JP2004137626A - Nonwoven fabric composed of core-sheath conjugate fiber and method for producing the same - Google Patents

Nonwoven fabric composed of core-sheath conjugate fiber and method for producing the same Download PDF

Info

Publication number
JP2004137626A
JP2004137626A JP2002303414A JP2002303414A JP2004137626A JP 2004137626 A JP2004137626 A JP 2004137626A JP 2002303414 A JP2002303414 A JP 2002303414A JP 2002303414 A JP2002303414 A JP 2002303414A JP 2004137626 A JP2004137626 A JP 2004137626A
Authority
JP
Japan
Prior art keywords
core
polyethylene
sheath
fiber
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002303414A
Other languages
Japanese (ja)
Other versions
JP4315663B2 (en
Inventor
Yukihiro Kihara
木原 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002303414A priority Critical patent/JP4315663B2/en
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to KR1020057006557A priority patent/KR101115193B1/en
Priority to CNB2003801014637A priority patent/CN100519873C/en
Priority to DE60325403T priority patent/DE60325403D1/en
Priority to EP03769909A priority patent/EP1553223B1/en
Priority to PCT/JP2003/013334 priority patent/WO2004035900A1/en
Priority to US10/531,179 priority patent/US20060205308A1/en
Publication of JP2004137626A publication Critical patent/JP2004137626A/en
Application granted granted Critical
Publication of JP4315663B2 publication Critical patent/JP4315663B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/61Cross-sectional configuration varies longitudinally along strand or fiber material

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a nonwoven fabric which comprises a specific core-sheath conjugate fiber as a constituent fiber and has excellent softness and heat sealability and to provide a method for producing the same. <P>SOLUTION: The nonwoven fabric comprises a core-sheath conjugate filament as a constituent filament. The core-sheath conjugate filament comprises the core part composed of polyester and the sheath part composed of a polyethylene. The polyethylene constituting the sheath part is preferably a mixture of a first polyethylene obtained by a metallocene-based catalyst and a second polyethylene obtained by a Ziegler-Natta-based polymerization catalyst. The core part has its crosssectional shape substantially not changing in the fiber axis direction and a uniform filament diameter. The thickness of the sheath part is nonuniform and randomly changes in the fiber axis direction and the peripheral direction of the fiber, namely the surface of the sheath part has irregular unevenness. The nonwoven fabric is obtained by supplying the polyester and the polyethylene to core-sheath type conjugate spinning holes so as to arrange the polyester in the core and the polyethylene in the sheath, subjecting the polyester and the polyethylene to melt spinning and accumulating the obtained core-sheath filament. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、特殊な芯鞘状複合繊維を構成繊維とし、柔軟性に優れ、またヒートシール性にも優れた不織布及びその製造方法に関するものである。
【0002】
【従来の技術】
従来より、芯鞘型複合繊維を構成繊維とした不織布は知られている。特に、ヒートシール性不織布として、芯部がポリエステルで鞘部がポリエチレンで構成された芯鞘型複合長繊維よりなる不織布が知られている(特許文献1)。すなわち、このヒートシール性不織布は、芯部が高融点のポリエステルで鞘部が低融点のポリエチレンからなる芯鞘型複合長繊維で構成されているので、この不織布と他の基材などとを積層して、加熱及び所望により加圧すると、鞘部のポリエチレンのみが軟化又は溶融して、他の基材に熱接着するというものである。
【0003】
【特許文献1】
特公平8−14069公報(第1頁、請求項1)
【0004】
【発明が解決しようとする課題】
本発明者は、上記したヒートシール性不織布の熱接着性を改良するため、ポリエチレンの融点を低くする研究を行っていた。このような研究の過程において、本発明者はポリエチレンとして特定のものを採用すると、従来の典型的な芯鞘型複合長繊維とは、その形態の異なるものが得られることを見出した。すなわち、芯鞘型複合長繊維の表面(鞘部の表面ということになる。)に不規則な凹凸を持つ複合長繊維が得られることを見出した。そして、このような複合長繊維は、繊維径が一定ではなく、細い箇所と太い箇所を有するものであり、細い箇所の存在によって、柔軟性に富むことも判明した。したがって、このような複合長繊維を構成繊維とする不織布もまた、柔軟性に富むものである。以上のような知見から、本発明は、柔軟性に優れた不織布を提供することを課題とするものである。そして、上記課題を解決するために、以下のような構成を採用したものである。
【0005】
【課題を解決するための手段】
すなわち、本発明は、芯部がポリエステルで鞘部がポリエチレンで構成され、芯部の横断面形状は繊維軸方向において実質的に変化せず、鞘部の厚さは、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している芯鞘状複合繊維を構成繊維とすることを特徴とする不織布に関するものである。
【0006】
本発明に係る不織布は、特定の芯鞘状複合繊維を構成繊維とするものである。
芯鞘状複合繊維は、短繊維でも長繊維でもよいが、本発明においては、不織布をスパンボンド法で得るのが適しているので、長繊維の方が好ましい。芯鞘状複合繊維は、芯部がポリエステルで鞘部がポリエチレンで構成されている。ポリエステルとポリエチレンとの相溶性乃至は親和性が適度に不良であるために、特殊な芯鞘状複合繊維が得られる。したがって、芯部として、ポリエステル以外であってポリエチレンと相溶性乃至は親和性に優れているポリプロピレンなどを用いると、特殊な芯鞘状複合繊維が得られにくくなる。また、ポリエステル以外であってポリエチレンと相溶性乃至は親和性が不良であるポリアミドなどを用いても、特殊な芯鞘状複合繊維が得られにくくなる。
【0007】
芯部の横断面形状は、従来と同様に、繊維軸方向において実質的に変化しないものである。代表的には、芯部は、どの横断面をとっても、その形状が円形となっているものが好ましい。また、芯部を構成するポリエステルとしては、通常市販又は工業的に利用されているポリエチレンテレフタレートのうち、特に繊維用として市販され、利用されているものであればよい。具体的には、極限粘度が0.50〜1.20のポリエチレンテレフタレートを用いるのが好ましい。
【0008】
芯鞘状複合繊維の表面、すなわち、鞘部の表面は、不規則な凹凸となっている。この不規則な凹凸は、鞘部の厚さが、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化していることによって現出するものである。ここでいう鞘部の厚さについては、鞘部が存在しない箇所、すなわち、芯部が露出している箇所についても、厚さをゼロとして含めている。したがって、芯鞘状複合繊維の繊維径は、芯部の直径をφとし、鞘部の厚さが最大となっている箇所の繊維径をφとすると、繊維軸方向において、φ〜φの範囲で無作為に変化するものである。また、芯部の半径を(φ/2)とし、鞘部の厚さが最大となっている箇所の繊維半径を(φ/2)とすると、繊維周方向において、芯鞘状複合繊維の繊維半径は、(φ/2)〜(φ/2)の範囲で無作為に変化するものである。
なお、ここでは、芯部及び芯鞘状複合繊維の横断面が円形である場合について説明したが、これらの横断面は円形でなくてもよい。芯部及び芯鞘状複合繊維の横断面が非円形の場合には、芯部の直径や芯鞘状複合繊維の繊維径は、その横断面面積に応じた仮想円の直径や繊維径と解釈すればよい。
【0009】
鞘部を構成するポリエチレンは、曳糸性の良好な第一ポリエチレンと、曳糸性の悪い第二ポリエチレンとの混合物を用いるのが好ましい。曳糸性の良好な第一ポリエチレンのみを使用すると、鞘部表面に不規則な凹凸が現れにくくなる。すなわち、表面に凹凸の無い典型的な芯鞘型複合繊維と同様の形態になりやすい。
また、曳糸性の悪い第二ポリエチレンのみを使用すると、溶融紡糸法によって芯鞘状複合繊維が得られにくくなる。第一ポリエチレンと第二ポリエチレンの混合比率は、第一ポリエチレン:第二ポリエチレン=30〜70:70〜30(重量%)であるのが好ましい。第一ポリエチレンとしては、メタロセン系重合触媒により得られたポリエチレンを採用するのが最も好ましい。このポリエチレンは、低融点であって、しかも曳糸性に優れているからである。第二ポリエチレンとして、通常工業的に利用されているポリエチレン、すなわち、チグラーナッタ系重合触媒により得られたポリエチレンが用いられる。この中でも、曳糸性が悪く、低融点の低密度ポリエチレン、特に密度0.910〜0.925の低密度ポリエチレンが好ましい。
【0010】
芯部と鞘部の重量比は、芯部100重量部に対して、鞘部20〜300重量部であるのが好ましい。本発明における芯鞘状複合繊維は、鞘部の厚さが、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化しているから、この重量比は、芯鞘状複合繊維全体における重量比を意味している。鞘部が20重量部未満になると、鞘部をヒートシールするときの熱接着成分とする場合、十分な接着強力を得られにくくなる。鞘部が300重量部を超えると、相対的に芯部の量が少なくなり、芯部の径が細くなり、鞘部の欠損部位、すなわち、芯部の全周が露出している部位での繊維強力が低下する。
【0011】
本発明における芯鞘状複合繊維の繊度は、1.0〜10dTex程度であるのが好ましい。本発明における芯鞘状複合繊維の繊度は、繊維軸方向において、不均一で且つ無作為に変化しているから、ここでいう繊度は、芯鞘状複合繊維全体の平均繊度の意味である。
【0012】
本発明における芯鞘状複合繊維の形状の具体例は、図1〜図3に示したようなものである。平行な二本の直線が芯部の側面を表している。したがって、芯部は、その横断面形状が繊維軸方向において変化していないものである。そして、この平行な二本の直線の上又は下にある、瘤のような盛り上がりが鞘部を表している。この図からも明らかなように、鞘部の厚さは、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している。
【0013】
本発明に係る芯鞘状複合繊維を構成繊維とする不織布の目付は、任意でよく、10〜100g/m程度が好ましい。この不織布は、当該不織布同士を積層して、その端縁をヒートシールすることによって、袋状物を得ることができる。また、この不織布は、合成樹脂製フィルム,編織物,紙又はその他の不織布などの他の材料と、ヒートシールによって貼合して複合材料とすることもできる。すなわち、芯鞘状複合繊維の鞘部を構成しているポリエチレンに、熱及び所望により圧力を加えて、軟化又は溶融させて、当該不織布同士又は他の材料と熱接着することができる。特に、本発明における芯鞘状複合繊維の鞘部が、メタロセン系重合触媒により得られたポリエチレンと低密度ポリエチレンとの混合物である場合、鞘部の融点が低くなり、比較的低温での熱接着が可能となる。また、他の材料としては、ポリオレフィン系の材料、特にポリオレフィン系フィルムを用いると、ポリエチレンで構成された鞘部との相溶性がよく、高接着強度を実現することができる。
【0014】
次に、本発明に係る芯鞘状複合繊維を構成繊維とする不織布の製造方法について説明する。本発明に係る不織布の代表的な製造方法は、ポリエステルと、メタロセン系重合触媒により得られた第一ポリエチレンとチグラーナッタ系重合触媒により得られた第二ポリエチレンとが混合されたポリエチレンとを、該ポリエステルが芯に配され、該ポリエチレンが鞘に配されるように、芯鞘型複合紡糸孔に供給し、溶融紡糸して得られた芯鞘状長繊維を集積することを特徴とするものである。つまり、芯鞘状複合繊維の芯部を構成する樹脂としてポリエステルを採用し、鞘部を構成する樹脂として、メタロセン系重合触媒により得られた第一ポリエチレンと、チグラーナッタ系重合触媒により得られた第二ポリエチレンとが混合されたポリエチレンを採用し、従来公知の芯鞘型複合溶融紡糸法を採用したスパンボンド法で、長繊維不織布を得るというものである。
【0015】
ポリエステル、メタロセン系重合触媒により得られた第一ポリエチレン、チグラーナッタ系重合触媒により得られた第二ポリエチレンとしては、前記したようなものが用いられる。第一ポリエチレンと第二ポリエチレンとは、前記した重量比率で均一に混合され、ポリエチレンとして扱われる。ポリエチレンのメルトフローレート(MFR)は、16〜21g/10分であるのが好ましい。この範囲内であると、高速紡糸したときにも、表面が不規則な凹凸となった鞘部が形成されやすい。また、この範囲外であっても、MFRの値が大きいときには、紡糸速度を更に速くすることにより、一方MFRの値が小さいときには、紡糸速度を遅くすることにより、表面が不規則な凹凸となった鞘部を得ることができる。しかしながら、一般に採用されている紡糸速度,すなわち、3000〜4000m/分の紡糸速度の場合には、MFRは上記した範囲内であるのが好ましい。また、ポリエチレンの融点は、低い方が好ましく、特に90〜110℃程度が好ましい。比較的低温でヒートシールが可能となるためである。
【0016】
ポリエステルとポリエチレンとは、各々を加熱して溶融させ、ポリエステルは紡糸口金に多数設けられた芯鞘型複合紡糸孔の芯に配され、一方、ポリエチレンは鞘に配される。そして、溶融紡糸すれば、表面に不規則な凹凸を持つ芯鞘状複合長繊維が多数本得られるのである。本発明において、表面に不規則な凹凸を持つ芯鞘状複合長繊維が安定して得られることは、特筆すべきことである。すなわち、表面に不規則な凹凸を持つということは、繊維軸方向において、繊維径が異なるということである。このような長繊維を溶融紡糸法で得ようとしても、従来は、繊維径の細い部位で、長繊維が切断してしまい、安定して長繊維が得られなかったのである。つまり、従来の溶融紡糸法においては、繊維表面に凹凸が形成される場合、紡糸直後の樹脂の流動性の良好な部位で、既に凹凸が形成され、その流動性が良好なことから、繊維径の細い凹部に応力が集中し、凹部で切断しやすくなり、安定して長繊維を得ることができなかったのである。ところが、本発明によれば、繊維軸方向において繊維径が異なる長繊維が安定して得られるのである。本発明者は、この原理を以下のように解釈している。すなわち、本発明における樹脂組成で複合溶融紡糸を行うと、紡糸直後の樹脂の流動性の良好な部位では、紡糸繊維表面に凹凸が形成されておらず、その後の芯部が固化する時点と同時にか又は直後に、鞘部を構成しているポリエチレンに歪が生じ、不規則な凹凸が生じると解釈している。なお、ポリエチレンに歪が生じるのは、曳糸性の良好な第一ポリエチレンと曳糸性の悪い第二ポリエチレンとが混合されているため、第一ポリエチレンは芯部と共に繊維形成に寄与するが、第二ポリエチレンが繊維形成を阻害するからであると解釈している。
【0017】
以上のようにして、芯鞘状複合長繊維を得た後、これを移動するコンベア上などに捕集して集積する。集積後は、エンボスロールなどに通して、部分的に熱圧接して、圧接部位で鞘部を軟化又は溶融させて、芯鞘状複合長繊維相互間を結合し、所望の引張強力を有する不織布が得られるのである。
【0018】
本発明に係る芯鞘状複合繊維を構成繊維とする不織布は、前記したように、他の材料と、ヒートシールによって貼合して複合材料の得る用途に適している。また、当該不織布同士を積層して、その端縁をヒートシールして袋状物を得る用途に適している。その他にも、従来の不織布と同様に、衣料材料、衛生材料、一般工業資材、農業資材、生活資材などの用途にも用いうるものである。
【0019】
【実施例】
以下、本発明を実施例に基づいて説明するが、本発明は実施例に限定されるものではない。本発明は、従来の芯鞘型複合長繊維の溶融紡糸法において、ポリエチレンとして特定のものを用いると、芯鞘型複合長繊維の表面、すなわち、鞘部の表面に不規則な凹凸を持つ複合長繊維が安定して得られるとの発見に基づくものであるとして解釈されるべきである。
【0020】
実施例における各特性値は、以下のようにして求めたものである。
(1)ポリエステルの極限粘度〔η〕;フエノールと四塩化エタンとの等重量混合溶媒100ccに試料0.5gを溶解し、温度20℃の条件で測定した。
(2)融点(℃);パーキンエルマー社製の示差走査熱量計DSC−7型を用い、昇温速度20℃/分で測定した。
(3)ポリエチレンのメルトフローレート(g/10分);JIS K 6922に記載の方法により、温度190℃で荷重21.18Nの条件で測定した。
【0021】
(4)不織布の柔軟性(g);JIS L 1096に記載の剛軟性 E法 ハンドルオメーター法により測定した。
(5)不織布のソフト感;5名のパネラーが手による感触でソフト感を、実施例及び比較例の不織布間で、以下のとおり相対評価した。
1:柔らかい
2:やや柔らかい
3:硬い
(6)不織布のぬめり感;5名のパネラーが手による感触でぬめり感を、実施例及び比較例の不織布間で、以下のとおり相対評価した。
大:ぬめり感が際立っている
中:ぬめり感がある
小:ぬめり感が少ない
【0022】
(7)不織布の引張強力(N/5cm幅);合繊長繊維不織布試験法(JIS L 1906)に準じて、東洋ボールドウイン社製テンシロンRTM−500型を用いて、幅50mm、長さ200mmの試験片を、把持間隔100mm、引張速度100mm/分の条件で測定し、試験片10点の平均値を求め、引張強力とした。なお、引張強力については、不織布のMD方向(機械方向)及びCD方向(MD方向に直交する方向)の両方を求めた。
(8)不織布のヒートシール強力(N);30mm(CD方向)×150mm(MD方向)の試験片2枚を重ね合わせ、長手方向(MD方向)先端から50mmの所を、ヒートシールテスターで熱圧着した。熱圧着は、ダイの温度を100℃、110℃及び130℃の三種類の温度に設定し、面圧98N/cmで接着面接10mm(MD方向)×30mm(CD方向)とした。
熱圧着部のヒートシール強力は、JIS L 1089のT剥離測定法に準じ、東洋ボールドウイン社製テンシロンRTM−500型を用いて、幅30mmの試験片を、把持間隔10mm、引張速度100mm/分の条件で測定し、試験片5点の平均値を求めて算出した。
【0023】
実施例1
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート18g/10分、密度0.911g/cc、融点104℃のポリエチレンを準備した。このポリエチレンは、メタロセン系重合触媒により得られた、メルトフローレート28g/10分、密度0.906g/cc、融点97℃の第一ポリエチレン60重量部と、チグラーナッタ系重合触媒により得られた、メルトフローレート4g/10分、密度0.918g/cc、融点106℃の第二ポリエチレン40重量部との混合物である。
【0024】
そして、ポリエステルが芯に配され、ポリエチレンが鞘に配されるように、且つ、両者が等重量部となるようにして、芯鞘型複合紡糸孔に供給し、紡糸温度280℃、紡糸速度3800m/分で溶融紡糸を行った。溶融紡糸した後、吸引装置により引き取り細化し、吸引装置から排出された糸条群を開繊した後、移動する捕集面上に芯鞘状複合長繊維(繊度3.3dTex)を集積させて不織ウェブを得た。この不織ウェブを、表面温度95℃のエンボスロール(凸部の面積率36%)と、表面温度95℃のフラットロールからなる熱エンボス装置に導き、線圧294N/cmの条件で、部分的に熱圧接処理を施して、目付50g/mの長繊維不織布を得た。
【0025】
実施例2
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート21g/10分、密度0.913g/cc、融点102℃のポリエチレンを準備した。このポリエチレンは、メタロセン系重合触媒により得られた、メルトフローレート28g/10分、密度0.906g/cc、融点97℃の第一ポリエチレン60重量部と、チグラーナッタ系重合触媒により得られた、メルトフローレート14g/10分、密度0.918g/cc、融点106℃の第二ポリエチレン40重量部との混合物である。
このポリエステルとポリエチレンとを用い、実施例1と同様の方法で目付50g/mの長繊維不織布を得た。
【0026】
実施例3
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート18g/10分、密度0.913g/cc、融点104℃のポリエチレンを準備した。このポリエチレンは、メタロセン系重合触媒により得られた、メルトフローレート28g/10分、密度0.906g/cc、融点97℃の第一ポリエチレン40重量部と、チグラーナッタ系重合触媒により得られた、メルトフローレート14g/10分、密度0.918g/cc、融点106℃の第二ポリエチレン60重量部との混合物である。
このポリエステルとポリエチレンとを用い、実施例1と同様の方法で目付50g/mの長繊維不織布を得た。
【0027】
実施例4
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート16g/10分、密度0.910g/cc、融点103℃のポリエチレンを準備した。このポリエチレンは、メタロセン系重合触媒により得られた、メルトフローレート28g/10分、密度0.906g/cc、融点97℃の第一ポリエチレン67重量部と、チグラーナッタ系重合触媒により得られた、メルトフローレート4g/10分、密度0.918g/cc、融点106℃の第二ポリエチレン33重量部との混合物である。
このポリエステルとポリエチレンとを用い、実施例1と同様の方法で目付50g/mの長繊維不織布を得た。
【0028】
実施例5
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート22g/10分、密度0.909g/cc、融点103℃のポリエチレンを準備した。このポリエチレンは、メタロセン系重合触媒により得られた、メルトフローレート28g/10分、密度0.906g/cc、融点97℃の第一ポリエチレン70重量部と、チグラーナッタ系重合触媒により得られた、メルトフローレート14g/10分、密度0.918g/cc、融点106℃の第二ポリエチレン30重量部との混合物である。
このポリエステルとポリエチレンとを用い、実施例1と同様の方法で目付50g/mの長繊維不織布を得た。
【0029】
比較例1
極限粘度〔η〕0.70、融点260℃のポリエチレンテレフタレートを準備した。一方、メルトフローレート25g/10分、密度0.957g/cc、融点130℃の高密度ポリエチレンを準備した。この高密度ポリエチレンは、チグラーナッタ系重合触媒により得られたものである。
このポリエステルとポリエチレンとを用い、実施例1と同様の方法で目付50g/mの長繊維不織布を得た。
【0030】
実施例1〜5及び比較例1に係る方法で得られた各長繊維不織布の柔軟性,ソフト感,ぬめり感,引張強力及びヒートシール強力を、上記した方法で測定し、その結果を表1に示した。

Figure 2004137626
【0031】
また、実施例2に係る方法で得られた長繊維不織布表面の電子顕微鏡写真を図4に、実施例3に係るものを図5に、実施例4に係るものを図6に、実施例5に係るものを図7に示した。
【0032】
実施例1〜5に係る方法で得られた長繊維不織布において、不織布を構成している長繊維は、その表面に繊維軸方向及び繊維周に沿って不規則な凹凸が存在した。一方、比較例1に係る方法で得られた長繊維不織布においては、不織布を構成している長繊維表面は繊維軸方向に沿ってスムースであり、凹凸は存在しなかった。このような不規則な凹凸の存在により、芯鞘状複合長繊維には、繊維径の細い部分と太い部分が存在し、繊維径の細い部分の存在によって、長繊維自体に柔軟性が付与され、その結果、この長繊維を構成繊維とする実施例1〜5に係る不織布は、比較例1に係る不織布に比べて、柔軟性及びソフト感に優れているものであった。また、この不規則な凹凸の存在により、不織布表面に当たった光が散乱しやすく、実施例1〜5に係る不織布は比較例1に係るものに比べて、白度の高いものであった。
【0033】
また、一般的に、メタロセン系重合触媒により得られた第一ポリエチレンは融点が低いため、この第一ポリエチレンを用いた実施例1〜5におけるポリエチレンも融点が低くなる。したがって、実施例1〜5に係る不織布は、比較例1に係る不織布に比べて、熱圧着の温度が低くても、良好なヒートシール強力が得られた。なお、ポリエステルで形成された芯部は、従来のものと同様に、繊維軸方向において横断面形状が変化せず、実質的に均一な繊維径となっているので、これで引張強力が保持され、実施例1〜5に係る不織布は、従来の比較例1に係る不織布と同様の引張強力を持つものであった。
【0034】
【作用及び発明の効果】
本発明に係る不織布は、その構成繊維として、芯部の横断面形状が繊維軸方向において実質的に変化せず、鞘部の厚さが、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している芯鞘状複合繊維よりなる。すなわち、構成繊維である芯鞘状複合繊維は、その繊維径が、繊維軸方向において細くなったり、太くなったりしている。この繊維径の細い箇所の存在によって、芯鞘状複合繊維に柔軟性が付与される。また、芯部は繊維軸方向において均一な繊維径となっているので、芯鞘状複合繊維の引張強力は従来の芯鞘型複合繊維と同程度である。
したがって、このような芯鞘状複合繊維を構成繊維とする不織布は、引張強力に優れていながら、柔軟性に優れるという効果を奏する。
【0035】
また、本発明に係る不織布は、表面に不規則な凹凸を持つ芯鞘状複合繊維で構成されているため、光をよく散乱させる。したがって、本発明に係る不織布は、白度に優れているという効果も奏する。
【0036】
本発明に係る不織布において、芯鞘状複合繊維の鞘部を構成するポリエチレンとして、メタロセン系重合触媒により得られた低融点の第一ポリエチレンと、チグラーナッタ系重合触媒により得られた低融点の第二ポリエチレン、特に低密度ポリエチレンとの混合物を採用した場合には、ヒートシールを低温で行うことができ、低温での熱圧着が可能になるという効果を奏する。
【0037】
また、本発明に係る不織布の製造方法において、鞘部は、曳糸性の良好な第一エチレンと曳糸性の悪い第二ポリエチレンとの混合物からなるポリエチレンが用いられる。このようなポリエチレンを用いて溶融紡糸すると、曳糸性の悪い第二ポリエチレンによって、鞘が形成されるとき、鞘の厚さが無作為に厚くなったり薄くなったりする。一方、芯部はポリエステルが用いられ、従来と同様に均一に溶融紡糸しうる。したがって、芯部の横断面形状は繊維軸方向において実質的に変化せず、鞘部の厚さが、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している芯鞘状複合繊維が、安定して得られ、これを構成繊維とする不織布も安定して合理的に得られるという効果を奏する。
【図面の簡単な説明】
【図1】本発明における芯鞘状複合繊維の一例を示す側面図(顕微鏡写真)である。
【図2】本発明における芯鞘状複合繊維の一例を示す側面図(顕微鏡写真)である。
【図3】本発明における芯鞘状複合繊維の一例を示す側面図(顕微鏡写真)である。
【図4】実施例2に係る方法で得られた長繊維不織布表面の拡大図(電子顕微鏡写真)である。
【図5】実施例3に係る方法で得られた長繊維不織布表面の拡大図(電子顕微鏡写真)である。
【図6】実施例4に係る方法で得られた長繊維不織布表面の拡大図(電子顕微鏡写真)である。
【図7】実施例5に係る方法で得られた長繊維不織布表面の拡大図(電子顕微鏡写真)である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nonwoven fabric having a special core-sheath composite fiber as a constituent fiber, having excellent flexibility and excellent heat sealability, and a method for producing the same.
[0002]
[Prior art]
Conventionally, a nonwoven fabric using a core-sheath type composite fiber as a constituent fiber has been known. In particular, as a heat-sealing nonwoven fabric, a nonwoven fabric made of a core-sheath composite long fiber having a core made of polyester and a sheath made of polyethylene is known (Patent Document 1). In other words, since this heat-sealing nonwoven fabric is made of a core-sheath composite long fiber whose core is made of high-melting polyester and whose sheath is made of low-melting polyethylene, the nonwoven is laminated with another base material. Then, when heated and pressurized as desired, only the polyethylene of the sheath softens or melts and is thermally bonded to another substrate.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 8-14069 (page 1, claim 1)
[0004]
[Problems to be solved by the invention]
The present inventor has been conducting research on lowering the melting point of polyethylene in order to improve the thermal adhesion of the heat-sealing nonwoven fabric described above. In the course of such research, the present inventor has found that, when a specific polyethylene is employed, a fiber having a form different from that of a typical conventional core-sheath composite long fiber is obtained. That is, it has been found that a composite long fiber having irregular irregularities on the surface of the core-sheath type composite long fiber (that is, the surface of the sheath portion) can be obtained. Further, it has been found that such a composite continuous fiber has a fiber diameter that is not constant but has a narrow portion and a thick portion, and the presence of the thin portion is rich in flexibility. Therefore, a nonwoven fabric using such composite long fibers as a constituent fiber is also rich in flexibility. From the above findings, an object of the present invention is to provide a nonwoven fabric having excellent flexibility. Then, in order to solve the above-mentioned problem, the following configuration is adopted.
[0005]
[Means for Solving the Problems]
That is, in the present invention, the core is made of polyester and the sheath is made of polyethylene, the cross-sectional shape of the core is not substantially changed in the fiber axis direction, and the thickness of the sheath is made in the fiber axis direction and the fiber circumference. The present invention relates to a nonwoven fabric characterized in that core-sheath composite fibers that are non-uniform and randomly change in the direction are used as constituent fibers.
[0006]
The nonwoven fabric according to the present invention uses a specific core-sheath composite fiber as a constituent fiber.
The core-sheath composite fiber may be either a short fiber or a long fiber, but in the present invention, it is suitable to obtain a nonwoven fabric by a spun bond method, and thus a long fiber is preferable. The core-sheath composite fiber has a core made of polyester and a sheath made of polyethylene. Since the compatibility or affinity between polyester and polyethylene is moderately poor, a special core-sheath composite fiber can be obtained. Therefore, if a polypropylene or the like other than polyester and having excellent compatibility or affinity with polyethylene is used as the core, it is difficult to obtain a special core-sheath composite fiber. Also, even if a polyamide or the like other than polyester and having poor compatibility or affinity with polyethylene is used, it becomes difficult to obtain a special core-sheath composite fiber.
[0007]
The cross-sectional shape of the core does not substantially change in the fiber axis direction as in the related art. Typically, the core preferably has a circular shape in any cross section. As the polyester constituting the core, any polyethylene terephthalate that is usually commercially available or industrially used may be used as long as it is commercially available and especially used for fibers. Specifically, it is preferable to use polyethylene terephthalate having an intrinsic viscosity of 0.50 to 1.20.
[0008]
The surface of the core-sheath composite fiber, that is, the surface of the sheath portion has irregular irregularities. The irregular asperities appear because the thickness of the sheath is irregular and varies randomly in the fiber axis direction and the fiber circumferential direction. Regarding the thickness of the sheath portion here, the portion where the sheath portion does not exist, that is, the portion where the core portion is exposed is included in the thickness as zero. Accordingly, the fiber diameter of the core sheath composite fiber, the diameter of the core portion and phi 0, if the thickness of the sheath portion is to 1 the fiber diameter of the portion where the largest phi, in the fiber axis direction, phi 0 ~ it is to vary randomly phi 1 range. Moreover, the radius of the core and (φ 0/2), when the fiber radius of the portion where the thickness of the sheath is the largest and (φ 1/2), in the fiber circumferential direction, a core sheath composite fiber the fiber radius, is to vary randomly within a range of (φ 0/2) ~ ( φ 1/2).
Here, the case where the cross section of the core portion and the core-sheath composite fiber is circular has been described, but these cross sections need not be circular. When the cross section of the core portion and the core-sheath composite fiber is non-circular, the diameter of the core portion and the fiber diameter of the core-sheath composite fiber are interpreted as the diameter and fiber diameter of a virtual circle according to the cross-sectional area. do it.
[0009]
As the polyethylene constituting the sheath, it is preferable to use a mixture of the first polyethylene having good spinnability and the second polyethylene having poor spinnability. When only the first polyethylene having good spinnability is used, irregular irregularities are less likely to appear on the sheath surface. That is, it tends to have the same form as a typical core-sheath composite fiber having no irregularities on the surface.
When only the second polyethylene having poor spinnability is used, it becomes difficult to obtain a core-sheath composite fiber by the melt spinning method. It is preferable that the mixing ratio of the first polyethylene and the second polyethylene is first polyethylene: second polyethylene = 30 to 70:70 to 30 (% by weight). As the first polyethylene, it is most preferable to employ a polyethylene obtained with a metallocene-based polymerization catalyst. This is because this polyethylene has a low melting point and excellent spinnability. As the second polyethylene, polyethylene generally used industrially, that is, a polyethylene obtained by a Ziegler-Natta polymerization catalyst is used. Among these, low-density polyethylene having poor spinnability and low melting point, particularly low-density polyethylene having a density of 0.910 to 0.925 is preferable.
[0010]
The weight ratio of the core to the sheath is preferably 20 to 300 parts by weight with respect to 100 parts by weight of the core. In the core-sheath conjugate fiber of the present invention, the thickness of the sheath portion is non-uniform and randomly changed in the fiber axis direction and the fiber circumferential direction. It means weight ratio. When the sheath portion is less than 20 parts by weight, it becomes difficult to obtain a sufficient adhesive strength when the sheath portion is used as a heat-adhesive component for heat sealing. When the sheath portion exceeds 300 parts by weight, the amount of the core portion is relatively reduced, the diameter of the core portion is reduced, and the sheath portion is missing, that is, the portion where the entire periphery of the core portion is exposed. Fiber strength decreases.
[0011]
The fineness of the core-sheath composite fiber in the present invention is preferably about 1.0 to 10 dTex. The fineness of the core-sheath composite fiber in the present invention is non-uniform and varies randomly in the fiber axis direction, and thus the fineness here means the average fineness of the entire core-sheath composite fiber.
[0012]
Specific examples of the shape of the core-sheath composite fiber in the present invention are as shown in FIGS. Two parallel straight lines represent the sides of the core. Accordingly, the core has a cross-sectional shape that does not change in the fiber axis direction. A bump like a bump above or below the two parallel straight lines represents the sheath. As is clear from this figure, the thickness of the sheath portion is non-uniform and randomly changed in the fiber axis direction and the fiber circumferential direction.
[0013]
The basis weight of the nonwoven fabric having the core-sheath composite fiber according to the present invention as a constituent fiber may be arbitrary, and is preferably about 10 to 100 g / m 2 . This nonwoven fabric can be obtained as a bag by laminating the nonwoven fabrics and heat-sealing the edges. The nonwoven fabric may be bonded to another material such as a synthetic resin film, knitted fabric, paper or other nonwoven fabric by heat sealing to form a composite material. That is, heat and, if desired, pressure are applied to the polyethylene constituting the sheath portion of the core-in-sheath composite fiber to soften or melt, so that the nonwoven fabrics can be thermally bonded to each other or to another material. In particular, when the sheath of the core-sheath composite fiber in the present invention is a mixture of polyethylene and a low-density polyethylene obtained by a metallocene-based polymerization catalyst, the melting point of the sheath becomes low, and thermal bonding at a relatively low temperature is performed. Becomes possible. Further, when a polyolefin-based material, particularly a polyolefin-based film, is used as the other material, the compatibility with the sheath portion made of polyethylene is good, and high adhesive strength can be realized.
[0014]
Next, a method for producing a nonwoven fabric using the core-sheath composite fiber according to the present invention as a constituent fiber will be described. A typical method for producing a nonwoven fabric according to the present invention is a polyester, a polyethylene obtained by mixing a first polyethylene obtained by a metallocene-based polymerization catalyst and a second polyethylene obtained by a Ziegler-Natta polymerization catalyst, the polyester Is disposed on a core, and the polyethylene is disposed on a sheath, and supplied to a core-sheath type composite spinning hole, and a core-sheath-shaped long fiber obtained by melt spinning is accumulated. . In other words, polyester is adopted as the resin constituting the core of the core-sheath composite fiber, and as the resin constituting the sheath, the first polyethylene obtained by the metallocene polymerization catalyst and the second polyethylene obtained by the Ziglanatta polymerization catalyst are used. A long-fiber nonwoven fabric is obtained by a spunbonding method employing a conventionally known core-in-sheath composite melt-spinning method employing polyethylene mixed with two polyethylenes.
[0015]
As the polyester, the first polyethylene obtained by using the metallocene-based polymerization catalyst, and the second polyethylene obtained by using the Ziegler-Natta polymerization catalyst, those described above are used. The first polyethylene and the second polyethylene are uniformly mixed in the weight ratio described above and are treated as polyethylene. The melt flow rate (MFR) of the polyethylene is preferably from 16 to 21 g / 10 minutes. Within this range, even at high speed spinning, a sheath having irregular irregularities on the surface is likely to be formed. Even outside of this range, when the value of MFR is large, the spinning speed is further increased, while when the value of MFR is small, the spinning speed is decreased, so that the surface has irregular irregularities. A sheath can be obtained. However, in the case of a spinning speed generally used, that is, a spinning speed of 3000 to 4000 m / min, the MFR is preferably within the above range. In addition, the melting point of polyethylene is preferably low, and particularly preferably about 90 to 110 ° C. This is because heat sealing can be performed at a relatively low temperature.
[0016]
Polyester and polyethylene are heated and melted, respectively, and the polyester is disposed in the core of a core-sheath composite spinning hole provided in a number of spinnerets, while polyethylene is disposed in a sheath. Then, by melt spinning, a large number of core-sheath composite long fibers having irregular irregularities on the surface can be obtained. In the present invention, it is remarkable that a core-sheath composite long fiber having irregular irregularities on the surface can be stably obtained. That is, having irregular irregularities on the surface means that the fiber diameter is different in the fiber axis direction. Conventionally, even if such a long fiber is obtained by a melt spinning method, the long fiber is cut at a portion having a small fiber diameter, and the long fiber cannot be obtained stably. In other words, in the conventional melt spinning method, when irregularities are formed on the fiber surface, irregularities are already formed at a portion of the resin having good fluidity immediately after spinning, and the fluidity is good. The stress was concentrated in the narrow concave portion, the cutting became easy at the concave portion, and a long fiber could not be obtained stably. However, according to the present invention, long fibers having different fiber diameters in the fiber axis direction can be stably obtained. The present inventor interprets this principle as follows. That is, when performing the composite melt spinning with the resin composition of the present invention, in the portion where the fluidity of the resin immediately after spinning is good, no irregularities are formed on the surface of the spun fiber, and at the same time when the core portion is subsequently solidified. Immediately or immediately thereafter, it is interpreted that distortion occurs in the polyethylene constituting the sheath and irregular irregularities occur. In addition, distortion occurs in polyethylene, because the first polyethylene having good spinnability and the second polyethylene having poor spinnability are mixed, the first polyethylene contributes to fiber formation together with the core, This is because the second polyethylene inhibits fiber formation.
[0017]
After the core-sheath composite long fibers are obtained as described above, they are collected and accumulated on a moving conveyor or the like. After accumulation, it is passed through an embossing roll or the like and partially heat-welded, the sheath part is softened or melted at the welded part, and the core-sheath composite long fibers are bonded to each other, and the nonwoven fabric has a desired tensile strength. Is obtained.
[0018]
As described above, the nonwoven fabric having the core-sheath composite fiber according to the present invention as a constituent fiber is suitable for use in obtaining a composite material by bonding with another material by heat sealing. It is also suitable for use in laminating the nonwoven fabrics and heat-sealing the edges thereof to obtain a bag-like material. In addition, like the conventional nonwoven fabric, it can also be used for applications such as clothing materials, sanitary materials, general industrial materials, agricultural materials, and living materials.
[0019]
【Example】
Hereinafter, the present invention will be described based on examples, but the present invention is not limited to the examples. The present invention relates to a conventional melt-spinning method of a core-sheath type composite continuous fiber, when a specific polyethylene is used, a composite having irregular irregularities on the surface of the core-sheath type composite continuous fiber, that is, the surface of the sheath portion. It should be interpreted as being based on the finding that long fibers are obtained stably.
[0020]
Each characteristic value in the examples is obtained as follows.
(1) Intrinsic viscosity [η] of polyester: 0.5 g of a sample was dissolved in 100 cc of an equal weight mixed solvent of phenol and ethane tetrachloride, and measured at a temperature of 20 ° C.
(2) Melting point (° C.): Measured at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC-7 manufactured by PerkinElmer.
(3) Melt flow rate of polyethylene (g / 10 min): Measured at a temperature of 190 ° C. under a load of 21.18 N according to the method described in JIS K 6922.
[0021]
(4) Flexibility (g) of non-woven fabric; rigidity E method described in JIS L 1096 was measured by a handle ometer method.
(5) Soft feeling of nonwoven fabric: Five panelists evaluated the soft feeling by hand feeling between the nonwoven fabrics of Examples and Comparative Examples as follows.
1: Soft 2: Slightly soft 3: Hard (6) The slimy feeling of the nonwoven fabric; the slickness of the five non-woven fabrics by hand was evaluated relative to the nonwoven fabrics of Examples and Comparative Examples as follows.
Large: Slime is noticeable Medium: Slime is sensed Small: Slime is less sensed
(7) Tensile strength of nonwoven fabric (N / 5 cm width): According to the synthetic fiber long-fiber nonwoven fabric test method (JIS L 1906), using a Tensilon RTM-500 type manufactured by Toyo Baldwin Co., Ltd., a width of 50 mm and a length of 200 mm The test pieces were measured under the conditions of a gripping interval of 100 mm and a pulling speed of 100 mm / min, and the average value of 10 test pieces was determined to be the tensile strength. In addition, about tensile strength, both MD direction (machine direction) and CD direction (direction orthogonal to MD direction) of the nonwoven fabric were calculated | required.
(8) Heat seal strength of nonwoven fabric (N); two test pieces of 30 mm (CD direction) x 150 mm (MD direction) are superimposed, and 50 mm from the end in the longitudinal direction (MD direction) is heated with a heat seal tester. Crimped. In the thermocompression bonding, the temperature of the die was set to three types of temperatures of 100 ° C., 110 ° C., and 130 ° C., and the surface pressure was 98 N / cm 2 , and the bonding surface was 10 mm (MD direction) × 30 mm (CD direction).
The heat seal strength of the thermocompression-bonded portion is determined according to the T-peel measurement method of JIS L 1089 using a Tensilon RTM-500 manufactured by Toyo Baldwin Co., Ltd. And the average value of five test pieces was calculated.
[0023]
Example 1
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. On the other hand, polyethylene having a melt flow rate of 18 g / 10 min, a density of 0.911 g / cc, and a melting point of 104 ° C. was prepared. This polyethylene was obtained by a metallocene-based polymerization catalyst, melt flow rate: 28 g / 10 min, density: 0.906 g / cc, 60 parts by weight of first polyethylene having a melting point of 97 ° C., and a melt obtained by a Ziegler-Natta polymerization catalyst. It is a mixture with 40 parts by weight of a second polyethylene having a flow rate of 4 g / 10 min, a density of 0.918 g / cc and a melting point of 106 ° C.
[0024]
Then, the polyester is placed on the core, the polyethylene is placed on the sheath, and both are made to be equal parts by weight, and the mixture is supplied to the core-sheath type composite spinning hole, and the spinning temperature is 280 ° C. and the spinning speed is 3800 m Per minute. After melt-spinning, it is drawn and thinned by a suction device, the yarn group discharged from the suction device is spread, and then the core-sheath composite long fibers (fineness: 3.3 dTex) are accumulated on the moving collecting surface. A non-woven web was obtained. This nonwoven web was guided to a hot embossing device consisting of an embossing roll having a surface temperature of 95 ° C. (area ratio of convex portions: 36%) and a flat roll having a surface temperature of 95 ° C. To give a long-fiber nonwoven fabric with a basis weight of 50 g / m 2 .
[0025]
Example 2
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. Meanwhile, polyethylene having a melt flow rate of 21 g / 10 minutes, a density of 0.913 g / cc, and a melting point of 102 ° C. was prepared. This polyethylene was obtained by a metallocene-based polymerization catalyst, melt flow rate: 28 g / 10 min, density: 0.906 g / cc, 60 parts by weight of first polyethylene having a melting point of 97 ° C., and a melt obtained by a Ziegler-Natta polymerization catalyst. It is a mixture with 40 parts by weight of a second polyethylene having a flow rate of 14 g / 10 min, a density of 0.918 g / cc and a melting point of 106 ° C.
Using this polyester and polyethylene, a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1.
[0026]
Example 3
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. On the other hand, polyethylene having a melt flow rate of 18 g / 10 min, a density of 0.913 g / cc, and a melting point of 104 ° C. was prepared. This polyethylene was obtained using a metallocene polymerization catalyst, a melt flow rate of 28 g / 10 min, a density of 0.906 g / cc, 40 parts by weight of first polyethylene having a melting point of 97 ° C., and a melt obtained using a Ziglanatta polymerization catalyst. It is a mixture with 60 parts by weight of a second polyethylene having a flow rate of 14 g / 10 min, a density of 0.918 g / cc and a melting point of 106 ° C.
Using this polyester and polyethylene, a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1.
[0027]
Example 4
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. On the other hand, polyethylene having a melt flow rate of 16 g / 10 min, a density of 0.910 g / cc, and a melting point of 103 ° C. was prepared. This polyethylene was obtained using a metallocene polymerization catalyst, a melt flow rate of 28 g / 10 minutes, a density of 0.906 g / cc, 67 parts by weight of first polyethylene having a melting point of 97 ° C., and a melt obtained using a Ziglanatta polymerization catalyst. It is a mixture with 33 parts by weight of a second polyethylene having a flow rate of 4 g / 10 min, a density of 0.918 g / cc and a melting point of 106 ° C.
Using this polyester and polyethylene, a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1.
[0028]
Example 5
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. On the other hand, polyethylene having a melt flow rate of 22 g / 10 min, a density of 0.909 g / cc, and a melting point of 103 ° C. was prepared. This polyethylene was obtained using a metallocene polymerization catalyst, a melt flow rate of 28 g / 10 min, a density of 0.906 g / cc, 70 parts by weight of first polyethylene having a melting point of 97 ° C., and a melt obtained using a Ziglanatta polymerization catalyst. It is a mixture with 30 parts by weight of a second polyethylene having a flow rate of 14 g / 10 min, a density of 0.918 g / cc and a melting point of 106 ° C.
Using this polyester and polyethylene, a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1.
[0029]
Comparative Example 1
A polyethylene terephthalate having an intrinsic viscosity [η] of 0.70 and a melting point of 260 ° C. was prepared. On the other hand, a high-density polyethylene having a melt flow rate of 25 g / 10 minutes, a density of 0.957 g / cc and a melting point of 130 ° C. was prepared. This high-density polyethylene is obtained by using a Ziegler-Natta polymerization catalyst.
Using this polyester and polyethylene, a long-fiber nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1.
[0030]
The flexibility, softness, sliminess, tensile strength, and heat seal strength of each long-fiber nonwoven fabric obtained by the methods according to Examples 1 to 5 and Comparative Example 1 were measured by the above-described methods. It was shown to.
Figure 2004137626
[0031]
4 shows an electron micrograph of the surface of the long-fiber nonwoven fabric obtained by the method according to Example 2, FIG. 5 shows an example according to Example 3, FIG. 6 shows an example according to Example 4, and FIG. 7 is shown in FIG.
[0032]
In the long-fiber nonwoven fabric obtained by the method according to Examples 1 to 5, the long fibers constituting the nonwoven fabric had irregular irregularities on the surface along the fiber axis direction and along the fiber circumference. On the other hand, in the long-fiber nonwoven fabric obtained by the method according to Comparative Example 1, the surface of the long fiber constituting the nonwoven fabric was smooth along the fiber axis direction, and there was no unevenness. Due to the presence of such irregular irregularities, the core-sheath composite conjugate fiber has a thin portion and a thick portion in the fiber diameter, and the presence of the small portion in the fiber diameter imparts flexibility to the long fiber itself. As a result, the nonwoven fabrics according to Examples 1 to 5, in which the long fibers were used as constituent fibers, were more excellent in flexibility and softness than the nonwoven fabric according to Comparative Example 1. In addition, due to the presence of the irregular asperities, light hitting the nonwoven fabric surface was easily scattered, and the nonwoven fabrics of Examples 1 to 5 had higher whiteness than those of Comparative Example 1.
[0033]
Further, generally, since the first polyethylene obtained by using the metallocene-based polymerization catalyst has a low melting point, the polyethylene in Examples 1 to 5 using the first polyethylene also has a low melting point. Therefore, the nonwoven fabrics according to Examples 1 to 5 exhibited better heat sealing strength than the nonwoven fabric according to Comparative Example 1 even when the thermocompression bonding temperature was lower. The core portion made of polyester has a substantially uniform fiber diameter without changing its cross-sectional shape in the fiber axis direction, as in the conventional case, so that the tensile strength is maintained. The nonwoven fabrics according to Examples 1 to 5 had the same tensile strength as the conventional nonwoven fabric according to Comparative Example 1.
[0034]
[Action and effect of the invention]
In the nonwoven fabric according to the present invention, as the constituent fibers, the cross-sectional shape of the core portion does not substantially change in the fiber axis direction, and the thickness of the sheath portion is uneven and non-uniform in the fiber axis direction and the fiber circumferential direction. Consisting of randomly changing core-sheath composite fibers. That is, the core-sheath conjugate fiber, which is a constituent fiber, has a smaller or larger fiber diameter in the fiber axis direction. The presence of the narrow portion of the fiber diameter imparts flexibility to the core-sheath composite fiber. Further, since the core portion has a uniform fiber diameter in the fiber axis direction, the tensile strength of the core-sheath composite fiber is almost the same as that of the conventional core-sheath composite fiber.
Therefore, a nonwoven fabric using such a core-sheath composite fiber as a constituent fiber has an effect of being excellent in flexibility while being excellent in tensile strength.
[0035]
In addition, the nonwoven fabric according to the present invention is made of a core-sheath composite fiber having irregular irregularities on the surface, and thus scatters light well. Therefore, the nonwoven fabric according to the present invention also has an effect of being excellent in whiteness.
[0036]
In the nonwoven fabric according to the present invention, as the polyethylene constituting the sheath portion of the core-sheath composite fiber, a low-melting first polyethylene obtained by a metallocene-based polymerization catalyst and a low-melting second polyethylene obtained by a Ziegler-Natta polymerization catalyst are used. When a mixture of polyethylene, especially low-density polyethylene, is employed, heat sealing can be performed at a low temperature, and there is an effect that thermocompression bonding can be performed at a low temperature.
[0037]
In the method for producing a nonwoven fabric according to the present invention, the sheath is made of polyethylene made of a mixture of first ethylene having good spinnability and second polyethylene having poor spinnability. When melt spinning using such polyethylene, when the sheath is formed by the second polyethylene having poor spinnability, the thickness of the sheath is randomly increased or decreased. On the other hand, polyester is used for the core, and melt spinning can be performed uniformly as in the conventional case. Therefore, the cross-sectional shape of the core portion does not substantially change in the fiber axis direction, and the thickness of the sheath portion is non-uniform and randomly changed in the fiber axis direction and the fiber circumferential direction. The fiber is obtained stably, and the nonwoven fabric using the fiber as a constituent fiber is stably and reasonably obtained.
[Brief description of the drawings]
FIG. 1 is a side view (micrograph) showing an example of a core-sheath composite fiber according to the present invention.
FIG. 2 is a side view (micrograph) showing an example of a core-sheath composite fiber according to the present invention.
FIG. 3 is a side view (micrograph) showing an example of a core-sheath composite fiber according to the present invention.
4 is an enlarged view (electron micrograph) of the surface of a long-fiber nonwoven fabric obtained by a method according to Example 2. FIG.
5 is an enlarged view (electron micrograph) of the surface of a long-fiber nonwoven fabric obtained by a method according to Example 3. FIG.
FIG. 6 is an enlarged view (electron micrograph) of the surface of a long-fiber nonwoven fabric obtained by the method according to Example 4.
FIG. 7 is an enlarged view (electron micrograph) of the surface of a long-fiber nonwoven fabric obtained by the method according to Example 5.

Claims (9)

芯部がポリエステルで鞘部がポリエチレンで構成され、芯部の横断面形状は繊維軸方向において実質的に変化せず、鞘部の厚さは、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している芯鞘状複合繊維を構成繊維とすることを特徴とする不織布。The core is made of polyester and the sheath is made of polyethylene, the cross-sectional shape of the core is not substantially changed in the fiber axis direction, the thickness of the sheath is uneven in the fiber axis direction and the fiber circumferential direction, and A nonwoven fabric characterized by comprising core-sheath composite fibers that are randomly changed as constituent fibers. 芯鞘状複合繊維が長繊維である請求項1記載の不織布。The nonwoven fabric according to claim 1, wherein the core-sheath composite fiber is a long fiber. 鞘部を形成しているポリエチレンは、メタロセン系重合触媒により得られた第一ポリエチレンと、チグラーナッタ系重合触媒により得られた第二ポリエチレンとの混合物である請求項1記載の不織布。The nonwoven fabric according to claim 1, wherein the polyethylene forming the sheath is a mixture of a first polyethylene obtained by a metallocene-based polymerization catalyst and a second polyethylene obtained by a Ziegler-Natta polymerization catalyst. 第二ポリエチレンが、低密度ポリエチレンである請求項3記載の不織布。The nonwoven fabric according to claim 3, wherein the second polyethylene is a low density polyethylene. 請求項1記載の芯鞘状複合繊維。The core-sheath composite fiber according to claim 1. 請求項1記載の不織布とポリオレフィン系フィルムとを、芯鞘状複合繊維の鞘部を軟化又は溶融させることによって貼合した複合材料。A composite material obtained by laminating the nonwoven fabric according to claim 1 and a polyolefin-based film by softening or melting a sheath portion of a core-sheath composite fiber. ポリエステルと、メタロセン系重合触媒により得られた第一ポリエチレンとチグラーナッタ系重合触媒により得られた第二ポリエチレンとが混合されたポリエチレンとを、該ポリエステルが芯に配され、該ポリエチレンが鞘に配されるように、芯鞘型複合紡糸孔に供給し、溶融紡糸して得られた芯鞘状長繊維を集積することを特徴とする不織布の製造方法。Polyester, a polyethylene obtained by mixing a first polyethylene obtained by a metallocene polymerization catalyst and a second polyethylene obtained by a Ziegler-Natta polymerization catalyst, the polyester is disposed on a core, and the polyethylene is disposed on a sheath. A method for producing a nonwoven fabric, comprising feeding a core-sheath type long fiber obtained by melt-spinning to a core-sheath type composite spinning hole. ポリエチレンのメルトフローレート(MFR)が、16〜21g/10分である請求項7記載の不織布の製造方法。The method for producing a nonwoven fabric according to claim 7, wherein the melt flow rate (MFR) of the polyethylene is 16 to 21 g / 10 minutes. 溶融紡糸の速度が3000〜4000m/分である請求項7記載の不織布の製造方法。The method for producing a nonwoven fabric according to claim 7, wherein the melt spinning speed is 3000 to 4000 m / min.
JP2002303414A 2002-10-17 2002-10-17 Method for producing nonwoven fabric comprising core-sheath composite long fiber Expired - Lifetime JP4315663B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002303414A JP4315663B2 (en) 2002-10-17 2002-10-17 Method for producing nonwoven fabric comprising core-sheath composite long fiber
CNB2003801014637A CN100519873C (en) 2002-10-17 2003-10-17 Nonwoven fabric made of core sheath type composite fiber and process for producing the same
DE60325403T DE60325403D1 (en) 2002-10-17 2003-10-17 NONWOVEN FABRIC OF CERAMIC FIBER AND METHOD FOR THE PRODUCTION THEREOF
EP03769909A EP1553223B1 (en) 2002-10-17 2003-10-17 Nonwoven fabric made of core/sheath type composite fiber and process for producing the same
KR1020057006557A KR101115193B1 (en) 2002-10-17 2003-10-17 Nonwoven fabric made of core/sheath type composite fiber and process for producing the same
PCT/JP2003/013334 WO2004035900A1 (en) 2002-10-17 2003-10-17 Nonwoven fabric made of core/sheath type composite fiber and process for producing the same
US10/531,179 US20060205308A1 (en) 2002-10-17 2003-10-17 Nonwoven fabric made of core/sheath composite fiber and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002303414A JP4315663B2 (en) 2002-10-17 2002-10-17 Method for producing nonwoven fabric comprising core-sheath composite long fiber

Publications (2)

Publication Number Publication Date
JP2004137626A true JP2004137626A (en) 2004-05-13
JP4315663B2 JP4315663B2 (en) 2009-08-19

Family

ID=32105072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002303414A Expired - Lifetime JP4315663B2 (en) 2002-10-17 2002-10-17 Method for producing nonwoven fabric comprising core-sheath composite long fiber

Country Status (7)

Country Link
US (1) US20060205308A1 (en)
EP (1) EP1553223B1 (en)
JP (1) JP4315663B2 (en)
KR (1) KR101115193B1 (en)
CN (1) CN100519873C (en)
DE (1) DE60325403D1 (en)
WO (1) WO2004035900A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088368A (en) * 2004-09-21 2006-04-06 Unitika Ltd Harvested matter coating sheet
JP2011226002A (en) * 2010-04-15 2011-11-10 Ube Nitto Kasei Co Ltd Composite fiber of crypto-irregular sheath core and non-woven fabric comprising the same
JP2013049943A (en) * 2011-08-01 2013-03-14 Ube Nitto Kasei Co Ltd Splittable concavo-convex composite fiber and nonwoven fabric using the same

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0425124D0 (en) * 2004-11-13 2004-12-15 Don & Low Ltd Fabric
JP5063315B2 (en) * 2006-12-28 2012-10-31 花王株式会社 Telescopic sheet
DK1942213T3 (en) * 2007-01-05 2009-11-02 Borealis Tech Oy Fiber comprising an ethylene copolymer
US8889573B2 (en) * 2008-09-04 2014-11-18 Daiwabo Holdings Co., Ltd. Fiber assembly, composite of electro conductive substrate and fiber assembly, and production methods thereof
US8833402B2 (en) * 2010-12-30 2014-09-16 Cook Medical Technologies Llc Woven fabric having composite yarns for endoluminal devices
WO2012105602A1 (en) * 2011-02-02 2012-08-09 ダイワボウホールディングス株式会社 Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article
US20160206984A1 (en) * 2013-09-03 2016-07-21 3M Innovative Properties Company Melt-spinning process, melt-spun nonwoven fibrous webs and related filtration media
CN104178829A (en) * 2014-07-30 2014-12-03 厦门怡龙谷新材料科技有限公司 Composite large-diameter monofilament with variable cross section and skin core structure as well as manufacturing method and application thereof
KR101646338B1 (en) 2014-08-20 2016-08-16 도레이첨단소재 주식회사 Polyester nonwoven fabric having an improved softness and mechanical property and manufacturing method thereof
JP7037200B2 (en) * 2017-04-12 2022-03-16 ユニチカ株式会社 Manufacturing method of needle punch non-woven fabric
JP6927299B2 (en) * 2017-06-05 2021-08-25 東洋紡株式会社 Non-woven
EP3760237A4 (en) * 2018-02-28 2021-12-01 Unitika Ltd. Activated carbon sheet for air purification
JP6871892B2 (en) * 2018-11-26 2021-05-19 本田技研工業株式会社 Manufacturing method of core-sheath composite fiber and core-sheath composite fiber
PL3771556T3 (en) * 2019-07-30 2022-02-21 Reifenhäuser GmbH & Co. KG Maschinenfabrik Spun nonwoven laminate and method for producing a spunbonded nonwoven laminate
KR102533740B1 (en) * 2020-06-10 2023-05-17 도레이첨단소재 주식회사 Non-woven fabric for air filter, method of preparing the same and article including the same
CN117677490A (en) * 2021-07-26 2024-03-08 陶氏环球技术有限责任公司 Multilayer composite with nonwoven toughening
US20230041915A1 (en) * 2021-07-31 2023-02-09 Elc Management Llc Nonwoven material for cosmetic cushion compact

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4419656A (en) * 1980-11-07 1983-12-06 Fairchild Camera & Instrument Corp. Method and apparatus for digital converter testing
JPH0814069B2 (en) * 1986-12-26 1996-02-14 ユニチカ株式会社 Heat-bondable non-woven sheet
WO1992015734A1 (en) * 1991-03-05 1992-09-17 Ube-Nitto Kasei Co., Ltd. Composite fiber having porous sheath part
JP2989267B2 (en) * 1991-03-05 1999-12-13 宇部日東化成株式会社 Composite fiber with porous sheath
JPH0814069A (en) * 1994-06-29 1996-01-16 Nippondenso Co Ltd Intake device for internal combustion engine
JP3097019B2 (en) * 1995-08-07 2000-10-10 チッソ株式会社 Heat-fusible composite fiber and nonwoven fabric using the fiber
JP3568646B2 (en) * 1995-09-20 2004-09-22 花王株式会社 Method for producing moisture-permeable sheet
EP1126053A1 (en) * 2000-02-18 2001-08-22 Atofina Research S.A. Polypropylene fibres

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006088368A (en) * 2004-09-21 2006-04-06 Unitika Ltd Harvested matter coating sheet
JP4498870B2 (en) * 2004-09-21 2010-07-07 ユニチカ株式会社 Crop cover sheet
JP2011226002A (en) * 2010-04-15 2011-11-10 Ube Nitto Kasei Co Ltd Composite fiber of crypto-irregular sheath core and non-woven fabric comprising the same
JP2013049943A (en) * 2011-08-01 2013-03-14 Ube Nitto Kasei Co Ltd Splittable concavo-convex composite fiber and nonwoven fabric using the same

Also Published As

Publication number Publication date
EP1553223B1 (en) 2008-12-17
CN100519873C (en) 2009-07-29
KR101115193B1 (en) 2012-02-24
US20060205308A1 (en) 2006-09-14
EP1553223A4 (en) 2007-05-30
WO2004035900A1 (en) 2004-04-29
CN1705782A (en) 2005-12-07
EP1553223A1 (en) 2005-07-13
DE60325403D1 (en) 2009-01-29
KR20050065601A (en) 2005-06-29
JP4315663B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4315663B2 (en) Method for producing nonwoven fabric comprising core-sheath composite long fiber
JP3744856B2 (en) Multi-component perforated nonwoven
WO2010050407A1 (en) Crimped composite fiber, and non-woven fabric comprising the fiber
JP2001502388A (en) Thermal adhesive composite fiber and nonwoven fabric using the same
JP3904614B2 (en) Random macrodomain multicomponent fibers, their preparation and non-woven structures made from the fibers
JPH10304909A (en) Female member for hook-and-loop fastener and manufacture thereof
JPH1088460A (en) Nonwoven fabric of conjugated filament and its production
WO1999049120A1 (en) Flexible nonwoven fabric laminate
JPH05230750A (en) Heat bonding fiber sheet
JP3736014B2 (en) Laminated nonwoven fabric
JP3744898B2 (en) Bonded layered nonwoven fabric and method for producing the same
JPH11293555A (en) Highly air-permeable nonwoven fabric and its production, and filter material made thereof
JP2000355866A (en) Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP2001248056A (en) Composite filament nonwoven fabric and filter obtained therefrom
JP3666828B2 (en) Non-woven fabric having strip-like splitting area and method for producing the same
JPH1161618A (en) Ultrafine fiber nonwoven fabric and its production
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
JP2004346476A (en) Propylene-based short fiber, fiber assembly using the same and fused nonwoven fabric
JP2003171862A (en) Filament nonwoven fabric and polyolefin film composite
JPH0571060A (en) Laminated filament nonwoven fabric and its production
JPH04100920A (en) Composite type thermal-adhesive fiber and nonwoven fabric using the same fiber
JPH0559655A (en) Nonwoven fabric
JP2001081658A (en) Composite non-woven fabric, and seedling-raising container using the same
JP3429566B2 (en) Long-fiber nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

EXPY Cancellation because of completion of term