JPH07162157A - Multilayered board - Google Patents

Multilayered board

Info

Publication number
JPH07162157A
JPH07162157A JP5306824A JP30682493A JPH07162157A JP H07162157 A JPH07162157 A JP H07162157A JP 5306824 A JP5306824 A JP 5306824A JP 30682493 A JP30682493 A JP 30682493A JP H07162157 A JPH07162157 A JP H07162157A
Authority
JP
Japan
Prior art keywords
filling metal
multilayer substrate
substrate
metal
power element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5306824A
Other languages
Japanese (ja)
Other versions
JP3520540B2 (en
Inventor
Yasutomi Asai
浅井  康富
Takashi Nagasaka
長坂  崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30682493A priority Critical patent/JP3520540B2/en
Priority to DE4443424A priority patent/DE4443424B4/en
Publication of JPH07162157A publication Critical patent/JPH07162157A/en
Application granted granted Critical
Publication of JP3520540B2 publication Critical patent/JP3520540B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3733Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon having a heterogeneous or anisotropic structure, e.g. powder or fibres in a matrix, wire mesh, porous structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5383Multilayer substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32153Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate
    • H01L2224/32175Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic
    • H01L2224/32188Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being arranged next to each other, e.g. on a common substrate the item being metallic the layer connector connecting to a bonding area protruding from the surface of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48235Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15312Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

PURPOSE:To provide a multilayered board which can be lessened in transient and steady-state thermal resistance. CONSTITUTION:A filling metal 4 is filled in a surface insulating layer 1a as a heat transfer conductor of high thermal conductivity, and a power device 6 is arranged on the filling metal 4. Heat released from the power device 6 is transmitted to the filling metal 4 located at the surface insulating layer 1a and dissipated. The filling metal 4 is formed of mixture of Mo particles of high melting point and aluminum particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は多層基板に関するもの
である。
FIELD OF THE INVENTION The present invention relates to a multilayer substrate.

【0002】[0002]

【従来の技術】従来、多層基板においては、例えば、図
12に示すように、多層よりなるセラミック基板31上
にCuやAgよりなる厚膜導体32が印刷焼成にて形成
され、その上に半田33を介してMoやCuよりなるヒ
ートシンク34が配置され、さらにその上に半田35を
介してパワー素子36が実装されている。尚、図中、3
7はワイヤであり、38はチップターミナルである。
2. Description of the Related Art Conventionally, in a multilayer substrate, for example, as shown in FIG. 12, a thick film conductor 32 made of Cu or Ag is formed by printing and firing on a multilayer ceramic substrate 31, and solder is formed thereon. A heat sink 34 made of Mo or Cu is arranged via 33, and a power element 36 is mounted thereon via solder 35. In the figure, 3
7 is a wire and 38 is a chip terminal.

【0003】[0003]

【発明が解決しようとする課題】ところが、この構造で
は、過渡的な熱抵抗を下げる必要があるものは、ヒート
シンク34を厚く(体積を増加)しなければならず、ヒ
ートシンク34のコストアップ及び実装容積の拡大を招
いていた。さらに、定常熱抵抗を下げるためには、熱伝
導性のよい基板材料を用いる必要があり、これは材料の
コストアップにつながる。又、定常熱抵抗を下げるため
にはヒートシンク34を薄くしてパワー素子から基板底
面までの距離を小さくし、基板底面からの放熱性を向上
させる必要があったが、ヒートシンク34を薄くするこ
とは過渡熱抵抗を下げることと相反することとなってし
まっていた。
However, in this structure, if the transient thermal resistance needs to be reduced, the heat sink 34 must be made thicker (volume increased), which increases the cost and mounting of the heat sink 34. This has led to an increase in volume. Further, in order to reduce the steady-state thermal resistance, it is necessary to use a substrate material having good thermal conductivity, which leads to an increase in material cost. Further, in order to reduce the steady-state thermal resistance, it is necessary to make the heat sink 34 thin to reduce the distance from the power element to the bottom surface of the substrate to improve the heat dissipation from the bottom surface of the substrate. It had become the opposite of reducing the transient thermal resistance.

【0004】そこで、この発明の目的は、過渡ならびに
定常熱抵抗を下げることができる多層基板を提供するこ
とにある。
Therefore, an object of the present invention is to provide a multilayer substrate which can reduce transient and steady-state thermal resistance.

【0005】[0005]

【課題を解決するための手段】この発明は、複数の絶縁
層からなる多層基板上にパワー素子を配置し、一以上の
絶縁層のパワー素子下部領域に前記パワー素子の熱伝達
用導体を充填した多層基板をその要旨とする。
According to the present invention, a power element is arranged on a multilayer substrate composed of a plurality of insulating layers, and a heat transfer conductor of the power element is filled in a lower region of the power element of one or more insulating layers. The above-mentioned multilayer substrate is the gist.

【0006】[0006]

【作用】パワー素子で発生した熱は、基板内に充填され
た熱伝達用導体を通して伝達され放熱される。この際、
従来のヒートシンクが基板内に配置されていると考える
ならば熱伝達用導体の体積を大きくすることにより過渡
熱抵抗を下げることができ、このように過渡熱抵抗を下
げることができるのでヒートシンクを薄くして定常熱抵
抗を下げることが可能となる。換言すれば、従来のよう
に表層の上方に突出したヒートシンクは不要、もしくは
ヒートシンクを小さくすることが可能となる。
The heat generated by the power element is transferred and radiated through the heat transfer conductor filled in the substrate. On this occasion,
If you think that a conventional heat sink is placed in the substrate, you can reduce the transient thermal resistance by increasing the volume of the heat transfer conductor. As a result, the steady-state thermal resistance can be reduced. In other words, it is not necessary to use a heat sink protruding above the surface layer as in the conventional case, or it is possible to reduce the size of the heat sink.

【0007】[0007]

【実施例】以下、この発明を具体化した一実施例を図面
に従って説明する。図1に全体構成図を示す。3つのア
ルミナよりなる絶縁層1a,1b,1cを重ねて多層基
板2が形成されている。多層基板2の最上層の絶縁層1
aにおける所定領域には充填金属収納用貫通部3が形成
され、この充填金属収納用貫通部3内に熱伝導性のよい
熱伝達用導体としての充填金属4が充填されている。こ
の充填金属4は、絶縁層1bにおける内層配線5と電気
的に接続されている。又、充填金属4には、高融点材料
であるMo(モリブデン)粒子とアルミナ粒子の混合物
が用いられている。ここで、Mo(モリブデン)は、そ
の熱伝導度が0.328cal・cm-1deg-1
-1(20℃)、融点が2622±10℃である。他の充
填金属4としては、高融点材料であるW(タングステ
ン)粒子とアルミナ粒子の混合物、あるいは、Mo(モ
リブデン)粒子とW(タングステン)粒子とアルミナ粒
子との混合物が使用される。ここで、W(タングステ
ン)は、その熱伝導度が0.382cal・cm-1de
-1-1(20℃)、融点が3382℃である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows an overall configuration diagram. A multi-layer substrate 2 is formed by stacking three insulating layers 1a, 1b, 1c made of alumina. The uppermost insulating layer 1 of the multilayer substrate 2
A through hole 3 for storing the filled metal is formed in a predetermined region of a, and the through hole 3 for storing the filled metal is filled with the filled metal 4 as a heat transfer conductor having good thermal conductivity. The filling metal 4 is electrically connected to the inner layer wiring 5 in the insulating layer 1b. The filling metal 4 is a mixture of Mo (molybdenum) particles and alumina particles, which are high melting point materials. Here, Mo (molybdenum) has a thermal conductivity of 0.328 cal · cm −1 deg −1 s.
−1 (20 ° C.), melting point 2622 ± 10 ° C. As the other filling metal 4, a mixture of W (tungsten) particles and alumina particles, which is a high melting point material, or a mixture of Mo (molybdenum) particles, W (tungsten) particles and alumina particles is used. Here, the thermal conductivity of W (tungsten) is 0.382 cal · cm −1 de
g −1 s −1 (20 ° C.), melting point 3382 ° C.

【0008】充填金属4の上にはパワー素子6が半田
(あるいはAgペースト)によりダイマウントされてい
る。又、パワー素子6はワイヤ7にて多層基板2の最上
層の絶縁層1a上の導体部と電気的に接続されている。
A power element 6 is die-mounted on the filling metal 4 with solder (or Ag paste). The power element 6 is electrically connected by a wire 7 to a conductor portion on the uppermost insulating layer 1a of the multilayer substrate 2.

【0009】次に、多層基板2の製造方法を図2〜図6
を用いて説明する。図2に示すように、平板状のアルミ
ナグリーンシート8を用意する。このアルミナグリーン
シート8の厚みは0.254mmである。そして、アル
ミナグリーンシート8の所定領域に正方形状の貫通溝9
をパンチングにより形成する。尚、貫通溝9はスルーホ
ールの形成と同一工程で作ってもよい。
Next, a method of manufacturing the multilayer substrate 2 will be described with reference to FIGS.
Will be explained. As shown in FIG. 2, a flat alumina green sheet 8 is prepared. The thickness of this alumina green sheet 8 is 0.254 mm. Then, a square through groove 9 is formed in a predetermined area of the alumina green sheet 8.
Are formed by punching. The through groove 9 may be formed in the same process as the formation of the through hole.

【0010】その後、図3に示すように、2枚重ねにし
たアルミナグリーンシート10上にアルミナグリーンシ
ート8を重ね合わせる。その結果、図4のようになる。
さらに、図5に示すように、エマルジョンマスクあるい
はメタルマスクを用いてMo粒子とアルミナ粒子を混合
したペースト11を印刷により貫通溝9に充填する。
Thereafter, as shown in FIG. 3, the alumina green sheet 8 is superposed on the two alumina green sheets 10 which are superposed. As a result, the result is as shown in FIG.
Further, as shown in FIG. 5, a paste 11 in which Mo particles and alumina particles are mixed is filled in the through groove 9 by printing using an emulsion mask or a metal mask.

【0011】その後、積層されたアルミナグリーンシー
ト8,10を加圧し、千数百℃以上で焼成することによ
り、多層セラミック基板を得る。さらに、焼成された多
層基板の表面の導体部分(ペースト11を焼成した充填
金属4、メタライズ)に接合性を向上させるためにメッ
キを施す。そして、多層基板の表面または裏面に厚膜導
体、厚膜抵抗体、ガラス等の印刷・焼成を繰り返す。
After that, the laminated alumina green sheets 8 and 10 are pressed and fired at a temperature of not less than several thousand and several hundreds of degrees to obtain a multilayer ceramic substrate. Further, the conductor portion (filled metal 4 obtained by firing the paste 11 and metallization) on the surface of the fired multilayer substrate is plated to improve the bondability. Then, printing and firing of a thick film conductor, a thick film resistor, glass and the like are repeated on the front surface or the back surface of the multilayer substrate.

【0012】そして、図6に示すように、ペースト11
を焼成した充填金属4に、パワー素子6を半田(あるい
はAgペースト)によりダイマウントし、ワイヤ7によ
るワイヤーボンドを施す。
Then, as shown in FIG.
The power element 6 is die-mounted with solder (or Ag paste) on the filled metal 4 that has been fired, and wire bonding is performed with the wire 7.

【0013】その結果、図1に示す多層基板2が形成さ
れる。この図1の構成においては、パワー素子6に発生
する熱が充填金属4で吸収できる。又、充填金属4の成
分であるMo(モリブデン)自体も極めて低抵抗である
ため、充填金属4を配線として考えた場合には基板全体
の発熱を軽減できる。
As a result, the multilayer substrate 2 shown in FIG. 1 is formed. In the structure of FIG. 1, the heat generated in the power element 6 can be absorbed by the filling metal 4. Further, since Mo (molybdenum) itself which is a component of the filling metal 4 has an extremely low resistance, when the filling metal 4 is considered as a wiring, heat generation of the entire substrate can be reduced.

【0014】さらに、充填金属4を厚くできるので、表
層導体(図12の厚膜導体32)を使用した場合に比べ
電気抵抗を数10分の1にできる。さらには、熱抵抗も
例えば、Mo単体の80〜90%程度になるが充填金属
4の厚みや面積を大きくして充填金属4の体積を増加す
ることにより図12のヒートシンク34を使用したもの
よりも熱抵抗を小さくできる。
Furthermore, since the filling metal 4 can be thickened, the electric resistance can be reduced to several tenths as compared with the case where the surface layer conductor (thick film conductor 32 of FIG. 12) is used. Further, the thermal resistance is, for example, about 80 to 90% of that of Mo alone, but by increasing the thickness and area of the filling metal 4 to increase the volume of the filling metal 4, the heat sink 34 of FIG. 12 is used. Can also reduce the thermal resistance.

【0015】又、充填金属4にはMo粒子に対しアルミ
ナ粒子を混合してあるので、充填金属4の熱膨張率をア
ルミナ基板の熱膨張率に近づけることができる。よっ
て、アルミナ基板と充填金属4の熱応力を低く抑えるこ
とができる。
Further, since the filler metal 4 is a mixture of Mo particles and alumina particles, the coefficient of thermal expansion of the filler metal 4 can be made close to that of the alumina substrate. Therefore, the thermal stress of the alumina substrate and the filling metal 4 can be suppressed low.

【0016】このように本実施例では、表層(絶縁層1
a)内に熱伝導性のよい充填金属4(熱伝達用導体)を
充填し、その充填金属4上にパワー素子6を配置した。
よって、パワー素子6で発生した熱は、表層(絶縁層1
a)内の充填金属4を通して伝達され放熱される。この
際、従来のヒートシンクが基板内に配置されていると考
えるならば充填金属4の体積を大きくすることにより過
渡熱抵抗を下げることができ、このように過渡熱抵抗を
下げることができるのでヒートシンクを薄くして定常熱
抵抗を下げることが可能となる。換言すれば、従来のよ
うに表層の上方に突出したヒートシンクは不要、もしく
はヒートシンクを小さくすることが可能となり、コスト
ダウンが図れるとともに実装容積を減少させることがで
きる。さらに、放熱のために高価なAlN等の基板材料
を使用する必要もなくなり安価に熱伝導性の優れた基板
を作成することが可能となる。
As described above, in this embodiment, the surface layer (insulating layer 1
Filling metal 4 (heat transfer conductor) having good thermal conductivity was filled in a), and power element 6 was arranged on the filling metal 4.
Therefore, the heat generated in the power element 6 is applied to the surface layer (insulating layer 1
It is transmitted through the filling metal 4 in a) and radiated. At this time, if it is considered that the conventional heat sink is arranged in the substrate, the transient thermal resistance can be reduced by increasing the volume of the filling metal 4, and thus the transient thermal resistance can be reduced. It is possible to reduce the steady-state thermal resistance by reducing the thickness. In other words, it is not necessary to use a heat sink protruding above the surface layer as in the conventional case, or the heat sink can be downsized, which can reduce the cost and the mounting volume. Further, it is not necessary to use an expensive substrate material such as AlN for heat dissipation, and it is possible to inexpensively produce a substrate having excellent thermal conductivity.

【0017】又、充填金属4には、高融点材料(多層基
板2の焼成温度よりも融点の高い材料)であるMo(融
点;2622±10℃)の粒子を使用したので、グリー
ンシートに充填金属のペーストを充填した後、グリーン
シートを千数百℃以上で焼成しても充填金属であるMo
が融けることがない。
Moreover, since particles of Mo (melting point; 2622 ± 10 ° C.), which is a high melting point material (a material having a melting point higher than the firing temperature of the multilayer substrate 2), are used as the filling metal 4, the green sheet is filled with the particles. After filling the metal paste, even if the green sheet is fired at a temperature of more than one thousand and several hundred degrees Celsius, the filling metal Mo
Does not melt.

【0018】尚、この発明は上記実施例に限定されるも
のでなく、例えば、図7に示すように、一層だけでなく
複数層(図7では3層)にわたり充填金属4を充填して
もよい。この場合、パワー素子6で発生した熱は、多層
基板2の裏面を接着材により固定してある金属プレート
12にも早急に吸収することができ、金属プレート12
よりその熱を発散させることができる。又、この場合、
グランド電位の共通化も可能となる。
The present invention is not limited to the above-described embodiment. For example, as shown in FIG. 7, not only one layer but also a plurality of layers (three layers in FIG. 7) may be filled with the filling metal 4. Good. In this case, the heat generated by the power element 6 can be immediately absorbed by the metal plate 12 having the back surface of the multilayer substrate 2 fixed by an adhesive material.
More that heat can be dissipated. Also, in this case,
It is possible to share the ground potential.

【0019】又、図8,9のように、多層基板2の最上
層の絶縁層1aにおいて充填金属13を延設状態にて配
置し、その充填金属13の上にパワー素子14と15と
を離間して配置する。即ち、パワー素子14とパワー素
子15とを充填金属13にて電気的に接続してもよい。
Further, as shown in FIGS. 8 and 9, the filler metal 13 is arranged in an extended state in the uppermost insulating layer 1a of the multilayer substrate 2, and the power elements 14 and 15 are disposed on the filler metal 13. Place them separately. That is, the power element 14 and the power element 15 may be electrically connected by the filling metal 13.

【0020】さらに、図10に示すように、多層基板2
の最上層の絶縁層1aに充填金属16を配置するととも
にその充填金属16の上にパワー素子17を配置する。
一方、多層基板2の最上層の絶縁層1aにおいて充填金
属16とは離間して充填金属18を配置するとともにそ
の充填金属18の上にパワー素子19を配置する。さら
に、多層基板2の絶縁層1bに層内での平面方向への配
線を行わせるための配線材料20を充填する。即ち、絶
縁層1aの充填金属16と充填金属18とを、絶縁層1
bの配線材料20で電気的に接続してもよい。
Further, as shown in FIG.
The filling metal 16 is arranged on the uppermost insulating layer 1 a, and the power element 17 is arranged on the filling metal 16.
On the other hand, in the uppermost insulating layer 1 a of the multilayer substrate 2, the filling metal 18 is arranged apart from the filling metal 16 and the power element 19 is arranged on the filling metal 18. Further, the insulating layer 1b of the multilayer substrate 2 is filled with a wiring material 20 for performing wiring in the plane direction within the layer. That is, the filling metal 16 and the filling metal 18 of the insulating layer 1a are
Electrical connection may be made with the wiring material 20 of b.

【0021】又、図11に示すように、多層基板2の最
上層の絶縁層1aには充填金属を配置せず、2層目以降
の絶縁層1b,1cのみ充填金属を配置するようにして
もよい。
Further, as shown in FIG. 11, the filling metal is not arranged in the uppermost insulating layer 1a of the multilayer substrate 2, but the filling metal is arranged only in the second and subsequent insulating layers 1b and 1c. Good.

【0022】又、基板材質としてはガラスとセラミック
の複合材料であるガラスセラミックまたはガラス材を用
いてもよい。この場合の導体材は、Ag,Ag−Pd,
Cu等を用いる。製法はアルミナの場合と同一である。
Further, as the substrate material, glass ceramic or glass material which is a composite material of glass and ceramic may be used. In this case, the conductor material is Ag, Ag-Pd,
Cu or the like is used. The manufacturing method is the same as that for alumina.

【0023】[0023]

【発明の効果】以上詳述したようにこの発明によれば、
過渡ならびに定常熱抵抗を下げることができる。又、表
層の上方に突出したヒートシンクを無くす、あるいは小
さくすることができるから実装容積を減少させることが
できる。さらに、放熱のために高価なAlN等の基板材
料を使用する必要もなくなり安価に熱伝導性の優れた基
板を作成することが可能となる。
As described above in detail, according to the present invention,
The transient and steady-state thermal resistance can be reduced. Further, since the heat sink protruding above the surface layer can be eliminated or made small, the mounting volume can be reduced. Further, it is not necessary to use an expensive substrate material such as AlN for heat dissipation, and it is possible to inexpensively produce a substrate having excellent thermal conductivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の多層基板の断面図である。FIG. 1 is a cross-sectional view of a multilayer substrate of an example.

【図2】多層基板の製造工程図である。FIG. 2 is a manufacturing process diagram of a multilayer substrate.

【図3】多層基板の製造工程図である。FIG. 3 is a manufacturing process diagram of a multilayer substrate.

【図4】多層基板の製造工程図である。FIG. 4 is a manufacturing process diagram of a multilayer substrate.

【図5】多層基板の製造工程図である。FIG. 5 is a manufacturing process diagram of a multilayer substrate.

【図6】多層基板の製造工程図である。FIG. 6 is a manufacturing process diagram of a multilayer substrate.

【図7】別例の多層基板の断面図である。FIG. 7 is a cross-sectional view of another example of a multilayer substrate.

【図8】他の別例の多層基板の平面図である。FIG. 8 is a plan view of another example of a multilayer substrate.

【図9】他の別例の多層基板の断面図である。FIG. 9 is a cross-sectional view of another example of a multilayer substrate.

【図10】他の別例の多層基板の断面図である。FIG. 10 is a cross-sectional view of another example of a multilayer substrate.

【図11】他の別例の多層基板の断面図である。FIG. 11 is a cross-sectional view of another example of a multilayer substrate.

【図12】従来の多層基板の断面図である。FIG. 12 is a cross-sectional view of a conventional multilayer substrate.

【符号の説明】[Explanation of symbols]

1a 表層(絶縁層) 4 熱伝達用導体としての充填金属 6 パワー素子 1a Surface layer (insulating layer) 4 Filling metal as heat transfer conductor 6 Power element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の絶縁層からなる多層基板上にパワ
ー素子を配置し、一以上の絶縁層のパワー素子下部領域
に前記パワー素子の熱伝達用導体を充填したことを特徴
とする多層基板。
1. A multi-layer substrate comprising a power element arranged on a multi-layer substrate composed of a plurality of insulating layers, and a heat transfer conductor of the power element being filled in a lower region of the power element of one or more insulation layers. .
JP30682493A 1993-12-07 1993-12-07 Multilayer board Expired - Fee Related JP3520540B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP30682493A JP3520540B2 (en) 1993-12-07 1993-12-07 Multilayer board
DE4443424A DE4443424B4 (en) 1993-12-07 1994-12-06 Arrangements of a multilayer substrate and a power element and method for their preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30682493A JP3520540B2 (en) 1993-12-07 1993-12-07 Multilayer board

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003304692A Division JP2004006993A (en) 2003-08-28 2003-08-28 Multilayer substrate

Publications (2)

Publication Number Publication Date
JPH07162157A true JPH07162157A (en) 1995-06-23
JP3520540B2 JP3520540B2 (en) 2004-04-19

Family

ID=17961705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30682493A Expired - Fee Related JP3520540B2 (en) 1993-12-07 1993-12-07 Multilayer board

Country Status (2)

Country Link
JP (1) JP3520540B2 (en)
DE (1) DE4443424B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731067A (en) * 1995-06-07 1998-03-24 Denso Corporation Multi-layered substrate
JP2006140360A (en) * 2004-11-12 2006-06-01 Ngk Spark Plug Co Ltd Wiring board
JP2018530161A (en) * 2015-10-01 2018-10-11 エルジー イノテック カンパニー リミテッド Light emitting device, method for manufacturing light emitting device, and light emitting module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926729A3 (en) * 1997-12-10 1999-12-08 Mitsubishi Gas Chemical Company, Inc. Semiconductor plastic package and process for the production thereof
DE102007022947B4 (en) 2007-04-26 2022-05-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body and method for producing such
DE102009023849B4 (en) * 2009-06-04 2022-10-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor body and optoelectronic semiconductor chip
TW201319507A (en) * 2011-11-04 2013-05-16 Most Energy Corp Heat dissipating device and manufacture method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5563900A (en) * 1978-11-08 1980-05-14 Fujitsu Ltd Multilyaer ceramic circuit board
JPS55130198A (en) * 1979-03-30 1980-10-08 Hitachi Ltd Hybrid integrated circuit board for tuner
US4628407A (en) * 1983-04-22 1986-12-09 Cray Research, Inc. Circuit module with enhanced heat transfer and distribution
JPS61288448A (en) * 1985-06-17 1986-12-18 Sumitomo Electric Ind Ltd Semiconductor element mounting substrate
JPS6273799A (en) * 1985-09-27 1987-04-04 日本電気株式会社 Multilayer ceramic circuit substrate
DE3843787A1 (en) * 1988-12-24 1990-07-05 Standard Elektrik Lorenz Ag METHOD AND PCB FOR MOUNTING A SEMICONDUCTOR COMPONENT
JPH03286590A (en) * 1990-04-03 1991-12-17 Nippon Cement Co Ltd Ceramic wiring board
US5139973A (en) * 1990-12-17 1992-08-18 Allegro Microsystems, Inc. Method for making a semiconductor package with the distance between a lead frame die pad and heat spreader determined by the thickness of an intermediary insulating sheet
DE4107312A1 (en) * 1991-03-07 1992-09-10 Telefunken Electronic Gmbh Mounting system for power semiconductor device - has heat conductive coupling between heat conductive layer beneath semiconductor device and insulating layer supporting circuit board

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5731067A (en) * 1995-06-07 1998-03-24 Denso Corporation Multi-layered substrate
JP2006140360A (en) * 2004-11-12 2006-06-01 Ngk Spark Plug Co Ltd Wiring board
JP4630041B2 (en) * 2004-11-12 2011-02-09 日本特殊陶業株式会社 Wiring board manufacturing method
JP2018530161A (en) * 2015-10-01 2018-10-11 エルジー イノテック カンパニー リミテッド Light emitting device, method for manufacturing light emitting device, and light emitting module

Also Published As

Publication number Publication date
JP3520540B2 (en) 2004-04-19
DE4443424B4 (en) 2009-07-09
DE4443424A1 (en) 1995-06-08

Similar Documents

Publication Publication Date Title
JP3671457B2 (en) Multilayer board
JPH0697362A (en) Multilayer wiring board, production thereof and semiconductor device employing the same
JP3520540B2 (en) Multilayer board
JP2014157949A (en) Wiring board and electronic device
JP2000269392A (en) Semiconductor module and heat-radiating insulating plate
JPH0823145A (en) Substrate for hybrid ic
JP3818310B2 (en) Multilayer board
JP3618060B2 (en) Wiring board for mounting semiconductor element and semiconductor device using the same
JP2004006993A (en) Multilayer substrate
JP2001135789A (en) Stacked ceramic substrata and power module substrate using the same
JP3667130B2 (en) Wiring board module
JP6166094B2 (en) Wiring board and electronic device
JP2013045900A (en) Wiring board
JP2703426B2 (en) Circuit board
JP2002076213A (en) Semiconductor device module
JPH07211822A (en) Package for accommodating semiconductor element
JPH1117047A (en) Substrate for mounting electronic component
JPH10135405A (en) Wiring board module
JPH0823052A (en) Thick film hybrid ic board provided with lead terminal
JP2000164996A (en) Ceramic wiring board
JP3934910B2 (en) Circuit board
JP2023060634A (en) Heatsink and method of manufacturing the same
JP2000058995A (en) Ceramic circuit board and semiconductor module
JP2000022057A (en) Heat dissipating metal plate and electronic part package provided therewith
JP2000277872A (en) Wiring board

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees