JP2004150893A - 欠陥検査装置 - Google Patents

欠陥検査装置 Download PDF

Info

Publication number
JP2004150893A
JP2004150893A JP2002314820A JP2002314820A JP2004150893A JP 2004150893 A JP2004150893 A JP 2004150893A JP 2002314820 A JP2002314820 A JP 2002314820A JP 2002314820 A JP2002314820 A JP 2002314820A JP 2004150893 A JP2004150893 A JP 2004150893A
Authority
JP
Japan
Prior art keywords
image
processing
data
chip
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002314820A
Other languages
English (en)
Inventor
Masaru Fujii
大 藤井
Kazuya Hayashi
和也 林
Yoshiyuki Momiyama
善幸 籾山
Shigeya Tanaka
成弥 田中
Michio Nakano
道夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002314820A priority Critical patent/JP2004150893A/ja
Publication of JP2004150893A publication Critical patent/JP2004150893A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Processing Or Creating Images (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】隣接するチップの先頭座標の間隔が確保されていない場合でも確実にチップ終端区間の欠陥検査が得られるようにした欠陥検査装置を提供することにある。
【解決手段】半導体ウエハ上のチップの繰返しパターンを走査して画像信号を取り込む撮像部101とA/D変換部102、参照画像を生成する参照画像生成部103、検出画像と参照画像を用いて画像処理を行う複数の処理要素を含む欠陥検出部104、レシピデータ記憶部105、タイミング制御部106、起動制御部107、それに検出結果出力部108を備えたパイプライン処理方式の欠陥検査装置において、画像データ信号201をバッファリングし、隣接するチップの先頭座標のデータ間隔を空けるように当該バッファの読出しを行う画像間隔調整部109と、座標データ取得部110を設け、パイプライン処理を行う各処理要素の画像処理時間として、パイプライン処理の割当時間分が保証されるようにしたもの。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、適当なピッチで配列された被検査物を検査する装置に係り、特にウエハ上に集積された半導体素子の繰り返しパターンを検査するのに好適な欠陥検査装置に関する。
【0002】
【従来の技術】
従来、VLSIメモリ、CCD(Charge Coupled Device)のように、とりわけ集積度が高く、微細な繰り返しパターンを有する素子を対象として、それらのパターン中に存在する欠陥を検出する場合、隣接する2チップのパターンを比較する方式の欠陥検査装置が従来から広く用いられている(特許文献1〜特許文献5参照。)。
【0003】
ここで、これら従来の方式では、例えばラインセンサなどの一次元撮像素子を用い、被検査パターンを等速で移動させつつ、被検査パターンの画像を順次、検出画像として検出し、検出画像の信号から一定の時間遅らせた画像を参照画像とし、それらの信号を比較し、不一致を欠陥として認識している。
【0004】
このときのラインセンサとしては、一次元のCCDラインセンサや、時間遅延積分型(Time Delay Integration)CCDイメージセンサ(TDIセンサ)が使用され、比較的高い倍率の対物レンズにより対象パターンの像を検出している。
【0005】
そこで、次に、このようにした従来の欠陥検査装置の一例について、図7により説明する。ここで、まず、この従来の装置は、図示の通り、ラインセンサ101とA/D変換部102、参照画像生成部103、欠陥検出部104、レシピデータ記憶部105、タイミング制御部106、起動制御部107、それに検出結果出力部108で構成されている。
【0006】
そして、まず、ラインセンサ101は、半導体ウエハ上のチップの繰返しパターンを走査して画像信号を取り込む撮像部として動作し、次にA/D変換部102は、画像信号を多値のディジタル信号に変換する働きをする。
【0007】
また、参照画像生成部103は、A/D変換部102から連続的に出力されてくる多値のディジタル信号、すなわち検出画像を所定時間遅らせることにより、次々と参照画像を生成する働きをし、更に欠陥検出部104は、複数の処理要素を備え、検出画像と参照画像を用いた位置ずれ検出と欠陥判定、それに欠陥解析などの画像処理を行う。
【0008】
次に、レシピデータ記憶部105は、チップの先頭座標と終端座標及び欠陥検査開始座標と欠陥検査終了座標などを予め記憶しておく働きをし、タイミング制御部106は、各回路に常時必要なタイミング信号を供給する働きをする。
【0009】
更に起動制御部107は、欠陥検査開始と欠陥検査終了のタイミングをタイミング制御部106に知らせる働きをし、検出結果出力部108は、欠陥検出部104による画像処理結果を出力する働きをする。
【0010】
ここで、図8は、検査対象となる半導体ウエハ上の繰り返しパターンの一部を拡大したものであるが、このとき、この従来技術では、ラインセンサ101から出力される膨大な画像データをリアルタイムで処理するため、半導体ウエハ上の検査面を複数の領域(エリア)に分割し、領域単位で並列に処理を実行するようになっている。
【0011】
そこで、図示のように、ラインセンサ101の長手方向(y方向)を、チャネル1(CH1)〜チャネルN(CHN)としてチャネル分割し、各チャネルに入力されるx方向の画像を、各チャネルで同時に処理するようになっている。
【0012】
そして、ここでは、1チャネル内のx方向の画像に対して複数の処理要素を用い、各処理要素による処理を時間的にオーバーラップさせて並列に処理する、いわゆるパイプライン処理を適用し、これにより、トータルの画像処理時間がパイプライン段数分の1、つまり処理要素数分の1に短縮されるようにしている。
【0013】
このときの処理要素の数をmとすると、これは、この装置に要求されている仕様で決る。つまり、1チャンネルの半導体ウエハにあるパターン記録領域の画像処理速度をAとして、当該領域に対する実際の画像処理速度がBなら、A/Bが処理要素の数m(=A/B)となる。
【0014】
この場合、当該領域を処理要素数で除した値が、1処理要素の処理に割当てられる面積となり、これが図7では処理単位エリアとして示されているが、このとき、前記実際の画像処理速度を処理要素の数で除した値が、各処理要素に対して割当てられる画像処理時間となる。
【0015】
そこで、この各処理要素に対して割当てられる画像処理時間のことを、以下、処理要素割当時間と呼び、上記処理単位エリアのx方向の幅(長さ)、すなわち各処理要素に処理が割当てられた区間の幅のことは、以下、処理割当幅と呼ぶことにする。
【0016】
ここで、この図8は、処理要素数が3のとき、各処理要素に処理が割当てられる画像区間を示したものであり、従って、m=0、1、2、3とすると、まず処理要素1は、画像区間L(1+3m)を夫々処理し、次に処理要素2は、画像区間L(2+3m)を、そして処理要素3は画像区間L(3+3m)を、夫々処理することになる。
【0017】
このとき、符号Lは各画像区間自体だけではなく、その幅も表わしており、従って、Ln(n:1〜12)が各々前述の処理割当幅となる。
【0018】
次に、各処理要素による処理の割当てに対するパイプラインスケジュールについて、図9により説明すると、ここで、まず、Pn(n:1〜12)は、画像区間Lnにおける参照画像データと、画像区間Ln+3の検出画像データを用いた画像処理時間のことである。
【0019】
次に、Tn(n:1〜12)は、画像区間Lnにおける参照画像データと画像区間Ln+3の検出画像データの転送時間であるが、この時間幅Tnの長さは、パイプライン処理をストール無しで連続して実行させるため、前述の処理要素割当時間を処理要素数で除した時間以下になるようにする必要がある。
【0020】
そして、まず901は処理要素1の画像転送タイミングで、902は処理要素1の画像処理タイミングであり、以下、903は処理要素2の画像転送タイミング、904は処理要素2の画像処理タイミング、905は処理要素3の画像転送タイミング、906は処理要素3の画像処理タイミングである。一方、907は半導体ウエハ上のチップパターンの画像データを表わす。
【0021】
ここで、いま、ラインセンサ101から出力される画像がチップ1の先頭座標に達したとする。そうすると、ここで、まず画像区間L1〜L3に含まれるチップ1の先頭座標から終端座標までの画像データを参照画像生成部103のメモリに記憶する。なお、当該メモリは、データの読出しと書込みが同時に実行可能なデュアルポートメモリで構成してある。
【0022】
次いで、ラインセンサ101から出力される画像データが、チップ2の先頭座標に達したとすると、今度は参照画像生成部103から画像区間L1の参照画像データを読出し、画像区間L4の検出画像と共に欠陥検出部104に含まれる処理要素1に転送し(9001)、当該画像データを用いて画像処理を行う(9002)。このとき、参照画像生成部103では、画像区間L1の参照画像データを読出すと同時に、画像区間L4の画像データを記憶する。
【0023】
続いて、参照画像生成部103から画像区間L2の参照画像データを読出し、画像区間L5の検出画像データと共に欠陥検出部104に含まれる処理要素2に転送し(9003)、当該画像データを用いて画像処理を行う(9004)。このときも、参照画像生成部103では、画像区間L2の参照画像データを読出すと同時に、画像区間L5の画像データを記憶する。
【0024】
更に続いて、参照画像生成部103から画像区間L3の終端座標までの参照画像データを読出し、画像区間L6の終端座標までの検出画像データと共に欠陥検出部104に含まれる処理要素3に転送し(9005)、当該画像データを用いて画像処理を行う(9006)。
【0025】
このときも、参照画像生成部103では、画像区間L3の終端座標までの参照画像データを読出すと同時に、画像区間L6の終端座標までの画像データを記憶する。ここで、処理要素3の画像転送時間と画像処理時間は、処理対象の画像区間が終端座標までとなるため、図では、他の処理要素1、2の場合よりも短く示されている。
【0026】
この後、ラインセンサ101から出力される画像データが、チップ3以降の先頭座標に達してからの動作は、チップ2の先頭座標に達したときの動作(9001〜9006)と同様である。
【0027】
【特許文献1】
特開平5−264464号公報
【0028】
【特許文献2】
特開平5−264465号公報
【0029】
【特許文献3】
特開平5−264466号公報
【0030】
【特許文献4】
特開平5−264467号公報
【0031】
【特許文献5】
特開平8−128976号公報、
【0032】
【発明が解決しようとする課題】
従来技術による欠陥検査装置では、前述のとおり、前段の画像転送及び画像処理の実行有無に関らず、チップの先頭座標に達したら、当該チップの画像転送及び画像処理を開始している。
【0033】
この結果、チップの先頭座標に達してから即座に当該チップの画像転送を行う場合に、パイプライン処理を担当した処理要素が正常に処理を実行できるようにするためには、各チップの先頭座標の時間間隔が、前述の処理要素割当時間以上あることが要件となる。
【0034】
しかしながら、実際の半導体ウエハ上では、チップのパターンは、前記処理要素割当時間以上の時間間隔を空けて配置されているとは必ずしも限らない。そのため、当該間隔が確保されていない箇所では、前の処理が済まないうちに後の処理が開始(衝突)されてしまい、結果として処理が正常に実行されず、検査結果が虚報となっていた。
【0035】
例えば、図9では、チップ2とチップ3の先頭座標間で、前記処理要素割当時間の時間間隔以上が画像処理時間として確保されていない。このため、チップ2の終端区間L6とチップ3の先頭区間L7の間で画像処理に衝突が生じ、終端区間L6の画像処理が正常に実行されなくなって、虚報の原因になっている。
【0036】
そこで、このような終端区間での虚報問題については、従来から終端区間を未検査領域にしたり、欠陥の検出感度を下げ、虚報を無視するようにしているだけで本質的な対処がされておらず、この結果、従来の欠陥検査装置では、チップ終端区間の欠陥検出が得られないという問題があった。
【0037】
本発明の目的は、隣接するチップの先頭座標の間隔が確保されていない場合でも確実にチップ終端区間の欠陥検査が得られるようにした欠陥検査装置を提供することにある。
【0038】
【課題を解決するための手段】
上記目的は、繰返しパターンを有するチップから前記パターンの画像信号を順次取込み、上記パターンの1繰返し分遅らせて生成した参照画像と逐次比較して欠陥を検出するパイプライン処理方式の欠陥検査装置において、前記画像信号をディジタルデータに変換して記憶し、隣接するチップの先頭座標のデータ間隔を空けるように記憶したデータの読出しを行う間隔調整手段を設け、前記パイプライン処理に現れる衝突を回避させるようにして達成される。
【0039】
このとき、前記間隔調整手段から出力される前記検出画像のチップ先頭座標のデータ間隔が、装置の性能仕様で決まる画像処理時間を前記パイプライン処理に使用される処理要素の数で除した時間で与えられているようにしても良い。
【0040】
また、同じくこのとき、前記チップの終端から前記データが読出されるまでの期間には、データと無関係な一定値の信号が出力されるようにしてもよく、前記参照画像が、検査開始から2チップ分の時間が経過してから出力されるようにしても良い。
【0041】
【発明の実施の形態】
以下、本発明による欠陥検査装置について、図示の実施の形態により、詳細に説明する。
【0042】
ここで、図1が、本発明の一実施形態にかかる欠陥検査装置のブロック構成図で、図示のように、ラインセンサ101とA/D変換部102、参照画像生成部103、欠陥検出部104、レシピデータ記憶部105、タイミング制御部106、起動制御部107、それに検出結果出力部108を備えている点は、図7で説明した従来技術の場合と同じである。
【0043】
しかして、この実施形態では、更に画像間隔調整部109と座標データ取得部110が追加されている。
【0044】
そして、ここでも、まずラインセンサ101から出力されるアナログの画像信号はA/D変換部102によりディジタル信号に変換される。
【0045】
このとき、レシピデータ記憶部105は、各種座標データなどからなるレシピデータを保持する記憶装置で、このときのレシピデータには、更に複数の検査開始座標及び検査終了座標と、これらの座標間に含まれる各チップの先頭座標及び終端座標が含まれている。
【0046】
起動制御部107は、まず座標データ取得部409により検査開始座標と検査終了座標データが更新されたとき、当該座標データを読出して保持し、次に半導体ウエハを載せた移動台の位置が検査開始座標に一致したとき“1”になり、検査終了座標に一致したときは“0”になる検査起動信号を各回路に出力し、更に移動台の移動位置が原点座標のx座標に一致したときはパルス状の原点信号を各回路に出力する。
【0047】
ここで、前記の検査起動信号は、各回路において、検査イネーブル信号として使用される。
【0048】
タイミング制御部106は、前記原点信号のアサートで、A/D変換部102の出力信号のライン周期と同期したパルス状のラインスタート信号を生成し、各回路に出力する。ここで、このラインスタート信号の1周期は、1画素分の周期に等しく、1画素を以って1座標を表わしている。
【0049】
座標データ取得部110は、前記原点信号のアサートで、検査開始座標及び検査終了座標の1セットと、これらの座標間に含まれる各チップの先頭と終端のx座標を、レシピデータ記憶部105から読出して保持する。
【0050】
このときの検査開始座標、検査終了座標、及びチップの先端、終端座標は、検査イネーブル信号がネゲートされると更新される。
【0051】
ラインセンサ101から出力されたアナログ信号は、A/D変換部402でディジタル信号に連続的に処理され、画像間隔調整部109に入力されるが、このとき、画像間隔調整部109では、最初のチップの画像データが入力されると、当該入力データを画像間隔調整部109内に設けられているデュアルポートメモリに書込みを開始する。
【0052】
このとき、最初の1チップ分の書込みが行われてから書込んだデータの読出しを開始し、読出しの間、次の入力データの書込みを、読出しとは別のバンクで行い、以降は1チップ毎にバンクを切換えながら連続して書込みと読出しを行なってゆく。
【0053】
ここで、画像間隔調整部109から読み出される各チップのデータ量は、前記処理割当幅の単位になっており、チップの終端座標が含まれる前記処理割当幅の区間では、チップ終端座標以降、例えばデータ“0”など、本来の画像データとは無関係な一定値のデータが出力される。そして、この画像間隔調整部109の出力は、検出画像データとして参照画像生成部103と欠陥検出部104に出力される。
【0054】
そこで、この参照画像生成部103は、最初の検出画像データの入力により内部にあるデュアルポートメモリに書込みを開始する。そして、最初の1チップ分の書込みが行われてから書込んだデータの読出しを開始し、読出しの間、次の入力データの書込みは、読出しのときとは別のバンクで行い、以降は、1チップ毎にバンクを切換えながら連続して書込みと読出しを行う。
【0055】
そして、この参照画像生成部103の出力が参照画像データとして欠陥検出部104に出力される。
【0056】
これにより欠陥検出部104は、画像間隔調整部109から供給された検出画像データと参照画像生成部103から供給された参照画像データが、前記処理割当幅毎に揃ったとき、順次、これらのデータを各処理要素に分配し、各処理要素で、位置ずれ検出、欠陥判定、欠陥解析などの画像処理を行う。そして、各処理要素は、前記処理割当幅の画像データに対する処理の終了毎に、演算結果を検出結果出力部108に転送する。
【0057】
次に、画像間隔調整部109の詳細について、図2により説明する。ここで、まず、201がA/D変換部102から供給されるディジタルの画像データ信号で、次に、202が間隔調整用デュアルポートメモリで、図示のようにバンク1とバンク2を備え、画像データ201を保持する働きをする。
【0058】
また、203はセレクタで、間隔調整用デュアルポートメモリ202の2個のバンクの出力データと画像間隔調整用データの“0”の何れかを選択する働きをするが、ここで206が当該セレクタの選択信号である。
【0059】
そして、間隔調整用メモリコントローラ204が間隔調整用デュアルポートメモリ202のアクセスをコントロールし、セレクタ203の選択信号206を制御する。ここで205が検出画像データ信号で、この画像間隔調整部109から出力されることになる。
【0060】
次に、この間隔調整用メモリコントローラ204による動作について、まず書込み動作から説明する。
【0061】
a1
原点信号がアサートされた時点で座標データ取得部110の最初のチップに関する先頭座標と終端座標を読出して保持し、ラインスタート信号のカウントを開始する。
【0062】
a2
検査イネーブル信号がアサートの状態で、ラインスタート信号のカウンタ値がチップの先頭座標と一致したら、間隔調整用デュアルポートメモリ202の一方のバンクに対して、入力画像データ201の書込みを開始し、ラインスタート信号のカウンタ値が終端座標と一致するまで、書込みアドレスをラインスタート信号に同期して更新しながら書込んで行く。
【0063】
a3
このときの間隔調整用デュアルポートメモリ202に対する入力画像データ201の書込みは、チップの先端座標から終端座標の間で行われ、この間以外は、書込みアドレスのカウンタは更新されず、書込みも行わない。
【0064】
a4
次のチップに関する先頭座標と終端座標を座標データ取得部110から読出しで保持し、間隔調整用デュアルポートメモリ202のバンクを切換え、これにより上記したa2〜a4の動作を繰り返す。
【0065】
a5
そして、検査イネーブル信号がネゲートしたら、書込みアドレスをリセットするのである。
【0066】
次に、この間隔調整用メモリコントローラ204の読出し動作について説明する。
【0067】
b1
原点信号がアサートされた時点でラインスタート信号のカウントを開始し、同時に座標データ取得部110から2番目のチップに関する先頭座標と終端座標を読出し、読出し開始用の座標データとして保持する。
【0068】
b2
バンク1とバンク2の内、書込まれたバンクから画像データを読出すため、座標データ取得部110から1チップ前の先頭座標と終端座標を読出して、保持する。
【0069】
b3
検査イネーブル信号がアサートの状態で、ラインスタート信号のカウンタ値が2番目のチップの先頭座標と一致したら、1チップ前の画像データが書込まれたバンクから画像データの読出しを開始し、読出しアドレスをラインスタート信号に同期して更新しながら、ラインスタート信号のカウンタ値が1チップ前の終端座標と一致するまで読出しを行う。このとき、読出しているバンクの出力を検出画像データ205として出力するように、選択信号206を制御する。
【0070】
b4
このときの間隔調整用デュアルポートメモリ202からの画像データの読出しは、1チップ前の先端座標から終端座標の間で行われ、チップの終端座標が含まれる前記処理割当幅の区間では、チップの終端座標以降、例えばデータ“0”など、本来の画像データとは無関係なデータを検出画像データ205として出力するよう制御する。そして、このとき“0”が出力される範囲Eは、前記処理割当幅をa、チップ先端xの座標をbgn、チップ終端x座標をend とした場合、次の(1)式で表せる。
【0071】
E=a−(end−bgn)%a …… (1)
但し、“%”は剰余演算子である。
【0072】
b5
間隔調整用デュアルポートメモリ202のバンクを切換え、これにより上記したb2〜b4の動作を繰り返す。
【0073】
b6
検査イネーブル信号がネゲートしたら、読出しアドレスをリセットする。
【0074】
従って、間隔調整用メモリコントローラ204では、書込みと読出しが、チップの先頭座標でバンクを切換えながら、それぞれ異なるバンクに対して行われ、これらが同時に実行されることになる。
【0075】
次に、参照画像生成部103について、図3により説明する。ここで、まず、301は参照画像データ信号で、これが、この参照画像生成部103から出力され、欠陥検出部104に入力されることになる。このとき、205が画像間隔調整部109から供給される検出画像データ信号である。
【0076】
次に、302は参照画像用デュアルポートメモリで、バンク1とバンク2を備え、検出画像データ205を保持する働きをし、303はセレクタで、参照画像用デュアルポートメモリ302の2個のバンクの出力データを選択する働きをする。ここで、305が当該セレクタの選択信号である。
【0077】
そして、参照画像用メモリコントローラ304により参照画像用デュアルポートメモリ302のアクセスがコントロールされ、セレクタ303の選択信号305が制御される。このとき、306はパルス信号で、この参照画像用メモリコントローラ304から発生され、検出画像データ205と参照画像データ301の読込みタイミングを欠陥検出部104に知らせる働きをする。
【0078】
次に、参照画像用メモリコントローラ304による参照画像生成部103の制御について、まず書込み動作から説明する。
【0079】
c1
原点信号がアサートされると、座標データ取得部110の2番目のチップに関する先頭座標と終端座標を読出し、バンクに保持する。更にこのとき、ラインスタート信号のカウントを開始する。
【0080】
c2
検査イネーブル信号がアサートの状態で、ラインスタート信号のカウンタ値がチップの先頭座標と一致したら、検出画像データ205を参照画像用デュアルポートメモリ302の一方のバンクに書込み開始し、ラインスタート信号のカウンタ値が終端座標が含まれる前記処理割当幅の区間の最後と一致するまで、書込みアドレスをラインスタート信号に同期して更新しながら、書込みを行う。
【0081】
c3
座標データ取得部110から、次のチップに関する先頭座標と終端座標を読出し保持し、バンクの切換えを行って、c2〜c3の動作を繰り返す。
【0082】
c4
そして、検査イネーブル信号がネゲートしたら、書込みアドレスをリセットするのである。
【0083】
次に、参照画像用メモリコントローラ304による読出し動作について説明する。
【0084】
d1
原点信号がアサートされると、ラインスタート信号のカウントを開始する。また、読出し開始用の座標データとして、3番目のチップに関する先頭座標と終端座標を座標データ取得部110から読出して保持する。
【0085】
d2
参照画像用デュアルポートメモリ302の書込まれたバンクから画像データを読出すため、2チップ前の先頭座標と終端座標を座標データ取得部110から読出して保持する。
【0086】
d3
検査イネーブル信号がアサートの状態で、ラインスタート信号のカウンタ値が3番目のチップの先頭座標と一致したら、1チップ前の画像データが書込まれたバンクから画像データの読出しを開始し、ラインスタート信号のカウンタ値が2チップ前の終端座標が含まれる前記処理割当幅の区間の最後と一致するまで、読出しアドレスをラインスタート信号に同期して更新しながら、読出しを行う。このとき選択信号305を制御し、読出ししている方のバンクの出力が参照画像データ301として出力されるようにする。
【0087】
d4
画像間隔調整部109から供給される検出画像データ205と参照画像データ301の読込みタイミングを欠陥検出部105に知らせるため、参照画像データ301の読出しが開始されてから前記処理割当幅の時間周期でパルス信号306を生成する。
【0088】
d5
バンクを切換えて、d2〜d5の動作を繰り返す。
【0089】
d6
そして、検査イネーブル信号がネゲートしたら、読出しアドレスをリセットするのである。
【0090】
次に、座標データ取得部110について、図4により説明する。ここで、まず401は座標データメモリで、検査開始と検査終了の座標データ及び各チップの先頭と終端の座標データを記憶する働きをする。そして、座標データ取得用CPU402により、レシピデータ記憶部105から当該座標データを読出し、座標データメモリ401に書込むために必要な処理が実行される。
【0091】
そして、この座標データ取得用のCPU402は、原点信号がアサートされるか、検査イネーブル信号がネゲート状態に遷移したら、レシピデータ記憶部105から順次、検査開始座標及び検査終了座標の1セットと、これらの座標間に含まれる各チップの先頭と終端のx座標を読出し、これらを座標データメモリ401に保持する。
【0092】
このとき、座標データメモリ401には、例えば、図示のようなフォーマットで、検査開始座標start と、検査終了座標finish が記憶される。そして、これらの座標間に含まれる各チップの先頭座標bgn1〜bgnNと終端座標end1〜endNのセットは、先頭座標が小さい順に格納され、当該順序に従って読み出されることになる。
【0093】
次に、欠陥検出部104について、図5により説明する。ここで、まず、PE処理要素で、処理要素PE1から処理要素PEmまでm個あり、これらにより位置ずれ検出、欠陥判定、欠陥解析などの画像処理がパイプライン処理(段数m)されるようになっていて、割込み信号INT1〜INTmが各処理要素PE1〜PEmに画像処理の実行を指示するようになっている。
【0094】
そして、これらはPE制御コントローラ501により制御され、検出画像データ205と参照画像データ301を各処理要素PE1〜PEmに転送し、各処理要素に画像処理の起動が指示されることになる。ここで502は選択信号で、これは検出画像データ205と参照画像データ301の一方を選択するために使用される。
【0095】
このため、PE制御コントローラ501は、参照画像生成部103から出力されるパルス信号306をカウントし、カウント値に応じて各処理要素PE1〜PEN)のなかから何れかを選択し、選択した処理要素PEに検出画像データ205と参照画像データ301を転送し、画像処理の起動を指示するか決定する。
【0096】
ここで、処理要素数をm、当該カウント値をCOとすると、次の(2)式で示される処理要素番号Noの処理要素PEに検出画像データ205と参照画像データ301を転送し、そこにあるFIFO(ファーストイン・ファーストアウト・バッファ)に格納してゆくのである。
【0097】
No=CO % m …… (2)
但し、1≦CO<mのときはNo=COとし、No=0のときはNo=mにする。
【0098】
そして、当該処理要素番号の処理要素上のFIFOに対する検出画像データ205と参照画像データ301の転送を完了したら、当該処理要素番号の処理要素に画像処理を実行するように指示するため、割込み信号INT1〜INTmを送信する。
【0099】
そこで、当該割込み信号を受信した各処理要素は、FIFOに格納されている検出画像データと参照画像データを用いて位置ずれ検出、欠陥判定、欠陥解析などの画像処理を行い、処理が終了したら、演算結果を検出結果出力部108に転送する。このとき、選択信号502により、検出画像データ205と参照画像データ301の一方を選択する。
【0100】
ところで、このときパイプラインストール(パイプライン処理の停止)が起こらないようにするためには、前述のように、検出画像データ205と参照画像データ301の転送時間について、それが前記処理要素割当時間を処理要素数で除した時間以下であるという条件を満たす必要がある。
【0101】
ここで、検出画像データ205と参照画像データ301は、前記処理割当幅の時間周期で一度に入力されるので、各処理要素上のFIFOは、当該条件を満足するアクセス速度を持つものが使用されている。
【0102】
次に、この実施形態によるパイプライン処理について説明すると、ここで、図6が、この実施形態におけるパイプラインスケジュールで、以下、この図6により説明する。
【0103】
図6において、601はA/D変換部402を介して送信される画像データの出力タイミング、602は画像間隔調整用デュアルポートメモリ202の読出しタイミング、603は参照画像用デュアルポートメモリ302の読出しタイミング、604は処理要素1の画像処理タイミング、605は処理要素2の画像処理タイミング、606は処理要素3の画像処理タイミング、607は半導体ウエハ上のチップパターンの画像データである。
【0104】
そして、ここでも、図8に示した通り、処理要素数が3(m=0、1、2、3)で、処理要素1がL(1+3m)の画像区間を、処理要素2がL(2+3m)の画像区間を、それに処理要素3がL(3+3m)の画像区間を、夫々処理する場合を例にして説明する。
【0105】
ここで、まず、半導体ウエハを載せた移動台の移動位置がx=0に一致すると原点信号がアサートされ、画像データ607がラインスタート信号に同期して、A/D変換部102を介して順次送信される。そこで、画像間隔調整部109の画像データ信号201上には、タイミング601で順次、画像データ607が出力される。
【0106】
こうして、画像データ信号201がチップ1の先頭座標の画像データに達すると、画像間隔調整部109の間隔調整用デュアルポートメモリ202に書込みを開始し、画像区間L1〜L3に含まれるチップ1の先頭座標から終端座標までの画像データを順次書込む。
【0107】
チップ1の終端座標が含まれる前記処理割当幅の区間では、間隔調整用デュアルポートメモリ202の書込みアドレスのカウンタは更新されず、書込みも行われない(6001)。
【0108】
画像データ信号201がチップ2の先頭座標の画像データに達すると、画像区間L1〜L3のチップ1の画像データが書込まれた間隔調整用デュアルポートメモリ202のバンクから画像データの読出しを開始し、チップ1の終端座標と一致するまで読出し出力する。このとき、チップ1の終端座標が含まれる前記処理割当幅の区間では、チップの終端座標以降“0”を出力する。
【0109】
そして、この画像区間L1〜L3の出力画像データを参照画像用デュアルポートメモリ302に順次書込む(6002)。また、この画像データの読出しと同時に、読出しとは別の間隔調整用デュアルポートメモリ202のバンクに対して、画像区間L4〜L6に含まれるチップ2の先頭座標から終端座標までの画像データを順次書込む。
【0110】
このとき、チップ2の終端座標が含まれる前記処理割当幅の区間では、間隔調整用デュアルポートメモリ202の書込みアドレスのカウンタは更新されず、書込みも行われない(6003)。
【0111】
画像データ信号201がチップ3の先頭座標の画像データに達すると、画像区間L1〜L3のチップ1の画像データが書込まれた参照画像用デュアルポートメモリ302のバンクから画像データを読出し、参照画像データ301として出力する(6004)。
【0112】
そして、画像区間L4〜L6のチップ2の画像データが書込まれた間隔調整用デュアルポートメモリ202のバンクから画像データを読出し、検出画像データ205として出力する(6005)。
【0113】
参照画像データ301の読出しが開始されてから前記処理割当幅の時間周期が経過したら、処理要素番号1の処理要素に画像処理を実行するよう割込み信号INT1を送信し、画像区間L1に対する画像処理が処理要素1で実行される(6006)。
【0114】
更に前記処理割当幅の時間周期が経過したら、処理要素番号2の処理要素に画像処理を実行するよう割込み信号INT2を送信し、画像区間L2に対する画像処理が処理要素2で実行される(6007)。
【0115】
以降は、同様に動作し、前記処理割当幅の時間周期で各処理要素の画像処理が実行され、この結果、図示されているように、各処理要素の画像処理に衝突が起こることなく処理が実行される。
【0116】
既に説明したように、図9に示した従来の欠陥検査装置におけるパイプラインスケジュールの場合は、チップ2の終端座標を含む画像区間L6の画像処理と、チップ3の先頭座標を含む画像区間L7の画像処理で衝突が生じていた。
【0117】
しかし、この図6に示す本発明の実施形態におけるパイプラインスケジュールの場合は、画像間隔調整部109の働きにより、パイプライン処理を行う各処理要素で処理される画像データが、前記処理割当幅の画像区間で与えられるため、各処理要素の画像処理時間として前記画像処理割当時間分、保証されることになる。
【0118】
従って、各処理要素は、衝突することなく画像処理を実行でき、結果として、チップ終端区間での虚報を防ぐことができる。
【0119】
【発明の効果】
本発明によれば、パイプライン処理を行う各処理要素の画像処理時間として、前記画像処理割当時間分が保証されるので、隣接するチップ間における、チップ終端の座標区間で生じる虚報を確実に防ぐことができる。
【図面の簡単な説明】
【図1】本発明による欠陥検査装置の一実施形態を示す全体ブロック図である。
【図2】本発明における画像間隔調整部の一実施形態を示すブロック図である。
【図3】本発明における参照画像生成部の一実施形態を示すブロック図である。
【図4】本発明における座標データ取得部の一実施形態を示すブロック図である。
【図5】本発明における欠陥検出部の一実施形態を示すブロック図である。
【図6】本発明の一実施形態におけるパイプラインスケジュールの一例を示す説明図である。
【図7】従来技術による欠陥検査装置の一例を示すブロック図である。
【図8】半導体ウエハ上の繰り返しパターンの一部拡大図である。
【図9】従来技術におけるパイプラインスケジュールの一例を示す説明図である。
【符号の説明】
101 ラインセンサ(撮像部)
102 A/D変換部
103 参照画像生成部
104 欠陥検出部
105 レシピデータ記憶部
106 タイミング制御部
107 起動制御部
108 検出結果出力部
109 画像間隔調整部
110 座標データ取得部
201 A/D変換部102から出力される画像データ信号
202 間隔調整用デュアルポートメモリ
203 画像間隔調整部109のセレクタ
204 間隔調整用メモリコントローラ
205 検出画像データ信号
206 セレクタ203の選択信号
301 参照画像データ信号
302 参照画像用デュアルポートメモリ
303 参照画像生成部103のセレクタ
304 参照画像用メモリコントローラ
305 セレクタ303の選択信号
306 参照画像生成部103から出力されるパルス信号
401 座標データメモリ
402 座標データ取得用CPU
501 PE制御コントローラ
502 欠陥検出部104の選択信号
601 A/D変換部102を介して送信される画像データの出力タイミング
602 画像間隔調整用デュアルポートメモリ202の読出しタイミング
603 参照画像用デュアルポートメモリ302の読出しタイミング
604 処理要素1の画像処理タイミング
605 処理要素2の画像処理タイミング
606 処理要素3の画像処理タイミング
607 半導体ウエハ上のチップパターンの画像データ

Claims (4)

  1. 繰返しパターンを有するチップから前記パターンの画像信号を順次取込み、上記パターンの1繰返し分遅らせて生成した参照画像と逐次比較して欠陥を検出するパイプライン処理方式の欠陥検査装置において、
    前記画像信号をディジタルデータに変換して記憶し、隣接するチップの先頭座標のデータ間隔を空けるように記憶したデータの読出しを行う間隔調整手段を設け、
    前記パイプライン処理に現れる衝突を回避させるように構成したことを特徴とする欠陥検査装置。
  2. 請求項1に記載の欠陥検査装置において、
    前記間隔調整手段から出力される前記検出画像のチップ先頭座標のデータ間隔が、装置の性能仕様で決まる画像処理時間を前記パイプライン処理に使用される処理要素の数で除した時間で与えられていることを特徴とする欠陥検査装置。
  3. 請求項2に記載の欠陥検査装置において、
    前記チップの終端から前記データが読出されるまでの期間には、データと無関係な一定値の信号が出力されるように構成されていることを特徴とする欠陥検査装置。
  4. 請求項1に記載の欠陥検査装置において、
    前記参照画像が、検査開始から2チップ分の時間が経過してから出力されるように構成されていることを特徴とする欠陥検査装置。
JP2002314820A 2002-10-29 2002-10-29 欠陥検査装置 Pending JP2004150893A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002314820A JP2004150893A (ja) 2002-10-29 2002-10-29 欠陥検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002314820A JP2004150893A (ja) 2002-10-29 2002-10-29 欠陥検査装置

Publications (1)

Publication Number Publication Date
JP2004150893A true JP2004150893A (ja) 2004-05-27

Family

ID=32459030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002314820A Pending JP2004150893A (ja) 2002-10-29 2002-10-29 欠陥検査装置

Country Status (1)

Country Link
JP (1) JP2004150893A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198297A (ja) * 2008-02-21 2009-09-03 Hitachi High-Technologies Corp 半導体外観検査装置用画像処理装置半導体及び外観検査装置、並びに画像処理方法。

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009198297A (ja) * 2008-02-21 2009-09-03 Hitachi High-Technologies Corp 半導体外観検査装置用画像処理装置半導体及び外観検査装置、並びに画像処理方法。

Similar Documents

Publication Publication Date Title
US8026956B2 (en) Image sensor, image taking apparatus, and state inspection system
JP3139998B2 (ja) 外観検査装置及び方法
JPH03232250A (ja) パターン検査方法および装置
JP4038442B2 (ja) 外観検査用画像処理装置
US6987894B2 (en) Appearance inspection apparatus and method in which plural threads are processed in parallel
JP2007292752A (ja) 計測器用混合信号表示装置
JP4564768B2 (ja) パターン検査方法及びその装置
JP2005134976A (ja) 外観検査装置用画像処理装置
JP2004150893A (ja) 欠陥検査装置
JP3585166B2 (ja) カメラモジュールの画像検査装置およびカメラモジュールの画像検査方法
JP3853976B2 (ja) レーダー装置及び類似装置並びに画像データ書込方法
JP2004212218A (ja) 試料検査方法及び検査装置
JP5417997B2 (ja) 撮像検査方法
US9152137B2 (en) Device activating unit and CPU
JP3370315B2 (ja) パターン検査方法および装置
JPH10282008A (ja) レチクル検査装置
JP3641994B2 (ja) 移動物体の画像処理装置
JPH0887101A (ja) マスク検査装置
JP3661375B2 (ja) 画像処理装置
JP2009025138A (ja) 半導体試験装置
JPH04316346A (ja) パターン認識方法
JPH07128372A (ja) 信号測定方法
WO2020097788A1 (zh) 图像信号处理装置和方法
KR100984370B1 (ko) 전자현미경용 스캔신호발생장치
JP2004279036A (ja) 欠陥検査装置