JP2004156936A - 電磁流量計の励磁回路 - Google Patents

電磁流量計の励磁回路 Download PDF

Info

Publication number
JP2004156936A
JP2004156936A JP2002320652A JP2002320652A JP2004156936A JP 2004156936 A JP2004156936 A JP 2004156936A JP 2002320652 A JP2002320652 A JP 2002320652A JP 2002320652 A JP2002320652 A JP 2002320652A JP 2004156936 A JP2004156936 A JP 2004156936A
Authority
JP
Japan
Prior art keywords
exciting
circuit
switch
excitation
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320652A
Other languages
English (en)
Other versions
JP4004931B2 (ja
Inventor
Tatsuya Kimura
達也 木村
Yoshitomi Sameda
芳富 鮫田
Ryoji Maruyama
亮司 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002320652A priority Critical patent/JP4004931B2/ja
Publication of JP2004156936A publication Critical patent/JP2004156936A/ja
Application granted granted Critical
Publication of JP4004931B2 publication Critical patent/JP4004931B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】電磁流量計の励磁回路において、方形波の励磁電流を高効率で高速反転させ、励磁電流を素早く定常値となる様に制御できる励磁回路を提供することを目的とする。
【解決手段】電磁流量計の励磁回路において、励磁回路1は励磁コイルLに流す励磁電流ia、ibを、所定の周期で制御された制御信号8によってコンデンサCの充電エネルギーを開閉する開閉スイッチS1と、励磁電流ia、ibの流れる方向を切替える切替スイッチS2とによって開閉制御する。さらに励磁電流ia、ibを一定の定電流値に制御する定電流回路2と電源3とから構成される。
【選択図】図3

Description

【0001】
【発明の属する技術分野】
本発明は電磁流量計の励磁回路に係わり、特に、低電圧電源で駆動できる、低消費電力の電磁流量計の励磁回路に関する。
【0002】
【従来の技術】
一般に電磁流量計は、流体の流れる方向に対して直角方向の磁界を与え、流体中に発生する起電力信号を検出し、これに基づいて流量を測定している。これらの電磁流量計の励磁方式には、商用電源による交流励磁方式や直流励磁方式があるが、最近ではゼロ点の安定している方形波励磁方式が多く用いられている。
【0003】
このような電磁流量計の構成例を図11に示す。電磁流量計は被測定流体5aを流す測定管5の外周で励磁コイルLにより磁界を与える励磁回路1と、被測定流体5aの起電力信号を検出する測定管5の両端部に対向して配置された1対の電極6及び起電力信号から流量を求める信号処理回路7から構成される。
【0004】
励磁回路1は励磁コイルLに流す励磁電流を制御するもので、励磁コイルLによって測定管5の内部を流れる被測定流体5aに直交する磁場を形成する。1対の電極6では被測定流体5aに誘起される起電力信号を検出する。信号処理回路7は励磁回路1へ制御信号8を与え、電極6からの起電力信号を制御信号8に同期して処理し、流量値を求めて出力する。
【0005】
従来の一般的な励磁回路例を図12に示す。励磁回路1は励磁電流ia、ibの向きを切替えるための切替スイッチS0と、電流の大きさを一定に保つ定電流回路2と、電源3から構成される。切替えスイッチS0は4つの開閉スイッチS01、S02、S03、S04を持ち、図示しない信号処理回路からの制御信号8が1のときは開閉スイッチS01、S04がオン、開閉スイッチS02とS03がオフになり、励磁電流iaが図示した方向に流れる。
【0006】
制御信号8が0のときは開閉スイッチS01とS04がオフ、開閉スイッチS02とS03がオンになり、励磁電流ibが図示した方向に流れる。制御信号8が周期的に0、1を繰り返すことで励磁電流ia、ibの向きが変わり、方形波励磁電流が励磁コイルLに印加される。
【0007】
このような励磁電流ia、ibの流れる方向の切替え速度を速める方法として次のようなものが知られている(例えば、特許文献1参照。)。この方法では、高電圧と低電圧の2種の電圧を供給する電源によって、切替え速度を速め、消費電力の効率も高めている。
【0008】
また、このような励磁回路の切替え速度を早める他の方法として、LC回路の充放電エネルギーを利用して、電源に高電圧を必要としない例が知られている(例えば、特許文献2参照。)。
【0009】
【特許文献1】
特開平5−45196号公報
【0010】
【特許文献2】
特公平6−95031号公報
【0011】
【発明が解決しようとする課題】
従来の励磁回路(図12)においては、切替えスイッチS0を切替えた時に、励磁電流の向きが完全に反転するまでの過渡期間は、励磁コイルLに与える電圧に比例するから、切替え時の立ちあがりを早めるために電源3に高電圧を必要としていた。
【0012】
しかし、励磁電流が一定値となる定常期間に必要な電圧は、励磁コイルLの抵抗による電圧降下分のみでよいので、電源3の電圧の大部分は定電流回路2で消費されることになり効率が悪くなる。
【0013】
そこで、励磁電流を反転させるときだけ高電圧を与える前述した方法が知られているが、いずれも、励磁電圧や励磁電流の切替え回路が複雑である上に、励磁回路を構成する全ての部品は高耐圧部品を選択する必要があり、小型化、高信頼化を図るには問題があった。また、励磁電流を定常値に素早く安定させる機能が不充分であった。
【0014】
本発明は、上記問題点を解決するためになされたもので、方形波の励磁電流の流れる方向を高効率で高速反転させ、励磁電流を素早く定常値となる様に制御できる機能を有する、電源に高電圧を必要としない構成の簡単な励磁回路を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために本発明の電磁流量計の励磁回路は、被測定流体を流す測定管に磁場を印加するための励磁コイルと、この励磁コイルに定常値を持つ周期的な励磁電流を流すことによって、被測定流体に磁場を印加して、これにより発生する起電力信号を検出して流量を測定する電磁流量計の励磁回路において、この励磁回路を励磁電流を供給する電源と、前記励磁コイルに直列に接続される第1のコンデンサと、この第1のコンデンサに並列に接続された第1のスイッチと、前記励磁コイルに流れる励磁電流の向きが変わる毎に印加される前記電源の極性を交互に切替える第2のスイッチと、前記励磁回路に流れる励磁電流の最大値を一定に制御する定電流回路とから構成し、前記第1のスイッチは、前記励磁回路の励磁周期を所定の周期を持つ制御信号により前記励磁回路が充放電動作をしている期間において、前記第1のコンデンサの両端電圧がゼロの時に閉じ、前記励磁回路の励磁電流が前記励磁周期の半周期毎に定常値とする様に制御手段より開閉制御し、前記第2のスイッチは、前記励磁回路の励磁電流の流れる方向を検出して印加する前記電源の極性を励磁電流の流れが切り替わる方向に切替える様に制御手段より開閉制御する様にしたことを特徴とする。
【0016】
従って本発明によれば、励磁コイルと直列にコンデンサを設け、励磁電流の立下り、立ち上がり時に、夫々に蓄えられたエネルギー利用して励磁電流の切替えを早くできるようにしたので、高電圧の電源が不要になる。また、定電流回路を設けているので、切替え後素早く励磁電流を定常値になる様に自動制御することが出来る。
【0017】
さらに、高電圧となる構成部品は、励磁コイル、コンデンサ、及びその両端に接続されるダイオードと開閉スイッチのみで、他の構成品は低電圧でよいので汎用部品が使用でき、小型化高信頼化が実現し易くなる。
【0018】
【発明の実施の形態】
(第1の実施の形態)
図1乃至図3を参照して本発明の第1の実施の形態を説明する。図1は本発明の励磁回路の動作を説明するモデル回路図、図2は動作説明図及び図3はその詳細回路図である。
【0019】
図1において励磁回路1は、励磁コイルLに制御された励磁電流ia、ibを供給するもので、コンデンサCの充電エネルギーを開閉する開閉スイッチS1と、励磁電流の流れる方向を切替える切替えスイッチS2と、励磁電流の定常値を制御する抵抗Rで図示している定電流回路2及びこの励磁回路の電源3とから構成される。
【0020】
図1と図2を参照して本発明のモデル回路の動作原理を説明する。図2(a)は開閉スイッチS1、切替えスイッチS2の夫々の開閉状態を示し、この時の各部の動作波形を、図2(b)では励磁電流ia、ibを、図2(c)はコンデンサC両端電圧を、そして図2(d)には励磁コイルLの両端電圧を夫々示す。
【0021】
励磁コイルLに流れる励磁電流ia、ibを開閉スイッチS1と切替えスイッチS2で制御して、図2(a)に示す、開閉スイッチS1がオフとなる期間T2及びT3と、T5及びT6に示す励磁電流が切り替わる期間において、励磁コイルLとコンデンサC蓄えられたエネルギーを相互に授受することによって、切替えの応答を早めるために必要な高電圧を発生させて、励磁電流ia、ibの立下りと立ち上がりの動作を高速で行うものである。
【0022】
即ち、励磁電流が図2(a)示す期間T1からT2、及びT4からT5に切り替わる励磁電流ia、ibの立下り時には、励磁電流ia、ibが定常値に有る期間T1及びT4に励磁コイルLに蓄えられたエネルギーをコンデンサCに移動させ、励磁電流ia、ibが定常値に切り替わる期間T3からT4、及びT6からT7に示す立ち上がり時にはコンデンサCに蓄えられたエネルギーを励磁コイルLに戻すように制御する。
【0023】
図2(c)にこの時の励磁電流ia、ibの波形を示す。図2(a)において開閉スイッチS1の開閉状態が期間T1及びT4の励磁期間中に励磁コイルLに蓄えられたエネルギーをW、コンデンサCの蓄えられるエネルギーをWとすると、
【数1】
=1/2LI ・・・(1)
(Lは、励磁コイルLのインダクタンス、Iは定常値の励磁電流ia、ib)
【数2】
=1/2CV ・・・(2)
(Cは.コンデンサCの静電容量、Vはコンデンサの両端電圧)
となるから、開閉スイッチS1の制御のタイミングt1、t4、即ち、励磁電流ia、ibの立下りタイミングでは、コンデンサCの両端には、
【数3】
Figure 2004156936
なる逆起電力が印加され、開閉スイッチS2の立ち上がりタイミングt2、t5では、励磁コイルLにこの高電圧が印加され励磁の切替えが高速に行われる。
【0024】
図2(c)、(d)にはこの時の励磁コイルLとコンデンサCの両端の電圧の変化状態を図示している。
【0025】
以下、この様な励磁回路の動作の設定を同じく、図1と図2で説明する。開閉スイッチS1は、励磁周期を決めるもので励磁電流ia、ibの所定の励磁周波数となる様に制御信号8で設定される。
【0026】
この励磁電流ia、ibの周期期間Tは、測定に必要な一定の励磁電流期間を確保するためにコンデンサCと励磁コイルLの共振周波数fの周期期間の4倍程度に設定する。
【0027】
【数4】
Figure 2004156936
開閉スイッチS1の制御のタイミング(t1、t4)は図示しない信号処理回路からの制御信号8を介して設定され、制御のタイミング(t3、t6)は、コンデンサCの両端の電圧がゼロとなることを検出して後述する様に自動的に切替える様にしている。
【0028】
また、切替えスイッチS2も励磁電流ia、ibの流れる方向を切替えるタイミングを制御するもので、励磁電流ia、ibがゼロになることを検出して後述する様に自動的に切替える。
【0029】
以上説明した励磁回路1の動作原理に基づいた本発明の実施の形態を図3でさらにその詳細な回路を説明する。図3は、図1、図2の動作原理で説明した開閉スイッチS1、切替えスイッチS2及び定電流回路2の詳細が示されているが、各部の機能は同一である。尚、電源3は図1では正負2台で説明したが図3では1台の電源とし、その印加する方向を切替えスイッチS2で切替える点が異なる。
【0030】
図3において、励磁回路1は、励磁コイルLとこの励磁コイルLの一端に直列に接続されるコンデンサCと、励磁電流ia、ibの切替えタイミングを制御する制御手段を持ち前記コンデンサCに並列に接続される開閉スイッチS1と、励磁電流ia、ibの流れる方向を切替える制御手段を持ち前記開閉スイッチS1に直列に接続された切替えスイッチS2と、励磁コイルの他端と電源3間に接続され励磁電流ia、ibを一定に制御する定電流回路2と、前記励磁回路1の電源3とから構成される。
【0031】
次に、各スイッチの構成について説明する。開閉スイッチS1は、図示しない信号処理回路から供給される制御信号8を介して、図2(a)の開閉スイッチS1の開閉状態に示すタイミングで制御される開閉スイッチS11、S12と、夫々の開閉スイッチS11、S12に直列で逆方向の極性で接続されるダイオードS13、S14をコンデンサCに並列に接続している。
【0032】
なお、図2(a)に示す開閉スイッチS1の開閉状態は、図3に示す開閉スイッチS1内のダイオードS13、S14を含むスイッチの制御動作の全体を示すもので、開閉スイッチS11、S12は一方がオンであれば他方はオフとなる様に設定される。
【0033】
図3では、インバータS15を介して開閉スイッチS11とS12の制御動作を逆にしているが、例えば、開閉スイッチS11にP型のMOSFETを、開閉スイッチS12をN型のMOSFETとしてインバータS15を不要とすることも可能である。
【0034】
切替えスイッチS2は、開閉スイッチS21乃至開閉スイッチS24、励磁電流ia、ibの流れる方向を検知する電流検出抵抗S25、及び電流検出抵抗S25の方向を検知するコンパレータS26とで構成され、コンパレータS26の出力で開閉スイッチS21とS24、S22とS23を1対として励磁電流ia、ibの流れる方向で自動的にオン、オフ制御される。
【0035】
この様な開閉スイッチS21乃至S24は、前述した開閉スイッチS11、S12と同様に、例えば、MOSFETで構成することも容易で、インバータS21aは省略することも可能である。
【0036】
この開閉スイッチS21と開閉スイッチS22及び開閉スイッチS23と開閉スイッチS24は、直列に接続され、開閉スイッチS21と開閉スイッチS23の一方の端子は励磁回路1の電源3のプラス端子に接続される。
【0037】
開閉スイッチS21とS22の接続点は、電流検知抵抗のS25の一方の端子とコンパレータS26のプラス端子に接続され、電流検知抵抗S25の他方の端子はコンパレータS26のマイナス端子及びコンデンサCの一方の端子に接続されている。
【0038】
さらに、コンデンサCの他方の端子は励磁コイルLの一方の端子に接続され、他方の端子は開閉スイッチS23とS24との接続点に合わせて接続されている。
【0039】
また、開閉スイッチS22と開閉スイッチS24の他方の端子は定電流回路2のシンク端子P22に接続される。
【0040】
定電流回路2は、オペアンプ21、トランジスタ22、電流検出抵抗23、及び基準電源24で構成される。基準電源24のマイナス端子は、励磁回路の電源3のマイナス端子と電流検出抵抗23の一方の端子P24に接続される。
【0041】
オペアンプの21のプラス端子は基準電源24のプラス端子に接続され、マイナス端子は電流検知抵抗23の高電位端子P23に接続される。さらにオペアンプ21の出力はトランジスタ22のベースに接続され、トランジスタ22のエミッタは電流検知抵抗23の高電位端子P23に接続され、トランジスタのコレクタ22は、定電流回路2のシンク端子P22と切替えスイッチ22と24との接続点に接続される。
【0042】
この定電流回路2は、励磁電流ia、ibの定常値を決めるもので、この時定常値は基準電源24の値を電流検知抵抗23で割った値となるが、所定の電流値と成る様に電流検知抵抗23以外の回路の抵抗成分を考慮して設定される。
【0043】
上記構成において、励磁電流の切替え動作について説明する。励磁電流ia、ibがiaの方向に流れている場合には、電流検出抵抗S25でコンパレータS26のプラス端子の方が高電位と判定され、コンパレータS26の出力は、開閉スイッチS21と開閉スイッチS24をオンとし、定電流回路2で設定された励磁電流iaが電源3のプラス端子から開閉スイッチS21、電流検知抵抗S25、コンデンサC、励磁コイルL、開閉スイッチS24を介して定電流電源2のシンク端子P22に流れる。
【0044】
励磁電流がia、ibがibの方向に切り替わると、電流検出抵抗S25でコンパレータS26のマイナス端子の方が高電位と判定され、コンパレータS26の出力は、開閉スイッチS22と開閉スイッチS23をオンとし、定電流回路2で設定された励磁電流ibが電源3のプラス端子から開閉スイッチS23、励磁コイルL、コンデンサC、電流検知抵抗S25、開閉スイッチS22を介して定電流回路2のシンク端子P22に流れる。
【0045】
開閉スイッチS1、切替えスイッチS2の動作は、図1のモデル回路図、及び図2のモデル回路の動作説明図で説明した内容と同等で有るが、さらにこの実施の形態での詳細動作について説明する。
【0046】
図2(a)において、切替え開始のタイミングt1、t4は制御信号8を介して開閉スイッチS11をオンからオフに切替えるが、オフからオンには切り替わるタイミングt3、t6は、コンデンサCの両端電圧によってダイオードS13、S14を導通、非導通とし自動的に切替える。
【0047】
また、切替えスイッチS2は、電流検知抵抗25の発生する電位差の方向をコンパレータS26によって高感度で検出して、自動的に電流の方向を検知して切替える。
【0048】
さらに、励磁電流ia、ibの定常値は、励磁電流の方向がiaからibに切り替わるタイミングt2、t5の動作後、定電流回路2で設定した電流によってコンデンサCの両端間の電圧降下の発生方向をダイオードS13、S14によって検知して自動的にタイミングt3、t6で切替え、電流検知抵抗23のP23端子の電位が一定の電流値になる様にオペアンプ21によって素早くフィードバック制御され、定常値に制定される。
【0049】
以上説明した様に、本実施の形態によれば、励磁電流ia、ibの方向を切替える動作が、電源に高電圧を必要とせず、且つ定常時の電流値のみで発生する低消費電力の励磁回路とすることが出来る。
【0050】
また、高電圧の発生部は、励磁コイルLとコンデンサC部分に限定されるのでその他の部分の構成部品は低圧用の汎用部品が使用でき、製品の小型化、高信頼化が実現しやすくなる。
【0051】
さらに、励磁電流の定常値も高精度で設定制御されているので、高精度で、応答の早い電磁流量計とすることが可能となる。
【0052】
(第2の実施の形態)
本発明の第2の実施の形態を図4に示す。この第2の実施の形態は図3に示した第1の実施の形態の励磁回路に対して、開閉スイッチS1の構成部品を統一して、構成をシンプルにしたものである。
【0053】
その他の構成は、図3と同様である。図4において、コンデンサCは、コンデンサC1、C2の2つで構成され、開閉スイッチS1はコンデンサC1、C2にそれぞれ並列に接続された開閉スイッチS11、S12、及びダイオードS13、14から構成される。
【0054】
基本的な動作は第1の実施の形態で説明した動作と同じであるが、以下図2を用いて、その差異点について図2及び図4を参照して開閉スイッチS1の動作を説明する。開閉スイッチS11、S12は、図示しない信号処理回路の制御信号8を介して交互にオン、オフされる。
【0055】
開閉スイッチの動作が期間T1の状態では、励磁電流は図4のiaの方向に流れ、S11はオン、S12はオフとなっている。次に、期間T2の状態ではS11はオフ、S12はオンになり、コンデンサC1に励磁電流iaが流れ始める。
【0056】
コンデンサC1の両端電圧がタイミングt3で反転すると、ダイオードS13がオンになり期間T3からT4の状態に移行する。このとき励磁電流の向きはibの方向である。
【0057】
次に制御信号8が制御のタイミングt4でオフ設定に変わると、開閉スイッチS11はオン、開閉スイッチS12がオフとなり、コンデンサC2に電流が流れ始め期間T5からT6の状態に移行する。コンデンサC2の両端電圧が反転するとダイオードS14がオンとなり期間T7に自動的に移行する。
【0058】
このようにダイオードとスイッチを組み合わせることで、開閉スイッチS1の制御が同一の部品で構成される。この構成では、開閉スイッチS11、S12の夫々を、例えば同じN型MOSFETで統一することができる。
【0059】
また、切替えスイッチS2を構成する開閉スイッチS21乃至S24もN型MOSFETで実現可能であり、全てのスイッチ素子が同一タイプのものので構成できる。なお、ダイオードS13、S14の極性を逆にすれば開閉スイッチS11、S12をP型MOSFETで実現することも可能である。
【0060】
(第3の実施の形態)
本発明の第3の実施の形態を図5を参照して説明する。本発明の実施の形態は本発明の第1の実施の形態及び第2の実施の形態の定電流回路2を両極性定電流回路4に置き換えたものである。
【0061】
基本的な動作は第1の実施の形態で説明したものと同じである。この両極性定電流回路4は、励磁電流ia、ibを供給するオペアンプ41と、励磁電流ia、ibの流れる電流検出抵抗42と、電流検出抵抗42に発生する電位の発生方向を検出するコンパレータ43と、励磁電流の定常値を切替える切替スイッチ44と及び基準電圧源45、46とから構成される。
【0062】
励磁回路1の電源3は、夫々正負の極性となる電源31と電源32とから構成され、電源31のマイナス端子と電源32のプラス端子が接続され、その接続点が回路の共通電位Gとなる。
【0063】
また、基準電源45のマイナス端子と、基準電源46のプラス端子も同様に接続され、同じく回路の共通電位G接続される。
【0064】
励磁回路の電源31、32は、夫々オペアンプ41のプラス電源端子、マイナス電源端子に接続され、オペアンプ41の出力は、励磁コイルLに流れ励磁電流ia、ibをこの電源31、32を介して直接供給する。さらにオペアンプ41のプラス端子は切替えスイッチ44のコモン端子に接続される。
【0065】
このオペアンプ41の出力はコンデンサCの一方の端子に接続され、コンデンサCの他方の端子は、励磁コイルLに接続されている。
【0066】
この励磁コイルLの他の端子は、電流検出抵抗42の一方の端子とオペアンプ41のマイナス端子とに接続され、電流検出抵抗42の他方の端子が励磁回路1の共通電位Gに接続されている。
【0067】
次に、この様に構成された両極性定電流回路4を持つ励磁回路の動作について同じく図2と図5を参照して説明する。
【0068】
図2における切替えスイッチS2に相当する本発明の切替えスイッチ44は、期間T1の状態、即ち、コンパレータ43の出力が1のとき+側になり、コンパレータ43の出力が0のとき−側に切り替わる様に設定されている。
【0069】
励磁電流ia、ibがiaの方向に流れている時は、コンパレータ43の出力は1であり、切替えスイッチ44は+側に接続され、オペアンプ41は電流検出抵抗42の両端電圧が基準電圧源45と同じになるようにオペアンプ41の−端子にフィードバックされた電圧を自動調整し定電流出力とする。
【0070】
次に、図2の切替えスイッチS2に示される期間T2の状態が始まるとまもなく電流が減少する。励磁電流ia、ibの方向がiaからibに変わると、コンパレータ43の出力は0になり、切替えスイッチ44は−側に切り替わり、オペアンプ41は電流検出抵抗42の両端電圧が基準電圧源46と同じになるようにオペアンプの41の−端子にフィードバックされた電圧を自動調整し定電流出力とする。これは期間T3の状態に相当する。
【0071】
スイッチS1の動作は、前述した第1の実施の形態での動作と同様であるので説明を省略する。
【0072】
この構成では励磁電流ia、ibが、例えばオペアンプで駆動可能な微小電流の場合に回路をコンパクトに纏める上で有効である。励磁電流ia、ibを大きくする必要がある場合には、オペアンプ41の出力回路にトランジスタまたはMOSFETを追加すれば容易に可能である。
【0073】
また、この構成では、励磁電源3、両極性定電流回路4は、低圧部品で構成できる。さらに、開閉スイッチS1の制御信号8の入力端子は低圧で良いので制御信号のレベル変換も不要とすることができる。
【0074】
(第4の実施の形態)
本発明の第4の実施の形態を図6に示す。本実施の形態は、第2の実施の形態と第3の実施の形態とを組み合わせである。即ち、開閉スイッチS1を2台構成のスイッチとし、定電流回路を両極性形式としたものである。本組み合わせの動作説明は前述の組み合わせであるので省略する。
【0075】
この実施の形態による効果は、励磁電流ia、ibが小さい場合においては、励磁電源31、32から基準電源45、46を分圧して設定できること、また切替えスイッチがS11、S12、44が共通制御信号レベルで行える形式の素子を選択できることからさらに小型の励磁回路とすることが可能である。
【0076】
(第5の実施の形態)
図7乃至図10を参照して第5の実施の形態を説明する。図7はこの発明のモデル図を、図8は間欠励磁の場合の動作説明図を、図9は3値励磁の場合の動作説明図を、さらに図10はその詳細回路図を示す。
【0077】
第5の実施の形態を示す図7は、第1の実施の形態の図1に示すコンデンサCに直列にスイッチS3を付加したものである。その他の構成は図1と同様であるので説明は省略する。
【0078】
図8(a)に開閉スイッチS3の状態、図8(b)に励磁回路1が動作中の時の励磁電流ia、ibを、図8(c)にコンデンサCの両端電圧を、更に
図8(d)にこの時の励磁コイルLの両端電圧を示す。
【0079】
この励磁回路1の動作は、励磁コイルLとコンデンサCの夫々の両端電圧がゼロの時に励磁電流ia、ibを定常値とする期間を作る動作の他、開閉スイッチS3をオフにすることによって励磁電流ia、ibがゼロのときに充放電の動作を一時停止して、励磁電流ia、ibがゼロの期間を設定、制御することが出来る。
【0080】
開閉スイッチS3以外のその他の構成は第1の実施の形態と同じなので、詳細説明を適宜省略し、開閉スイッチS3の制御動作について図8を用いて説明する。
【0081】
開閉スイッチS3がオンの図8(a)における期間T8の状態においては、第一の実施の形態で説明した方形波の励磁電流ia、ibが流れている。この状態において励磁電流ia、ibがゼロになった時に開閉スイッチS3をオフとしコンデンサCの両端電圧は高い状態で保持し、励磁コイルLの両端電圧はゼロ、励磁電流ia、ibをゼロとして休止状態の期間T9とする。
【0082】
この期間T9の状態から開閉スイッチS3をオンにすると励磁コイルLにコンデンサCの両端電圧が印加され方形波励磁の動作期間T10の状態に移行する。
【0083】
次に、この様な制御動作を可能とする励磁回路1の開閉スイッチS3の制御動作を実現する励磁回路構成例を図10に示す。前述した図3に示す第1の実施の形態の励磁回路1に対し、開閉スイッチS3と開閉スイッチS3の図示しない信号処理回路からの制御信号9が追加されている。
【0084】
この制御信号9は前述した制御信号8同様に、図11に示す電磁流量計の構成の信号処理回路7で作られ、この励磁回路1に入力される。
【0085】
開閉スイッチS3は、開閉スイッチS31及びこの開閉スイッチS31に並列に接続したダイオードS32からなる。制御信号9は、通常の励磁動作(図8の期間T8)時はオンである。励磁を休止するときには、前述した図2に示した開閉スイッチS1における制御信号8がオンからオフになるときに合わせて制御信号9をオンからオフにする。
【0086】
この時、電流がia方向に流れている間はダイオードS32を通して電流が流れ、電流がib方向に流れようとしたときにダイオードS32がオフになり、動作の期間T9が実現される。
【0087】
ここで、開閉スイッチS31は、例えば、N型MOSFETで実現することができるが、ダイオードS32の極性を逆すれば、スイッチS31はP型MOSFETで実現することもできる。尚この構成にあっては間欠動作は可能であるが、図9に示す様な3値動作(正電流、ゼロ、負電流)の励磁はできないが、開閉スイッチS3を開閉スイッチスイッチS1と同じ様に励磁電流ia、ibの双方向の流れに対して動作が可能になる様に構成にすれば実現は容易である。
【0088】
そして前述した開閉スイッチS3の追加は、第1の実施の形態の励磁回路1の全てに対しても容易に適用できるものである。
【0089】
この様な制御機能をもつ間欠励磁の励磁回路1の動作において、電流の大きさがゼロになる、または一定電流まで復帰するのに要する時間は、励磁回路の電源3の電圧とは無関係に制御できる。
【0090】
従って、この開閉スイッチS3の制御により、励磁電源として高電圧を必要とすることなく実現できるので、必要なときのみ励磁する構成が可能となるので消費電力の節約が可能となる。
【0091】
【発明の効果】
以上説明したように、本発明によれば、励磁電流の反転に要する時間を励磁コイルのインダクタンスLとコンデンサとの充放電によって決定する様にしたので、電源電圧を高くする必要がなく、励磁電流の方向の切替えをシンプルな回路構成で行える効率的な励磁回路が可能となる。さらに、コンデンサ、励磁コイルの高電圧発生部以外は汎用部品が使用が可能となるので製品の小型化も容易に行うことができる。
【図面の簡単な説明】
【図1】第1の実施の形態の励磁回路のモデル図。
【図2】第1の実施の形態の動作説明図。
【図3】第1の実施の形態における励磁回路。
【図4】第2の実施の形態における励磁回路。
【図5】第3の実施の形態における励磁回路。
【図6】第4の実施の形態における励磁回路。
【図7】第5の実施の形態における励磁回路のモデル図。
【図8】第5の実施の形態の動作説明図。
【図9】第5の実施の形態の動作説明図。
【図10】第5の実施の形態の励磁回路。
【図11】電磁流量計の構成図。
【図12】従来の励磁回路。
【符号の説明】
1 励磁回路
2 定電流回路
3 励磁回路の電源
4 両極性定電流回路
5 測定管
5a 被測定流体
6 電極
7 信号処理回路
8 制御信号
9 開閉スイッチS3の制御信号
21 オペアンプ
22 トランジスタ
23 電流検出抵抗
24 基準電圧源
31、32 励磁電源
41 オペアンプ
42 電流検出抵抗
43 コンパレータ
44 切替えスイッチ
45、46 基準電圧源
C、C1、C2 コンデンサ
L 励磁コイル
ia 電流の方向を表す
ib 電流の方向を表す
R 抵抗
S1 開閉スイッチ
S2 切替えスイッチ
S3 開閉スイッチ
S11、S12 開閉スイッチ
S13、S14 ダイオード
S15乃至S19 インバータ
S21乃至S24 開閉スイッチ
S21a乃至S23a インバータ
S25 電流検出抵抗
S26 コンパレータ
S31 開閉スイッチ
S32 ダイオード

Claims (8)

  1. 被測定流体を流す測定管に磁場を印加するための励磁コイルと、この励磁コイルに定常値を持つ周期的な励磁電流を流すことによって、被測定流体に磁場を印加して、これにより発生する起電力信号を検出して流量を測定する電磁流量計の励磁回路において、
    この励磁回路を励磁電流を供給する電源と、
    前記励磁コイルに直列に接続される第1のコンデンサと、
    この第1のコンデンサに並列に接続された第1のスイッチと、
    前記励磁コイルに流れる励磁電流の向きが変わる毎に印加される前記電源の極性を交互に切替える第2のスイッチと、
    前記励磁回路に流れる励磁電流の最大値を一定に制御する定電流回路とから構成し、
    前記第1のスイッチは、前記励磁回路の励磁周期を所定の周期を持つ制御信号により前記励磁回路が充放電動作をしている期間において、前記第1のコンデンサの両端電圧がゼロの時に閉じ、前記励磁回路の励磁電流が前記励磁周期の半周期毎に定常値とする様に制御手段より開閉制御し、
    前記第2のスイッチは、前記励磁回路の励磁電流の流れる方向を検出して印加する前記電源の極性を励磁電流の流れが切り替わる方向に切替える様に制御手段より開閉制御する様にしたことを特徴とする電磁流量計の励磁回路。
  2. 前記励磁回路における、前記第1のスイッチの制御手段を、開閉スイッチとダイオードを直列接続したものを1組として2組を並列接続し、かつ夫々のダイオードは互いに逆極性になるように接続して構成し、前記夫々の開閉スイッチは一方がオンの時他方がオフになるように開閉制御することを特徴とする請求項1記載の電磁流量計の励磁回路。
  3. 前記励磁回路において、励磁コイルの両端に、第1のコンデンサと第2のコンデンサを直列に接続し、前記夫々のコンデンサと並列に開閉スイッチとダイオードを接続し、且つ、前記夫々のダイオードの極性は互いに逆になるように接続し、前記夫々の開閉スイッチは、一方がオンの時他方がオフになる様に開閉制御する様にしたことを特徴とする請求項1記載の電磁流量計の励磁回路。
  4. 前記励磁回路は、前記第1のコンデンサと直列に接続される第3のスイッチを備え、この第3のスイッチは、前記励磁電流がゼロのときに、前記第3のスイッチを開いて励磁回路の充放電動作を一時的に停止する様に開閉制御する様にしたことを特徴とする請求項1記載の電磁流量計の励磁回路。
  5. 被測定流体を流す測定管に磁場を印加するための励磁コイルと、この励磁コイルに定常値を持つ周期的な励磁電流を流すことによって、被測定流体に磁場を印加して、これにより発生する起電力信号を検出して流量を測定する電磁流量計の励磁回路において、
    この励磁回路を励磁電流を供給する電源と、
    前記励磁コイルに直列に接続される第1のコンデンサと、
    この第1のコンデンサに並列に接続された第1のスイッチと、
    前記励磁コイルに流れる励磁電流の向きが変わる毎に印加される前記電源の極性を交互に切替える第2のスイッチと、
    前記励磁回路に流れる励磁電流の最大値を一定に制御する定電流回路とから構成し、
    前記第1のスイッチは、前記励磁回路の励磁周期を所定の周期を持つ制御信号により前記励磁回路が充放電動作をしている期間において、前記第1のコンデンサの両端電圧がゼロの時に閉じ、前記励磁回路の励磁電流が前記励磁周期の半周期毎に定常値とする様に制御手段より開閉制御し、
    前記第2のスイッチと前記定電流回路は両極性の定電流回路で構成し、この両極性の定電流回路は、前記励磁コイルと前記第1のコンデンサの充放電によって前記励磁電流の流れる方向が切り替わることを検出し、定常時の励磁電流を設定する基準電源の極性を前記励磁電流の流れが切り替わる方向に切替える様に制御手段により開閉制御する様にしたことを特徴とする電磁流量計の励磁回路。
  6. 前記励磁回路における、前記第1のスイッチの制御手段を、開閉スイッチとダイオードを直列接続したものを1組として2組を並列接続し、かつ夫々のダイオードは互いに逆極性になるように接続して構成し、前記夫々の開閉スイッチは一方がオンの時他方がオフになるように開閉制御することを特徴とする請求項5記載の電磁流量計の励磁回路。
  7. 前記励磁回路において、励磁コイルの両端に、第1のコンデンサと第2のコンデンサを直列に接続し、前記夫々のコンデンサと並列に開閉スイッチとダイオードを接続し、且つ、前記夫々のダイオードの極性は互いに逆になるように接続し、前記夫々の開閉スイッチは、一方がオンの時他方がオフになる様に開閉制御する様にしたことを特徴とする請求項5記載の電磁流量計の励磁回路。
  8. 前記励磁回路は、前記第1のコンデンサと直列に接続される第3のスイッチを備え、この第3のスイッチは、前記励磁電流がゼロのときに、前記第3のスイッチを開いて励磁回路の充放電動作を一時的に停止する様に開閉制御する様にしたことを特徴とする請求項5記載の電磁流量計の励磁回路。
JP2002320652A 2002-11-05 2002-11-05 電磁流量計の励磁回路 Expired - Fee Related JP4004931B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320652A JP4004931B2 (ja) 2002-11-05 2002-11-05 電磁流量計の励磁回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320652A JP4004931B2 (ja) 2002-11-05 2002-11-05 電磁流量計の励磁回路

Publications (2)

Publication Number Publication Date
JP2004156936A true JP2004156936A (ja) 2004-06-03
JP4004931B2 JP4004931B2 (ja) 2007-11-07

Family

ID=32801434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320652A Expired - Fee Related JP4004931B2 (ja) 2002-11-05 2002-11-05 電磁流量計の励磁回路

Country Status (1)

Country Link
JP (1) JP4004931B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194393A (ja) * 2013-03-29 2014-10-09 Azbil Corp 電磁流量計の励磁回路
US10712184B1 (en) 2019-01-09 2020-07-14 Georg Fischer Signet Llc Magnetic flowmeter assembly having independent coil drive and control system
US11365995B2 (en) 2018-09-28 2022-06-21 Georg Fischer Signet Llc Magnetic flowmeter including auxiliary electrodes upstream and downstream of the pair of measuring electrodes and an adjustable brace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5843670B2 (ja) 2012-03-15 2016-01-13 アズビル株式会社 電磁流量計の励磁回路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128666A (ja) * 1990-08-29 1991-05-31 Fuji Electric Co Ltd スイッチングデバイス用パルス伝送装置
JPH03275957A (ja) * 1989-10-23 1991-12-06 Tohoku Tokushuko Kk 電磁弁駆動回路
JPH04264216A (ja) * 1991-02-19 1992-09-21 Hitachi Ltd 静電容量式電磁流量計の励磁回路
JPH0522949A (ja) * 1991-06-24 1993-01-29 Hitachi Ltd 交番定電流回路
JP2001241983A (ja) * 2000-02-25 2001-09-07 Toshiba Corp 電磁流量計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03275957A (ja) * 1989-10-23 1991-12-06 Tohoku Tokushuko Kk 電磁弁駆動回路
JPH03128666A (ja) * 1990-08-29 1991-05-31 Fuji Electric Co Ltd スイッチングデバイス用パルス伝送装置
JPH04264216A (ja) * 1991-02-19 1992-09-21 Hitachi Ltd 静電容量式電磁流量計の励磁回路
JPH0522949A (ja) * 1991-06-24 1993-01-29 Hitachi Ltd 交番定電流回路
JP2001241983A (ja) * 2000-02-25 2001-09-07 Toshiba Corp 電磁流量計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014194393A (ja) * 2013-03-29 2014-10-09 Azbil Corp 電磁流量計の励磁回路
US11365995B2 (en) 2018-09-28 2022-06-21 Georg Fischer Signet Llc Magnetic flowmeter including auxiliary electrodes upstream and downstream of the pair of measuring electrodes and an adjustable brace
US10712184B1 (en) 2019-01-09 2020-07-14 Georg Fischer Signet Llc Magnetic flowmeter assembly having independent coil drive and control system

Also Published As

Publication number Publication date
JP4004931B2 (ja) 2007-11-07

Similar Documents

Publication Publication Date Title
KR100912865B1 (ko) 스위칭 레귤레이터 및 그 스위칭 레귤레이터를 구비하는반도체 장치
JP4527480B2 (ja) Dc−dcコンバータにおける電力効率を最適化する方法および回路
TW588498B (en) Bipolar supply voltage generator and semiconductor device for same
US9431845B2 (en) Switching charger, the control circuit and the control method thereof
KR100387895B1 (ko) 직류-직류변환기
US7498784B2 (en) Average current detector circuit
JP3647811B2 (ja) Dc−dcコンバータ回路
JP2006158067A (ja) 電源ドライバ回路
US20020175643A1 (en) Dual sided self-oscillation circuit for driving an oscillatory actuator
JP2005160224A (ja) 電力変換装置
JP2009504119A (ja) ステップダウン型電圧変換器
JP5727189B2 (ja) 同期整流型電源回路
CN102983759A (zh) 控制开关电源恒定输出电流的控制器及控制方法
CN203014693U (zh) 控制开关电源恒定输出电流的控制器
JP4004931B2 (ja) 電磁流量計の励磁回路
JP6713316B2 (ja) 非接触電力送電装置及び非接触電力送電方法
JP2009005492A (ja) 半導体装置及びdcdcコンバータ
JP4983275B2 (ja) Dc/dcコンバータ
JP4765180B2 (ja) 電気動力付車輌の誘導性負荷の出力電力計測方法
JP2006204038A (ja) インバータ回路
JP2005020922A (ja) チャージポンプ回路
JPH08298768A (ja) Dc−dcコンバータ
JP2002188945A (ja) 電磁流量計
JP2006526976A (ja) Dc−dcコンバータ
JP2003079140A (ja) 同期整流型スイッチング電源装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070822

R151 Written notification of patent or utility model registration

Ref document number: 4004931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees