【0001】
【発明の属する技術分野】
本発明は、その内部に半導体素子を備える多層基板及びその製造方法に関する。
【0002】
【従来の技術】
電子機器の小型化・薄型化を実現する半導体素子の実装方法として、CSP(Chip Size Package)やFC(Flip Chip)実装がある。
【0003】
しかしながら、例えば車両用エンジンのECU制御、油圧バルブ制御、EFIのガソリン噴射弁制御等に用いられるパワーデバイスとして、パワーMOSFET、IGBT、BSIT等があるが、これら発熱量の大きな半導体素子においては、上記の実装方法は熱抵抗が高く、接続信頼性の点から採用することが困難であった。
【0004】
【発明が解決しようとする課題】
そこで、従来技術として、樹脂基板表面に、半導体素子をFC実装し、素子の上面を金属ケースに接触させて放熱する方法がある。しかし、熱抵抗を低減させるための半導体素子表面と金属ケースとの間の接触圧を維持するための調整が難しく、電子機器の設計及び組み立てが複雑になるという問題がある。
【0005】
また、他の方法として、発熱量の大きな半導体素子のみをセラミック基板表面にFC実装したモジュール基板を準備し、当該モジュール基板を樹脂基板に接続する方法がある。しかしながら、この方法では、半導体素子からの放熱がセラミック基板側の片面のみとなり、両面放熱に比べ、熱抵抗が高くなるという問題がある。さらに、セラミック基板を用いるため、製造コストが増すという問題もある。
【0006】
本発明は上記問題点に鑑み、半導体素子の放熱性に優れ、且つ、安価な多層基板及びその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成する為に請求項1に記載の多層基板は、熱可塑性樹脂からなる樹脂フィルムの少なくとも片面上に導体パターンを有し、所望の位置に層間接続材料が充填されたビアホールを備える導体パターンフィルムが形成され、この導体パターンフィルムを含む複数の樹脂フィルムを積層するとともに、当該積層体の内部に、導体パターンに導電接続されるように半導体素子を配置した多層基板であって、この多層基板の上下両表面に半導体素子と絶縁された放熱板を備えることを特徴とする。
【0008】
このように、本多層基板は、その内部に半導体素子を内蔵し、その上下両表面に放熱板が配置されている。従って、半導体素子から生じる熱を放熱板を介して外部へ放熱することができるため、放熱性に優れており、安定した状態で半導体素子を継続作動させることができる。また、各部材を積層し一括して加熱・加圧することができるため、製造コストを低減することができる。
【0009】
また、放熱板は、請求項2に記載のように樹脂フィルムの積層方向において、半導体素子と重なる位置に配置されることが好ましく、さらに請求項3に記載のように、樹脂フィルムの平面に沿った方向の大きさが、半導体素子と略同等かそれよりも大きいことが好ましい。上記のように放熱板が配置されると半導体素子にて生じた熱を放熱板へ効率良く伝えることができ、その大きさが半導体素子と略同等かそれよりも大きいと、さらに効率良く放熱板へ熱を伝達することができる。
【0010】
請求項4に記載のように、半導体素子の非電極形成面と放熱板との間に、樹脂フィルムよりも高熱伝導性の放熱経路を備えることが好ましい。半導体素子の非電極形成面と放熱板との間に、樹脂フィルムよりも高熱伝導性の放熱経路を備えれば、半導体素子にて発生した熱を、より効率良く放熱板へ伝えることができ好ましい。
【0011】
具体的には、請求項5に記載のように、放熱経路は導体パターンフィルムにおける導体パターンと層間接続材料との少なくとも一方によって形成されると良い。導体パターンフィルムに形成された導体及び層間接続材料は金属材料からなり、半導体素子にて生じた熱を放熱板へ伝達するのに適している。また、導体パターンフィルムを用いると、新たに製造工程を設ける必要もなく、製造工程の短縮ができるため好ましい。
【0012】
請求項6に記載のように、半導体素子の電極と導電接続される導体パターンフィルムを含む一部の樹脂フィルムのみが、他の樹脂フィルムの端面よりもその樹脂フィルムの平面に沿った方向に延伸していることが好ましい。このように、半導体素子の電極と電気的に接続される導体パターンフィルムが、他の樹脂フィルムの端面よりもその樹脂フィルムの平面に沿った方向に延伸出していると、外部との接続を行い易く好ましい。また、一部の樹脂フィルムのみが延伸していることから、当該延伸部は柔軟性を有している。従って、フレキシブルに折り曲げることにより他の基板や部品との接続性が向上し、コネクタ等の余分な部品が不要となることから低コスト化・小型化にも適している。
【0013】
請求項7に記載の多層基板の製造方法は、熱可塑性樹脂からなる樹脂フィルムの少なくとも片面上に導体パターンを形成し、且つ当該樹脂フィルムの所望の位置に層間接続材料が充填されたビアホールを形成する導体パターンフィルム形成工程と、導体パターンフィルムを含む複数の樹脂フィルムを積層する積層工程と、積層体の上下両表面に放熱板を配置し、プレス型を用いて加熱しつつ加圧することにより、樹脂フィルム及び放熱部材を相互に接着して多層基板を形成する加熱・加圧工程とを備え、積層工程前に、放熱板との絶縁が確保できる樹脂フィルムの所望の位置に半導体素子の形状に対応した配置領域を形成し、積層工程において、当該配置領域に半導体素子を配置することを特徴とする。
【0014】
このように、各部材を積層し一括して加熱・加圧することができるため、製造コストを低減することができる。また、予め半導体素子の形状に応じて、半導体素子の配置領域を形成しておけば、加熱・加圧プレス時に、半導体素子に応力が集中するのを防ぐことができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図に基づいて説明する。
(第1の実施の形態)
図1は、本実施の形態における多層基板の製造工程を示す工程別断面図である。
尚、本実施の形態の多層基板は、例えば車載用エンジンのECU、ABS等の油圧バルブ制御、EFIのガソリンエンジン噴射弁制御、パワーウインドウのモータ制御等に用いられる回路基板として適用される。
【0016】
図1(a)に示すように、1は樹脂フィルム2の片面に貼着された導体箔をエッチングによりパターン形成した導体パターン3を有する片面導体パターンフィルムである。ここで、樹脂フィルム2としては、例えば熱可塑性樹脂であるポリエーテルエーテルケトン(PEEK)65〜35重量%とポリエーテルイミド(PEI)35〜65重量%とからなる厚さ25〜100μmの樹脂フィルムを用いることができる。また、導体箔としては、例えばAu、Ag、Cu、Alの少なくとも1種を含む低抵抗金属箔が良く、望ましくは安価でマイグレーションの心配のないCu箔が良い。尚、導体パターン3形成は、導体箔のエッチング以外にも、印刷法を用いて行われても良い。
【0017】
図1(a)の樹脂フィルム2上に導体パターン3を形成する工程が完了すると、次に、図1(b)に示すように、樹脂フィルム2側から例えば炭酸ガスレーザを照射して、導体パターン3を底面とする有底孔であるビアホール4を形成する。ビアホール4の形成には、炭酸ガスレーザ以外にもUV−YAGレーザやエキシマレーザ等を用いることが可能である。その他にもドリル加工等により機械的にビアホール4を形成することも可能であるが、小径でかつ導体パターン3を傷つけないように加工することが必要とされるため、レーザによる加工法を選択することが好ましい。
【0018】
ビアホール4の形成が完了すると、図1(c)に示すように、ビアホール4内に層間接続材料である導電性ペースト5を充填する。導電性ペースト5は、Cu、Ag、Sn等の金属粒子に有機溶剤を加え、これを混練しペースト化したものである。尚、導電性ペースト5には、その他にも適宜低融点ガラスフリットや有機樹脂、或いは無機フィラーを添加混合しても良い。この、導電性ペースト5は、図示されないスクリーン印刷機やディスペンサ等を用いてビアホール4内に充填される。
【0019】
また、図1(d)、(e)に示すように、樹脂フィルム2を所定の長さに加工した加工樹脂フィルム2aと、当該加工樹脂フィルム2aの所定の位置に貫通孔6を有する加工樹脂フィルム2bとを夫々形成する。尚、加工樹脂フィルム2a,2bの形成は、後述する積層工程までに実施されれば良い。
【0020】
ここで、加工樹脂フィルム2a,2bにおいて、所定の長さへの加工、及び、貫通孔6の形成は、片面導体パターンフィルム1のビアホール4の形成同様、例えば炭酸ガスレーザを用いて行われる。また、炭酸ガスレーザ以外にも、UV−YAGレーザやエキシマレーザ等のレーザ加工、或いは、ドリル加工等により機械的に形成することも可能である。従って、片面導体パターンフィルム1のビアホール4形成時に、加工樹脂フィルム2a,2bも併せて形成されると、製造工程を短縮できるため好ましい。
【0021】
また、後述する積層工程において、2枚の加工樹脂フィルム2bを重ねて積層し、貫通孔6を半導体素子の配置領域とすることから、貫通孔6の大きさは、半導体素子とほぼ同じか若干大きめに形成される。この際、半導体素子は必ずしも2枚の加工樹脂フィルム2bの配置領域に配置されるとは限らなく、その配置領域は、半導体素子の大きさに対応して、積層方向に必要な層数分に渡って形成される。そして、配置領域も貫通孔6だけから構成されるのではなく、半導体素子の形状に対応し所定の深さをもった溝部から構成されるものであっても良い。また、加工樹脂フィルム2bにおける貫通孔6の形成位置は、後述する積層工程において、貫通孔6からなる配置領域に半導体素子を配置した際、半導体素子の電極が片面導体パターンフィルム1の導電性ペースト5と接触できる位置に形成される。
【0022】
また、加工樹脂フィルム2a,2bの長さは略同等に形成され、後述する積層工程において半導体素子の電極と導電接続する片面導体パターンフィルム1よりも短い長さに加工される。尚、必ずしも加工樹脂フィルム2a,2bの長さが略同等でなくても良い。
【0023】
ビアホール4への導電性ペースト5の充填がされた片面導体パターンフィルム1及び加工樹脂フィルム2a,2bの形成が完了すると、図1(f)に示すように、片面導体パターンフィルム1を含む複数枚の樹脂フィルムを積層する(本例では、片面導体パターンフィルム1を1枚、片面導体パターンフィルム1と同じ長さの樹脂フィルム2を1枚、加工樹脂フィルム2aを1枚、加工樹脂フィルム2bを2枚の計5枚)。
【0024】
このとき、加工樹脂フィルム2bは、2枚重ねて積層され、当該2枚の加工樹脂フィルム2bに形成された貫通孔6からなる配置領域に、半導体素子7が配置される。尚、本実施の形態における半導体素子7としては、例えばパワーMOSFETやIGBT等のパワーデバイスが用いられ、その実装形態としては、本実施の形態に示すFC実装以外にもCSP実装でも良い。
【0025】
そして、加工樹脂フィルム2bの上層(すなわち、半導体素子7の非電極形成面の直上)には、加工樹脂フィルム2aが配置される。また、加工樹脂フィルム2bの直下には、半導体素子7の電極8と機械的且つ電気的に接続される導電性ペースト5を備えた片面導体パターンフィルム1が配置される。この際、電極8は導電性ペースト5内に浸漬される。従って、半導体素子7は、後述する加熱・加圧工程により、電極8及び導電性ペースト5を介して、導体パターン3と電気的に接続されることとなる。尚、本実施の形態においては、半導体素子7の電極8と導電性ペースト5とを直接接続した。しかしながら、半導体素子7にAuやはんだ等の図示されないバンプを形成し、導電性ペースト5が完全に充填されないビアホール4内にそのバンプを配置することで、半導体素子7と片面導体パターンフィルム1の導体パターン3とを接続しても良い。この際、バンプをビアホール4に位置合わせすることができ、半導体素子7の位置合わせが容易となる。又、その際、半導体素子7にバンプを形成せず、導体パターン3上にバンプを形成しておき、当該バンプと半導体素子7の電極8とを接続しても良い。
【0026】
また、片面導体パターンフィルム1の下層として、樹脂フィルム2が配置される。これは、導体パターン3、すなわち半導体素子7と放熱板との間の絶縁を確保するためのものである。そして、この積層体の積層方向の上下両表面に、半導体素子7の放熱を目的とした放熱板9が配置される。
【0027】
放熱板9は、例えばAl,Cu,Mo等の熱伝導率の高い金属や、Al−SiC,Cu−W等の導電性複合材料、AlN,SiC等の絶縁性セラミックを原料として形成される。放熱板9は、積層体の積層方向において、半導体素子7と重なる位置に配置され、樹脂フィルム2の平面に沿った方向の大きさが、半導体素子7と略同等かそれよりも大きいもの(本実施の形態においては大きいものを使用)を用いている。従って、半導体素子7から放熱板9への熱の伝達が効率良く行われる。
【0028】
また、図1(f)において、放熱板9は、加工樹脂フィルム2a,2bと略同等の長さを有しているが、必ずしも加工樹脂フィルム2a,2bと略同等の長さを有していなくても良い。また、放熱板9は、その全体に渡って加工樹脂フィルム2a、樹脂フィルム2と接しているが、放熱板9の放熱性を向上させるために、放熱板9の一部が加工樹脂フィルム2a、樹脂フィルム2と接しないように配置しても良い。さらに、放熱板9が非導電性材料からなる場合は、半導体素子7との絶縁を確保する必要が無いので、積層体の最下層として用いる樹脂フィルム2は配置しなくとも良い。また、その代わりに片面導体パターンフィルム1を配置しても良い。
【0029】
図1(f)に示す積層工程がなされた後、積層体の上下両面から図示されない加熱プレス機のプレス型により加熱しつつ加圧し、多層基板10を形成する加熱・加圧工程が行われる。本例では、プレス条件として、250〜350℃の温度に加熱し、1〜10MPaの圧力で加圧した。尚、プレス型と積層体の表面との間には、導体パターン3の位置ずれを防ぐために、緩衝効果を有する図示されない緩衝部材を設けても良い。さらに、緩衝部材と積層体との間、及び、緩衝部材とプレス型との間に、夫々の間の離型性を良くする目的でポリイミド等の図示されない離型シートを設けて、加熱・加圧工程を行っても良い。尚、加工樹脂フィルム2a,2bの端面よりも当該加工樹脂フィルム2a,2bの平面に沿った方向に延伸している片面導体パターンフィルム1及び樹脂フィルム2にもプレス型が当接し、加熱・加圧が行われる。
【0030】
上述の製造工程を経て、各樹脂フィルム2、加工樹脂フィルム2a,2bが熱溶着して一体化すると共に、ビアホール4内の導電性ペースト5により隣接する導体パターン3或いは導電性ペースト5との間で層間接続がなされ、図1(g)に示すように多層基板10が形成される。このとき、半導体素子7もその電極8と導電性ペースト5とが機械的且つ電気的に接続され、半導体素子7は導電性ペースト5を介して、導体パターン3と導電接続される。
【0031】
以上より、本実施の形態における多層基板10は、多層基板10の内部に半導体素子7を内蔵している。そして、その半導体素子7の発する熱を多層基板10の上下両表面に配置した放熱板9により放熱できるため、パワーデバイス等の発熱量の大きい半導体素子を用いても、CSPやFCの実装形態を確保できる。従って、多層基板10を小型・薄型化することができ、ひいては電子機器を小型・薄型化することができる。
【0032】
また、多層基板10を上記の製造工程により、一括積層し、形成することができるため、発熱量の大きい半導体素子7を備えた多層基板10を、単純形状で安価に製造することができる。
【0033】
さらには、本実施の形態における多層基板10は、延伸部11を有しており、当該延伸部11は柔軟性を有していることから、フレキシブルに変形可能であり、ビアホール4に充填された導電性ペースト5を介して他の基板や部品との接続が容易である。従って、コネクタ等の余分な部品を使用する必要がないため、低コスト化及び小型化が可能である。尚、本実施の形態においては、延伸部11のビアホール4は1箇所のみ形成される例を示したが、これに限定されるものではない。
【0034】
また、本実施の形態においては、加工樹脂フィルム2a,2bの長さを、予め、片面導体パターンフィルム1よりも短く加工した後、積層工程を行った。しかしながら、積層前に、除去領域に沿って、除去したい表面から除去領域の最下層まで図示されないスリットを形成しておき、除去領域の最下層と当該最下層と隣接する除去されない層との間に離型フィルムを配置して多層基板10を形成する。そして、多層基板10の形成後、予め形成されたスリットを元に、多層基板10から除去領域及び離型フィルムを削除することで、所望の形状を有する延伸部11を有する多層基板10を形成しても良い。
【0035】
また、放熱板9と接する樹脂フィルム2、及び加工樹脂フィルム2aの少なくとも一方の積層方向の厚さを、半導体素子7と放熱板9との間の絶縁が確保される範囲で、できる限り薄くすると良い。それにより、半導体素子7から放熱板9への放熱性が向上する。
【0036】
また、本実施の形態においては、半導体素子7の例として、一方の面に電極8が形成された片面電極の半導体素子7を用いた。しかしながら、半導体素子7と放熱板9との間が、樹脂フィルム2及び加工樹脂フィルム2aにより絶縁されているので、半導体素子7の上下両面に電極8の形成された両面電極の半導体素子を用いても良い。
【0037】
(第2の実施の形態)
次に、本発明の第2の実施の形態を図2に基づいて説明する。
【0038】
第2の実施の形態における多層基板は、第1の実施の形態によるものと共通するところが多いので、以下、共通部分については詳しい説明は省略し、異なる部分を重点的に説明する。
【0039】
第2の実施の形態において、第1の実施の形態と異なる点は、半導体素子7の非電極形成面と放熱板9との間に、樹脂フィルム2aよりも高熱伝導性の放熱経路を有する加工片面導体パターンフィルム1aを配置した点である。
【0040】
先ず、第1の実施形態同様、片面導体パターンフィルム1、樹脂フィルム2、加工樹脂フィルム2b(2枚)、放熱板9(2枚)と共に、加工片面導体パターンフィルム1aが準備され、図2(a)に示すように積層される。尚、積層工程より前の製造工程は便宜上省略する。
【0041】
加工片面導体パターンフィルム1aは、その長さが、加工樹脂フィルム2bと略同等で、樹脂フィルム2の片面に導体パターン3を備え、当該導体パターン3を有底としたビアホール4に導電性ペースト5を備えている。すなわち、加工片面導体パターンフィルム1aは、樹脂フィルム2aよりも熱伝導性に優れた金属材料からなる導体パターン3及び導電性ペースト5を、半導体素子7から放熱板9への放熱経路として備えている。尚、本実施の形態において、図2(a)に示すように、ビアホール4を4個備えた加工片面導体パターンフィルム1aの例を示した。しかしながら、加工片面導体パターンフィルム1aは、少なくとも1個のビアホール4と、それに充填される導電性ペースト5を有していれば良い。そうすれば、加工樹脂フィルム2aよりも、半導体素子7から放熱板9への放熱性を向上することができる。
【0042】
そして、積層体に対して、その上下両表面から図示されない加熱プレス機のプレス型を用い、加熱しつつ加圧することにより、図2(b)に示す多層基板12が形成される。尚、プレス条件は、第1の実施の形態と同様である。
【0043】
以上、本実施の形態において形成された多層基板12は、その内部に配置された半導体素子7の非電極形成面と放熱板9との間に、加工片面導体パターンフィルム1aを備えている。そして、半導体素子7で発生した熱を、非電極形成面に接している導体パターン3、及び導電性ペースト5を介して、放熱板9へ放熱することができる。つまり、加工樹脂フィルム2aのみを配置していた場合と比較して、半導体素子7により生じた熱を、熱伝導性の良好な導体パターン3および導電性ペースト5からなる放熱経路を介して放熱板9へ伝達することができるため、半導体素子7から放熱板9への放熱性がより向上する。
【0044】
尚、本実施の形態においては、導体パターン3及び導電性ペースト5の両方を備えた放熱経路の例を示したが、放熱経路としては、導体パターン3と導電性ペースト5の少なくとも一方を備えていれば良い。
【0045】
尚、本実施の形態において、半導体素子7の非電極形成面と放熱板9との間に、放熱経路を有する加工片面導体パターンフィルム1aを用いる例を示した。しかしながら、それ以外にも、両面導体パターンや金属材料の埋め込まれた樹脂フィルム等、樹脂フィルム2aよりも熱伝導性が良く、一括プレスにより多層基板12の形成が可能であるものであれば、好適に用いることができる。
【0046】
以上本発明の好ましい実施形態について説明したが、本発明は上述の実施形態のみに限定されず、種々変更して実施する事ができる。
【0047】
上述の実施の形態において、樹脂フィルムはPEEK樹脂65〜35%とPEI樹脂35〜65%とからなる熱可塑性樹脂フィルムであったが、PEEK及びPEIを単独で用いることも可能である。更に、ポリエーテルサルフォン(PES)、ポリフェニレンエーテル(PPE)、ポリエチレンナフタレート(PEN)、液晶ポリマー、シンジオタクチック構造を有するスチレン系樹脂等を単独で用いても良いし、或いはPEEK、PEIを含めそれぞれの内、いずれかを混合して用いても良い。要するに加熱・加圧工程において、樹脂フィルム同士の接着が可能であり、後工程であるはんだ付け等で必要な耐熱性を有する樹脂フィルムであれば好適に用いる事ができる。
【0048】
また、本実施の形態において、ビアホール内に導電性ペースト充填する印刷法の例を示したが、それ以外にも無電解メッキ、電解メッキ、蒸着法、金属コート等を用いても良い。
【0049】
また、本実施の形態において、有底のビアホールを形成し、この有底ビアホールに層間接続材料である導電性ペーストを充填したが、ビアホール形成時に貫通穴を形成し、この貫通ビアホールに層間接続材料を充填するものであっても良い。
【0050】
また、本実施の形態において、樹脂フィルムを含む片面導体パターンフィルムを5枚積層する例を示したが、多層基板内に半導体素子を内蔵し、基板表面に放熱板が配置されていれば、層数が限定されるものではない。
【0051】
また、本実施の形態において、半導体素子の非電極形成面と放熱板との間に、加工樹脂フィルム、又は、加工片面導体パターンフィルムを配置し、多層基板を形成する例を示した。しかしながら、それ以外にも、半導体素子の非電極形成面に放熱板を隣接させ、多層基板を形成しても良い。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における多層基板の製造工程を示す工程別断面図である。
【図2】第2の実施の形態における多層基板の製造工程の一部を示す工程別断面図である。
【符号の説明】
1・・・片面導体パターンフィルム、1a・・・加工片面導体パターンフィルム、2・・・樹脂フィルム、2a・・・加工樹脂フィルム(貫通孔6無し)、2b・・・加工樹脂フィルム(貫通孔6有り)、7・・・半導体素子、8・・・電極、9・・・放熱板、10・・・多層基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multilayer substrate having a semiconductor element therein and a method of manufacturing the same.
[0002]
[Prior art]
There are CSP (Chip Size Package) and FC (Flip Chip) mounting methods as a mounting method of a semiconductor element for realizing miniaturization and thinning of an electronic device.
[0003]
However, for example, power MOSFETs, IGBTs, BSITs, and the like are used as power devices used in ECU control of a vehicle engine, hydraulic valve control, gasoline injection valve control of EFI, and the like. Has a high thermal resistance and is difficult to adopt from the viewpoint of connection reliability.
[0004]
[Problems to be solved by the invention]
Therefore, as a conventional technique, there is a method in which a semiconductor element is mounted on a resin substrate by FC and the upper surface of the element is brought into contact with a metal case to radiate heat. However, it is difficult to adjust the contact pressure between the surface of the semiconductor element and the metal case to reduce the thermal resistance, and there is a problem that the design and assembly of the electronic device are complicated.
[0005]
As another method, there is a method of preparing a module substrate in which only a semiconductor element having a large calorific value is mounted on a ceramic substrate by FC, and connecting the module substrate to a resin substrate. However, in this method, there is a problem that heat is radiated from the semiconductor element only on one side of the ceramic substrate side and the thermal resistance is higher than that of both sides. Further, since the ceramic substrate is used, there is a problem that the manufacturing cost increases.
[0006]
SUMMARY OF THE INVENTION In view of the above problems, an object of the present invention is to provide an inexpensive multilayer substrate excellent in heat dissipation of a semiconductor element and a method of manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the multilayer substrate according to claim 1 has a conductor pattern on at least one surface of a resin film made of a thermoplastic resin, and has a via hole filled at a desired position with an interlayer connection material. A multilayer substrate in which a pattern film is formed, a plurality of resin films including the conductor pattern film are laminated, and a semiconductor element is disposed inside the laminate so as to be conductively connected to the conductor pattern. A heat sink is provided on both upper and lower surfaces of the substrate, the heat sink being insulated from the semiconductor element.
[0008]
As described above, the present multilayer substrate has a semiconductor element incorporated therein, and the heat sinks are disposed on both upper and lower surfaces thereof. Therefore, since the heat generated from the semiconductor element can be radiated to the outside through the radiator plate, the semiconductor element is excellent in heat dissipation and the semiconductor element can be continuously operated in a stable state. In addition, since the members can be stacked and heated and pressed collectively, manufacturing costs can be reduced.
[0009]
Preferably, the heat radiating plate is disposed at a position overlapping with the semiconductor element in the laminating direction of the resin film as described in claim 2, and further along the plane of the resin film as described in claim 3. It is preferable that the size in the direction of the inclination is substantially equal to or larger than that of the semiconductor element. When the heat sink is arranged as described above, the heat generated in the semiconductor element can be efficiently transmitted to the heat sink, and when the size is substantially equal to or larger than the semiconductor element, the heat sink can be more efficiently. Can transfer heat to
[0010]
As described in claim 4, it is preferable that a heat dissipation path having higher heat conductivity than the resin film is provided between the non-electrode forming surface of the semiconductor element and the heat sink. It is preferable to provide a heat dissipation path having higher thermal conductivity than the resin film between the non-electrode forming surface of the semiconductor element and the heat sink, since heat generated in the semiconductor element can be more efficiently transmitted to the heat sink. .
[0011]
Specifically, it is preferable that the heat radiation path is formed by at least one of the conductor pattern and the interlayer connection material in the conductor pattern film. The conductor and the interlayer connection material formed on the conductor pattern film are made of a metal material, and are suitable for transmitting heat generated in the semiconductor element to the heat sink. In addition, it is preferable to use a conductor pattern film because there is no need to newly provide a manufacturing process and the manufacturing process can be shortened.
[0012]
As described in claim 6, only a part of the resin film including the conductor pattern film conductively connected to the electrode of the semiconductor element extends in the direction along the plane of the resin film rather than the end surface of the other resin film. Preferably. As described above, when the conductor pattern film electrically connected to the electrode of the semiconductor element extends in the direction along the plane of the resin film from the end face of the other resin film, connection with the outside is performed. Easy and preferred. Also, since only a part of the resin film is stretched, the stretched portion has flexibility. Therefore, the flexible bending improves the connectivity with other substrates and components, and eliminates the need for extra components such as connectors, which is suitable for cost reduction and miniaturization.
[0013]
The method of manufacturing a multilayer substrate according to claim 7, wherein a conductive pattern is formed on at least one surface of a resin film made of a thermoplastic resin, and a via hole filled with an interlayer connection material is formed at a desired position of the resin film. Conducting a conductive pattern film forming step, a laminating step of laminating a plurality of resin films including the conductive pattern film, disposing a heat sink on both upper and lower surfaces of the laminate, and pressing while heating using a press mold, A heating / pressing step of bonding the resin film and the heat radiating member to each other to form a multi-layer substrate, and forming the semiconductor element at a desired position of the resin film capable of securing insulation with the heat radiating plate before the laminating step. A corresponding arrangement region is formed, and a semiconductor element is arranged in the arrangement region in the laminating step.
[0014]
As described above, since the members can be stacked and heated and pressed at once, the manufacturing cost can be reduced. In addition, if the arrangement region of the semiconductor element is formed in advance in accordance with the shape of the semiconductor element, it is possible to prevent stress from being concentrated on the semiconductor element during heating and pressing.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First Embodiment)
FIG. 1 is a cross-sectional view illustrating the steps of manufacturing a multilayer substrate according to the present embodiment.
The multilayer board of the present embodiment is used as a circuit board used for controlling hydraulic valves such as an ECU and an ABS of a vehicle-mounted engine, controlling a gasoline engine injection valve of an EFI, and controlling a motor of a power window, for example.
[0016]
As shown in FIG. 1A, reference numeral 1 denotes a single-sided conductor pattern film having a conductor pattern 3 in which a conductor foil attached to one surface of a resin film 2 is patterned by etching. Here, as the resin film 2, for example, a resin film having a thickness of 25 to 100 μm including 65 to 35% by weight of a polyetheretherketone (PEEK) which is a thermoplastic resin and 35 to 65% by weight of a polyetherimide (PEI) Can be used. Further, as the conductive foil, for example, a low-resistance metal foil containing at least one of Au, Ag, Cu, and Al is preferable, and a Cu foil that is inexpensive and has no fear of migration is preferable. The formation of the conductor pattern 3 may be performed using a printing method other than the etching of the conductor foil.
[0017]
When the step of forming the conductor pattern 3 on the resin film 2 in FIG. 1A is completed, then, for example, as shown in FIG. A via hole 4 which is a bottomed hole having a bottom surface 3 is formed. In forming the via hole 4, a UV-YAG laser, an excimer laser, or the like can be used in addition to the carbon dioxide gas laser. In addition, it is possible to mechanically form the via hole 4 by drilling or the like. However, since it is necessary to process the conductor pattern 3 with a small diameter so as not to damage the conductor pattern 3, a processing method using a laser is selected. Is preferred.
[0018]
When the formation of the via hole 4 is completed, as shown in FIG. 1C, the via hole 4 is filled with a conductive paste 5 which is an interlayer connection material. The conductive paste 5 is obtained by adding an organic solvent to metal particles such as Cu, Ag, and Sn, kneading the mixture, and forming a paste. The conductive paste 5 may be appropriately mixed with a low melting point glass frit, an organic resin, or an inorganic filler. The conductive paste 5 is filled in the via hole 4 using a screen printing machine or a dispenser (not shown).
[0019]
Further, as shown in FIGS. 1D and 1E, a processed resin film 2a obtained by processing the resin film 2 to a predetermined length, and a processed resin having a through hole 6 at a predetermined position of the processed resin film 2a. Each of the films 2b is formed. Note that the formation of the processed resin films 2a and 2b may be performed by the laminating step described later.
[0020]
Here, in the processed resin films 2a and 2b, the processing to a predetermined length and the formation of the through holes 6 are performed by using, for example, a carbon dioxide gas laser, similarly to the formation of the via holes 4 of the single-sided conductive pattern film 1. Further, in addition to the carbon dioxide laser, it is also possible to mechanically form by laser processing such as UV-YAG laser or excimer laser, or drill processing. Therefore, it is preferable to form the processed resin films 2a and 2b together when forming the via holes 4 in the one-sided conductor pattern film 1 because the manufacturing process can be shortened.
[0021]
Further, in a laminating step to be described later, two processed resin films 2b are superposed and laminated, and the through-hole 6 is used as an arrangement region of the semiconductor element. It is formed large. At this time, the semiconductor element is not always arranged in the area where the two processed resin films 2b are arranged, and the area where the semiconductor element is arranged corresponds to the size of the semiconductor element and is equal to the number of layers required in the stacking direction. Formed across. The arrangement region is not limited to the through hole 6 but may be a groove having a predetermined depth corresponding to the shape of the semiconductor element. Further, the formation position of the through-hole 6 in the processed resin film 2b is determined by setting the electrode of the semiconductor element to the conductive paste 5 is formed at a position where it can come into contact.
[0022]
The processed resin films 2a and 2b are formed to have substantially the same length, and are processed to be shorter than the single-sided conductor pattern film 1 that is conductively connected to the electrodes of the semiconductor element in a laminating step described later. Incidentally, the lengths of the processed resin films 2a and 2b do not necessarily have to be substantially equal.
[0023]
When the formation of the single-sided conductor pattern film 1 and the processed resin films 2a and 2b in which the via holes 4 are filled with the conductive paste 5 is completed, a plurality of sheets including the single-sided conductor pattern film 1 are formed as shown in FIG. (In this example, one single-sided conductor pattern film 1, one resin film 2 having the same length as the single-sided conductor pattern film 1, one processed resin film 2 a, and one processed resin film 2 b (2 sheets total 5 sheets).
[0024]
At this time, the two processed resin films 2b are stacked one upon another, and the semiconductor element 7 is arranged in the arrangement region formed by the through holes 6 formed in the two processed resin films 2b. It should be noted that a power device such as a power MOSFET or an IGBT is used as the semiconductor element 7 in the present embodiment, and the mounting form may be CSP mounting other than FC mounting shown in the present embodiment.
[0025]
Then, the processed resin film 2a is disposed on the upper layer of the processed resin film 2b (that is, immediately above the non-electrode forming surface of the semiconductor element 7). The single-sided conductive pattern film 1 having the conductive paste 5 that is mechanically and electrically connected to the electrode 8 of the semiconductor element 7 is disposed directly below the processed resin film 2b. At this time, the electrode 8 is immersed in the conductive paste 5. Therefore, the semiconductor element 7 is electrically connected to the conductor pattern 3 via the electrode 8 and the conductive paste 5 by a heating / pressing process described later. In the present embodiment, the electrode 8 of the semiconductor element 7 and the conductive paste 5 are directly connected. However, by forming a bump (not shown) such as Au or solder on the semiconductor element 7 and disposing the bump in the via hole 4 where the conductive paste 5 is not completely filled, the semiconductor element 7 and the conductor of the one-sided conductor pattern film 1 are formed. The pattern 3 may be connected. At this time, the bump can be aligned with the via hole 4, and the semiconductor element 7 can be easily aligned. In this case, a bump may be formed on the conductor pattern 3 without forming a bump on the semiconductor element 7, and the bump may be connected to the electrode 8 of the semiconductor element 7.
[0026]
Further, a resin film 2 is disposed as a lower layer of the single-sided conductor pattern film 1. This is to ensure insulation between the conductor pattern 3, that is, the semiconductor element 7 and the heat sink. Then, heat radiating plates 9 for radiating heat of the semiconductor element 7 are arranged on both upper and lower surfaces in the stacking direction of the stacked body.
[0027]
The heat radiating plate 9 is formed using a metal having a high thermal conductivity such as Al, Cu, or Mo, a conductive composite material such as Al-SiC or Cu-W, or an insulating ceramic such as AlN or SiC as a raw material. The heat radiating plate 9 is disposed at a position overlapping the semiconductor element 7 in the stacking direction of the stacked body, and has a size in the direction along the plane of the resin film 2 substantially equal to or larger than that of the semiconductor element 7. In the embodiment, a large one is used). Therefore, heat is efficiently transmitted from the semiconductor element 7 to the heat sink 9.
[0028]
Further, in FIG. 1 (f), the heat radiating plate 9 has substantially the same length as the processed resin films 2a, 2b, but does not necessarily have substantially the same length as the processed resin films 2a, 2b. You don't have to. Further, the heat radiating plate 9 is in contact with the processed resin film 2a and the resin film 2 over its entirety, but in order to improve the heat radiation of the heat radiating plate 9, a part of the heat radiating plate 9 is formed of the processed resin film 2a, It may be arranged so as not to be in contact with the resin film 2. Furthermore, when the heat radiating plate 9 is made of a non-conductive material, it is not necessary to secure insulation from the semiconductor element 7, so that the resin film 2 used as the lowermost layer of the laminate need not be provided. Alternatively, the single-sided conductive pattern film 1 may be provided.
[0029]
After the laminating step shown in FIG. 1F is performed, a heating and pressing step of forming a multilayer substrate 10 is performed by applying pressure while heating the upper and lower surfaces of the laminate by using a press die of a heating press machine (not shown). In this example, as the pressing conditions, heating was performed at a temperature of 250 to 350 ° C., and pressure was applied at a pressure of 1 to 10 MPa. Note that a buffer member (not shown) having a buffering effect may be provided between the press die and the surface of the laminate in order to prevent the conductor pattern 3 from being displaced. Further, a release sheet (not shown) such as polyimide is provided between the cushioning member and the laminate and between the cushioning member and the press die for the purpose of improving the releasability between the respective members. A pressure step may be performed. The press die also contacts the single-sided conductor pattern film 1 and the resin film 2 extending in the direction along the plane of the processed resin films 2a, 2b from the end surfaces of the processed resin films 2a, 2b, and the press mold is heated and heated. Pressure is applied.
[0030]
Through the above-described manufacturing process, each resin film 2 and the processed resin films 2a and 2b are heat-welded and integrated, and at the same time, the conductive paste 5 in the via hole 4 and the adjacent conductive pattern 3 or conductive paste 5 The connection between the layers is made, and a multilayer substrate 10 is formed as shown in FIG. At this time, also in the semiconductor element 7, the electrode 8 and the conductive paste 5 are mechanically and electrically connected, and the semiconductor element 7 is conductively connected to the conductor pattern 3 via the conductive paste 5.
[0031]
As described above, the multilayer substrate 10 according to the present embodiment has the semiconductor element 7 built in the multilayer substrate 10. Since the heat generated by the semiconductor element 7 can be radiated by the heat radiating plates 9 disposed on both the upper and lower surfaces of the multilayer substrate 10, even if a semiconductor element having a large amount of heat such as a power device is used, the mounting form of the CSP or FC can be reduced. Can be secured. Therefore, the multilayer substrate 10 can be reduced in size and thickness, and the electronic device can be reduced in size and thickness.
[0032]
Further, since the multilayer substrate 10 can be collectively laminated and formed by the above-described manufacturing process, the multilayer substrate 10 including the semiconductor element 7 having a large heat value can be manufactured in a simple shape and at low cost.
[0033]
Further, the multilayer substrate 10 in the present embodiment has an extended portion 11, and since the extended portion 11 has flexibility, it can be flexibly deformed and is filled in the via hole 4. Connection with other substrates or components via the conductive paste 5 is easy. Therefore, since it is not necessary to use extra parts such as connectors, cost reduction and size reduction can be achieved. In the present embodiment, an example is shown in which the via hole 4 of the extending portion 11 is formed at only one place, but the present invention is not limited to this.
[0034]
Further, in the present embodiment, the laminating step is performed after processing the length of the processed resin films 2a and 2b shorter than that of the single-sided conductive pattern film 1 in advance. However, before lamination, a slit (not shown) is formed along the removal region from the surface to be removed to the lowermost layer of the removal region, and between the lowermost layer of the removal region and the adjacent non-removable layer. A multilayer film 10 is formed by disposing a release film. Then, after the formation of the multilayer substrate 10, the removal region and the release film are deleted from the multilayer substrate 10 based on the slits formed in advance, thereby forming the multilayer substrate 10 having the extending portion 11 having a desired shape. May be.
[0035]
In addition, the thickness of at least one of the resin film 2 and the processed resin film 2a in contact with the heat radiating plate 9 in the laminating direction is made as thin as possible as long as the insulation between the semiconductor element 7 and the heat radiating plate 9 is ensured. good. Thereby, the heat radiation from the semiconductor element 7 to the heat radiating plate 9 is improved.
[0036]
Further, in the present embodiment, as an example of the semiconductor element 7, a single-sided electrode semiconductor element 7 having an electrode 8 formed on one surface is used. However, since the semiconductor element 7 and the heat radiating plate 9 are insulated by the resin film 2 and the processed resin film 2a, a double-sided semiconductor element having the electrodes 8 formed on the upper and lower surfaces of the semiconductor element 7 is used. Is also good.
[0037]
(Second embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG.
[0038]
Since the multilayer substrate according to the second embodiment has many parts in common with those according to the first embodiment, detailed description of common parts will be omitted, and different parts will be mainly described below.
[0039]
The second embodiment is different from the first embodiment in that a process having a heat dissipation path having higher heat conductivity than the resin film 2a is provided between the non-electrode forming surface of the semiconductor element 7 and the heat sink 9. This is the point where the single-sided conductor pattern film 1a is arranged.
[0040]
First, similarly to the first embodiment, a processed single-sided conductive pattern film 1a is prepared together with a single-sided conductive pattern film 1, a resin film 2, a processed resin film 2b (two), and a heat sink 9 (two), and FIG. The layers are stacked as shown in a). Note that manufacturing steps prior to the laminating step are omitted for convenience.
[0041]
The processed single-sided conductive pattern film 1a has a length substantially equal to that of the processed resin film 2b, is provided with a conductive pattern 3 on one side of the resin film 2, and is provided with a conductive paste 5 in a via hole 4 having the conductive pattern 3 as a bottom. It has. That is, the processed single-sided conductor pattern film 1a includes the conductor pattern 3 and the conductive paste 5 made of a metal material having higher thermal conductivity than the resin film 2a as a heat radiation path from the semiconductor element 7 to the heat radiation plate 9. . In this embodiment, as shown in FIG. 2A, an example of the processed single-sided conductive pattern film 1a having four via holes 4 is shown. However, the processed single-sided conductive pattern film 1a only needs to have at least one via hole 4 and the conductive paste 5 filled therein. Then, the heat radiation from the semiconductor element 7 to the heat radiating plate 9 can be improved more than the processed resin film 2a.
[0042]
Then, the multilayer body 12 shown in FIG. 2B is formed by applying pressure while heating the laminated body from both upper and lower surfaces thereof using a press die of a heating press machine (not shown). The pressing conditions are the same as in the first embodiment.
[0043]
As described above, the multilayer substrate 12 formed in the present embodiment includes the processed single-sided conductive pattern film 1a between the non-electrode forming surface of the semiconductor element 7 and the heat sink 9 disposed therein. Then, the heat generated in the semiconductor element 7 can be radiated to the heat radiating plate 9 via the conductive pattern 3 and the conductive paste 5 in contact with the non-electrode formation surface. That is, compared with the case where only the processed resin film 2a is arranged, the heat generated by the semiconductor element 7 is transferred to the heat radiating plate through the heat radiating path including the conductive pattern 3 and the conductive paste 5 having good heat conductivity. 9, the heat radiation from the semiconductor element 7 to the heat radiating plate 9 is further improved.
[0044]
In the present embodiment, an example of the heat dissipation path including both the conductor pattern 3 and the conductive paste 5 has been described, but the heat dissipation path includes at least one of the conductor pattern 3 and the conductive paste 5. Just do it.
[0045]
In the present embodiment, an example in which the processed single-sided conductive pattern film 1a having a heat dissipation path is provided between the non-electrode formation surface of the semiconductor element 7 and the heat dissipation plate 9 has been described. However, in addition to the above, any material having a better thermal conductivity than the resin film 2a, such as a double-sided conductor pattern or a resin film in which a metal material is embedded, and capable of forming the multilayer substrate 12 by batch pressing is preferable. Can be used.
[0046]
Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and can be implemented with various modifications.
[0047]
In the above embodiment, the resin film is a thermoplastic resin film composed of 65 to 35% of PEEK resin and 35 to 65% of PEI resin, but it is also possible to use PEEK and PEI alone. Further, polyethersulfone (PES), polyphenylene ether (PPE), polyethylene naphthalate (PEN), a liquid crystal polymer, a styrene resin having a syndiotactic structure, or the like may be used alone, or PEEK or PEI may be used. Any of these may be used as a mixture. In short, in the heating / pressing step, the resin films can be bonded to each other, and any resin film having heat resistance required for soldering or the like in a later step can be suitably used.
[0048]
Further, in the present embodiment, an example of the printing method in which the conductive paste is filled in the via hole has been described, but other than that, electroless plating, electrolytic plating, vapor deposition, metal coating, or the like may be used.
[0049]
In the present embodiment, a bottomed via hole is formed, and the bottomed via hole is filled with a conductive paste as an interlayer connection material. However, a through hole is formed at the time of forming the via hole, and an interlayer connection material is formed in the through via hole. May be filled.
[0050]
Further, in the present embodiment, an example in which five single-sided conductor pattern films including a resin film are laminated is shown. However, if a semiconductor element is built in a multilayer substrate and a heat sink is arranged on the substrate surface, the layer may be laminated. The number is not limited.
[0051]
Further, in the present embodiment, an example has been described in which a processed resin film or a processed single-sided conductive pattern film is disposed between the non-electrode forming surface of the semiconductor element and the heat sink, thereby forming a multilayer substrate. However, other than that, a heat sink may be adjacent to the non-electrode formation surface of the semiconductor element to form a multilayer substrate.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a manufacturing process of a multilayer substrate according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view illustrating a part of a manufacturing process of a multilayer substrate according to a second embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Single-sided conductor pattern film, 1a ... Processed single-sided conductor pattern film, 2 ... Resin film, 2a ... Processed resin film (without through-hole 6), 2b ... Processed resin film (through-hole) 6), 7 ... semiconductor element, 8 ... electrode, 9 ... radiator plate, 10 ... multilayer substrate