JP2004146605A - 窒化物半導体ウェハの製造方法および発光デバイスの製造方法 - Google Patents

窒化物半導体ウェハの製造方法および発光デバイスの製造方法 Download PDF

Info

Publication number
JP2004146605A
JP2004146605A JP2002310025A JP2002310025A JP2004146605A JP 2004146605 A JP2004146605 A JP 2004146605A JP 2002310025 A JP2002310025 A JP 2002310025A JP 2002310025 A JP2002310025 A JP 2002310025A JP 2004146605 A JP2004146605 A JP 2004146605A
Authority
JP
Japan
Prior art keywords
nitride semiconductor
semiconductor layer
gan layer
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002310025A
Other languages
English (en)
Inventor
Satoyuki Tamura
田村 聡之
Masahiro Ogawa
小川 雅弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002310025A priority Critical patent/JP2004146605A/ja
Publication of JP2004146605A publication Critical patent/JP2004146605A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Semiconductor Lasers (AREA)

Abstract

【課題】転位密度のさらなる低減が可能な窒化物半導体のウェハの製造方法およびそのウェハを用いた発光デバイスの製造方法を提供する。
【解決手段】サファイア基板1の上に、AlGaN層(図示せず)を挟んでGaN層2を形成する。そして、GaN層2のアモルファス化の起こりにくい条件で、GaN層2にSi29のイオン注入を行なう。このとき、Si29によって転位3が位置する領域のNの未結合手が終端される。その後、GaN層2の上にGaN層4を形成する。これにより、GaN層2に含まれる転位がGaN層4に引き継がれにくくなるので、転位の少ないGaN層4を得ることができる。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、窒化物半導体のウェハの製造方法に関し、特に、青紫色レーザや高速トランジスタに用いられるGaN系化合物半導体の製造方法に関する。また、これらの窒化物半導体のウェハを用いた発光デバイスの製造方法に関する。
【0002】
【従来の技術】
GaN、AlN、InNに代表される窒化物半導体は、そのバンドギャップが1.9〜6.2eVと広範囲にわたっているため、赤色から紫外までの波長の光を発する光源として期待されている。
【0003】
窒化物半導体のウェハを得るための1つ目の手法として、サファイア、SiCあるいはGaAs等の基板の上に窒化物半導体層をヘテロエピタキシャル成長させる方法がある。ヘテロエピタキシャル成長法では、基板の格子定数と、その上の成長層の格子定数とは異なり、これらの格子定数差が大きい場合には成長層に多数の転位が生じる。例えば、サファイアとGaNとの格子定数差は約16%と大きく、サファイア基板上にGaN層を成長させると、GaN層内には10 cm−2 もの密度で転位が生じてしまう。
【0004】
また、SiCとGaNとの格子定数差は約3%と比較的小さい。しかしながら、SiC基板上にGaN層を成長させることは困難であり、この場合のGaN層には、上述したサファイア基板上のGaN層よりも高い密度の転位が形成されてしまう。
【0005】
窒化物半導体のウェハを得るための2つ目の方法として、窒化物半導体の基板上に窒化物半導体層をホモエピタキシャル成長させる方法がある。この方法によると、基板の上に成長層を形成させた後に基板を除去することによりフリースタンディング窒化物半導体のウェハを得ることができる。なお、フリースタンディング窒化物半導体のウェハとは、窒化物半導体層のみから構成され、その他の層を含まないウェハのことをいう。しかしながら、基板自体が非常に多くの欠陥を有しているため、フリースタンディング窒化物半導体のウェハにも多数の転位が引き継がれてしまう。
【0006】
現在では、転位密度を低減させる方法としてELOGやFIELOといった横方向成長を利用した方法が開発されている(例えば、非特許文献1参照)。この文献の方法によると、GaN層中の転位は10〜10cm−2にまで低減させることができる。
【0007】
【非特許文献1】
応用物理、第68巻、第7号、1999
【0008】
【発明が解決しようとする課題】
しかしながら、ELOGやFIELOによりGaNのウェハを形成した場合でも、以下のような不具合が生じていた。
【0009】
ELOGやFIELOによりGaN層のウェハを形成すると、従来よりも転位の発生を抑制することができる。それにもかかわらず、このGaN層のウェハをデバイスに用いると、ウェハ内の転位がキャリアリークパスや非発光再結合中心として作用してしまうので、様々なデバイス特性の劣化が生じるおそれがある。そこで、GaN内の転位をより少なくする方法が求められようになった。
【0010】
現状では、GaN層内に発生する転位の抑制を単一の技術で成し遂げるのは困難であり、複数の技術を組み合わせる方法が考えられている。すなわち、上記文献の横方向成長技術と、他の技術とを組み合わせてGaNの成長層を形成することが考えられている。これを実現するためにも、GaN層内の転位密度を低減することが可能で、かつ簡易なプロセスで行なえる技術の確立が必須である。
【0011】
本発明では、転位密度のさらなる低減が可能な窒化物半導体のウェハの製造方法およびそのウェハを用いた発光デバイスの製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の窒化物半導体ウェハの製造方法は、第1窒化物半導体層内に不純物のイオンを導入することにより、上記第1窒化物半導体層に含まれる転位におけるNの未結合手を終端させる工程(a)と、上記第1窒化物半導体層の上に、第2窒化物半導体層をエピタキシャル成長させる工程(b)とを備える。
【0013】
これにより、上記工程(b)では、上面付近に位置する転位が少ない状態の第1窒化物半導体層の上に第2窒化物半導体層を形成することができるので、第1窒化物半導体層から第2窒化物半導体層に引き継がれる転位が少なくなり、転位の少ない第2窒化物半導体層を得ることができる。
【0014】
上記工程(a)では、上記第1窒化物半導体層内に上記イオンをイオン注入により導入し、上記イオン注入の注入エネルギーおよびドーズ量を、上記第1窒化物半導体層のアモルファス化を妨げる条件に設定することが好ましい。
【0015】
上記不純物はSiであることにより、SiはNの未結合手と結合しやすいので、効率よく転位におけるNの未結合手を終端させることができる。
【0016】
上記第1窒化物半導体層および上記第2窒化物半導体層は、GaN層であってもよい。
【0017】
上記工程(a)の前または上記工程(b)の前に、上記第1窒化物半導体層の上に開口部を有するマスクを設け、上記工程(b)では、上記開口部の底面に露出する上記第1窒化物半導体層の上と、上記マスクの上とに上記第2窒化物半導体層を成長させることにより、マスクの上において横方向に第2窒化物半導体層を成長させることができるので、さらに第2窒化物半導体層内の転位を少なくすることができる。
【0018】
上記マスクは、酸化シリコン、窒化シリコン、タングステンのうちのいずれかからなることが好ましい。
【0019】
本発明の発光デバイスの製造方法は、第1窒化物半導体層内に不純物のイオンを導入することにより、上記第1窒化物半導体層に含まれる転位におけるNの未結合手を終端させる工程(a)と、上記第1窒化物半導体層の上に、第1導電型の第2窒化物半導体層を成長させる工程(b)と、上記第2窒化物半導体層の上に、活性層を形成する工程(c)と、上記活性層の上に、第2導電型の第3窒化物半導体層を形成する工程(d)と、上記第3窒化物半導体層と電気的に接続される第1電極を形成する工程(e)と、上記工程(e)の前または後に、上記第2窒化物半導体層と電気的に接続される第2電極を形成する工程(f)とを備える。
【0020】
これにより、上記工程(b)では、上面付近に位置する転位が少ない状態の第1窒化物半導体層の上に第2窒化物半導体層を形成することができるので、第1窒化物半導体層から第2窒化物半導体層に引き継がれる転位が少なくなり、転位の少ない第2窒化物半導体層を得ることができる。さらに、活性層や第3窒化物半導体層の転位も低減させることができる。これらにより、良好な発光効率を有する発光デバイスを得ることができる。
【0021】
上記工程(a)では、上記第1窒化物半導体層内に上記イオンをイオン注入により導入し、上記イオン注入の注入エネルギーおよびドーズ量を、上記第1窒化物半導体層のアモルファス化を妨げる条件に設定することが好ましい。
【0022】
上記工程(a)または上記工程(b)の前に、上記第1窒化物半導体層の上に開口部を有するマスクを設け、上記工程(b)では、上記開口部の底面に露出する上記第1窒化物半導体層の上と、上記マスクの上とに上記第2窒化物半導体層を成長させることにより、マスクの上において横方向に第2窒化物半導体層を成長させることができるので、さらに第2窒化物半導体層内の転位を少なくすることができる。
【0023】
【発明の実施の形態】
(第1の実施形態)
本発明の第1の実施形態における窒化物半導体のウェハの製造方法について、図1(a)〜(c)を参照しながら説明する。図1(a)〜(c)は、第1の実施形態におけるウェハの製造工程を示す断面図である。なお、以下の説明では、窒化物半導体のうちGaNを例に用いて説明する。
【0024】
まず、図1(a)に示す工程で、2インチ(0001)サファイア基板1の上に、有機金属気相エピタキシャル成長(以下ではMOVPEとよぶ)法によってAlGaN緩衝層(図示せず)を形成する。そして、サファイア基板1の上に、AlGaN緩衝層を介して厚さ約1μmのGaN層2を成長させる。GaN層2の成長は、温度1030℃で、Ga原料であるトリメチルガリウムGa(CHと、N原料であるNHとを1時間供給することにより行なう。このようにして形成されたGaN層2は転位3を有しており、その転位密度は10〜10cm−3程度である。ここでは、転位3は非常に多く形成されているといえる。
【0025】
次に、図1(b)に示す工程で、GaN層2にSi29のイオン注入を行なう。Si29のイオン注入は、注入加速電圧20keVで、ドーズ量1×1013cm−2の条件で行なう。注入加速電圧やドーズ量の条件は、GaN層2のアモルファス化が起こりにくいような条件に設定することが好ましい。アモルファス化が起こると、その後にアニール等の手法で再結晶化を行っても単結晶にはなりにくく、多結晶化してしまうことが多いからである。
【0026】
次に、図1(c)に示す工程で、イオン注入がされた後のGaN層2の上に厚さ約1μmのGaN層4を形成する。GaN層4は、GaN層2の成長条件と同様の条件で成長させる。このとき、GaN層4は転位5を有している。転位5の密度は10〜10cm−3程度であり、GaN層2の転位密度よりも1桁〜2桁低減された値となっている。
【0027】
イオン注入によって生じる現象の詳しいメカニズムは不明であるが、以下のように推察される。
【0028】
GaN層2を成長させた時点では、GaN層2中には転位3が多数存在している。このとき、転位芯では、Nボンド(Nの未結合手)が露出しているとされている。この状態でGaN層2にイオン注入を行なうと、転位3の位置する領域のGaとNとの間の結合が切断され、さらにNボンドが露出する。同時に、転位3の位置する領域にはSiが供給されてくるので、Nボンドが露出しているNとSiとが結合し、Nボンドが終端される。なお、この現象はGaN層2の最表面で生じるのが望ましいため、イオン注入の際の注入加速電圧は小さいほうがが好ましい。
【0029】
イオンを注入した時点では、GaN層2内のNの未結合手がSiによって終端されない場合も考えられる。しかし、GaN層4の形成時に基板温度を昇温させるので、この昇温工程においてGaN層2内にSiを拡散させることができる。これによって、より確実にGaN層2のNの未結合手をSiによって終端させることができる。
【0030】
以上のように、本実施形態では、転位の未結合手を終端させたGaN層の上に、GaN層を形成するので、転位密度の低いGaNを得ることができる。
【0031】
なお、本実施形態では、GaN層2へのSiの拡散を促進するための熱処理をGaN層4の形成時の昇温工程と兼ねさせた。しかしながら、本発明では、GaN層4を形成するための昇温工程とは別工程として、GaN層2へSiを拡散させるためのアニールを行なってもよい。
【0032】
なお、本実施形態の方法によると、イオン注入により転位3以外の部分でもGaとNの結合が切断され、それが原因で新たな欠陥が発生するのではないかという懸念が生じる。しかしながら、本実施形態のイオン注入では、注入エネルギーおよびドーズ量が非常に小さい値であるので、生じる欠陥の数は非常に少ない。また、生じた若干の欠陥も、GaN層4形成のための昇温工程や他のアニール工程等によって回復すると思われるので大きな不具合は生じない。
【0033】
なお、本実施形態では、GaN層2に注入するイオン種としてSiを用いたが、本発明においては他のイオン種を用いてもよい。用いるイオン種としては、転位芯で露出しているNボンドと結合しやすいものが好ましく、例えばCなどが挙げられる。
【0034】
なお、本実施形態ではGaNを例にして説明したが、本発明は他の窒化物半導体にも適用することができ、同様の効果を得ることができる。
【0035】
また、本発明は、窒化物半導体の他にAlGaAs系の材料にも適用することができ、同様の効果を得ることができる。
【0036】
(第2の実施形態)
第2の実施形態では、基板として、第1の実施形態で用いたサファイア基板上のGaN層のかわりに、フリースタンディングGaN層を用いる。
【0037】
以下に、本実施形態における窒化物半導体のウェハの製造方法について、図2(a),(b)を参照しながら説明する。図2(a),(b)は、第2の実施形態におけるウェハの製造工程を示す断面図である。
【0038】
まず、図2(a)に示す工程で、フリースタンディングGaN基板11にSi29のイオン注入を行なう。Si29のイオン注入は、注入加速電圧20keVで、ドーズ量1×1013cm−2の条件で行なう。注入加速電圧やドーズ量の条件は、GaN基板11のアモルファス化が起こりにくいような条件に設定することが好ましい。アモルファス化が起こると、その後にアニール等の手法で再結晶化を行なっても単結晶にはなりにくく、多結晶化してしまうことが多いからである。フリースタンディングGaN層11内には転位12が形成されている。
【0039】
次に、図2(b)に示す工程で、MOVPE法により、フリースタンディングGaN層11の上に厚さ約1μmのGaN層13を形成する。
【0040】
本実施形態では、イオン注入を行なうことにより、フリースタンディングGaN層11内の転位12を終端させる。そのため、フリースタンディングGaN層11内の転位12がGaN層13中に引き継がれにくくなり、GaN層13の転位密度が低減される。これは、第1の実施形態と同様のイオン注入の効果によるものである。なお、それ以外において第1の実施形態と同様の点は説明を省略しているが、本実施形態の方法は、第1の実施形態と同様の範囲に適応できるものとする。
【0041】
(第3の実施形態)
以下に、本実施形態における窒化物半導体のウェハの製造工程について、図3(a)〜(d)を参照しながら説明する。図3(a)〜(d)は、第3の実施形態におけるウェハの製造工程を示す断面図である。
【0042】
まず、図3(a)に示す工程で、第1の実施形態と同様の方法により、2インチのサファイア基板21の(0001)面上にGaN層22を形成する。この時点では、GaN層22内に転位23が形成されている。
【0043】
次に、図3(b)に示す工程で、GaN層22の上に、酸化シリコン膜を堆積する。そして、酸化シリコン膜のパターニングを行なうことにより、ストライプ状の開口24を有するマスク25を形成する。なお、マスク25の材料として、酸化シリコンの他に窒化シリコンやタングステンなどを用いてもよい。
【0044】
次に、図3(c)に示す工程で、GaN層22にSi29のイオン注入を行なう。Si29のイオン注入は、注入加速電圧20keVで、ドーズ量1×1013cm−2の条件で行なう。注入加速電圧やドーズ量の条件は、GaN層22のアモルファス化が起こりにくいような条件に設定することが好ましい。アモルファス化が起こると、その後にアニール等の手法で再結晶化を行なっても単結晶にはなりにくく、多結晶化してしまうことが多いからである。なお、このイオン注入によって、Si29は、マスク25を通過する場合もあれば、マスク25により遮られる場合もあるが、どちらの場合であってもよい。言い換えると、GaN層22のうちマスク25の下に位置する部分にはSi29が注入されてもよいし、注入されなくてもよい。また、このイオン注入はマスク25を形成する前に行なってもよい。
【0045】
次に、図3(d)に示す工程で、マスク25の上と、マスク25の開口24内に露出しているGaN層22の上とに、縦方向GaN層26aと横方向GaN層26bとを含むGaN層26を形成する。GaN層26の成長は、温度1030℃で、Ga原料であるトリメチルガリウムGa(CHと、N原料であるNH とを1時間供給することにより行なう。
【0046】
ここで、GaN層26のうち開口24内に位置する部分は、縦方向に結晶が成長しやすい縦方向GaN層26aとなる。縦方向GaN層26aの成長を開始する時点では、開口24に露出するGaN層22の上面付近では、Si29のイオン注入により転位が終端されている。そのため、そのGaN層22の上にGaN層26を形成すると、そのGaN層26では、Si29のイオン注入を行なう前のGaN層22と比較して転位密度が1桁から2桁ほど低減される。
【0047】
一方、GaN層26のうちマスク25の上に位置する部分は、横方向に結晶が成長しやすい横方向GaN層26bとなる。マスク25の上に形成された横方向GaN層26bでは、GaN層22の転位が引き継がれないので、転位密度が低減される。
【0048】
以上のことから、横方向にGaN層を成長させることに加えてイオン注入を行なうことにより転位を終端させる。つまり、縦方向GaN層26aおよび横方向GaN層26bの両方において転位が少なくなるので、GaN層26の転位密度は大きく低減される。
【0049】
(第4の実施形態)
本実施形態では、第1〜第3の実施形態において製造されたウェハを用いた発光デバイスを製造する方法について説明する。以下では、発光デバイスの例として青色発光ダイオードを用いて説明する。
【0050】
図4は、第4の実施形態の発光デバイスの構造を示す断面図である。図4に示すように、本実施形態の発光デバイスはチップの状態になっており、サファイア基板31と、サファイア基板31の上に設けられた厚さ1μmのGaN層32と、GaN層32の上に設けられた厚さ4μmのn型GaN層33と、n型GaN層33の上に設けられた厚さ20nmのInGaN活性層34と、InGaN活性層34の上に設けられた厚さ0.8μmのp型GaN層35と、p型GaN層35の一部の上に設けられたNi/Alからなるオーミック電極37と、段差部36の底面に露出するn型GaN層33の上に設けられたTi/Alからなるオーミック電極38とから構成されている。
【0051】
段差部36は、チップの外縁部のうちの一部において、p型GaN層35と、InGaN活性層34と、n型GaN層33のうちの上部とが除去されることにより形成されている。
【0052】
次に、本実施形態の発光デバイスの製造方法について、図5(a)〜(f)を参照しながら説明する。図5(a)〜(f)は、第4の実施形態の発光デバイスの製造工程を示す断面図である。この製造工程においては、まず、窒化物半導体層を含むウェハを形成し、このウェハをチップ領域ごとに切断することにより複数のチップに分割される。
【0053】
まず、図5(a)に示す工程で、2インチ(0001)サファイア基板31を準備する。
【0054】
そして、サファイア基板31の上に、AlGaNからなる低温緩衝層(図示せず)を形成する。そして、サファイア基板31の上に、低温緩衝層を挟んで、厚さ1μmのGaN層32を成長させる。GaN層32の成長は、基板1をMOVPE(有機金属気相成長)装置内に導入して、温度1030℃で、Ga原料のトリメチルガリウムGa(CHと、N原料のNHと、キャリアガスのHとを供給することにより行なう。
【0055】
次に、図5(b)に示す工程で、第1〜第3の実施形態と同様の方法で、GaN層32にSi29のイオン注入を行なう。このイオン注入は、注入加速電圧20keVで、ドーズ量1×1013cm−2の条件で行なう。ここで、第1〜第3の実施形態と同様に、注入加速電圧やドーズ量の条件は、GaN層32のアモルファス化が起こりにくいような条件に設定することが好ましい。
【0056】
次に、図5(c)に示す工程で、GaN層32の上に厚さ4μmのn型GaN層33を形成する。n型GaN層33の成長は、温度1030℃で、ドナー不純物であるSiの原料としてSiH を供給することにより行なう。
【0057】
その後、成長温度を800℃に高温して、キャリアガスをN に切り替え、Ga原料のトリメチルガリウムGa(CHと、N原料のNH と、In原料のトリメチルインジウム(In(CH)とを供給することにより、膜厚20nmのInGaN活性層34を成長させる。このInGaN活性層34からは、波長470nmの青色発光が生じる。
【0058】
次に、温度を1020℃まで昇温し、アクセプタ不純物であるMgの原料としてシクロペンタジエニルマグネシウムを用いて、厚さ0.8μmのp型GaN層35を成長させる。p型GaN層35を成長した後、ウェハをアニーリング装置内に導入する。そして、窒素雰囲気下で、700℃の温度で20分間のアニールを行なうことにより、p型GaN層35の低抵抗化を行なう。
【0059】
次に、図5(d)に示す工程でエッチングを行なうことにより、各チップ領域Rcごとに、p型GaN層35およびInGaN活性層34を貫通してn型GaN層33のうちの上部を除去してなる凹部36aを形成する。凹部36aは、チップ領域Rcの外縁部のうちの一部に形成される。このときのエッチング方法としては、Reactive Ion Etching(以降、RIEと記す)やInductory Coupled Plasma(以降、ICPと記す)などのドライエッチングが最適である。また、一般的に、ガスとしては塩素系ガスが用いられる。
【0060】
次に、図5(e)に示す工程で、各チップ領域Rcごとに、p型GaN層35の上の一部にNi/Auからなるオーミック電極37を形成する。そして、凹部36aの側面に露出しているn型GaN層33の上に、Ti/Alからなるオーミック電極38を形成する。
【0061】
次に、図5(f)に示す工程で、ウェハを300μm角のチップ領域Rcごとに切断する。このとき、凹部36aは段差部36となる。以上の工程により、チップの状態の発光ダイオードが形成される。
【0062】
このようにして作成された発光ダイオードでは、n型GaN層33、InGaN活性層34、p型GaN層35中の転位が非常に少ないため、良好な発光効率特性が得られる。
【0063】
なお、本実施形態では、発光デバイスとして発光ダイオードを例として説明したが、レーザダイオードを作製しても同様の効果を得ることができる。レーザダイオードを作成した場合には、発光効率が大きくなるだけではなく、寿命が長くなるという効果も得られる。
【0064】
また、本実施形態では、基板としてサファイア基板31を用いた。しかし、本発明では、基板としてサファイア基板の上にEpitaxial Lateral Over Growth(以降、ELOGと記す)形成したものを用いたり、サファイア基板の上面を段差形状に加工したものを用いてもよい。また、サファイア基板のかわりとして、SiC基板、GaAs基板、ZnO基板、スピネル構造を有する基板あるいはSi基板などを用いてもよい。
【0065】
また、本実施形態では、第1の実施形態と同様に、サファイア基板31の上に形成されたGaN層32にイオン注入を行なった。しかし、本発明では、GaN層32のかわりに第2の実施形態のようなフリースタンディングGaN基板を用いてもよいし、第3の実施形態のようにGaN層の上にマスクを形成したものを用いてもよい。
【0066】
【発明の効果】
本発明の窒化物半導体ウェハの製造方法によれば、転位密度の低い窒化物半導体ウェハを得ることができる。そのため、このウェハを用いて半導体レーザ、発光ダイオードあるいは電界効果トランジスタ等のデバイスを作成した場合には、デバイスの高品質化を実現することができる。
【図面の簡単な説明】
【図1】(a)〜(c)は、第1の実施形態におけるウェハの製造工程を示す断面図である。
【図2】(a),(b)は、第2の実施形態におけるウェハの製造工程を示す断面図である。
【図3】(a)〜(d)は、第3の実施形態におけるウェハの製造工程を示す断面図である。
【図4】第4の実施形態の発光デバイスの構造を示す断面図である。
【図5】(a)〜(f)は、第4の実施形態の発光デバイスの製造工程を示す断面図である。
【符号の説明】
1    サファイア基板
2    GaN層
3    転位
4    GaN層
5    転位
11   GaN層
12   転位
13   GaN層
21   サファイア基板
22   GaN層
23   転位
24   開口
25   マスク
26   GaN層
26a  縦方向GaN層
26b  横方向GaN層
31   サファイア基板
32   GaN層
33   n型GaN層
34   InGaN活性層
35   p型GaN層
36   段差部
36a  凹部
37   オーミック電極
38   オーミック電極

Claims (9)

  1. 第1窒化物半導体層内に不純物のイオンを導入することにより、上記第1窒化物半導体層に含まれる転位におけるNの未結合手を終端させる工程(a)と、
    上記第1窒化物半導体層の上に、第2窒化物半導体層をエピタキシャル成長させる工程(b)と
    を備える窒化物半導体ウェハの製造方法。
  2. 請求項1に記載の窒化物半導体ウェハの製造方法において、上記工程(a)では、上記第1窒化物半導体層内に上記イオンをイオン注入により導入し、上記イオン注入の注入エネルギーおよびドーズ量を、上記第1窒化物半導体層のアモルファス化を妨げる条件に設定することを特徴とする窒化物半導体ウェハの製造方法。
  3. 請求項1または2に記載の窒化物半導体ウェハの製造方法において、
    上記不純物はSiであることを特徴とする窒化物半導体ウェハの製造方法。
  4. 請求項1〜3のうちいずれか1つに記載の窒化物半導体ウェハの製造方法において、
    上記第1窒化物半導体層および上記第2窒化物半導体層は、GaN層であることを特徴とする窒化物半導体ウェハの製造方法。
  5. 請求項1〜4のうちいずれか1つに記載の窒化物半導体ウェハの製造方法において、
    上記工程(a)の前または上記工程(b)の前に、上記第1窒化物半導体層の上に開口部を有するマスクを設け、
    上記工程(b)では、上記開口部の底面に露出する上記第1窒化物半導体層の上と、上記マスクの上とに上記第2窒化物半導体層を成長させることを特徴とする窒化物半導体ウェハの製造方法。
  6. 請求項5に記載の窒化物半導体ウェハの製造工程において、上記マスクは、酸化シリコン、窒化シリコン、タングステンのうちのいずれか1つからなることを特徴とする窒化物半導体ウェハの製造方法。
  7. 第1窒化物半導体層内に不純物のイオンを導入することにより、上記第1窒化物半導体層に含まれる転位におけるNの未結合手を終端させる工程(a)と、
    上記第1窒化物半導体層の上に、第1導電型の第2窒化物半導体層を成長させる工程(b)と、
    上記第2窒化物半導体層の上に、活性層を形成する工程(c)と、
    上記活性層の上に、第2導電型の第3窒化物半導体層を形成する工程(d)と、
    上記第3窒化物半導体層と電気的に接続される第1電極を形成する工程(e)と、
    上記工程(e)の前または後に、上記第2窒化物半導体層と電気的に接続される第2電極を形成する工程(f)と
    を備える発光デバイスの製造方法。
  8. 請求項7に記載の発光デバイスの製造方法において、
    上記工程(a)では、上記第1窒化物半導体層内に上記イオンをイオン注入により導入し、上記イオン注入の注入エネルギーおよびドーズ量を、上記第1窒化物半導体層のアモルファス化を妨げる条件に設定することを特徴とする発光デバイスの製造方法。
  9. 請求項7または8に記載の発光デバイスの製造方法において、
    上記工程(a)または上記工程(b)の前に、上記第1窒化物半導体層の上に開口部を有するマスクを設け、
    上記工程(b)では、上記開口部の底面に露出する上記第1窒化物半導体層の上と、上記マスクの上とに上記第2窒化物半導体層を成長させることを特徴とする発光デバイスの製造方法。
JP2002310025A 2002-10-24 2002-10-24 窒化物半導体ウェハの製造方法および発光デバイスの製造方法 Pending JP2004146605A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310025A JP2004146605A (ja) 2002-10-24 2002-10-24 窒化物半導体ウェハの製造方法および発光デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310025A JP2004146605A (ja) 2002-10-24 2002-10-24 窒化物半導体ウェハの製造方法および発光デバイスの製造方法

Publications (1)

Publication Number Publication Date
JP2004146605A true JP2004146605A (ja) 2004-05-20

Family

ID=32455666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310025A Pending JP2004146605A (ja) 2002-10-24 2002-10-24 窒化物半導体ウェハの製造方法および発光デバイスの製造方法

Country Status (1)

Country Link
JP (1) JP2004146605A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918967B1 (ko) 2004-12-29 2009-09-25 갤럭시아포토닉스 주식회사 버퍼층에 광 산란수단을 구비한 질화갈륨 소자 및 그제작방법
WO2010032829A1 (ja) * 2008-09-19 2010-03-25 三菱化学株式会社 半導体発光素子の製造方法および半導体発光素子
WO2012029216A1 (ja) * 2010-09-01 2012-03-08 パナソニック株式会社 化合物半導体の製造方法
JP2013089741A (ja) * 2011-10-18 2013-05-13 Renesas Electronics Corp 半導体装置、半導体基板、半導体装置の製造方法、及び半導体基板の製造方法
US9299561B2 (en) 2013-06-14 2016-03-29 Samsung Electronics Co., Ltd. Method for fabricating nitride semiconductor thin film and method for fabricating nitride semiconductor device using the same
US10109763B2 (en) 2016-03-10 2018-10-23 Samsung Electronics Co., Ltd. Light-emitting devices and methods of manufacturing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100918967B1 (ko) 2004-12-29 2009-09-25 갤럭시아포토닉스 주식회사 버퍼층에 광 산란수단을 구비한 질화갈륨 소자 및 그제작방법
WO2010032829A1 (ja) * 2008-09-19 2010-03-25 三菱化学株式会社 半導体発光素子の製造方法および半導体発光素子
WO2012029216A1 (ja) * 2010-09-01 2012-03-08 パナソニック株式会社 化合物半導体の製造方法
JP2013089741A (ja) * 2011-10-18 2013-05-13 Renesas Electronics Corp 半導体装置、半導体基板、半導体装置の製造方法、及び半導体基板の製造方法
US8975728B2 (en) 2011-10-18 2015-03-10 Renesas Electronics Corporation Semiconductor device, semiconductor substrate, method for manufacturing device, and method for manufacturing semiconductor substrate
US9263532B2 (en) 2011-10-18 2016-02-16 Renesas Electronics Corporation Semiconductor device, semiconductor substrate, method for manufacturing semiconductor device, and method for manufacturing semiconductor substrate
US9299561B2 (en) 2013-06-14 2016-03-29 Samsung Electronics Co., Ltd. Method for fabricating nitride semiconductor thin film and method for fabricating nitride semiconductor device using the same
US10109763B2 (en) 2016-03-10 2018-10-23 Samsung Electronics Co., Ltd. Light-emitting devices and methods of manufacturing the same

Similar Documents

Publication Publication Date Title
JP4135550B2 (ja) 半導体発光デバイス
US8415180B2 (en) Method for fabricating wafer product and method for fabricating gallium nitride based semiconductor optical device
JP5995302B2 (ja) 窒化物半導体発光素子の製造方法
JP5187610B2 (ja) 窒化物半導体ウエハないし窒化物半導体装置及びその製造方法
JP3909811B2 (ja) 窒化物半導体素子及びその製造方法
JP3815335B2 (ja) 半導体発光素子及びその製造方法
JP4529846B2 (ja) Iii−v族窒化物系半導体基板及びその製造方法
JP3778344B2 (ja) 発光半導体デバイスの製造方法
JP4907691B2 (ja) イオンの注入による窒化物半導体の形成方法及びこれを利用して製造した電子素子
TWI639251B (zh) npn型氮化物半導體發光元件之製造方法及npn型氮化物半導體發光元件
JP3550070B2 (ja) GaN系化合物半導体結晶、その成長方法及び半導体基材
US20050042789A1 (en) Method for producing nitride semiconductor, semiconductor wafer and semiconductor device
JP2007081416A (ja) 発光領域における横方向電流注入を備えた半導体発光装置
WO2014068838A1 (ja) エピタキシャルウェハ及びその製造方法
US6797532B2 (en) Semiconductor device and method for manufacturing the same
US7368309B2 (en) Nitride semiconductor and fabrication method thereof
JP2009231550A (ja) 半導体装置の製造方法
JP2004146605A (ja) 窒化物半導体ウェハの製造方法および発光デバイスの製造方法
JP2002246646A (ja) 半導体素子およびその製造方法ならびに半導体基板の製造方法
JP4583523B2 (ja) Iii−v族窒化物半導体発光素子及びその製造方法
JPH11274563A (ja) 半導体装置および半導体発光素子
JP5946333B2 (ja) Iii族窒化物半導体デバイス及びその製造方法
JP4192430B2 (ja) 窒化物半導体エピタキシャルウェハの製造方法
JP4153673B2 (ja) 半導体素子の製造方法
JP3785059B2 (ja) 窒化物半導体の製造方法