JP2004137673A - シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法 - Google Patents

シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法 Download PDF

Info

Publication number
JP2004137673A
JP2004137673A JP2002300487A JP2002300487A JP2004137673A JP 2004137673 A JP2004137673 A JP 2004137673A JP 2002300487 A JP2002300487 A JP 2002300487A JP 2002300487 A JP2002300487 A JP 2002300487A JP 2004137673 A JP2004137673 A JP 2004137673A
Authority
JP
Japan
Prior art keywords
granular
shaft
shield excavator
shield
starting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002300487A
Other languages
English (en)
Inventor
Shigeru Goto
Satoshi Miyamori
宮森 敏
後藤 茂
Original Assignee
Shimizu Corp
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp, 清水建設株式会社 filed Critical Shimizu Corp
Priority to JP2002300487A priority Critical patent/JP2004137673A/ja
Publication of JP2004137673A publication Critical patent/JP2004137673A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】凍結工法の採用が可能となる他、凍土壁を薄くでき、しかもシールド掘削機を発進等させる際の凍結用配管の撤去作業を不要にする。
【解決手段】立坑壁1のシールド掘削機通過部分を泥水と粒状体とを混合した粒状体混合壁体3で構成し、この粒状体混合壁体3の内部に、シールド切削機による切削が可能な格子状繊維補強体4とシールド切削機による切削が可能な耐寒性樹脂材からなる凍結用配管5を配設する。この凍結用配管5に冷媒を流して粒状体混合壁体3を凍結させた後、凍結させた粒状体混合壁体3をシールド掘削機2で切削することで、シールド掘削機を発進あるいは到達させる。
【選択図】  図1

Description

【0001】
【発明の属する技術分野】
本発明は、シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法に関する。
【0002】
【従来の技術】
従来、シールド掘削機の発進あるいは到達用の立坑構造として、立坑壁におけるシールド掘削機の発進部分を、枠材で囲むとともに枠材内に粒状体を充填し、この充填した粒状体を温度調整管によって凍結可能とし、立坑壁で囲まれた地盤部分を掘削する際に枠材内の粒状体を凍結させ、その後、シールド掘削機を発進させて立坑壁を貫通する際に、温度調整管によって粒状体を融解した後この温度調整管を撤去し、この状態で、シールド掘削機によって粒状体を掘削するものが知られている(例えば、特許文献1。)。
【0003】
【特許文献1】
特開平5−18181号公報(第2−3頁、図1)
【0004】
【発明が解決しようとする課題】
ところで、上述した従来のシールド掘削機の発進あるいは到達用の立坑構造にあっては、以下のような課題があった。
▲1▼ シールド掘削機によって粒状体を掘削する際に、粒状体を凍結あるいは融解させるのに用いた冷媒供給用温度調整管を撤去しなければならず、その撤去作業が面倒である。
▲2▼ また、例えば、地下40mを超えるような大深度では、シールド掘削機を立坑壁から発進させたり逆に立坑に到達させたりするのに、止水補助工法として凍結工法が有効であるが、上述した従来のシールド掘削機の発進あるいは到達用の立坑構造にあっては、シールド掘削機によって粒状体を掘削する際に、事前に温度調整管を撤去することが必要となるため、掘削対象である粒状体の温度を制御が難しく、このため、凍結工法施工時の凍土の融解あるいは過大な凍結膨張による不具合が発生することがある。
【0005】
前記事情に鑑みて、本発明は、シールド掘削機を発進等させる際の凍結用配管の撤去作業が不要になるとともに、凍結工法の採用が可能なシールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法を提供することを目的としている。
加えて、凍結工法実施時に凍土壁となる粒状体混合壁体の壁厚を薄くすることができるシールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法を提供することも目的としている。
【0006】
【課題を解決するための手段】
前記課題を解決するために本発明においては以下の手段を採用した。
すなわち、請求項1記載のシールド掘削機の発進あるいは到達用の立坑構造は、シールド掘削機の発進あるいは到達用の立坑構造であって、立坑壁のシールド掘削機通過部分が泥水と粒状体とを混合した粒状体混合壁体で構成され、該粒状体混合壁体の内部には、シールド切削機による切削が可能な格子状繊維補強体とシールド切削機による切削が可能な耐寒性樹脂材からなる凍結用配管が配設されていることを特徴とする。
【0007】
請求項2記載のシールド掘削機の発進あるいは到達用の立坑構造は、シールド掘削機の発進あるいは到達用の立坑構造であって、立坑壁のシールド掘削機通過部分の地山側に隣接して泥水と粒状体とを混合した粒状体混合壁体が設けられ、この粒状体混合壁体の内部には、シールド切削機による切削が可能な耐寒性樹脂材からなる凍結用配管が配設されていることを特徴とする。
【0008】
請求項3記載のシールド掘削機の発進あるいは到達用の立坑構造は、請求項2記載のものにおいて、前記粒状体混合壁体の内部には、シールド切削機による切削が可能な格子状繊維補強体が配設されていることを特徴とする。
【0009】
請求項4記載のシールド掘削機の発進あるいは到達用の立坑構造は、請求項1〜3のいずれかに記載のものにおいて、前記粒状体混合壁体には固化材が混入されていることを特徴とする。
【0010】
請求項5記載のシールド掘削機の立坑からの発進あるいは到達方法は、請求項1〜4のいずれかに記載のシールド掘削機の発進あるいは到達用の立坑構造からシールド掘削機を発進あるいは同立坑構造へシールド掘削機を到達させるシールド掘削機の発進あるいは到達方法であって、前記粒状体混合壁体の内部に配設した耐寒性樹脂材からなる凍結用配管に冷媒を流して前記粒状体混合壁体を凍結させた後、この凍結させた粒状体混合壁体をシールド掘削機で切削することでシールド掘削機を発進あるいは到達させることを特徴とする。
【0011】
本発明では、例えば、シールド掘削機により立坑壁を貫通させて発進させる際に、予め、凍結用配管に冷媒を流して粒状体混合壁体を凍結させる。そして、この凍結させた粒状体混合壁体を、シールド掘削機によって直接掘削する。すなわち、凍結工法の採用が可能であるので優れた止水性が得られ、たとえ、地下40mを超える大深度の工事であっても止水に関する問題は生じない。
また、このとき、凍結用配管自体がシールド切削機によって切削可能であるので、シールド掘削機による掘削の際に、予め凍結用配管を撤去する作業は不要である。
【0012】
また、粒状体混合壁体を泥水と粒状体とを混合させた構成としており、この壁体部分が粘性土で構成される場合に懸念される、凍結時の膨張圧の発生や融解時の地盤収縮といった問題は生じないばかりか、強度的にも粘性土で構成される場合に比べて優れる。
さらに、粒状体混合壁体の内部に格子状繊維補強体を配設した場合、粒状体混合壁体がより強い強度を発揮することとなり、この粒状体混合壁体の厚さを薄くでき、その分、コストを低減できる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき説明する。
図1は本発明に係るシールド掘進機の発進用の立坑構造を表す断面図である。この図において符号1は円筒状に形成された立坑壁である。この立坑壁1は、連続地中壁工法あるいはケーソン工法等の公知の方法により構築される。立坑壁1のシールド掘削機2の発進箇所となるシールド掘削機通過部分は、泥水と粒状体とを混合した粒状体混合壁体3で構成されている。粒状体としては、砂、砂利、砂礫またはこれらの混合材料が使用される。粒状体混合壁体3は、必要に応じ、立坑の内部に流れ出さないよう、シールド切削機2のカッタによる切削が可能な材料からなる仕切りの内部に収納される。
【0014】
粒状体混合壁体3の内部には、シールド切削機2のカッタによる切削が可能な格子状繊維補強体4と、シールド切削機2のカッタによる切削が可能な耐寒性樹脂材からなる凍結用配管5が配設されている。
格子状繊維補強体4は、ガラス繊維やカーボン繊維、アラミド繊維などの高性能連続繊維を、耐薬品性に優れた樹脂に含浸させながら格子状に一体に形成した強化繊維プラスチック材からなるものであって、コンクリート補強用複合材の一つとして用いられるものである。また、格子状繊維補強体4は、軽量で鉄筋と同等以上の引張強度を有する上、腐食の心配がない等、多くの優れた特性を持つ。この実施の形態では、格子状繊維補強体4は、面方向が、立杭壁1内に配置される格子状鉄筋6と同様、立坑壁1の面方向と平行となるように配置される。
【0015】
前記凍結用配管5は、格子状繊維補強体4と同様、強化繊維プラスチック材によって構成されるものである。また、この実施の形態で用いられる凍結用配管5は、特に、冷媒供給用として例えばマイナス30°程度の温度条件下でも耐え得ることができ、しかも、温度変化があっても鋼管7との接続部に隙間が生じないよう、鋼管7と同程度の線膨張係数を持つ特性のものが用いられる。
【0016】
一方、前記立坑壁1の粒状体混合壁体3よりも上側部分となる個所の内部には、冷媒供給用配管として前記鋼管7が配置される。鋼管7は、下端が前記冷凍用配管5と接続され、上端は図示せぬ冷媒供給源と接続される。また、立坑壁1の粒状体混合壁体3を除く個所の内部には、前記格子状鉄筋6が配置される。格子状鉄筋6は、格子状繊維補強体4に対して、立坑壁1の粒状体混合壁体3と他の部分に跨って配置された重ね継手8を介して連結される。重ね継手8も、格子状繊維補強体と同様、シールド切削機2のカッタによる切削が可能な強化繊維プラスチック材によって構成される。
【0017】
図1中符号9はシールド掘削機2の前面を液密状態で、前記粒状体混合壁体3に対向させるためのエントランスボックスであり、シールド掘削機2の外周と接触する部分にはシール部を有する。
また、図1中符号10は、薬液が注入されて改良された透水層地盤改良部分を示している。この地盤改良部分10は、シールド掘削機発進時等に、粒状体混合壁体開口部分に高い地下水圧がかかるのを未然に防止するものである。
【0018】
次に、前記構成のシールド掘削機の発進用の立坑構造の構築手順について説明する。
まず、連続地中壁工法あるいはケーソン工法等公知の方法により地表面から地盤中に向けて円筒状の立坑壁1を構築する。このとき、シールド掘削機2が通過する部分は、コンクリートに変えて泥水と粒状体とを混合した粒状体混合壁体3で構成する。
ここで、粒状体混合壁体3には必要に応じてセメント等の固化材を配合する。例えばセメントを配合する場合には、その割合は、融解後の止水性を確保することを考慮すれば、モルタルと同程度、つまり、砂等の粒状体との重量比が40%程度に設定するのが好ましい。ただ、融解後の止水性を何らかの手段で確保でき、強度補強のみを考慮する場合には、砂等粒状体との重量比が10%程度に設定することで足りる。
【0019】
立坑壁1の構築後、該立坑壁1で囲まれた地盤部分を所定深度まで掘削する。このとき、粒状体混合壁体3近傍を掘削する際には、予め粒状体混合壁体3を凍結させておく。つまり、鋼管7を通じて凍結用配管5内に冷媒を供給し、粒状体混合壁体3を所定温度以下にまで冷却させることで凍結させる。これにより、粒状体混合壁体3に止水性および土留め性を発揮できる程度の十分な強度を持たせる。
そして、この状態で粒状体混合壁体3近傍も掘削し、最終的に所定深度まで掘削して立坑を得る。
【0020】
次に、シールド掘削機の発進用の立坑構造からシールド掘削機を発進させる手順について説明する。
まず、最初に、立坑内にシールド掘削機の分割体を搬入し、この分割体を立坑内で組み立てることで、シールド掘削機2を所定個所に設置する。
また、地盤のトンネル掘削部分に相当する箇所に透水層がある場合等には、必要に応じて掘削しようとする部分に薬液を注入し、地盤改良を行う(図1中10で地盤改良部分を示す)。
【0021】
前記シールド掘削機2の組立作業と並行して、粒状体混合壁体3の立坑側にエントランスボックス9を取り付ける。そして、組み立てたシールド掘削機2の先端を、エントランスボックス9内に嵌入させ、この状態でシールド掘削機2の先端のカッター部分に泥水を注入し、立坑前面の土圧、水圧とバランスさせる。
【0022】
次に、シールド掘削機2を作動させて、凍結状態にある粒状体混合壁体3を掘削するが、この前に凍結用配管5内への冷媒供給を停止する。
このとき、格子状繊維補強体4は勿論のこと、凍結用配管5も撤去することなく、そのまま粒状体と一体的に掘削する。
【0023】
粒状体混合壁体3の掘削が完了したときでも、図1に示すように、粒状体混合壁体3に隣接する地山側地盤部分には凍結した部分(図1中Zで示す)があり、この地盤凍結部分Zが、地下水の立坑への浸入を確実に防止する。
また、前述したように掘削時において、粒状体混合壁体3は凍結しており、その強度は、凍結温度によって変化する。すなわち、凍結温度が低いと、粒状体混合壁体3の強度が上がり、その分止水性および土留め性がそれぞれ向上するが、その反面シールド掘削機2による掘削効率は低下する。他方、凍結温度が高いと、粒状体混合壁体3の強度が下がり、その分止水性および土留め性がそれぞれ低下するが、その反面シールド掘削機2による掘削効率は上がる。
このため、凍結用配管5を撤去することなく、掘削する直前まで粒状体混合壁体3内に存することを利用し、この凍結用配管5を介して供給する冷媒の量および温度により、止水性および土留め性と掘削効率とを比較考慮しながら、掘削直前の粒状体混合壁体3の温度調整を行う。
【0024】
このようなシールド掘削機の発進方法であると、粒状体混合壁体3を凍結させた状態で掘削する、いわゆる凍結工法の採用が可能であるので、優れた止水性が確保でき、たとえ、地下40mを超える大深度の工事であっても止水に関する問題は生じない。
また、粒状体混合壁体3の内部に予め格子状繊維補強体4を配設しているので、粒状体混合壁体3が強い強度を発揮することとなり、ひいては粒状体混合壁体3の厚さを薄くできる。ちなみに、格子状繊維補強体を有しない一般の凍結工法で用いる凍土壁厚は5m程度であったが、ここで用いる凍土壁に相当する粒状体混合壁体3の壁厚は1.2m程度で足りる。このように凍土壁厚を縮小できるのでコストの大幅な削減が可能となる。
【0025】
加えて、粒状体混合壁体3を泥水と粒状体とを混合させた構成としているので、この壁体を粘性土で構成する場合に懸念される、凍結時の膨張圧の発生や融解時の地盤収縮といった問題は生じないばかりか、強度的にも粘性土で構成される場合に比べてはるかに優れるものとなる。
【0026】
図2は、本発明に係るシールド掘進機の到達用の立坑構造を表す断面図である。
なお、図1で示した実施の形態の構成要素と同一構成要素については、同一符号を付してその説明を省略する。
この図2に示す立坑構造が、前述の図1に示すものと異なるところは、発進用ではなく、到達用である点、また、粒状体混合壁体3を立坑壁1に組み込むのではなく立坑壁1とは別個に立坑壁のシールド掘削機通過部分の地山側に隣接して設けた点である。
【0027】
図2において、立坑壁1のシール掘削機通過部分20は、はつり撤去されているが、この部分は立坑壁1が構築するとき他の立坑壁部分と一体的に構築され、その後、シールド掘削機2が立坑に到達する直前であって、粒状体混合壁体3が凍結されたときに撤去される。
【0028】
前記構成のシールド掘削機の到達用の立坑構造の構築手順は、まず、連続地中壁工法あるいはケーソン工法等公知の方法により円筒状の立坑壁1を構築する。このとき、立坑壁1のシールド掘削機2が通過する部分の地山側に隣接するように、粒状体混合壁体3を設ける。なお、この粒状体混合壁体3の構築方法も公知の連続地中壁工法等で構築できる。また、施工順序としては立坑壁1の構築後、これに隣接して粒状体混合壁3を構築するのがよい。粒状体混合壁体3には、内部に前記格子状繊維補強体4と凍結用配管5を設ける。凍結用配管5の上部は、冷媒供給用配管である鋼管7と接続する。
なお、ここでも、粒状体混合壁体3には、必要に応じてセメント等の固化材を配合する。
【0029】
立坑壁1の構築後、該立坑壁1で囲まれた地盤を所定深度まで掘削する。このとき、粒状体混合壁体3は凍結させる必要がなく常温のままとする。
以上の手順によってシールド掘削機2の到達用の立坑構造を得る。
【0030】
そして、この立坑にシールド掘削機2が到達するときには、シールド掘削機2が当該立坑に接近した時点で、鋼管7を通じて凍結用配管5内に冷媒を供給し、粒状体混合壁体3を所定温度以下にまで冷却させることで、粒状体混合壁体3を凍結させる。そして、粒状体混合壁体3を凍結させた後、図2に示すように、立坑壁1のシールド掘削機通過部分20を、はつって撤去する。
この状態で、シールド掘削機2をそのまま前進させ、粒状体混合壁体3を掘削させて、当該立坑に到達させる。このとき、格子状繊維補強体4は勿論のこと、凍結用配管5も撤去することなく、そのまま粒状体と一体的に掘削する。
【0031】
このシールド掘削機の到達方法においても、前述したシード掘削機の発進方法と同様、凍結工法の採用が可能であるので優れた止水性および土留め性が確保できる。また、粒状体混合壁体3の内部に予め格子状繊維補強体4を配設しているので、粒状体混合壁体3が強い強度を発揮することとなり、同粒状体混合壁体3の厚さを薄くでき、これによりコストの大幅な削減が可能となる。
【0032】
加えて、ここで示すシールド掘削機の到達方法であると、立坑壁1のシールド通過部分に隣接してそれとは別個に、凍土壁となる、粒状体混合壁体3を構築しているので、立坑を形成する際等には粒状体混合壁体3を凍結させる必要がなく、シールド掘削機2の到達時期をある程度予想できるようになってから凍結させれば足りる。したがって、凍土形成に関し、ランニングコストを大幅に削減することができる。
【0033】
以上本発明の一実施の形態を説明したが、本発明は前記実施の形態に限定されるものでなく、その趣旨を逸脱しない範囲内で他の構成を採用することができる。
例えば、前記実施の形態では、図1に示したものをシールド掘削機の発進用の立坑構造、図2をシールド掘削機の到達用の立坑構造として説明したが、これに限られることなく、図1に示したものをシールド掘削機の到達用の立坑構造、図2をシールド掘削機の発進用の立坑構造として用いることもできる。
【0034】
また、図2に示す実施の形態では、立坑壁1のシールド掘削機通過部分を、シールド掘削機2が通過する前に予めはつって撤去しているが、立坑壁1を補強する格子状鉄筋を、シールド切削機による切削が可能な格子状繊維補強体に代えた場合には、撤去する必要がなくなる。また、この場合、立坑壁1のシールド掘削機通過部分に隣接して設けた粒状体混合壁体3の内部に格子状繊維補強体5をする必要がなくなり、これらの点で、工事の簡略化とともにコストの削減を図ることができる。
その他、本実施の形態において立坑形状を円筒状にしたが、この形状は大深度の場合、構造的に有利になる。しかし、用地やシールド掘削機の大きさ等によって立坑の平面形状を決定すればよいのであり、例えば、矩形、小判形であってもよいのは当然である。
【0035】
【発明の効果】
請求項1に係るシールド掘削機の発進あるいは到達用の立坑構造、および請求項5に係るシールド掘削機の発進あるいは到達方法によれば、凍結させた粒状体混合壁体をシールド掘削機によって直接掘削する、凍結工法の採用が可能であるので優れた止水性が得られ、たとえ、地下40mを超える大深度の工事であっても施工可能となる。また、このとき、凍結用配管自体がシールド切削機による切削が可能であるので、シールド掘削機による掘削の際に、予め凍結用配管を撤去する作業が不要となる。また、粒状体混合壁体の内部に格子状繊維補強体を配設して補強しているので、凍土壁となる粒状体混合壁体の厚さを薄くでき、その分コストを低減することができる。加えて、粒状体混合壁体を泥水と粒状体とを混合させた構成としているので、この壁体部分が粘性土で構成される場合に懸念される、凍結時の膨張圧の発生や融解時の地盤収縮といった問題は生じないばかりか、強度的にも粘性土で構成される場合に比べてはるかに優れる。
【0036】
請求項2に係るシールド掘削機の発進あるいは到達用の立坑構造によれば、凍結工法の採用が可能である他、立坑壁のシールド通過部分に隣接してそれとは別個に、凍土壁となる粒状体混合壁体を設けているので、シールド掘削機の通過時期をある程度予想できるようになってから粒状体混合壁体を凍結させれば足り、したがって、凍土形成に関し、ランニングコストを大幅に削減することができる。
【0037】
請求項3に係るシールド掘削機の発進あるいは到達用の立坑構造によれば、粒状体混合壁体の内部に格子状繊維補強体を配設して補強しているので、凍土壁となる粒状体混合壁体の厚さを薄くでき、その分コストを低減することができる。
【0038】
請求項4に係るシールド掘削機の発進あるいは到達用の立坑構造によれば、粒状体混合壁体に固化材を混入しているので、粒状体混合壁体を自由に補強することができ、特に、粒状体混合壁体が融解した後においても、所要強度を確保することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示すもので、シールド掘削機の発進用の立坑構造およびシールド掘削機の発進方法を説明する断面図である。
【図2】本発明の実施の形態を示すもので、シールド掘削機の到達用の立坑構造およびシールド掘削機の到達方法を説明する断面図である。
【符号の説明】
1 立坑壁         2 シールド掘削機
3 粒状体混合壁体     4 格子状繊維補強体
5 凍結用配管       6 格子状鉄筋
7 鋼管          8 重ね継手
10 薬液による地盤改良部分

Claims (5)

  1. シールド掘削機の発進あるいは到達用の立坑構造であって、立坑壁のシールド掘削機通過部分が泥水と粒状体とを混合した粒状体混合壁体で構成され、
    該粒状体混合壁体の内部には、シールド切削機による切削が可能な格子状繊維補強体とシールド切削機による切削が可能な耐寒性樹脂材からなる凍結用配管が配設されていることを特徴とするシールドの発進あるいは到達用の立坑構造。
  2. シールド掘削機の発進あるいは到達用の立坑構造であって、立坑壁のシールド掘削機通過部分の地山側に隣接して泥水と粒状体とを混合した粒状体混合壁体が設けられ、
    この粒状体混合壁体の内部には、シールド切削機による切削が可能な耐寒性樹脂材からなる凍結用配管が配設されていることを特徴とするシールド掘削機の発進あるいは到達用の立坑構造。
  3. 請求項2記載のシールドの発進あるいは到達用の立坑構造において、
    前記粒状体混合壁体の内部には、シールド切削機による切削が可能な格子状繊維補強体が配設されていることを特徴とするシールドの発進あるいは到達用の立坑構造。
  4. 請求項1〜3のいずれかに記載のシールド掘削機の発進あるいは到達用の立坑構造において、
    前記粒状体混合壁体には固化材が混入されていることを特徴とするシールド掘削機の発進あるいは到達用の立坑構造。
  5. 請求項1〜4のいずれかに記載のシールド掘削機の発進あるいは到達用の立坑構造からシールド掘削機を発進あるいは同立坑構造へシールド掘削機を到達させるシールド掘削機の発進あるいは到達方法であって、
    前記粒状体混合壁体の内部に配設した耐寒性樹脂材からなる凍結用配管に冷媒を流して前記粒状体混合壁体を凍結させた後、この凍結させた粒状体混合壁体をシールド掘削機で切削することでシールド掘削機を発進あるいは到達させることを特徴とするシールド機の立坑からの発進あるいは到達方法。
JP2002300487A 2002-10-15 2002-10-15 シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法 Pending JP2004137673A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002300487A JP2004137673A (ja) 2002-10-15 2002-10-15 シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002300487A JP2004137673A (ja) 2002-10-15 2002-10-15 シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法

Publications (1)

Publication Number Publication Date
JP2004137673A true JP2004137673A (ja) 2004-05-13

Family

ID=32449167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002300487A Pending JP2004137673A (ja) 2002-10-15 2002-10-15 シールド掘削機の発進あるいは到達用の立坑構造、およびシールド掘削機の発進あるいは到達方法

Country Status (1)

Country Link
JP (1) JP2004137673A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144462A (ja) * 2007-12-17 2009-07-02 Shimizu Corp 構造物の構築工法、既設構造物の一時補強工法、既設構造物の改築工法
CN102409691A (zh) * 2011-09-08 2012-04-11 同济大学 地下连续墙墙体开口处预埋冻结管的冻结法止水装置
JP2016113842A (ja) * 2014-12-17 2016-06-23 西松建設株式会社 止水システム、止水方法および壁体の構築方法
CN111119900A (zh) * 2019-12-10 2020-05-08 中铁十四局集团隧道工程有限公司 一种土压平衡盾构液氮垂直冻结和水下接收综合施工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144462A (ja) * 2007-12-17 2009-07-02 Shimizu Corp 構造物の構築工法、既設構造物の一時補強工法、既設構造物の改築工法
CN102409691A (zh) * 2011-09-08 2012-04-11 同济大学 地下连续墙墙体开口处预埋冻结管的冻结法止水装置
JP2016113842A (ja) * 2014-12-17 2016-06-23 西松建設株式会社 止水システム、止水方法および壁体の構築方法
CN111119900A (zh) * 2019-12-10 2020-05-08 中铁十四局集团隧道工程有限公司 一种土压平衡盾构液氮垂直冻结和水下接收综合施工方法

Similar Documents

Publication Publication Date Title
CN105041325B (zh) 一种高压富水特大断层软弱角砾岩隧道的施工方法
US4209268A (en) Tail packing for a slurry pressurized shield
CN103410161B (zh) 斜向控制注浆钢锚管框架及其施工方法
US5836115A (en) Foundation waterproofing and drainage system
CN108194136A (zh) 隧道衬砌施工方法
KR100701633B1 (ko) 투아치 터널의 중앙부를 지지하는 하중분배판 및 이를 이용한 투아치 터널의 시공방법
CN107676097B (zh) 一种高水压软土地层hfe组合式盾构始发方法
CN103590836B (zh) 一种浅埋暗挖隧道塌方处理方法
KR101665515B1 (ko) 원지반 절취 없는 직천공 강관다단 터널 시공방법 및 구조
CN107060774B (zh) 一种防隧道洞口围岩坍塌装置及施工方法
JP2007217910A (ja) 地中空洞の施工方法およびトンネル工法
CN205172598U (zh) 管幕旋喷桩支护结构
CN101781993A (zh) 富含承压水软土层盾构进洞施工方法
CN101598027B (zh) 一种盾构区间的隧道联络通道施工方法
KR100973770B1 (ko) 호형 분할 세그먼트를 이용한 비개착 가설 터널 및 관로와 그의 시공공법
CN202866826U (zh) 盾构法隧道工作井外端头地层加固结构
EP0810327B1 (en) Method and device for laying underground continuous walls
CN107327308A (zh) 一种高速铁路隧道防水方法
JP2007217911A (ja) 地中空洞の施工方法およびトンネル工法
CN106121686B (zh) 用于保护地下水环境的暗挖隧道止水结构及其施工方法
CN104675405B (zh) 一种矩形顶管机进洞的辅助结构及施工方法
CN105863646A (zh) 大断面暗挖隧道钢管幕内冻结施工方法
JP3824114B2 (ja) 大断面トンネルの鯨骨工法
CN104727834A (zh) 用于高寒多年冻土特长公路隧道夏季进洞施工方法
CN105822347A (zh) 一种隧道虹吸排水系统及其建造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050125

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Effective date: 20070109

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A02