11を除いて構成しても良く、高電位側の過電圧が印加される虞がない場合には、トランジスタQ1、Q3、Q5、Q7および制御回路10を除いて構成しても良い。
トランジスタQ3、Q4、Q7、Q8は必要に応じて設ければ良い。
抵抗R1、R2は必要に応じて設ければ良い。
コンパレータ16、21にオフセットを付加せず、これに替えて非反転入力端子にクランプ電圧VCLMPH 、VCLMPL を直接与える構成としても良い。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すクランプ回路の電気的構成図
【図2】信号生成回路の電気的構成図
【図3】信号生成回路の論理を示す図
【符号の説明】
1はIC(半導体集積回路装置)、6、7は端子(信号端子)、8は電圧出力回路、16、21はコンパレータ(比較回路)、17、22は基準電圧生成回路、18は切替回路、Q1、Q2、Q5、Q6はトランジスタである。

Claims (3)

  1. 通常モードでの動作と低消費電力モードでの動作とが可能な半導体集積回路装置の信号端子の電圧を所定のクランプ電圧以下に制限するクランプ回路において、
    クランプ電圧よりも低い電圧を出力する電圧出力回路と、
    前記信号端子と前記電圧出力回路との間に接続されたトランジスタと、
    前記通常モードにおいて動作し、前記信号端子電圧を第1のクランプ電圧と比較して、当該信号端子電圧が当該第1のクランプ電圧よりも高い時に、前記トランジスタをオンさせるオン指令信号を出力する比較回路と、
    第2のクランプ電圧よりも前記トランジスタのオン制御電圧だけ低い一定の基準電圧を出力する基準電圧生成回路と、
    前記トランジスタの制御端子に対し、前記通常モードにおいては前記オン指令信号を出力し、前記低消費電力モードにおいては前記基準電圧を出力する切替回路とを備えて構成されていることを特徴とするクランプ回路。
  2. 前記信号端子は、ディジタル信号の入出力端子およびアナログ信号の入力端子として機能する端子であって、
    前記第1のクランプ電圧は、前記信号端子電圧が電源電圧に等しい時に前記トランジスタがオンしない電圧であって且つ前記半導体集積回路装置の素子耐圧に応じて前記電源電圧に近い電圧に設定されており、
    前記基準電圧生成回路は、前記信号端子がディジタル信号出力端子として機能している場合においては前記電源電圧に等しい基準電圧を出力し、前記信号端子がディジタル信号入力端子またはアナログ信号入力端子として機能している場合においては前記電源電圧よりも前記トランジスタのオン制御電圧だけ低い基準電圧を出力するように構成されていることを特徴とする請求項1記載のクランプ回路。
  3. 前記信号端子と電源線との間に、ゲートとドレインが接続されたFETまたはダイオード接続されたバイポーラトランジスタが接続されていることを特徴とする請求項1または2記載のクランプ回路。
JP2002340848A 2002-11-25 2002-11-25 クランプ回路 Expired - Fee Related JP3906784B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340848A JP3906784B2 (ja) 2002-11-25 2002-11-25 クランプ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340848A JP3906784B2 (ja) 2002-11-25 2002-11-25 クランプ回路

Publications (2)

Publication Number Publication Date
JP2004179747A true JP2004179747A (ja) 2004-06-24
JP3906784B2 JP3906784B2 (ja) 2007-04-18

Family

ID=32703367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340848A Expired - Fee Related JP3906784B2 (ja) 2002-11-25 2002-11-25 クランプ回路

Country Status (1)

Country Link
JP (1) JP3906784B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070211A (ja) * 2007-09-14 2009-04-02 Panasonic Corp 電圧発生回路
JP2015042526A (ja) * 2013-08-26 2015-03-05 株式会社デンソー 電子制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583113A (ja) * 1991-09-18 1993-04-02 Hitachi Ltd 半導体集積回路装置とマイクロプロセツサ及びマイクロコンピユータ
JPH06224728A (ja) * 1993-01-22 1994-08-12 Nec Ic Microcomput Syst Ltd 半導体集積回路
JPH06291638A (ja) * 1993-03-31 1994-10-18 Nec Corp 半導体装置
JPH0837609A (ja) * 1994-05-15 1996-02-06 Nippon Motorola Ltd コンポジット信号用ペデスタルクランプ装置
JP2000022508A (ja) * 1998-07-06 2000-01-21 Mitsubishi Electric Corp 半導体装置
JP2000209085A (ja) * 1999-01-20 2000-07-28 Nec Ic Microcomput Syst Ltd 入力クランプ回路
JP2001045657A (ja) * 1999-08-03 2001-02-16 Yokogawa Electric Corp Icの入力信号保護回路
JP2002232270A (ja) * 2001-02-02 2002-08-16 Toshiba Corp クランプ回路およびこれを用いた入力インターフェース回路

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583113A (ja) * 1991-09-18 1993-04-02 Hitachi Ltd 半導体集積回路装置とマイクロプロセツサ及びマイクロコンピユータ
JPH06224728A (ja) * 1993-01-22 1994-08-12 Nec Ic Microcomput Syst Ltd 半導体集積回路
JPH06291638A (ja) * 1993-03-31 1994-10-18 Nec Corp 半導体装置
JPH0837609A (ja) * 1994-05-15 1996-02-06 Nippon Motorola Ltd コンポジット信号用ペデスタルクランプ装置
JP2000022508A (ja) * 1998-07-06 2000-01-21 Mitsubishi Electric Corp 半導体装置
JP2000209085A (ja) * 1999-01-20 2000-07-28 Nec Ic Microcomput Syst Ltd 入力クランプ回路
JP2001045657A (ja) * 1999-08-03 2001-02-16 Yokogawa Electric Corp Icの入力信号保護回路
JP2002232270A (ja) * 2001-02-02 2002-08-16 Toshiba Corp クランプ回路およびこれを用いた入力インターフェース回路

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070211A (ja) * 2007-09-14 2009-04-02 Panasonic Corp 電圧発生回路
JP2015042526A (ja) * 2013-08-26 2015-03-05 株式会社デンソー 電子制御装置
WO2015029330A1 (ja) * 2013-08-26 2015-03-05 株式会社デンソー 電子制御装置
US10040411B2 (en) 2013-08-26 2018-08-07 Denso Corporation Electronic control unit

Also Published As

Publication number Publication date
JP3906784B2 (ja) 2007-04-18

Similar Documents

Publication Publication Date Title
JP3864864B2 (ja) クランプ回路
KR100309723B1 (ko) 집적 회로 장치
JP3966016B2 (ja) クランプ回路
JP3538400B2 (ja) 耐高電圧および伸展性ドライバ回路
US7432754B2 (en) Voltage control circuit having a power switch
US5298807A (en) Buffer circuitry for transferring signals from TTL circuitry to dual range CMOS circuitry
US6791373B2 (en) High-voltage detecting circuit
US6933749B2 (en) Signal-level converter
US10965116B2 (en) Overvoltage-proof circuit capable of preventing damage caused by overvoltage
WO2008117247A2 (en) Electronic device with a high voltage tolerant unit
KR100776751B1 (ko) 전압 공급 장치 및 방법
US20150381149A1 (en) Semiconductor device
US8829944B1 (en) Dynamic power supply switching for clocking signals
JP3906784B2 (ja) クランプ回路
US7218145B2 (en) Level conversion circuit
JP3797186B2 (ja) クランプ回路
KR100647418B1 (ko) 분리 소자로 사용 가능한 레벨 변환기 출력 버퍼 회로
US7248092B2 (en) Clamp circuit device
US6269042B1 (en) I/O circuit of semiconductor integrated device
JP4364752B2 (ja) 出力回路
US6362666B1 (en) Precision and fast recovery buffer
JP2004304475A (ja) トレラント入力回路
JP4350575B2 (ja) 電圧検出回路
JP2002232270A (ja) クランプ回路およびこれを用いた入力インターフェース回路
JP4333557B2 (ja) クランプ回路装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070108

R150 Certificate of patent or registration of utility model

Ref document number: 3906784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees