JP3667130B2 - Wiring board module - Google Patents

Wiring board module Download PDF

Info

Publication number
JP3667130B2
JP3667130B2 JP37116498A JP37116498A JP3667130B2 JP 3667130 B2 JP3667130 B2 JP 3667130B2 JP 37116498 A JP37116498 A JP 37116498A JP 37116498 A JP37116498 A JP 37116498A JP 3667130 B2 JP3667130 B2 JP 3667130B2
Authority
JP
Japan
Prior art keywords
heat
wiring board
generating electronic
resin
electronic component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37116498A
Other languages
Japanese (ja)
Other versions
JP2000196010A (en
Inventor
一典 大隣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Aisin AW Co Ltd
Original Assignee
Kyocera Corp
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Aisin AW Co Ltd filed Critical Kyocera Corp
Priority to JP37116498A priority Critical patent/JP3667130B2/en
Publication of JP2000196010A publication Critical patent/JP2000196010A/en
Application granted granted Critical
Publication of JP3667130B2 publication Critical patent/JP3667130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding

Abstract

PROBLEM TO BE SOLVED: To control the effects on electronic components which are vulnerable to heat, generated by heat-generating electronic components of a wiring substrate module comprising heat generating parts such as power elements and electronic components which are weak with respect to heat, such as an aluminum electrolytic capacitor. SOLUTION: This wiring substrate module comprises a metal case 8 which forms a wiring circuit 2 to the surface of an insulation substrate 1 and accommodating a wiring substrate 3, having mounted heat generating electronic parts 4 and a heat shielding resin case 11 accommodating non-heat generating electronic component 10. The metal case 8 and the resin case 11 are coupled integrally and the non-heat generating electronic components 10 and the wiring circuit 2 of the wiring substrate 3 are wired at the coupling part. Particularly, the space a in the metal case 8 and a space b in the resin case 11 are partitioned with a resin wall 16, and the space a accommodating the wiring substrate 3 in the metal case 8 is filled with a heat conductive resin gel 18.

Description

【0001】
【発明の属する技術分野】
本発明は、パワートランジスタ等のパワー素子などの発熱性電子部品とともに、アルミニウム電解コンデンサなどの熱に弱い非発熱性電子部品を具備する配線基板モジュールの改良に関する。
【0002】
【従来技術】
従来から、セラミックまたは有機樹脂などからなる絶縁基板の表面に、IC素子等の半導体素子とともに、コンデンサ、抵抗素子などの電子部品を搭載した配線基板モジュールが知られている。最近に至って、これらの配線基板モジュールに搭載される電子部品の高精度化等に伴い、例えば、IC素子などの半導体素子はそれ自体の作動時の発熱量が増大する傾向にあり、それに伴い、その熱によって、熱に弱いその他の電子部品の作動状態に悪影響を及ぼすことから、これらの発生した熱をいかに効率的に放熱するかが大きな課題となっている。
【0003】
そこで、従来から用いられる一般的なモジュールの構造を図3の概略断面図に示した。図3のモジュールaによれば、絶縁基板21の表面に配線回路22が形成された配線基板23の表面に、パワートランジスタ等のパワー素子24、抵抗素子25、コンデンサ26などの電子部品が実装されている。そして、このように各種の電気部品が搭載された配線基板23は、放熱性の高い金属製ケース27に対して高熱伝導性樹脂などの接着剤28によって接合されている。また、アルミニウム電解コンデンサ29などの大型で且つ熱に弱い電子部品は、金属製ケース27内の配線基板23接合部の周囲に、金属製ケース27に断熱性の樹脂30を介して搭載され、断熱製樹脂30の一部に形成された配線回路31を介して、配線基板a側の配線回路22とワイヤーボンディング32などによって結線されている。また、金属製ケース27は、放熱フィン33と一体化されている。さらに、パワー素子24などの発熱性電子部品搭載部には、サーマルビア34が形成される場合もある。
【0004】
かかる構造によれば、発熱性を有するパワー素子24から発生した熱は、絶縁基板21やサーマルビア34、高熱伝導性樹脂などの接着剤28を経由して金属製ケース27に伝熱され、さらに金属製ケース27から放熱フィン33に伝熱され、大気に放出される。
【0005】
【発明が解決しようとする課題】
しかしながら、上記モジュール構造においては、熱に弱いアルミニウム電解コンデンサ29などの電子部品は、断熱性樹脂30によって断熱されているものの、コンデンサ29自体は、断熱性樹脂30とともに、高熱伝導性を有するケース27内に収納されているために、パワー素子24から発生した熱が放熱フィン33まで伝熱される過程で、金属製ケース27内を熱が伝わり、コンデンサ30および断熱性樹脂の周囲に熱の淀みが発生するために、その熱によってコンデンサ30の温度が上昇して、コンデンサの作動保証温度以上となるなどの問題があり、従来の放熱構造では、十分な放熱がなされていないのが現状であった。
【0006】
従って、本発明は、パワー素子などの発熱性電子部品とともに、アルミニウム電解コンデンサなどの熱に弱い電子部品を兼ね備えた配線基板モジュールにおいて、発熱性電子部品から発生した熱による熱に弱い電子部品への影響を抑制したモジュールを提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の配線基板モジュールは、絶縁基板の表面に配線回路が形成され、且つパワートランジスタなどの発熱性電子部品が搭載された配線基板を収納した金属製ケースと、電解コンデンサなどの熱に弱い非発熱性電子部品を収納した樹脂製ケースとを具備し、前記放熱性ケースと前記樹脂製ケースとが一体的に結合されており、前記結合部において、前記非発熱性電子部品と前記配線基板の回路とを結線したことを特徴とするものである。
【0008】
なお、かかるモジュールにおいては、前記金属製ケース内の前記配線基板を収納した空間と、前記樹脂製ケース内の非発熱性電子部品を収納した空間とを壁体によって区切ること、さらには、前記金属製ケースには放熱フィンを接合することが望ましい。
【0009】
【発明の実施の形態】
以下、本発明の一実施例を示す図1、図2をもとに説明する。図1、図2は、本発明の実施の形態における配線基板モジュールの概略断面図である。
【0010】
図1、図2の配線基板モジュールAによれば、絶縁基板1の表面に適当な導体材料によって配線回路2が形成された配線基板3を具備し、その基板3表面には、少なくとも発熱性電子部品4が搭載されている。上記発熱性電子部品4は、絶縁基板1の表面に被着形成された配線回路2に対して、Agペーストや半田ペースト等によって実装されている。そして、絶縁基板1の発熱性電子部品4の搭載部直下には、基板の表面から裏面にまで貫通するように伝熱用ビアホール導体、いわゆるサーマルビア5が形成されており、発熱性電子部品4の搭載部直下の配線回路2は、このサーマルビア5と接続されている。
【0011】
また、配線基板2の表面には、比較的高い耐熱温度を有する電子部品として、セラミックコンデンサ6、セラミック抵抗素子7などの電子部品が搭載されている。なお、発熱性電子部品4としては、パワー素子、ハイブリッドIC素子、パワートランジスタ、パワー抵抗素子の群から選ばれる少なくとも1種が挙げられる。
【0012】
そして、この配線基板2は、放熱性に優れた銅、アルミニウム、あるいはそれらを含む合金のうちの1種からなる金属製ケース8内に収納され、金属製ケース8内の底壁に熱伝導性に優れたシリコーン系樹脂、アセチレン系樹脂、ピロール系樹脂などからなる接着剤9を介して接合することにより収納されている。
【0013】
一方、配線基板モジュールA内には、耐熱性が低い非発熱性電子部品10として、アルミニウム電解コンデンサなどの電解コンデンサ、発振器のうちの少なくとも1種を搭載する。これらの耐熱性の低い電子部品10としては、特に作動保証温度が125℃以下のものが挙げられる。
【0014】
このような非発熱性電子部品10は、断熱性樹脂からなるケース11内に収納されており、この樹脂製ケース11は、金属製ケース8の側面にて接着剤12によって一体化されている。なお、樹脂製ケース11と金属製ケース8との一体化の方法としては、接着剤12の他に、ネジ止め、かしめなど周知の固定方法を採用し得る。用いられる断熱性有機樹脂としては、ポリブチルレテフタレート樹脂、ポリエチレンテレフタレート樹脂、変性ポリフェニレンオキサイド樹脂、ポリフェニレンサルファイト樹脂などが挙げられ、これらの中でもポリブチルテレフタレート樹脂が望ましい。
【0015】
また、この樹脂製ケース11には、非発熱性電子部品10と電気的に接続された配線回路13が形成されており、ケース11の金属製ケース8内に収納された配線基板3と対向する部分にまで形成されている。
【0016】
そして、この配線回路13は、金属製ケース8内に収納された配線基板3表面の配線回路2と、ワイヤーボンディング、リボンなどの導電性接続部材14によって電気的に接続されている。
【0017】
そして、発熱性電子部品4を搭載した配線基板3を収納する金属製ケース8は、金属製蓋体15a、非発熱性電子部品10を収納した断熱性樹脂製ケース11は、樹脂製の蓋体15bによってそれぞれ密閉されている。
【0018】
なお、この金属製ケース8と、断熱性樹脂製ケース11とは、異なる蓋体によって密閉収納することが最も望ましいが、金属製の蓋体によって全体を密閉することも可能である。
【0019】
本発明によれば、上記のように、発熱性電子部品4を搭載した配線基板3を放熱性の高い金属製ケース8内に収納することにより、発熱性電子部品4から発生した熱を効率的に放熱することができる。また、非発熱性電子部品9を発熱性電子部品4とは独立した断熱性樹脂製ケース10内に収納することにより、従来のような金属製ケース5を経由して発熱性電子部品4から発生した熱が熱に弱い非発熱性電子部品9まで伝達されるのを防止することができる結果、非発熱性電子部品9周囲における熱の淀みなどの発生を防止し、非発熱性電子部品の動作の安定性を確保することができる。
【0020】
また、本発明の配線基板モジュールによれば、発熱性電子部品4から発生した熱の非発熱性電子部品9への影響を抑制するために、図1に示すように、金属製ケース8内の配線基板3を収納した空間aと、断熱性樹脂製ケース11内の非発熱性電子部品10を収納した空間bとを、断熱性樹脂からなる壁体16によって区切ることが望ましい。
【0021】
さらに、発熱性電子部品4から発生した熱を効率的に大気中に放熱するために、金属製ケース8に対しては、放熱フィン17を接合することによって、さらに、発熱性電子部品4から発生した熱の非発熱性電子部品10への影響を抑制することができる。
【0022】
また、発熱性電子部品4から発生した熱の放熱性を高めるために、金属製ケース8内の空間aに熱伝導性樹脂18、例えば、シリコーングリス等のゲル状の樹脂からなる熱伝導性ゲル状樹脂を充填することもできる。この放熱ゲルは、配線基板3の表面に搭載された発熱性電子部品4から発生した熱を放熱ゲルを介して金属製ケース8に伝達することができる。また、放熱ゲルは、弾性を有するので、基板3表面に実装される電子部品に影響を与えることがなく、電子部品が脱落したり配線が切断されたりするのを防止することができる。
【0023】
配線基板3における絶縁基板1は、エポキシ樹脂などの有機樹脂や、Al2 3 、Si3 4 、AlNなどの絶縁性セラミック焼結体から構成されるが、特に、自動車回路基板などのように、過酷な使用条件化での耐久性を考慮した場合、上記セラミック焼結体からなるのが望ましい。
【0024】
また、配線回路2は、銅、銀、金、あるいはこれらを含む合金などの高熱伝導性金属によって構成することが望ましいが、絶縁基板1が、Al2 3 、Si3 4 、AlNなどのセラミック焼結体からなり、これらの焼結体と同時焼成によって形成する場合には、W、Moなどの高融点金属から構成される。
【0025】
また、絶縁基板1の表面の配線回路2は、Al2 3 、Si3 4 、AlNなどのセラミック焼結体に対しても、例えば、銅ペーストを印刷塗布した後、800〜1100℃で焼き付け処理することによっても形成することができる。
【0026】
サーマルビア5は、絶縁基板1がセラミック材料からなる場合、未焼成のグリーンシートにマイクロドリル等によって孔あけした後、その孔内に金属ペーストを充填し、所望により複数のグリーンシートを積層した後、グリーンシートと同時焼成することにより形成することができる。このサーマルビア5も絶縁基板1が前記セラミック焼結体から構成され、基板と同時焼成して形成する場合には、W、Moなどの高融点金属によって形成する必要がある。
【0027】
【実施例】
本発明の効果を確認するに際し、まず、Al2 3 を主成分とする粉末原料に、有機バインダ、可塑剤、溶剤等を添加して混合し、ドクターブレード法によって、セラミックグリーンシートを成形した。次に、該セラミックグリーンシートの所定の位置に孔あけ加工法によって所定の直径の図示しないスルーホール及び伝熱用ビアホールを形成した。続いて、タングステン(W)を主成分とする粉末原料に、有機バインダ、可塑剤、溶剤等を添加し、混合して得た金属ペーストを配線回路パターンに印刷した。また、前記スルーホール及び伝熱用ビアホールには、前記金属ペーストを充填した。
【0028】
このような方法を繰り返し、前記配線回路、スルーホール及び伝熱用ビアホールが形成されたセラミックグリーンシートを複数枚形成する。
【0029】
次に、各セラミックグリーンシートを、配線回路、スルーホール及び伝熱用ビアホール5が電気的及び熱的に接続されるように位置合わせをして積層し、水素(H2 )、窒素(N2 )等の還元性雰囲気下において焼成することによって、配線基板を形成した。
【0030】
その後、電子部品実装時のダイペーストの接着性、はんだ濡れ性を改善するために、配線回路にニッケル(Ni)めっき層を形成し、さらにめっき層の上に金(Au)めっきを施した。
【0031】
続いて、前記配線基板の配線回路上に銀(Ag)ペーストのダイペーストを介してICチップのベアチップを取り付け、アルミニウム線を使用するワイヤボンディングによって結線を行った後、エポキシ系の樹脂又はシリコン系の樹脂によって封止を行った。
【0032】
一方、配線基板の他の表面の配線回路にはんだを塗布し、コンデンサや抵抗部品を搭載して、リフロー炉内において配線基板Aを通すことによって、各電子部品を配線基板表面にはんだ実装した。
【0033】
このようにして、電子部品を搭載された配線基板Aをアルミニウムからなる金属製ケースにシリコーン系樹脂からなる接着剤を用いて固定した。一方、ポリブチルテレフタレート樹脂からなる樹脂ケースを前記金属製ケースに対して、シリコーン系樹脂からなる接着剤を用いて接合し一体化した。そして、樹脂ケース内にアルミニウム電解コンデンサを収納し、コンデンサの接続パッドと、樹脂ケース内に設けられた燐青銅リードからなる電気回路とを抵抗溶接法で接続した。その後、樹脂ケースに形成されたパッドと、配線基板のパッドとをアルミニウムワイヤによってワイヤボンディング法で接続した。そして、アルミニウムからなる蓋体によって金属製ケースおよび樹脂ケースの開口部を封止した。
【0034】
このようにして作製した配線基板モジュールについて評価を行った。アルミナ絶縁基板の表面にタングステンからなる配線回路が形成された配線基板に、発熱性電子部品の代わりに、ヒータ状のチップを実装し、Auリボン及び半田を用いて配線回路と結線を行った。そして、この配線基板をアルミニウムからなるケース(配線基板実装部の厚み5mm)にシリコーン系樹脂からなる接着剤を用いて接着した。
【0035】
また、アルミニウム電解コンデンサを搭載する樹脂ケースとして、ポリブチルテレフタレート樹脂を使用した。
【0036】
各発熱性電子部品を想定して、ヒータチップを所定の発熱量で発熱させた後、チップ自体の温度とアルミニウム電解コンデンサの温度をそれぞれ熱電対で測定し、その結果を表1に示した。
【0037】
また、他の実施例として、図1、図2のモジュール構造において、金属製ケースをアルミニウム製蓋体により、樹脂製ケースをPBT樹脂からなる蓋体によってそれぞれ別体で密閉したもの、金属製ケース内の空間にシリコン樹脂からなるゲルを充填したもの、壁体を除去したものを種々の組み合わせで作製した。
【0038】
また、比較例として、図3の構造のモジュール(No.8)、図3のモジュールにおいて金属製ケースの厚みを20mmに厚くしたもの(No.7)、図3のモジュールにおいて発熱性電子部品の搭載箇所を電解コンデンサ設置部から最も離れた箇所に実装したモジュール(No.6)についても同様に測定を行った。
【0039】
なお、発熱性電子部品においては150℃以下、アルミニウム電解コンデンサにおいては125℃以下が作動保証温度である。よって、発熱性電子部品においては、150℃、アルミニウム電解コンデンサにおいては125℃を限界温度として評価を行った。
【0040】
【表1】

Figure 0003667130
【0041】
表1から明らかなように、アルミニウム電解コンデンサを金属製ケース内に配線基板とともに収納した場合、発熱性電子部品を最も離間させた場合においても、発熱性電子部品温度が140℃で、アルミニウム電解コンデンサの温度は127℃となり、動作保証温度を2℃超えてしまった。
【0042】
また、アルミニウムケースの厚みを20mmにした場合において、発熱性電子部品温度が136℃で、アルミニウム電解コンデンサの温度は126℃となり、動作保証温度を1℃超えてしまった。
【0043】
また、アルミニウム電解コンデンサを金属製ケース内に配線基板とともに収納した場合、発熱性電子部品を最も離間させた場合においても、発熱性電子部品温度が139℃の時、アルミニウム電解コンデンサの温度は126℃となり、作動保証温度を1℃超えてしまった。
【0044】
これに対して、本発明では、発熱性電子部品の温度が147℃以上の場合であっても、アルミニウム電解コンデンサの温度は、120℃以下であって、作動保証温度を5℃以上下回る結果となった。
【0045】
また、シリコンゲルを充填した場合、充填しない場合に比較して、発熱性電子部品の放熱性を高めることができ、また、蓋体を別体化することにより、電解コンデンサの温度を低下させることができ、さらに壁体によって発熱性部品を収納するキャビティと電解コンデンサを収納するキャビティとを分離することにより、電解コンデンサの温度上昇を抑制できることがわかった。
【0046】
【発明の効果】
以上詳述した通り、本発明の配線基板モジュールによれば、発熱性電子部品を搭載した配線基板を放熱性の高い金属製ケース内に収納し、また、熱に弱い非発熱性電子部品を発熱性電子部品とは独立した断熱性樹脂製ケース内に収納することにより、発熱性電子部品から発生した熱が熱に弱い非発熱性電子部品まで伝達されるのを防止することができ、非発熱性電子部品周囲における熱の淀みなどの発生を防止し、発熱性電子部品および非発熱性電子部品の動作の安定性を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における配線基板モジュールの概略断面図である。
【図2】本発明の実施の形態における配線基板モジュールの概略平面図である。
【図3】従来の配線基板モジュールの概略断面図である。
【符号の説明】
A 配線基板モジュール
1 絶縁基板
2 配線回路
3 配線基板
4 発熱性電子部品
8 金属製ケース
10 非発熱性電子部品
11 樹脂製ケース
15a,15b 蓋体
16 壁体
a,b 空間
17 放熱フィン
18 熱伝導性ゲル状樹脂[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a wiring board module including a heat-generating electronic component such as a power element such as a power transistor and a heat-resistant non-heat-generating electronic component such as an aluminum electrolytic capacitor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a wiring board module is known in which electronic components such as capacitors and resistance elements are mounted on a surface of an insulating substrate made of ceramic or organic resin together with semiconductor elements such as IC elements. Recently, with increasing precision of electronic components mounted on these wiring board modules, for example, semiconductor elements such as IC elements tend to increase the amount of heat generated during their operation, and accordingly, Since the heat adversely affects the operating state of other electronic components that are vulnerable to heat, how to efficiently dissipate the generated heat is a major issue.
[0003]
Therefore, the structure of a general module conventionally used is shown in the schematic sectional view of FIG. According to module a in FIG. 3, electronic components such as a power element 24 such as a power transistor, a resistance element 25, and a capacitor 26 are mounted on the surface of the wiring substrate 23 on which the wiring circuit 22 is formed on the surface of the insulating substrate 21. ing. The wiring board 23 on which various electrical components are mounted in this manner is bonded to a metal case 27 having a high heat dissipation property by an adhesive 28 such as a high thermal conductive resin. In addition, a large and heat-sensitive electronic component such as the aluminum electrolytic capacitor 29 is mounted around the joint portion of the wiring board 23 in the metal case 27 via the heat insulating resin 30 in the metal case 27. The wiring circuit 31 is connected to the wiring circuit 22 on the wiring board a side by a wire bonding 32 or the like through a wiring circuit 31 formed in a part of the resin-made 30. The metal case 27 is integrated with the heat radiating fins 33. Furthermore, a thermal via 34 may be formed on a heat generating electronic component mounting portion such as the power element 24.
[0004]
According to such a structure, heat generated from the heat-generating power element 24 is transferred to the metal case 27 via the insulating substrate 21, the thermal via 34, the adhesive 28 such as a high thermal conductive resin, and further. Heat is transferred from the metal case 27 to the radiation fins 33 and released to the atmosphere.
[0005]
[Problems to be solved by the invention]
However, in the module structure, although the electronic components such as the aluminum electrolytic capacitor 29 which is weak against heat are insulated by the heat insulating resin 30, the capacitor 29 itself has a high thermal conductivity along with the heat insulating resin 30. Since the heat generated from the power element 24 is transferred to the heat radiating fins 33, the heat is transferred through the metal case 27, and heat stagnation occurs around the capacitor 30 and the heat insulating resin. Therefore, there is a problem that the temperature of the capacitor 30 rises due to the heat and exceeds the guaranteed operating temperature of the capacitor. In the conventional heat dissipation structure, sufficient heat dissipation has not been achieved. .
[0006]
Therefore, the present invention provides a wiring board module having both heat-generating electronic components such as power elements and heat-sensitive electronic components such as aluminum electrolytic capacitors. It aims at providing the module which suppressed the influence.
[0007]
[Means for Solving the Problems]
The wiring board module according to the present invention includes a metal case in which a wiring circuit is formed on the surface of an insulating substrate and a wiring board on which a heat-generating electronic component such as a power transistor is mounted, and a non-sensitive to heat such as an electrolytic capacitor. A resin case containing heat-generating electronic components, wherein the heat-dissipating case and the resin case are integrally coupled, and the non-heat-generating electronic component and the wiring board The circuit is connected to a circuit.
[0008]
In such a module, the space in which the wiring board is stored in the metal case and the space in which the non-heat generating electronic component is stored in the resin case are separated by a wall, and further, the metal It is desirable to join radiating fins to the case.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A description will be given below with reference to FIGS. 1 and 2 showing an embodiment of the present invention. 1 and 2 are schematic cross-sectional views of a wiring board module according to an embodiment of the present invention.
[0010]
The wiring board module A shown in FIGS. 1 and 2 includes the wiring board 3 on which the wiring circuit 2 is formed on the surface of the insulating board 1 with an appropriate conductor material. The surface of the board 3 has at least heat generating electrons. A component 4 is mounted. The exothermic electronic component 4 is mounted on the wiring circuit 2 deposited on the surface of the insulating substrate 1 with Ag paste, solder paste, or the like. A heat transfer via hole conductor, a so-called thermal via 5, is formed immediately below the mounting portion of the heat generating electronic component 4 on the insulating substrate 1 so as to penetrate from the front surface to the back surface of the substrate. The wiring circuit 2 immediately below the mounting portion is connected to the thermal via 5.
[0011]
On the surface of the wiring board 2, electronic components such as a ceramic capacitor 6 and a ceramic resistance element 7 are mounted as electronic components having a relatively high heat-resistant temperature. The exothermic electronic component 4 includes at least one selected from the group of a power element, a hybrid IC element, a power transistor, and a power resistance element.
[0012]
The wiring board 2 is housed in a metal case 8 made of one of copper, aluminum, or an alloy containing them that has excellent heat dissipation, and is thermally conductive on the bottom wall in the metal case 8. It is accommodated by bonding through an adhesive 9 made of silicone resin, acetylene resin, pyrrole resin, etc. excellent in the above.
[0013]
On the other hand, in the wiring board module A, at least one of an electrolytic capacitor such as an aluminum electrolytic capacitor and an oscillator is mounted as the non-heat generating electronic component 10 having low heat resistance. Examples of the electronic component 10 having low heat resistance include those having an operation guarantee temperature of 125 ° C. or lower.
[0014]
Such a non-heat-generating electronic component 10 is housed in a case 11 made of a heat insulating resin, and the resin case 11 is integrated with an adhesive 12 on the side surface of the metal case 8. As a method for integrating the resin case 11 and the metal case 8, a known fixing method such as screwing or caulking can be adopted in addition to the adhesive 12. Examples of the heat insulating organic resin used include polybutyl terephthalate resin, polyethylene terephthalate resin, modified polyphenylene oxide resin, polyphenylene sulfite resin, and the like. Among these, polybutyl terephthalate resin is desirable.
[0015]
The resin case 11 is formed with a wiring circuit 13 that is electrically connected to the non-heat-generating electronic component 10 and faces the wiring board 3 housed in the metal case 8 of the case 11. It is formed up to the part.
[0016]
The wiring circuit 13 is electrically connected to the wiring circuit 2 on the surface of the wiring substrate 3 housed in the metal case 8 by a conductive connecting member 14 such as wire bonding or a ribbon.
[0017]
The metal case 8 that houses the wiring board 3 on which the heat-generating electronic component 4 is mounted has a metal lid 15a, and the heat-insulating resin case 11 that houses the non-heat-generating electronic component 10 has a resin lid. Each is sealed by 15b.
[0018]
The metal case 8 and the heat insulating resin case 11 are most preferably hermetically housed by different lids, but the whole can be hermetically sealed by a metal lid.
[0019]
According to the present invention, as described above, the wiring board 3 on which the heat generating electronic component 4 is mounted is housed in the metal case 8 having high heat dissipation, so that the heat generated from the heat generating electronic component 4 can be efficiently generated. Can dissipate heat. Further, the non-exothermic electronic component 9 is generated from the exothermic electronic component 4 via the conventional metal case 5 by being housed in the heat insulating resin case 10 independent of the exothermic electronic component 4. As a result, it is possible to prevent the generated heat from being transmitted to the non-heat-generating electronic component 9 that is weak to heat, thereby preventing occurrence of heat stagnation around the non-heat-generating electronic component 9 and the operation of the non-heat-generating electronic component Can be ensured.
[0020]
Further, according to the wiring board module of the present invention, in order to suppress the influence of the heat generated from the heat-generating electronic component 4 on the non-heat-generating electronic component 9, as shown in FIG. It is desirable to divide the space a in which the wiring board 3 is stored and the space b in which the non-heat-generating electronic component 10 in the heat insulating resin case 11 is stored by a wall body 16 made of heat insulating resin.
[0021]
Furthermore, in order to efficiently dissipate the heat generated from the heat generating electronic component 4 into the atmosphere, the heat generating electronic component 4 is further generated by joining the heat dissipating fins 17 to the metal case 8. The influence of the generated heat on the non-heat-generating electronic component 10 can be suppressed.
[0022]
Further, in order to enhance the heat dissipation of the heat generated from the heat-generating electronic component 4, a heat conductive gel made of a heat conductive resin 18, for example, a gel-like resin such as silicone grease, in the space a in the metal case 8. It is also possible to fill the resin. The heat radiating gel can transfer heat generated from the heat-generating electronic component 4 mounted on the surface of the wiring board 3 to the metal case 8 through the heat radiating gel. Moreover, since the heat dissipation gel has elasticity, it does not affect the electronic component mounted on the surface of the substrate 3 and can prevent the electronic component from dropping or the wiring from being cut.
[0023]
The insulating substrate 1 in the wiring board 3 is composed of an organic resin such as an epoxy resin, or an insulating ceramic sintered body such as Al 2 O 3 , Si 3 N 4 , or AlN. In addition, when considering durability under severe use conditions, the ceramic sintered body is preferably used.
[0024]
The wiring circuit 2 is preferably made of a highly thermally conductive metal such as copper, silver, gold, or an alloy containing these, but the insulating substrate 1 is made of Al 2 O 3 , Si 3 N 4 , AlN or the like. When it is made of a ceramic sintered body and formed by simultaneous firing with these sintered bodies, it is made of a refractory metal such as W or Mo.
[0025]
Further, the wiring circuit 2 on the surface of the insulating substrate 1 can be applied to a ceramic sintered body such as Al 2 O 3 , Si 3 N 4 , and AlN, for example, by printing and applying a copper paste at 800 to 1100 ° C. It can also be formed by baking.
[0026]
When the insulating substrate 1 is made of a ceramic material, the thermal via 5 is formed by punching an unfired green sheet with a micro drill or the like, filling a metal paste into the hole, and laminating a plurality of green sheets as desired. It can be formed by co-firing with a green sheet. The thermal via 5 also needs to be formed of a refractory metal such as W or Mo when the insulating substrate 1 is made of the ceramic sintered body and is formed by simultaneous firing with the substrate.
[0027]
【Example】
In confirming the effect of the present invention, first, an organic binder, a plasticizer, a solvent, and the like were added to and mixed with a powder raw material mainly composed of Al 2 O 3 , and a ceramic green sheet was formed by a doctor blade method. . Next, through holes and heat transfer via holes (not shown) having a predetermined diameter were formed at predetermined positions of the ceramic green sheet by a drilling method. Subsequently, an organic binder, a plasticizer, a solvent, and the like were added to a powder raw material containing tungsten (W) as a main component, and a metal paste obtained by mixing was printed on a wiring circuit pattern. The metal paste was filled in the through hole and the heat transfer via hole.
[0028]
Such a method is repeated to form a plurality of ceramic green sheets on which the wiring circuit, the through holes, and the heat transfer via holes are formed.
[0029]
Next, the ceramic green sheets are aligned and laminated so that the wiring circuit, the through hole, and the heat transfer via hole 5 are electrically and thermally connected, and hydrogen (H 2 ), nitrogen (N 2 ) are stacked. The wiring substrate was formed by firing in a reducing atmosphere such as).
[0030]
Thereafter, in order to improve the adhesion and solder wettability of the die paste when mounting electronic components, a nickel (Ni) plating layer was formed on the wiring circuit, and gold (Au) plating was further applied on the plating layer.
[0031]
Subsequently, a bare chip of an IC chip is attached to the wiring circuit of the wiring board via a die paste of silver (Ag) paste and connected by wire bonding using an aluminum wire, and then an epoxy-based resin or a silicon-based resin Sealing was performed using a resin.
[0032]
On the other hand, solder was applied to the wiring circuit on the other surface of the wiring board, capacitors and resistance components were mounted, and each electronic component was solder mounted on the wiring board surface by passing the wiring board A in a reflow furnace.
[0033]
In this way, the wiring board A on which electronic components were mounted was fixed to a metal case made of aluminum using an adhesive made of a silicone resin. On the other hand, a resin case made of polybutyl terephthalate resin was joined and integrated with the metal case using an adhesive made of silicone resin. Then, an aluminum electrolytic capacitor was housed in the resin case, and a connection pad of the capacitor and an electric circuit made of phosphor bronze leads provided in the resin case were connected by resistance welding. Thereafter, the pad formed on the resin case and the pad of the wiring board were connected by an aluminum wire by a wire bonding method. And the opening part of a metal case and a resin case was sealed with the cover body which consists of aluminum.
[0034]
The wiring board module produced in this way was evaluated. A heater-like chip was mounted on the wiring board on which the wiring circuit made of tungsten was formed on the surface of the alumina insulating substrate instead of the heat-generating electronic component, and the wiring circuit was connected using Au ribbon and solder. This wiring board was bonded to a case made of aluminum (wiring board mounting portion thickness 5 mm) using an adhesive made of silicone resin.
[0035]
Moreover, polybutyl terephthalate resin was used as a resin case for mounting an aluminum electrolytic capacitor.
[0036]
Assuming each heat-generating electronic component, the heater chip was heated with a predetermined calorific value, and then the temperature of the chip itself and the temperature of the aluminum electrolytic capacitor were measured with thermocouples. The results are shown in Table 1.
[0037]
As another embodiment, in the module structure shown in FIGS. 1 and 2, a metal case is sealed with an aluminum lid, and a resin case is sealed with a lid made of PBT resin. The inner space filled with a gel made of silicon resin and the wall removed were produced in various combinations.
[0038]
Further, as a comparative example, the module having the structure of FIG. 3 (No. 8), the module of FIG. 3 having a metal case with a thickness of 20 mm (No. 7), and the module of FIG. The same measurement was performed on the module (No. 6) mounted at the place farthest from the electrolytic capacitor installation portion.
[0039]
Note that the operation guaranteed temperature is 150 ° C. or lower for heat-generating electronic components and 125 ° C. or lower for aluminum electrolytic capacitors. Therefore, the evaluation was performed using 150 ° C. for the exothermic electronic component and 125 ° C. for the aluminum electrolytic capacitor.
[0040]
[Table 1]
Figure 0003667130
[0041]
As is apparent from Table 1, when the aluminum electrolytic capacitor is housed in the metal case together with the wiring board, the temperature of the exothermic electronic component is 140 ° C. even when the exothermic electronic component is farthest away. The temperature was 127 ° C., exceeding the operation guarantee temperature by 2 ° C.
[0042]
Further, when the thickness of the aluminum case was 20 mm, the temperature of the heat-generating electronic component was 136 ° C., the temperature of the aluminum electrolytic capacitor was 126 ° C., and the guaranteed operating temperature was exceeded by 1 ° C.
[0043]
Further, when the aluminum electrolytic capacitor is housed in the metal case together with the wiring board, the temperature of the aluminum electrolytic capacitor is 126 ° C. when the temperature of the heat generating electronic component is 139 ° C. even when the heat generating electronic component is most separated. As a result, the guaranteed operating temperature exceeded 1 ° C.
[0044]
On the other hand, in the present invention, even when the temperature of the heat-generating electronic component is 147 ° C. or higher, the temperature of the aluminum electrolytic capacitor is 120 ° C. or lower, which is lower than the operation guarantee temperature by 5 ° C. or higher. became.
[0045]
Also, when filled with silicon gel, the heat dissipation of the heat-generating electronic components can be improved compared to when not filled, and the temperature of the electrolytic capacitor can be lowered by separating the lid. Further, it was found that the temperature rise of the electrolytic capacitor can be suppressed by separating the cavity containing the exothermic component and the cavity containing the electrolytic capacitor by the wall body.
[0046]
【The invention's effect】
As described above in detail, according to the wiring board module of the present invention, the wiring board on which the heat generating electronic component is mounted is housed in a metal case having high heat dissipation, and the non-heat generating electronic component that is vulnerable to heat is generated. The heat generated from the heat-generating electronic component can be prevented from being transferred to the heat-resistant non-heat-generating electronic component by storing it in a heat-insulating resin case that is independent from the heat-generating electronic component. The occurrence of heat stagnation around the heat-generating electronic component can be prevented, and the stability of the operation of the heat-generating electronic component and the non-heat-generating electronic component can be ensured.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a wiring board module in an embodiment of the present invention.
FIG. 2 is a schematic plan view of the wiring board module in the embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view of a conventional wiring board module.
[Explanation of symbols]
A Wiring board module 1 Insulating board 2 Wiring circuit 3 Wiring board 4 Heat generating electronic component 8 Metal case 10 Non-heat generating electronic component 11 Resin case 15a, 15b Lid 16 Wall body a, b Space 17 Radiation fin 18 Thermal conduction Gel resin

Claims (6)

絶縁基板の表面に配線回路が形成され、且つ発熱性電子部品が搭載された配線基板を収納した金属製ケースと、非発熱性電子部品を収納した樹脂製ケースとを具備し、前記放熱性ケースと前記樹脂製ケースとが一体的に結合されており、前記結合部にて前記非発熱性電子部品と前記配線基板の配線回路とが結線されてなることを特徴とする配線基板モジュール。A heat dissipating case, comprising: a metal case that houses a wiring board on which a wiring circuit is formed on a surface of an insulating substrate and on which heat-generating electronic components are mounted; and a resin case that stores non-heat-generating electronic components And the resin case are integrally coupled, and the non-heat-generating electronic component and the wiring circuit of the wiring substrate are connected at the coupling portion. 前記金属製ケース内の前記配線基板を収納した空間と、前記樹脂製ケース内の非発熱性電子部品を収納した空間とが、壁体によって区切られていることを特徴とする請求項1記載の配線基板モジュール。The space in which the wiring board is stored in the metal case and the space in which the non-heat generating electronic component is stored in the resin case are separated by a wall body. Wiring board module. 前記金属製ケース内の前記配線基板を収納した空間内に、熱伝導性ゲル状樹脂を充填してなることを特徴とする請求項2記載の配線基板モジュール。3. The wiring board module according to claim 2, wherein a space containing the wiring board in the metal case is filled with a heat conductive gel-like resin. 前記発熱性電子部品が、パワー素子、ハイブリッドIC素子、パワートランジスタ、パワー抵抗素子の群から選ばれる少なくとも1種からなる請求項1または請求項2記載の配線基板モジュール。The wiring board module according to claim 1, wherein the heat-generating electronic component is made of at least one selected from the group consisting of a power element, a hybrid IC element, a power transistor, and a power resistance element. 前記非発熱性電子部品が、電解コンデンサ、発振器のうちの少なくとも1種からなる請求項1または請求項2記載の配線基板モジュール。The wiring board module according to claim 1, wherein the non-heat-generating electronic component comprises at least one of an electrolytic capacitor and an oscillator. 前記金属製ケースに放熱フィンが接合されてなる請求項1乃至請求項4のいずれか記載の配線基板モジュール。The wiring board module according to claim 1, wherein a radiation fin is joined to the metal case.
JP37116498A 1998-12-25 1998-12-25 Wiring board module Expired - Fee Related JP3667130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37116498A JP3667130B2 (en) 1998-12-25 1998-12-25 Wiring board module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37116498A JP3667130B2 (en) 1998-12-25 1998-12-25 Wiring board module

Publications (2)

Publication Number Publication Date
JP2000196010A JP2000196010A (en) 2000-07-14
JP3667130B2 true JP3667130B2 (en) 2005-07-06

Family

ID=18498255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37116498A Expired - Fee Related JP3667130B2 (en) 1998-12-25 1998-12-25 Wiring board module

Country Status (1)

Country Link
JP (1) JP3667130B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4044265B2 (en) 2000-05-16 2008-02-06 三菱電機株式会社 Power module
DE102005037522A1 (en) * 2005-08-09 2007-02-15 Semikron Elektronik Gmbh & Co. Kg Power semiconductor module with trough-shaped basic body
DE102008054923B4 (en) 2008-12-18 2018-04-26 Infineon Technologies Ag Power semiconductor module with a high capacity capacitor integrated in the housing wall
JP6406036B2 (en) * 2015-01-29 2018-10-17 株式会社デンソー Electric compressor

Also Published As

Publication number Publication date
JP2000196010A (en) 2000-07-14

Similar Documents

Publication Publication Date Title
JP2006303400A (en) Package for containing electronic component, electronic device and its packaging structure
JP3667130B2 (en) Wiring board module
JP3793562B2 (en) Ceramic circuit board
JP3325477B2 (en) Package for storing semiconductor elements
JP4459031B2 (en) Electronic component storage package and electronic device
JP3659306B2 (en) Package for storing semiconductor elements
JP3987649B2 (en) Package for storing semiconductor elements
JPH07211822A (en) Package for accommodating semiconductor element
JP3447043B2 (en) Package for electronic components
JPH10135405A (en) Wiring board module
JPH11289037A (en) Metal plate for heat dissipation and package for electronic component using the same
JP2002076213A (en) Semiconductor device module
JP4360567B2 (en) Package for storing semiconductor elements
JP2000195996A (en) Electronic circuit module
JPH11297909A (en) Metallic plate for radiating heat and package for electronic parts using it
JP3659304B2 (en) Package for storing semiconductor elements
JP2006128589A (en) Electronic component housing package and electronic device
JP6818457B2 (en) Wiring boards, electronics and electronic modules
JP3659467B2 (en) Package for storing semiconductor elements
JP3659300B2 (en) Package for storing semiconductor elements
JP3659305B2 (en) Package for storing semiconductor elements
JP3683859B2 (en) Package for storing semiconductor elements
JP3640238B2 (en) Metal plate for heat dissipation and electronic component package using the same
JP3420362B2 (en) Semiconductor device mounting structure
JP2000022057A (en) Heat dissipating metal plate and electronic part package provided therewith

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080415

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120415

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees