JP2004138646A - 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ - Google Patents

光モジュールおよびこの光モジュールを使用した光ファイバジャイロ Download PDF

Info

Publication number
JP2004138646A
JP2004138646A JP2002300538A JP2002300538A JP2004138646A JP 2004138646 A JP2004138646 A JP 2004138646A JP 2002300538 A JP2002300538 A JP 2002300538A JP 2002300538 A JP2002300538 A JP 2002300538A JP 2004138646 A JP2004138646 A JP 2004138646A
Authority
JP
Japan
Prior art keywords
optical
polarization
optical fiber
polished surface
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300538A
Other languages
English (en)
Inventor
Masuo Nishimoto
西本 益夫
Kenji Kameda
亀田 健二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2002300538A priority Critical patent/JP2004138646A/ja
Publication of JP2004138646A publication Critical patent/JP2004138646A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】より安価な光信号監視用の光モジュールおよび偏光選択素子と光合波分波素子を一体化した光モジュールを提供し、この一体化光モジュールを使用した光ファイバジャイロを提供する。
【解決手段】第1の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第1の研磨面25を形成し、第1の研磨面25に誘電体多層膜フィルタを形成し、第2の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第2の研磨面25を形成し、第1の研磨面25に形成した誘電体多層膜フィルタを介在させて第1の研磨面25と第2の研磨面25とを結合した光モジュール。
【選択図】 図5

Description

【0001】
【産業上の利用分野】
この発明は、光モジュールおよびこの光モジュールを使用した光ファイバジャイロに関する。
【0002】
【従来の技術】
図16を参照して従来例を説明する。図16は光ファイバジャイロを示す図である。説明を簡略化する都合上、オープンループ型シングルモード光ファイバジャイロを例として説明する。
図16において、1本の実線で示される部分はシングルモード光ファイバにより構成される部分であることを意味し、2本の実線で示される部分は偏波保存ファイバにより構成される部分であることを意味している。偏波保存ファイバは、その導波路上に複屈折を生じさせることにより、入力された偏光状態に対して出力される偏光状態を一つにするファイバであり、パンダ型偏波面保存ファイバが実用に供されており、これを使用している。黒丸●で示される部分は光ファイバ相互間の融着接続部であることを示している。
【0003】
1は低コヒーレント光源であり、スーパールミネッセントダイオード(Super Luminescent Diode、SLD)を使用している。
2は第1の光合波分波素子、2’は第2の光合波分波素子である。両光合波分波素子の構成は同一であり、同一の光ファイバカプラより成る。
3は偏光選択素子であり、ファイバ型偏光子より成る。
4は偏光解消素子であり、Lyot型ファイバデポラライザより成る。
5はセンシングコイルであり、シングルモードファイバをコイル状に多数回巻回することにより構成される。
6は光検出素子であり、InGaAs型光電変換素子より成る。
【0004】
図16に示される構成を採用することにより、センシングコイル5回りに角速度Ωが入力されると、光検出素子6で検出される光強度が角速度Ωの関数で変化するところから、この変化に基づいて角速度Ωを検出することができる。入力角速度Ωに起因する光強度の変化はサニャック(Sagnac)効果と呼ばれている。なお、以上の光ファイバジャイロの詳細な動作説明は、この発明の要旨と直接の関係はないので、これを省略する。
ここで、この発明に直接に関係する光モジュールである光合波分波素子2および2’、偏光選択素子3、偏光解消素子4に関して少し詳しく説明しておく。
【0005】
先ず、偏光選択素子3は、任意の偏光状態の光が入力されると、偏光選択素子3を構成する複屈折性を有する偏波保存ファイバの2つの光学軸の内のサニャック効果により検出される角速度Ωの誤差要因となり得る方の光学軸を伝播する光を消滅させて、1つの光学軸を伝播する光成分のみを出力する素子であり、光干渉計の精度を向上するには必要不可欠な素子である。
偏光解消素子4は、シングルモードファイバをコイル状に巻回することにより構成されるセンシングコイル5の曲げ誘起複屈折その他の原因により発生する角速度Ωの誤差要因を回避する素子であり、これも光ファイバジャイロの精度を向上するには必要不可欠な素子である。
【0006】
偏光解消素子4の一例であるLyot型ファイバデポラライザは、2つの偏波保存ファイバを互いにその光学軸を45°傾いた状態で二重丸◎で示される部分において相互接続し、かつその左右の長さの比を1:2以上とした部品であり、その作成条件は広く知られている。
第2の光合波分波素子2’は、偏光選択素子3から出力された光を分波してセンシングコイル5に一端から左右両回りに入力せしめ、センシングコイル5の他端から出力される光を入力して再び合波することによりサニャック効果を生み出すに必要不可欠な素子である。
【0007】
第1の光合波分波素子2および第2の光合波分波素子2’について、その従来例を図17を参照して説明する。図17(a)は、ファイバコア21とファイバクラッド22より成る原材料のシングルモード光ファイバ20を、光学接着剤24を介して、補強部材23に形成した所望の曲率の湾曲溝231に埋設して接合したところを示す図である。図17(b)は、補強部材23に埋設したシングルモード光ファイバ20の外周凸側の一部分を補強部材23と共に研磨して、コア21の極く近くに研磨面25を形成したところを示す図である。図17(c)は図17(b)の如くに形成された研磨面25同志を相互接合したところを示す図である。図17において、(ロ)は(イ)における線A−A’に沿った断面を矢印方向に視た図である。
【0008】
この光合波分波素子2は、上述した通りにシングルモード光ファイバ20を原材料として形成した研磨型のファイバカプラとして広く知られる素子である。2本のシングルモード光ファイバ20それぞれの一部分のクラッド22をコア21の極く近くまで研磨し、研磨面25同志を光学接着剤24で接着することにより構成される。
この光合波分波素子2および偏光選択素子3の従来例には以下の欠点がある。
(1) 第1の光合波分波素子2、偏光選択素子3は各別の素子として別体に構成されている。
(2) 第1の光合波分波素子2自体には偏光選択性がないので、全ての偏光状態の光を分波して捨てた後、偏光選択素子3を通過せしめるので、第1の光合波分波素子2の分岐比を一般的な50:50に設定した場合、光ファイバジャイロの一部品として使用した場合、入力した光成分には−3dBの光損失を伴い、往復で合計−6dBの光損失を生ぜしめる。
【0009】
更に、図18を参照して他の従来例を説明する。図18は光信号監視用の光モジュールを示す。
図18において、光モジュールは、光信号を入力させる光ファイバより成る光入力用導波路a、光信号を任意の割合に透過、反射成分に分岐する光学薄膜とガラス基板で構成される光分岐用スプリッターb、光信号を出力させる光ファイバより成る光出力用導波路c、光分岐用スプリッターbの反射成分の光強度を検出するInGaAs素子より成る光検出素子d、光入力用導波路aから光分岐用スプリッターbを通過し、光出力用導波路cに送り込む光の結合効率をあげる集光レンズgおよび集光レンズh、これらを固定する固定部材eにより構成される。この光モジュールは、光入力用導波路aから光出力用導波路cに入射する光の一部を光分岐用スプリッターbにより光検出素子dへ導き、光信号状態を監視している。
以上の光信号監視用の光モジュールの従来例には以下の欠点がある。
(1)基本的な構成部品が7点以上ある。
(2)光入力用導波路aと光出力用導波路cとの光軸合わせの工程が必要である。
(3)反射成分を光検出素子dに導くのに光分岐用スプリッターbの位置合わせが必要である。
【0010】
【発明が解決しようとする課題】
この発明は、光信号が伝播する導波路である光ファイバの側面からエバネッセント結合でこの光ファイバを伝播する光信号の一部を取り出して光検出素子に導くことにより、より安価な光信号監視用の光モジュールおよび偏光選択素子と光合波分波素子を一体化した光モジュールを提供し、この一体化光モジュールを使用した光ファイバジャイロを提供するものである。
【0011】
【課題を解決するための手段】
請求項1:第1の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第1の研磨面25を形成し、第1の研磨面25に誘電体多層膜フィルタを形成し、第2の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第2の研磨面25を形成し、第1の研磨面25に形成した誘電体多層膜フィルタを介在させて第1の研磨面25と第2の研磨面25とを結合した光モジュールを構成した。
そして、請求項2:請求項1に記載される光モジュールにおいて、第2の光ファイバ20に形成した第2の研磨面25に誘電体多層膜フィルタを形成した光モジュールを構成した。
【0012】
また、請求項3:請求項1および請求項2の内の何れかに記載される光モジュールにおいて、光ファイバを偏波保存ファイバとした光モジュールを構成した。
ここで、請求項4:低コヒーレント光源1と、第1の光合波分波素子2と、偏光選択素子3と、第2の光合波分波素子2’と、偏光解消素子4と、センシングコイル5とをこの順に光学的に接続し、第1の光合波分波素子2に接続する光検出素子6を有する光ファイバジャイロにおいて、第1の光合波分波素子2および偏光選択素子3を、第1の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第1の研磨面25を形成し、第1の研磨面25に誘電体多層膜フィルタを形成し、第2の光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して第2の研磨面25を形成し、第1の研磨面25に形成した誘電体多層膜フィルタを介在させて第1の研磨面25と第2の研磨面25とを結合して構成した光モジュールに置き換えた光ファイバジャイロを構成した。
【0013】
そして、請求項5:請求項4に記載される光ファイバジャイロにおいて、第2の光ファイバ20に形成した第2の研磨面25に誘電体多層膜フィルタを形成した光ファイバジャイロを構成した。
また、請求項6:請求項4および請求項5の内の何れかに記載される光ファイバジャイロにおいて、光ファイバを偏波保存ファイバとした光ファイバジャイロを構成した。
更に、請求項7:光ファイバ20の側面の一部をコア22の近傍に到る迄研磨して研磨面25を形成し、研磨面25に光部品6を直接接合して光結合部Cを構成した光モジュールを構成した。
また、請求項8:請求項7に記載される光モジュールにおいて、研磨面25に誘電体多層膜フィルタを形成して研磨面25と光部品6との間に誘電体多層膜フィルタを介在させた光モジュールを構成した。
【0014】
【発明の実施の形態】
この発明の実施の形態を図を参照して説明する。
先ず、図1を参照するに、これはファイバコア21とファイバクラッド22と応力付与部26より成る原材料の偏波保存ファイバ20’を光学接着剤を介して補強部材23に形成した所望の曲率の湾曲溝231に埋設して接合したところを示す図である。
パンダファイバ、ボウタイ型のファイバの如き複数の光学軸、Fast軸およびSlowを有する偏波保存ファイバ20’を原材料の光ファイバとして使用する。所望の曲率の湾曲溝231を形成した補強部材23を準備する。原材料の偏波保存ファイバを、補強部材23に形成される所望の曲率の湾曲溝231に対して、湾曲溝231に沿って埋設接合するのであるが、この場合、偏波保存ファイバの一方の光学軸であるSlow軸を補強部材23の湾曲溝231の深さ方向に平行に配置して、偏波保存機能を有する導波路Aを湾曲溝231の解放側に位置決めし、UV硬化型接着剤を使用して接合固定する。補強部材23の材料は偏波保存ファイバの材料と熱膨張係数に関して近似する材料であることが望ましい。ところで、図1として、第1の偏波保存ファイバ20’のSlow軸が図面横手方向に平行に配置される図が示されているが、これを90°回転したFast軸が図面横手方向に平行に配置される構成としても差し支えない。
【0015】
次に、図2を参照するに、これは、補強部材23に埋設した偏波保存ファイバ20’の外周凸側の一部分を光学軸の一方であるFast軸に平行に補強部材23と共に研磨して、コア21の極く近くにクラッド22の研磨面25を形成したところを示す図である。この場合、一方の応力付与部26の領域まで研磨除去され、応力付与部26の一部は261により示される如くに露出している。
図3を参照するに、これは、補強部材23に埋設した偏波保存ファイバ20’の外周凸側の一部分を光学軸の一方であるFast軸に平行に補強部材23と共に研磨して、コア21の極く近くにクラッド22の研磨面25を形成したところを示す図である。この場合、研磨は一方の応力付与部26の領域を越えて研磨面25はコア21にまで到達し、応力付与部26の一部は261により示される如くに露出すると共に、コア21の一部も211により示される如くに露出している。
【0016】
図2および図3の実際の研磨作業においては、偏波保存ファイバ20’の一端に入射光Iiを供給し、他端の出射光Ioをモニタしながら研磨し、研磨するにつれて研磨面25から光が漏れ始めるので、光が漏れることにより出射光Ioが一定レベルまで低下した所で研磨を終了する。この時、図3の如くコア21まで研磨された場合、Ioは急激に減少する。
ここで、図1ないし図5を参照して偏光選択素子一体化光合波分波素子モジュールの実施例を説明する。
図4を参照するに、先ず、図2および図3により図示説明した研磨削除の結果形成された研磨面25に、イオンビームスパッタリング(Ion Beam Spattering、IBS)装置を使用して偏光選択光学薄膜30を成膜する。パンダ光ファイバより成る波保存機能を有する第1の偏波保存ファイバ20’および第2の同一の構成の偏波保存ファイバ20’’それぞれを、エバネッセント結合して任意の光結合が得られる条件まで、研磨した研磨面25表面に、TFCalcの如き薄膜設計ソフトを使用して設計し、誘電体多層薄膜より成る偏光選択光学薄膜30を成膜する。図7を参照するに、偏光選択光学薄膜30の設計は、この膜に使用するTa、Siの如き材料と、偏光選択光学薄膜30とSlow軸伝播光とFast軸伝播光の分離度である偏光選択性とその波長範囲、偏光選択光学薄膜30に対する光の入射角度θを決定し、TFCalcの如き薄膜設計ソフトを使用して実施することができる。ここで、コア21の極く近くまで或いはコア21の領域まで研磨削除した研磨面25を形成し、両研磨面25同志を接合固定した場合の光結合状態は、光伝播の専門技術分野において「エバネッセント結合」状態にあると称している。即ち、入力光が光ファイバより成る導波路に入射し、光結合部状態にある領域に伝播するが、この光結合部は光の伝播経路であるコアの極く近くまでそのクラッドが削られているので、光が光ファイバのコアを伝播する際に、エバネッセント光といわれる光成分がコアの周囲に存在することは広く知られている。このエバネッセント光は上述した通りに光ファイバのクラッド部をコアの近傍まで研磨して削除することにより、光ファイバの外に取り出すことができる。この光合波分波素子の分岐比は、理想的には、偏光選択光学薄膜30を形成しない状態で第1の偏波保存ファイバ20’から第2の同様の偏波保存ファイバ20’’に到る結合が0:100であると好適である。
【0017】
図5を参照するに、イオンビームスパッタリング装置を使用して、第1の偏波保存ファイバ20’側の研磨面25に、TaとSiとを交互に規則的に誘電体多層薄膜を成膜して誘電体多層薄膜より成る偏光選択光学薄膜30を形成し、研磨面25の表面に偏光選択機能を持たせる。同様にして、第2の同様の偏波保存ファイバ20’’側の研磨面25に偏光選択光学薄膜30を形成して研磨面25の表面に偏光選択機能を持たせる。第1の偏波保存ファイバ20’と第2の偏波保存ファイバ20’’とを、任意の屈折率を持つ光学接着剤により偏光選択光学薄膜30同志を相互に接合固定することにより一体化し、光モジュールとして偏光選択素子一体化光合波分波素子200が構成される。第1の偏波保存ファイバ20’と第2の偏波保存ファイバ20’’とは互に同一構成の偏波保存ファイバである。ところで、図5において、第1の偏波保存ファイバ20’および第2の同様の偏波保存ファイバ20’’はSlow軸に平行に応力付与部26が研磨された状態を示しているが、応力付与部26とは90°回転したFast軸に平行な方向に研磨する構成としても差し支えない。
【0018】
図8〜図10を参照するに、これはTFCalcにより設計した偏光選択光学薄膜30の透過特性および反射特性を示す図である。この特性は、偏光選択光学薄膜30を2枚のガラスの間に介在させ、光の入射角θを89°に設定したモデルについて得られた特性であり、この発明のモデルとして極めて近い。
図8〜図10のモデルにおいて、入射角θ=89°で入射した光成分の内の偏光選択光学薄膜30に対して垂直な偏光成分(p波)は透過する。一方、偏光選択光学薄膜30に対して平行な偏光成分(s波)は反射すると共に、入射角θが89°と大きいことに起因してp波の一部が反射する。入射光は、偏光選択光学薄膜30により、以上の通りの透過成分と反射成分とに分離される。即ち、偏光選択光学薄膜30は、光を透過する方向においてはp波に対する偏光選択機能素子として働く。図11は偏光選択光学薄膜の光学特性を示す図であり、(a)は光結合波長特性の実測値を示す図、(b)は光結合波長特性補正用の薄膜設計を示す図、(c)は補正用薄膜付きの光結合波長特性を示す図である。
【0019】
この発明による以上の偏光選択素子一体化光合波分波素子200を組み込んだ光ファイバジャイロを図6を参照して説明する。
図6において図16の従来例で使用される部材と共通する部材には共通する参照符号を付与している。200はこの発明の偏光選択素子一体化光合波分波素子であり、図5を参照して図示説明されたものである。低コヒーレント光源1と偏光選択素子一体化光合波分波素子200とは第1の偏波保存ファイバ20’を介して接続している。/ はここに反射防止処理が施されていることを示す符号である。
【0020】
偏光選択素子一体化光合波分波素子200から低コヒーレント光源1に接続された第1の偏波保存ファイバ20’には、低コヒーレント光源1から光強度Iの光が送り込まれる。この光強度Iの光は、一般に、低コヒーレント光源1から第1の偏波保存ファイバ20’により光合波分波素子200へ導かれ、その偏光選択光学薄膜30を通過して選択された透過光p波を光合波分波素子200の出力側の第1の偏波保存ファイバ20’を介して第2の光合波分波素子2’へ導入する。ここで、第2の光合波分波素子2’に導入される光は光強度I/2に減衰している。この場合、低コヒーレント光源1から第1の偏波保存ファイバ20’に入力される光強度Iの光に対して、光合波分波素子200の出力側の光導波路である偏波保存ファイバは、上述した通り、偏光選択光学薄膜30が形成されていない状態の第1の偏波保存ファイバ20’から第2の偏波保存ファイバ20’’への結合が0:100の理想状態であり、かつ「入射角θが大きいところから不可避的に生成される反射成分」を無視することができる量の設計においては、透過側であるp波の第2の偏波保存ファイバ20’’であっても、反射側であるs波の第1の偏波保存ファイバ20’であっても差し支えない。
【0021】
以上の構成により、偏光選択素子一体化光合波分波素子200の偏光選択光学薄膜30により透過p波成分或いは反射s波成分のみが光合波分波素子200の出力側の第2の偏波保存ファイバ20’’或いは第1の偏波保存ファイバ20’に伝播することになる。
低コヒーレント光源1から出射して第1の偏波保存ファイバ20’を介して偏光選択素子一体化光合波分波素子200に入射した光の内の偏光選択光学薄膜30で反射し、第1の偏波保存ファイバ20’の出射端に伝播する光の誤差要因であるs波と上述した理想的な結合効率の場合においては存在しなかったp波の極く一部は第1の偏波保存ファイバ20’の端面に設けられた斜め研磨或いは反射防止膜形成その他の端末処理により構成された反射防止処理部で消光される。
【0022】
センシングコイル5を周回することにより角速度情報を伴って帰還する光は、偏光解消素子4によりp波,s波が同量存在する無偏光状態にされており、第2の光合波分波素子2’を介して光強度I/4に減衰して出力される。光合波分波素子2’の光強度I/4に減衰した出力は、光合波分波素子200を介して光検出素子6には最終的に光強度I/8で入射することになる。
センシングコイル5がら帰還する光の内の、低コヒーレント光源1側に伝播する成分と光検出素子6へ導入される光のそれぞれの偏波保存ファイバ端面で反射する成分が再びセンシングループ5に導入される恐れがあるが、これらはそれぞれの偏波保存ファイバの端面に反射防止処理部を形成することによりこれを阻止することができ、再び光ファイバジャイロ内に伝播することはない。
【0023】
また、光検出素子6に最終的に導入される光成分はs波とp波の一部である。これはこの発明の偏光選択素子一体化光合波分波素子200の第2の偏波保存ファイバ20’’により光検出素子6に導入される訳であるが、s波とp波の干渉に関して、一般に、第2の偏波保存ファイバ20’’の長さはSlow軸とFast軸の光路差が低コヒーレント光源1のコヒーレント長以上であるので、干渉の心配は無い。
以上の実施例は、2本の偏波保存ファイバの境界に偏光選択特性を示す誘電体多層薄膜を形成して偏光選択特性と光合波分波特性の双方を併せ持った偏光選択素子一体化光合波分波素子モジュールとするものである。これにより以下の効果を奏す。
【0024】
(1)偏光選択素子と光合波分波素子とが別体である場合と比較して、構造が遙かに簡単化、小型化された偏光選択素子一体化光合波分波素子モジュールとすることができる。
(2)この偏光選択素子一体化光合波分波素子モジュールを光ファイバジャイロに組み込んだ場合、必然的に光ファイバジャイロ全体の構成を簡単化、小型化することができる。
(3)光合波分波素子の従来例を使用した光ファイバジャイロにおいて光検出素子で検出される光は光強度がI/32に減衰するのに対してこの発明の偏光選択素子一体化光合波分波素子モジュールを使用した場合は、光強度は最大I/8弱に減衰し、光ファイバジャイロとしてのS/N比が最大で4倍弱改善される。
【0025】
次いで、図12ないし図15を参照して他の実施例を説明する。
図12および図13を参照するに、導波路を構成するシングルモード光ファイバ20を、必要とされる曲率に屈曲した状態で、UV硬化型接着剤の如き接着剤を使用して、補強部材23に埋設接合固定一体化する。補強部材23は光ファイバ20の熱膨張係数と等しい熱膨張係数を有する材料により構成される。
先に説明した通りに、補強部材23に埋設したシングルモード光ファイバ20の外周凸側の一部分を補強部材23と共に研磨してコア21の極く近くにクラッド22の研磨面25を形成し、エバネッセント結合を発生させる条件を満足させる。
【0026】
補強部材23は、研磨されて光結合面Cを含む研磨面25を、固定用部材7に取り付けられ予めワイヤボンディングで電気配線61されているInGaAs素子より成る光検出素子6に対して光ファイバ20と屈性率の近似する光学的接着Fを使用して接合することにより、光検出素子6に固定される。この場合、光検出素子6は、光結合部Cから放射されるエバネッセント光が光検出素子6に入射される位置に位置決め固定される。
光結合部Cと光検出素子6との間の位置合わせは、機械的なマーキングを参照して充分満足に実施することができるが、更に高い結合効率を得るには光検出素子6の電気出力をモニターしながら検出信号最大の位置で固定する。
【0027】
光結合部Cにおけるエバネッセント光はシングルモード光ファイバ20の曲率変化、応力変化により変動する場合があるので、補強部材23と固定部材7は光ファイバ20の熱膨張係数に近似する熱膨張係数を有する材料を使用して構成されると好適であり、理想的な材料としてはガラス材料を例示することができる。ここで、ガラス材料は周囲雰囲気内のOH基により破断確率が上昇することが知られているが、固定部材7を上蓋により閉塞して内部を窒素置換した封止構造を採ることにより、この破断確率の上昇を防止することができる。
ここで、シングルモード光ファイバ20と光検出素子6の境界は、両者の屈折率が相違するところから、その境界面において反射が生起し、この反射が光ファイバ20を伝播する光と光検出素子6で検出される光の双方に悪影響を及ぼすことがある。この場合、シングルモード光ファイバ20の屈折率に接着剤Fの屈折率を近似させることによりこの反射を抑制することができる。
【0028】
ところで、シングルモード光ファイバ20と屈折率が近似した接着剤Fを選択することができたとしても、その接着剤Fがそれ程強力な接着力を有しない場合もあり、接着力を優先して接着剤Fを選択した場合に接着剤Fの屈折率と光ファイバ20の屈折率の近似を多少犠牲にして屈折率差が生じて光反射を発生させることがある。図14を参照するに、この場合、補強部材23の光結合面Cを含む研磨面25に、予め、イオンビームスパッタリング装置の如き薄膜成膜装置を使用して誘電体多層薄膜を成膜しておくことによりこの反射を消去することができる。この誘電体多層薄膜の設計は、薄膜に使用するTa、Siの如き材料と、光ファイバ20の屈折率、接着剤Fの屈折率が決定されればTFCalcの如き薄膜設計ソフトを使用して容易に実施することができる。
【0029】
図15を参照するに、これは誘電体多層薄膜のエバネッセント結合波長特性を説明する図である。エバネッセント結合を利用した光学素子、モジュールには一般にその結合率Cに波長依存性がある。この波長依存性はエバネッセント光に特有の現象であり、単純な反射光とはその性質を異にしている。図14に示される如く、光結合面Cと接着剤Fとの間に誘電体多層薄膜を形成した場合、この多層薄膜をその透過波長特性が図15の関係を満足して成膜すると、その結合率Cは光波長に対してフラットな特性を持ったモジュールとすることができる。
【0030】
以上の他の実施例によれば、反射光を利用した従来の光信号監視モジュールではなく、光信号が伝播する光ファイバ20の側面をエバネッセント領域まで研磨削除した光結合部Cから放射されるエバネッセント光を光検出素子6に導入する構成を採用することにより、より安価な光信号監視用の光モジュールを提供することができる。更に、以下の効果を奏す。
(1)部品点数の減少。
(2)入射、出射導波路の軸合わせが不要である。
(3)エバネッセント結合をする面積は、光結合部C全体のの面積、光検出素子6の面積と比較して小さいので、これを機械的なマーキングを参照する位置合わせを行うことのみにより容易確実に光検出素子6に対して整合固定することができる。
(4)更に、光結合部Cの表面に誘電体多層薄膜を成膜形成することにより、接着剤Fの屈折率が導波路である光ファイバ20の屈折率と相違しても反射防止したエバネッセント結合の波長特性を補正することができ、反射光による従来の光信号監視モジュールと波長特性の面においても同等のモジュールを構成することができる。
【0031】
【発明の効果】
上述した通りであって、この発明は、2本の偏波保存ファイバの境界に偏光選択特性を示す誘電体多層膜フィルタを形成して偏光選択特性と光合波分波特性の双方を併せ持った偏光選択素子と光合波分波素子を一体化した簡単化、小型化された光モジュール構成した。これにより更に次の効果を奏す。即ち、この光モジュールを光ファイバジャイロに組み込んだ場合、その全体構成を簡単化、小型化することができる。そして、光合波分波素子の従来例を使用した光ファイバジャイロにおいて光検出素子で検出される光は光強度がI/32に減衰するのに対してこの発明の光モジュールを使用した場合は光強度は最大I/8弱に減衰し、光ファイバジャイロとしてのS/N比が最大で4倍弱改善される。
【0032】
更に、光信号が伝播する光ファイバの側面をエバネッセント領域まで研磨削除した光結合部から放射されるエバネッセント光を光検出素子に導入する構成を採用することにより、より安価な光信号監視用の光モジュールを提供することができる上に次の効果を奏す。即ち、従来例と比較して光信号監視用の光モジュールとしての部品点数が減少する。そして、入射、出射導波路の軸合わせが不要である。また、エバネッセント結合をする面積は光結合部全体の面積、光検出素子の面積と比較して小さいので、これを機械的なマーキングを参照する位置合わせを行うことのみにより容易確実に光検出素子に対して整合固定することができる。更に、光結合部の表面に誘電体多層薄膜を成膜形成することにより、接着剤の屈折率が導波路である光ファイバの屈折率と相違しても反射防止したエバネッセント結合の波長特性を補正することができ、反射光による従来の光信号監視モジュールと波長特性の面においても同等のモジュールを構成することができる。
【図面の簡単な説明】
【図1】実施例を説明する図。
【図2】図1の続き。
【図3】図1の続き。
【図4】図2および図3の続き。
【図5】図4の続き。
【図6】光ファイバジャイロの実施例を説明する図。
【図7】偏光選択光学薄膜設計時の入射角θを説明する図。
【図8】θ=89°の場合のp波およびs波の透過特性とs波−p波消光比を示す図。
【図9】SLD光源の発光特性とθ=89°の場合のs波−p波消光比を示す図。
【図10】SLD光源の発光特性とθ=88°、89°の場合のs波−p波消光比を示す図。
【図11】偏光選択光学薄膜の光学特性を説明する図。
【図12】他の実施例を説明する図。
【図13】図12の続き。
【図14】他の実施例の動作を説明する図。
【図15】誘電体多層薄膜のエバネッセント結合の波長特性を説明する図。
【図16】光ファイバジャイロの従来例を説明する図。
【図17】研磨型の合波分波素子の従来例を説明する図。
【図18】他の従来例を説明する図。
【符号の説明】
1 低コヒーレント光源       2 第1の光合波分波素子
2’第2の光合波分波素子      3 偏光選択素子
4 偏光解消素子          5 センシングコイル
6 光検出素子          20 シングルモード光ファイバ
21 ファイバコア       211 コア研磨面
22 ファイバクラッド      23 補強部材
231 湾曲溝          25 研磨面
26 応力付与部        261 応力付与部研磨面
20’第1の偏波保存ファイバ   20’’ 第2の偏波保存ファイバ
30 偏光選択光学薄膜     200 偏光選択素子一体化光合波分波素子

Claims (8)

  1. 第1の光ファイバの側面の一部をコアの近傍に到るまで研磨して第1の研磨面を形成し、第1の研磨面に誘電体多層膜フィルタを形成し、第2の光ファイバの側面の一部をコアの近傍に到る迄研磨して第2の研磨面を形成し、第1の研磨面に形成した誘電体多層膜フィルタを介在させて第1の研磨面と第2の研磨面とを結合したことを特徴とする光モジュール。
  2. 請求項1に記載される光モジュールにおいて、
    第2の光ファイバに形成した第2の研磨面に誘電体多層膜フィルタを形成したことを特徴とする光モジュール。
  3. 請求項1および請求項2の内の何れかに記載される光モジュールにおいて、
    光ファイバを偏波保存ファイバとしたことを特徴とする光モジュール。
  4. 低コヒーレント光源と、第1の光合波分波素子と、偏光選択素子と、第2の光合波分波素子と、偏光解消素子と、センシングコイルとをこの順に光学的に接続し、第1の光合波分波素子に接続する光検出素子を有する光ファイバジャイロにおいて、
    第1の光合波分波素子および偏光選択素子を、第1の光ファイバの側面の一部をコアの近傍に到る迄研磨して第1の研磨面を形成し、第1の研磨面に誘電体多層膜フィルタを形成し、第2の光ファイバの側面の一部をコアの近傍に到る迄研磨して第2の研磨面を形成し、第1の研磨面に形成した誘電体多層膜フィルタを介在させて第1の研磨面と第2の研磨面とを結合して構成した光モジュールに置き換えたことを特徴とする光ファイバジャイロ。
  5. 請求項4に記載される光ファイバジャイロにおいて、
    第2の光ファイバに形成した第2の研磨面に誘電体多層膜フィルタを形成したことを特徴とする光ファイバジャイロ。
  6. 請求項4および請求項5の内の何れかに記載される光ファイバジャイロにおいて、
    光ファイバを偏波保存ファイバとしたことを特徴とする光ファイバジャイロ。
  7. 光ファイバの側面の一部をコアの近傍に到る迄研磨して研磨面を形成し、研磨面に光部品を直接接合して光結合部を構成したことを特徴とする光モジュール。
  8. 請求項7に記載される光モジュールにおいて、
    研磨面に誘電体多層膜フィルタを形成して研磨面と光部品との間に誘電体多層膜フィルタを介在させたことを特徴とする光モジュール。
JP2002300538A 2002-10-15 2002-10-15 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ Pending JP2004138646A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300538A JP2004138646A (ja) 2002-10-15 2002-10-15 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300538A JP2004138646A (ja) 2002-10-15 2002-10-15 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ

Publications (1)

Publication Number Publication Date
JP2004138646A true JP2004138646A (ja) 2004-05-13

Family

ID=32449204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300538A Pending JP2004138646A (ja) 2002-10-15 2002-10-15 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ

Country Status (1)

Country Link
JP (1) JP2004138646A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076983A (ja) * 2006-09-25 2008-04-03 Mitsubishi Cable Ind Ltd 光ファイバカップラー、光ファイバの結合構造及び結合方法
JP2012027402A (ja) * 2010-07-27 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> 光ファイバを用いた方向性結合器の製造方法
JP2014038917A (ja) * 2012-08-14 2014-02-27 Nec Corp 光分岐装置および光分岐方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076983A (ja) * 2006-09-25 2008-04-03 Mitsubishi Cable Ind Ltd 光ファイバカップラー、光ファイバの結合構造及び結合方法
JP2012027402A (ja) * 2010-07-27 2012-02-09 Nippon Telegr & Teleph Corp <Ntt> 光ファイバを用いた方向性結合器の製造方法
JP2014038917A (ja) * 2012-08-14 2014-02-27 Nec Corp 光分岐装置および光分岐方法

Similar Documents

Publication Publication Date Title
JPH07104148A (ja) 光部品
JPH11308179A (ja) 双方向光通信器および双方向光通信装置
JP2016206415A (ja) 光モジュール及び光ファイバアセンブリ
EP1469283A2 (en) Fiber optic gyroscope
JP2631902B2 (ja) 光集積回路
JPH09318367A (ja) 光ファイバジャイロ及び光集積回路
US7373028B2 (en) Polarization maintaining coupler
JPH0215203A (ja) 光ファイバ型光分波器
EP3167244B1 (fr) Système interférométrique à fibre optique
JPWO2019066050A1 (ja) 磁気センサ素子及び磁気センサ装置
JP6233366B2 (ja) 光変調装置
JP2004138646A (ja) 光モジュールおよびこの光モジュールを使用した光ファイバジャイロ
US6546165B2 (en) Optical multiplexing/demultiplexing module
JP2004145136A (ja) 光分離器およびotdr装置
JPH02259610A (ja) 導波形光波長多重化器
JP3642967B2 (ja) 光通信デバイスおよび双方向光通信装置
JPS58150146A (ja) 光デイスク用光ピツクアツプ
JP5502271B2 (ja) 双方向光モジュールおよび光パルス試験器
JP4868310B2 (ja) 光電流センサ
JP2001033492A (ja) 光応用測定装置
JPH0926516A (ja) 導波路型偏光分離素子及びそれを用いた導波路型アイソレータ
JPH05181035A (ja) 光分波・分岐デバイス
US11353656B1 (en) On-chip polarization control
JPH049288B2 (ja)
US9823417B2 (en) Waveguide polarizing optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050511

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD03 Notification of appointment of power of attorney

Effective date: 20050511

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A977 Report on retrieval

Effective date: 20061127

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20061226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A02