JP2011226002A - Composite fiber of crypto-irregular sheath core and non-woven fabric comprising the same - Google Patents

Composite fiber of crypto-irregular sheath core and non-woven fabric comprising the same Download PDF

Info

Publication number
JP2011226002A
JP2011226002A JP2010094123A JP2010094123A JP2011226002A JP 2011226002 A JP2011226002 A JP 2011226002A JP 2010094123 A JP2010094123 A JP 2010094123A JP 2010094123 A JP2010094123 A JP 2010094123A JP 2011226002 A JP2011226002 A JP 2011226002A
Authority
JP
Japan
Prior art keywords
sheath
resin
core
composite fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010094123A
Other languages
Japanese (ja)
Other versions
JP5619467B2 (en
Inventor
Hirofumi Yashiro
弘文 矢代
Susumu Minami
晋 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2010094123A priority Critical patent/JP5619467B2/en
Publication of JP2011226002A publication Critical patent/JP2011226002A/en
Application granted granted Critical
Publication of JP5619467B2 publication Critical patent/JP5619467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a non-woven fabric which has a high effect of improving touch feeling, draping, soft and bulkiness feeling as well as diffusing water (high spreading), and a sheath core type composite fiber having a wide range of fineness.SOLUTION: A composite fiber of crypto-irregular sheath core is a composite fiber comprising: a sheath part made from a resin composition (A) comprising a polyolefin resin (a) and a noncrystalline resin (b); and a core part comprising a thermoplastic resin (B) in which a melting point of the polyolefin resin (a) is lower than that of the thermoplastic resin (B) and a glass transition point (Tg) of the noncrystalline resin (b) is higher than that of the polyolefin resin (a), and the irregular shape on the surface of the sheath part can be formed by heat treatment of the composite fiber.

Description

本発明は、熱処理することで鞘部の表面に凹凸状を形成し得る潜在凹凸型鞘芯複合繊維、それを用いてなる繊維表面に凹凸を有する不織布、及び前記潜在凹凸型鞘芯複合繊維を効果的に製造する方法に関する。   The present invention provides a latent concavo-convex sheath-core composite fiber capable of forming a concavo-convex shape on the surface of a sheath portion by heat treatment, a nonwoven fabric having concavo-convex on the fiber surface using the same, and the latent concavo-convex sheath-core composite fiber. The present invention relates to an effective manufacturing method.

不織布は、一般に紡績工程や撚糸工程を経ることなく繊維から直接製造することができるため、その製造工程は織物や編物に比べて簡単である。このような利点を有する不織布は、衛生材料や日用品などに広く利用されている。この不織布の中でポリプロピレン系不織布は、例えば紙おむつやナプキンの表面材、簡易ワイパー、二次電池用のセパレータ、フィルター(ろ材)などに用いられている。このような不織布などにおいては、鞘芯構造を有する複合繊維、例えばポリプロピレン樹脂を芯材とし、ポリエチレン樹脂を鞘材とする鞘芯複合繊維を使用することが行われている。そして、この鞘芯複合繊維は、強度を高めるために、通常延伸処理が施されている。   Since a nonwoven fabric can generally be manufactured directly from fibers without passing through a spinning process or a twisting process, the manufacturing process is simpler than that of a woven fabric or a knitted fabric. Nonwoven fabrics having such advantages are widely used for sanitary materials and daily necessities. Among these nonwoven fabrics, polypropylene-based nonwoven fabrics are used, for example, as surface materials for paper diapers and napkins, simple wipers, separators for secondary batteries, filters (filter materials), and the like. In such a nonwoven fabric, a composite fiber having a sheath-core structure, for example, a sheath-core composite fiber having a polypropylene resin as a core material and a polyethylene resin as a sheath material is used. The sheath-core composite fiber is usually subjected to a stretching treatment in order to increase the strength.

また、短繊維不織布の製造方法としては、カード機を用いて熱接着性複合繊維を引き揃え、所定の目付になるように積層、絡合させたのち、熱処理して、繊維相互を融着させて、不織布を形成させる方法が知られている。
前記熱接着性複合繊維は、接着剤を使用しなくても熱風や熱ローラによる熱で比較的簡単に不織布化が可能である。このような熱接着性複合繊維としては、これまで種々のものが開発されており、例えばポリエチレン−ポリプロピレン系複合繊維やポリエチレン−ポリエチレンテレフタレート系複合繊維等の異種ポリマー鞘芯型複合繊維、共重合ポリエステル−ポリエチレンテレフタレート系複合繊維等の同種ポリマー鞘芯型複合繊維等、種々の繊維が開発されている。また、熱接着性鞘芯型複合繊維を材料とする不織布を得るにあたっては、不織布の用途に応じて、熱風融着法と熱ロール融着法とが使い分けられている。すなわち、得られる不織布の触感や風合いを重視する場合には熱風融着法が、また得られる不織布の強力を重視する場合には熱ロール融着法が、一般に採用されている。
ところで、最も多く使用されているポリエチレン−ポリプロピレン系鞘芯型複合繊維からなる不織布は、特有の滑り感があり触感や風合いもよくないという問題を有しており、滑り感がなく、触感や風合いの良い不織布が要求されている。
In addition, as a method for producing a short fiber nonwoven fabric, a thermal bonding composite fiber is aligned using a card machine, laminated and entangled so as to have a predetermined basis weight, and then heat treated to fuse the fibers together. Thus, a method of forming a nonwoven fabric is known.
The heat-adhesive conjugate fiber can be made into a nonwoven fabric relatively easily by hot air or heat from a heat roller without using an adhesive. As such a heat-adhesive conjugate fiber, various types have been developed so far, for example, a heterogeneous polymer sheath-core type conjugate fiber such as a polyethylene-polypropylene conjugate fiber and a polyethylene-polyethylene terephthalate conjugate fiber, and a copolyester. -Various fibers have been developed, such as homogeneous polymer sheath-core composite fibers such as polyethylene terephthalate composite fibers. Moreover, when obtaining the nonwoven fabric which uses a heat bondable sheath-core type composite fiber as a material, the hot-air fusion method and the hot roll fusion method are properly used depending on the use of the nonwoven fabric. That is, the hot air fusion method is generally employed when emphasizing the tactile sensation and texture of the obtained nonwoven fabric, and the hot roll fusion method is employed when emphasizing the strength of the obtained nonwoven fabric.
By the way, the most commonly used nonwoven fabric made of polyethylene-polypropylene-based sheath-core type composite fibers has a problem that it has a peculiar slip feeling and a tactile sensation and a texture that is not good. A good non-woven fabric is required.

従来、織布、不織布などの触感や風合い、ソフト感、膨らみ感などの改良を目的として、繊維表面に凹凸を付与することが提案されている。例えば(1)ポリ(メタ)アクリレート系樹脂を20〜50質量%含有するポリエステル組成物と、ポリ(メタ)アクリレート系樹脂を実質的に含まないポリエステルを、質量比3:97〜40:60の割合で複合紡糸し、3500m/分以下の速度で引取った後、得られた未延伸糸を延伸温度55〜95℃で最大延伸倍率の0.62〜0.91倍に延伸することを特徴とする繊維表面に凹凸を有する複合繊維の製造方法(例えば、特許文献1参照)、(2)少なくとも非エラストマー樹脂とエラストマー樹脂で構成された複合長繊維からなる不織布であって、複合長繊維が螺旋構造と表面凹凸構造とを有し、複合長繊維の非エラストマー樹脂/エラストマー樹脂の容積比率(%)が30/70〜5/95の範囲であり、複合長繊維の繊度が5dTex以下であることを特徴とする弾性長繊維不織布(例えば、特許文献2参照)、(3)紡糸口金より紡糸原液を吐出する際の溶融粘度が100Pa・s以上のポリエステル[A]を鞘成分、20Pa・s以下のポリエステル[B]を芯成分とし、上記ポリエステル[A]及び[B]の溶融粘度差が100Pa・sより大きく、350Pa・s未満であり、かつ芯部の太細に起因して太細が生じた複合繊維からなるマルチフィラメント糸条であって、糸条の長さ方向に太繊度部15個/m以上を有する特殊斑糸(例えば、特許文献3参照)が開示されている。   Conventionally, it has been proposed to provide irregularities on the fiber surface for the purpose of improving the touch and texture of woven and non-woven fabrics, soft feeling, and swelling. For example, (1) a polyester composition containing 20 to 50% by mass of a poly (meth) acrylate-based resin and a polyester substantially free of a poly (meth) acrylate-based resin having a mass ratio of 3:97 to 40:60 The composite spinning is carried out at a rate of 3,500 m / min or less, and the obtained undrawn yarn is drawn to a maximum draw ratio of 0.62 to 0.91 times at a drawing temperature of 55 to 95 ° C. (2) A non-woven fabric composed of a composite long fiber composed of at least a non-elastomeric resin and an elastomer resin, wherein the composite long fiber is The composite long fiber has a non-elastomeric resin / elastomeric resin volume ratio (%) in the range of 30/70 to 5/95, and has a fineness of the composite long fiber. An elastic long-fiber nonwoven fabric characterized by being dTex or less (see, for example, Patent Document 2), (3) Polyester [A] having a melt viscosity of 100 Pa · s or more when discharging a spinning stock solution from a spinneret is a sheath component Polyester [B] of 20 Pa · s or less is used as a core component, and the difference in melt viscosity between the polyesters [A] and [B] is greater than 100 Pa · s and less than 350 Pa · s, and is due to the thickness of the core. A multifilament yarn made of a composite fiber that is thick and thin, and a special spotted yarn (see, for example, Patent Document 3) having a fineness portion of 15 pieces / m or more in the length direction of the yarn is disclosed. ing.

一方、特許文献4においては、縦方向に連続した凹溝を有する異形断面繊維の場合、凹溝に毛細管現象が発現し、水を拡散(滲みが大きい)させる効果が大きくなることが開示されている。   On the other hand, Patent Document 4 discloses that, in the case of a modified cross-section fiber having a continuous groove in the vertical direction, a capillary phenomenon appears in the groove and the effect of diffusing water (large bleeding) is increased. Yes.

特開2001−164428号公報JP 2001-164428 A 特開2004−250795号公報JP 2004-250795 A 特開平8−188925号公報JP-A-8-188925 WO2009/150745号パンフレットWO2009 / 150745 pamphlet

しかしながら、前記特許文献1に記載の表面に凹凸を有する複合繊維は、芯成分及び鞘成分共に、ポリオレフィン系樹脂は用いておらず、ポリエステル系樹脂組成物からなるものであって、紡糸速度、延伸温度及び最大延伸倍率に対する延伸倍率を規定し、鞘成分に凹凸を発現させる技術である。
また、前記特許文献2に記載の弾性長繊維不織布は、例えばスチレン−エチレン−ブチレン−スチレンブロック共重合体(SEBS)などのエラストマー樹脂、及びポリプロピレン系樹脂などの非エラストマー樹脂で構成された複合繊維からなり、かつ複合繊維の非エラストマー樹脂/エラストマー樹脂の容積比率を規定すると共に、該複合繊維の繊度を5dTex以下に規定して、表面に螺旋構造と凹凸構造を形成してなる複合長繊維から構成された不織布である。
さらに、前記特許文献3に記載の特殊斑糸は、それぞれ溶融粘度を規定したポリエステル[A]を鞘成分、ポリエステル[B]を芯成分とし、かつポリエステル[A]と[B]の溶融粘度の差を規定してなる、芯部の太細に起因して太細が生じた複合繊維からなるマルチフィラメント糸条である。
これらの技術においては、いずれも複合繊維そのものの表面に凹凸を形成させる技術であって、高速紡糸が必須であったり、細い繊維にしか適応させることができなかったり、得られる凹凸も比較的小さいものであった。
However, the composite fiber having irregularities on the surface described in Patent Document 1 does not use a polyolefin-based resin for both the core component and the sheath component, and is made of a polyester-based resin composition. This is a technique that regulates the draw ratio with respect to the temperature and the maximum draw ratio, and causes the sheath component to exhibit irregularities.
The elastic long-fiber non-woven fabric described in Patent Document 2 is a composite fiber composed of an elastomer resin such as styrene-ethylene-butylene-styrene block copolymer (SEBS) and a non-elastomeric resin such as a polypropylene resin. And a non-elastomeric resin / elastomer resin volume ratio of the composite fiber, a fineness of the composite fiber of 5 dTex or less, and a composite long fiber having a helical structure and an uneven structure formed on the surface. It is the comprised nonwoven fabric.
Further, the special patch described in Patent Document 3 has polyester [A] having a melt viscosity defined as a sheath component, polyester [B] as a core component, and the melt viscosity of polyesters [A] and [B]. It is a multifilament yarn made of a composite fiber that has a difference due to the thickness of the core portion and is caused by the thickness of the core.
In these techniques, all are techniques for forming irregularities on the surface of the composite fiber itself, and high-speed spinning is essential, can only be applied to thin fibers, and the resulting irregularities are relatively small. It was a thing.

前記特許文献4に記載の技術は、鞘芯型ポリエステル繊維を20質量%以上含み、かつ該ポリエステル繊維として、鞘部にエチレングリコールを含有すると共に、鞘部/芯部の質量比を規定する異形断面繊維を用いた吸水速乾性織編物を提供する技術である。そして、この縦方向に連続した凹溝を有する異形断面繊維の場合、凹溝に毛細管現象が発現し、該異形断面繊維を用いた織編物は水を拡散(滲みが大きい)させる効果が大きくなることが開示されている。
しかしながら、この異形断面繊維を用いて不織布を作製する際には、熱融着複合繊維であることが好ましいが、熱融着複合繊維の場合、本発明者らの研究によると、異型断面繊維を製造するためのノズルが高価になりコスト高に繋がることと、熱融着時に鞘成分が溶融し凝集するため、シャープな形状となり難く、得られた不織布の毛細管現象発現力も比較的小さいことが分かった。
The technique described in Patent Document 4 includes a sheath-core type polyester fiber of 20% by mass or more, and the polyester fiber contains ethylene glycol in the sheath part, and is a variant that defines the mass ratio of the sheath part / core part. This is a technique for providing a water-absorbing quick-drying woven or knitted fabric using cross-sectional fibers. And, in the case of a modified cross-section fiber having a continuous groove in the longitudinal direction, a capillary phenomenon appears in the groove, and the woven or knitted fabric using the modified cross-section fiber has a large effect of diffusing water (large bleeding). It is disclosed.
However, when producing a non-woven fabric using this modified cross-section fiber, it is preferably a heat-bonded composite fiber. It turns out that the nozzle for manufacturing is expensive and leads to high costs, and the sheath component melts and aggregates at the time of heat fusion, so it is difficult to form a sharp shape, and the capillarity manifesting power of the obtained nonwoven fabric is relatively small It was.

本発明は、このような状況下になされたものであり、触感や風合い、ソフト感や膨らみ感を改良すると共に、水を拡散(滲みが大きい)させる効果が大きな不織布を与え得る鞘芯型複合繊維、それから得られた不織布、及び該鞘芯型複合繊維の効果的な製造方法を提供することを目的とするものである。   The present invention has been made under such circumstances, and improves the tactile sensation, texture, soft feeling and swelling feeling, and can provide a non-woven composite having a great effect of diffusing water (large bleeding). An object of the present invention is to provide a fiber, a nonwoven fabric obtained therefrom, and an effective method for producing the sheath-core type composite fiber.

本発明者は、前記目的を達成するために鋭意研究を重ねた結果、下記の知見を得た。(1)鞘芯型複合繊維として、鞘部がポリオレフィン系樹脂と非晶性樹脂とを含む樹脂組成物から構成されると共に、芯部が熱可塑性樹脂を含み、かつ前記のポリオレフィン系樹脂の融点、非晶性樹脂のガラス転移点(Tg)及び熱可塑性樹脂の融点が、それぞれ特定の関係を満たすものを用いた場合、この複合繊維は、熱処理することにより、鞘部の表面に凹凸状を形成し得ること、すなわち潜在凹凸型鞘芯複合繊維であること、(2)この潜在凹凸型鞘芯複合繊維は、原理が明確である為、繊度1〜5000dTex程度の幅広い範囲の繊度のものに適応できること、(3)該潜在凹凸型鞘芯複合繊維から得られた不織布を熱処理することにより、鞘部表面に凹凸状を発現させてなる不織布が得られ、前記の目的に適合し得ること、(4)この凹凸状を有する不織布は、前記特許文献4に記載の吸水速乾性織編物と同様の効果が得られ、例えば吸水速度が速い界面活性剤を付着させ、紙おむつ(紙おむつの構成:上/中/下=トップシート/セカンドシート/吸収体)のセカンドシートに使用した場合は、尿の拡散性能が向上し、下面に配置される吸収体に効率良く尿を拡散させ吸収させ得ること、(5)当該潜在凹凸型鞘芯複合繊維の紡糸には、従来の丸断面ノズルがそのまま使用できるため、コスト的に有利であること、(6)当該潜在凹凸型鞘芯複合繊維は、上記(1)で示した原料を用い、特定の溶融紡糸工程及び熱延伸工程を施すことにより効率よく製造し得ることを見出した。
本発明は、かかる知見に基づいて完成したものである。
As a result of intensive studies to achieve the above object, the present inventor obtained the following knowledge. (1) As the sheath-core type composite fiber, the sheath portion is composed of a resin composition including a polyolefin resin and an amorphous resin, the core portion includes a thermoplastic resin, and the melting point of the polyolefin resin. When the amorphous resin has a glass transition point (Tg) and a melting point of the thermoplastic resin satisfying a specific relationship, the composite fiber has an irregular shape on the surface of the sheath by heat treatment. It can be formed, that is, it is a latent concavo-convex sheath-core composite fiber, (2) The latent concavo-convex sheath-core composite fiber has a wide range of fineness of about 1 to 5000 dTex because the principle is clear. (3) Heat treatment of the nonwoven fabric obtained from the latent concavo-convex sheath-core composite fiber yields a nonwoven fabric having a concavo-convex shape on the surface of the sheath portion, which can be adapted to the above-mentioned purpose. (4 The nonwoven fabric having the uneven shape can obtain the same effect as the water-absorbing quick-drying woven or knitted fabric described in Patent Document 4, for example, by attaching a surfactant having a high water absorption rate to form a paper diaper (configuration of paper diaper: top / medium / When used as a second sheet (bottom = top sheet / second sheet / absorber), the urine diffusion performance is improved, and the urine can be efficiently diffused and absorbed by the absorber disposed on the lower surface. (5) Since the conventional round cross-section nozzle can be used as it is for spinning the latent uneven sheath-core composite fiber, it is advantageous in cost. (6) The latent uneven sheath-core composite fiber is the above (1). It has been found that production can be efficiently carried out by using the indicated raw materials and subjecting to a specific melt spinning step and a hot drawing step.
The present invention has been completed based on such findings.

すなわち、本発明は、
[1]ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなる複合繊維であって、ポリオレフィン系樹脂(a)の融点は熱可塑性樹脂(B)の融点よりも低く、かつ非晶性樹脂(b)のガラス転移点(Tg)はポリオレフィン系樹脂(a)の融点よりも高く、該複合繊維を熱処理することにより鞘部の表面に凹凸状を形成できる潜在凹凸型鞘芯複合繊維、
[2]熱可塑性樹脂(B)が結晶性ポリプロピレンであり、かつポリオレフィン系樹脂(a)が高密度ポリエチレンである上記[1]に記載の潜在凹凸型鞘芯複合繊維、
[3]非晶性樹脂(b)が、環状オレフィンコポリマー及び/又はポリカーボネ―トである上記[1]又は[2]に記載の潜在凹凸型鞘芯複合繊維、
[4]非晶性樹脂(b)が、環状オレフィンコポリマーである上記[3]に記載の潜在凹凸型鞘芯複合繊維、
[5]樹脂組成物(A)におけるポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜70:30である上記[1]〜[4]のいずれかに記載の潜在凹凸型鞘芯複合繊維、
[6]上記[1]〜[5]のいずれかに記載の潜在凹凸型鞘芯複合繊維から得られた不織布を熱処理して、鞘部の表面に凹凸状を発現させてなることを特徴とする不織布、
[7]熱処理を、ポリオレフィン系樹脂(a)の融点以上の温度、かつ非晶性樹脂(b)のガラス転移点(Tg)近傍又は該Tg以下の温度で行う上記[6]に記載の不織布、及び
[8]ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなり、ポリオレフィン系樹脂(a)の融点が熱可塑性樹脂(B)の融点及び非晶性樹脂(b)のガラス転移点(Tg)よりも低い樹脂組成物(A)を鞘部とし、熱可塑性樹脂(B)を芯部として鞘芯複合繊維を溶融紡糸する工程、及びポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で熱延伸する工程、を含むことを特徴とする潜在凹凸型鞘芯複合繊維の製造方法、
を提供するものである。
That is, the present invention
[1] A composite fiber composed of a sheath part made of a resin composition (A) containing a polyolefin resin (a) and an amorphous resin (b) and a core part containing a thermoplastic resin (B). The melting point of the polyolefin resin (a) is lower than the melting point of the thermoplastic resin (B), and the glass transition point (Tg) of the amorphous resin (b) is higher than the melting point of the polyolefin resin (a). A latent concavo-convex sheath-core composite fiber capable of forming a concavo-convex shape on the surface of the sheath by heat-treating the composite fiber,
[2] The latent uneven sheath-core composite fiber according to [1], wherein the thermoplastic resin (B) is crystalline polypropylene and the polyolefin resin (a) is high-density polyethylene,
[3] The latent uneven sheath-core composite fiber according to [1] or [2], wherein the amorphous resin (b) is a cyclic olefin copolymer and / or polycarbonate.
[4] The latent uneven sheath-core composite fiber according to [3], wherein the amorphous resin (b) is a cyclic olefin copolymer,
[5] In the above [1] to [4], the content ratio of the polyolefin resin (a) and the amorphous resin (b) in the resin composition (A) is 97: 3 to 70:30 by mass ratio. The latent uneven sheath-core composite fiber according to any one of the above,
[6] A non-woven fabric obtained from the latent uneven sheath-core composite fiber according to any one of [1] to [5] is heat-treated to express unevenness on the surface of the sheath portion. Nonwoven fabric,
[7] The nonwoven fabric according to [6], wherein the heat treatment is performed at a temperature equal to or higher than the melting point of the polyolefin resin (a) and at or near the glass transition point (Tg) of the amorphous resin (b). And [8] a polyolefin-based resin comprising a sheath part made of a resin composition (A) containing a polyolefin resin (a) and an amorphous resin (b), and a core part containing a thermoplastic resin (B). A resin composition (A) having a melting point of the resin (a) lower than the melting point of the thermoplastic resin (B) and the glass transition point (Tg) of the amorphous resin (b) is used as a sheath, and the thermoplastic resin (B) A step of melt-spinning the sheath-core composite fiber with the core as the core, and heat-stretching at a temperature not lower than the Tg of the polyolefin resin (a) and not higher than the melting point, and not higher than the Tg of the amorphous resin (b). A process for producing a latent concavo-convex sheath-core composite fiber, comprising:
Is to provide.

本発明によれば、触感や風合い、ソフト感や膨らみ感を改良すると共に、水を拡散(滲みが大きい)させる効果が大きな不織布を製造できる、幅広い範囲の繊度を有する潜在凹凸型鞘芯複合繊維、それから得られた不織布、及び該潜在凹凸型鞘芯複合繊維の効果的な製造方法を提供することができる。   INDUSTRIAL APPLICABILITY According to the present invention, a latent concavo-convex sheath-core composite fiber having a wide range of fineness capable of producing a non-woven fabric that improves tactile sensation, texture, soft sensation, and swell sensation and has a large effect of diffusing water (large bleeding) In addition, it is possible to provide an effective method for producing the nonwoven fabric obtained therefrom and the latent concavo-convex sheath-core composite fiber.

実施例1における、鞘芯複合未延伸繊維のSEM写真である。2 is a SEM photograph of a sheath-core composite unstretched fiber in Example 1. 実施例1における、鞘芯複合延伸繊維のSEM写真である。2 is a SEM photograph of a sheath-core composite drawn fiber in Example 1. 実施例1における、熱風融着不織布を構成する鞘芯複合繊維のSEM写真である。It is a SEM photograph of the sheath core conjugate fiber which constitutes the hot air fusion nonwoven fabric in Example 1. 実施例2における、鞘芯複合未延伸繊維のSEM写真である。4 is an SEM photograph of sheath core composite unstretched fiber in Example 2. 実施例2における、鞘芯複合延伸繊維のSEM写真である。4 is a SEM photograph of a sheath-core composite drawn fiber in Example 2. 実施例2における、熱風融着不織布を構成する鞘芯複合繊維のSEM写真である。It is a SEM photograph of the sheath core conjugate fiber which constitutes the hot air fusion nonwoven fabric in Example 2. 実施例2における、熱風融着不織布を構成する鞘芯複合繊維の透過型光学顕微鏡写真である。It is a transmission optical microscope photograph of the sheath-core composite fiber which comprises the hot air fusion | melting nonwoven fabric in Example 2. FIG. 比較例1における、鞘芯複合未延伸繊維のSEM写真である。3 is a SEM photograph of a sheath core composite unstretched fiber in Comparative Example 1. 比較例1における、鞘芯複合延伸繊維のSEM写真である。4 is a SEM photograph of a sheath-core composite stretched fiber in Comparative Example 1. 比較例1における、熱風融着不織布を構成する鞘芯複合繊維のSEM写真である。It is a SEM photograph of the sheath core composite fiber which constitutes the hot air fusion nonwoven fabric in comparative example 1. 比較例3における、熱風融着不織布を構成する鞘芯複合繊維の光学顕微鏡写真である。It is an optical microscope photograph of the sheath-core composite fiber which comprises the hot air fusion nonwoven fabric in the comparative example 3.

まず、本発明の潜在凹凸型鞘芯複合繊維について説明する。
本発明の潜在凹凸型鞘芯複合繊維は、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなる複合繊維であって、ポリオレフィン系樹脂(a)の融点は熱可塑性樹脂(B)の融点よりも低く、かつ非晶性樹脂(b)のガラス転移点(Tg)はポリオレフィン系樹脂(a)の融点よりも高く、該複合繊維を熱処理することにより鞘部の表面に凹凸状を形成することを特徴とする。
First, the latent uneven sheath-core composite fiber of the present invention will be described.
The latent concavo-convex sheath-core composite fiber of the present invention includes a sheath portion made of a resin composition (A) containing a polyolefin resin (a) and an amorphous resin (b), and a core containing a thermoplastic resin (B). The melting point of the polyolefin resin (a) is lower than the melting point of the thermoplastic resin (B), and the glass transition point (Tg) of the amorphous resin (b) is the polyolefin resin. It is higher than the melting point of (a), and is characterized in that an uneven shape is formed on the surface of the sheath portion by heat-treating the composite fiber.

本発明において、「鞘部の表面に凹凸状を形成する」とは、鞘部の表面に、不規則な凹凸を形成することを指す。この不規則な凹凸は、鞘部の厚さが、繊維軸方向及び繊維周方向において不均一で、かつ無作為に変化していることによって現出する。ここでいう鞘部の厚さについては、鞘部が存在しない箇所、すなわち、芯部が露出している箇所についても、厚さをゼロとして含めている。したがって、凹凸が形成されると、鞘芯複合繊維の繊維径は、芯部の直径をL0とし、鞘部の厚さが最大となっている箇所の繊維径をL1とすると、繊維軸方向において、L0〜L1の範囲で無作為に変化する。また、芯部の半径を「L0/2」とし、鞘部の厚さが最大となっている箇所の繊維半径を「L1/2」とすると、繊維周方向において、鞘芯複合繊維の繊維半径は、「L0/2〜L1/2」の範囲で無作為に変化する。
なお、ここでは、芯部及び鞘芯複合繊維の横断面が円形である場合について説明したが、これらの横断面は円形でなくてもよい。芯部及び鞘芯複合繊維の横断面が非円形の場合には、芯部の直径や鞘芯複合繊維の繊維径は、その横断面面積に応じた仮想円の直径や繊維径と解釈すればよい。
In the present invention, “to form irregularities on the surface of the sheath” means to form irregular irregularities on the surface of the sheath. This irregular unevenness appears due to the fact that the thickness of the sheath part is nonuniform in the fiber axis direction and the fiber circumferential direction, and randomly changes. About the thickness of a sheath part here, also about the location where a sheath part does not exist, ie, the location where the core part is exposed, thickness is included as zero. Therefore, when irregularities are formed, the fiber diameter of the sheath-core composite fiber is such that the diameter of the core portion is L 0 and the fiber diameter of the portion where the thickness of the sheath portion is maximum is L 1. The direction changes randomly in the range of L 0 to L 1 . Moreover, the radius of the core is "L 0/2", the fiber radius of the portion where the thickness of the sheath is the largest and "L 1/2", in the fiber circumferential direction, of the sheath-core composite fibers fiber radius varies randomly in the range of "L 0 / 2~L 1/2".
In addition, although the case where the cross section of a core part and a sheath core composite fiber is circular was demonstrated here, these cross sections do not need to be circular. When the cross-section of the core and sheath-core composite fiber is non-circular, the diameter of the core and the fiber diameter of the sheath-core composite fiber can be interpreted as the diameter and fiber diameter of a virtual circle corresponding to the cross-sectional area. Good.

[鞘部を構成する材料]
本発明の潜在凹凸型鞘芯複合繊維においては、鞘部を構成する材料(以下、鞘部材料と称することがある。)として、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを併用してなる樹脂組成物(A)が用いられる。
(ポリオレフィン系樹脂(a))
鞘部材料の一成分として用いられるポリオレフィン系樹脂(a)は、その融点が、芯部を構成する材料として用いられる熱可塑性樹脂(B)の融点よりも低く、かつ鞘部材料の成分として併用される非晶性樹脂(b)のガラス転移点(Tg)よりも低いことを要する。ポリオレフィン系樹脂(a)の融点が上記条件を満たさない場合、熱接着性を有する鞘芯複合繊維が得られにくく、熱風融着法による不織布の作製が困難となる上、例え不織布が作製できたとしても、鞘部表面に不規則な凹凸が形成されにくい。
当該ポリオレフィン系樹脂(a)としては、前述した性状を有するものであればよく、特に制限されず、例えば高密度、中密度、低密度ポリエチレンや直鎖状低密度ポリエチレンなどのエチレン系重合体、プロピレンと他のα−オレフィンとの共重合体、具体的にはプロピレン−ブテン−1ランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体、あるいは軟質ポリプロピレンなどの非結晶性プロピレン系重合体、ポリ4−メチルペンテン−1などを挙げることができる。これらのポリオレフィン系樹脂(a)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの中で、曳糸性やコストなどを考慮すると高密度ポリエチレン(融点約130℃前後)が好適である。
[Material for sheath]
In the latent concavo-convex sheath-core composite fiber of the present invention, a polyolefin resin (a) and an amorphous resin (b) are used as a material constituting the sheath (hereinafter sometimes referred to as a sheath material). The resin composition (A) formed in combination is used.
(Polyolefin resin (a))
The polyolefin resin (a) used as one component of the sheath material has a melting point lower than that of the thermoplastic resin (B) used as the material constituting the core portion, and is used in combination as a component of the sheath material. It needs to be lower than the glass transition point (Tg) of the amorphous resin (b). When the melting point of the polyolefin-based resin (a) does not satisfy the above-mentioned conditions, it is difficult to obtain a sheath-core composite fiber having thermal adhesiveness, and it is difficult to produce a nonwoven fabric by a hot-air fusion method. However, irregular irregularities are hardly formed on the surface of the sheath.
The polyolefin-based resin (a) is not particularly limited as long as it has the properties described above. For example, an ethylene-based polymer such as high-density, medium-density, low-density polyethylene or linear low-density polyethylene, A copolymer of propylene and another α-olefin, specifically, a non-crystalline propylene-based heavy polymer such as propylene-butene-1 random copolymer, propylene-ethylene-butene-1 random copolymer, or soft polypropylene. Examples thereof include polymer and poly-4-methylpentene-1. These polyolefin resin (a) may be used individually by 1 type, and may be used in combination of 2 or more type.
Among these, high-density polyethylene (melting point of about 130 ° C.) is preferable in consideration of spinnability and cost.

(非晶性樹脂(b))
鞘部材料の成分として、前述のポリオレフィン系樹脂(a)と併用される非晶性樹脂(b)は、そのガラス転移点(Tg)が、前述したポリオレフィン系樹脂(a)の融点よりも高いことを要する。理由は前述のポリオレフィン系樹脂(a)において説明したとおりである。
当該非晶性樹脂(b)としては、環状オレフィン系重合体やポリカーボネートなどを挙げることができる。
環状オレフィン系重合体としては、例えばエチレンとノルボルネンとの共重合体である環状オレフィンコポリマー[ポリプラスチックス社製、登録商標「TOPAS」、5013のTg=134℃]、エチレンと環状オレフィンとの共重合体である環状オレフィンコポリマー[三井化学社製、登録商標「アペル」、APL5014DPのTg=135℃]、ノルボルネン誘導体のメタセシス開環重合により得られたシクロオレフィンポリマー[日本ゼオン社製、登録商標「ZEONEX」、480RのTg=138℃]、トリシクロデカン構造を有するシクロオレフィンポリマー[JSR社製、登録商標「ARTON」、Tg=171℃]などを挙げることができる。
本発明においては、前記非晶性樹脂(b)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、特に環状オレフィンコポリマー及び/又はポリカーボネートが性能の観点から好ましい。
(Amorphous resin (b))
As a component of the sheath material, the amorphous resin (b) used in combination with the polyolefin resin (a) described above has a glass transition point (Tg) higher than the melting point of the polyolefin resin (a) described above. It takes a thing. The reason is as described in the polyolefin resin (a).
Examples of the amorphous resin (b) include cyclic olefin polymers and polycarbonate.
Examples of the cyclic olefin polymer include a cyclic olefin copolymer that is a copolymer of ethylene and norbornene [manufactured by Polyplastics Co., Ltd., registered trademark “TOPAS”, Tg of 5013 = 134 ° C.], a copolymer of ethylene and cyclic olefin. Cyclic olefin copolymer as a polymer [Mitsui Chemicals, registered trademark “Apel”, APL5014DP Tg = 135 ° C.], cycloolefin polymer obtained by metathesis ring-opening polymerization of norbornene derivative [manufactured by Nippon Zeon, registered trademark “ ZEONEX ”, Tg of 480R = 138 ° C.], cycloolefin polymer having a tricyclodecane structure [manufactured by JSR, registered trademark“ ARTON ”, Tg = 171 ° C.] and the like.
In the present invention, the amorphous resin (b) may be used singly or may be used in combination of two or more, and in particular, a cyclic olefin copolymer and / or polycarbonate is used from the viewpoint of performance. preferable.

本発明の潜在凹凸型鞘芯複合繊維において、鞘部材料として用いられる樹脂組成物(A)においては、前述したポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合は、該複合繊維の熱処理により、鞘部表面に不規則な凹凸状を形成させる観点から、質量比で97:3〜70:30であることが好ましく、95:5〜85:15であることがより好ましい。   In the latent uneven sheath-core composite fiber of the present invention, in the resin composition (A) used as the sheath material, the content ratio of the polyolefin resin (a) and the amorphous resin (b) described above is From the viewpoint of forming irregular irregularities on the sheath surface by heat treatment of the composite fiber, the mass ratio is preferably 97: 3 to 70:30, more preferably 95: 5 to 85:15. .

[芯部を構成する材料]
本発明の潜在凹凸型鞘芯複合材料においては、芯部を構成する材料(以下、芯部材料と称することがある。)として、熱可塑性樹脂(B)が用いられる。
当該熱可塑性樹脂(B)は、その融点が前述したポリオレフィン系樹脂(a)の融点よりも高いことを要し、例えば結晶性ポリプロピレン、ポリエチレンテレフタレートやポリブチレンテレフタレートなどの結晶性ポリエステル、ポリアミド(ナイロン)、芳香族ポリエステル樹脂(液晶ポリマー)などを用いることができ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、熱処理により鞘部の表面に不規則な凹凸を好適に形成し得る観点から、結晶性ポリプロピレンが好ましい。
[Material for core]
In the latent concavo-convex sheath-core composite material of the present invention, a thermoplastic resin (B) is used as a material constituting the core portion (hereinafter sometimes referred to as a core portion material).
The thermoplastic resin (B) needs to have a melting point higher than that of the polyolefin resin (a) described above. For example, crystalline polypropylene, crystalline polyester such as polyethylene terephthalate or polybutylene terephthalate, polyamide (nylon) ), Aromatic polyester resins (liquid crystal polymers) and the like, and these may be used alone or in combination of two or more. Among these, crystalline polypropylene is preferable from the viewpoint that irregular irregularities can be suitably formed on the surface of the sheath by heat treatment.

この結晶性ポリプロピレンとしては、アイソタクチックポリプロピレン系樹脂が好ましく用いられる。中でもアイソタクチックペンタッド分率(IPF)が、好ましくは85%以上、より好ましくは90%以上のものが有利である。また、分子量分布の指標であるQ値(重量平均分子量/数平均分子量Mw/Mn比)は6以下、メルトフローレートMFR(温度230℃、荷重21.18N)は3〜50g/10分の範囲が好ましい。上記IPFが85%未満では立体規則性が不充分で結晶性が低く、得られる複合繊維における強度などの物性に劣る。   As this crystalline polypropylene, an isotactic polypropylene resin is preferably used. Among them, those having an isotactic pentad fraction (IPF) of preferably 85% or more, more preferably 90% or more are advantageous. The Q value (weight average molecular weight / number average molecular weight Mw / Mn ratio), which is an index of molecular weight distribution, is 6 or less, and the melt flow rate MFR (temperature 230 ° C., load 21.18 N) is in the range of 3 to 50 g / 10 min. Is preferred. If the IPF is less than 85%, the stereoregularity is insufficient and the crystallinity is low, and the physical properties such as strength of the resulting composite fiber are poor.

なお、アイソタクチックペンタッド分率(IPF)(一般にmmmm分率ともいわれる)は、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して、側鎖である5つのメチル基がいずれも同方向に位置する立体構造の割合を示すものであって、同位体炭素核磁気共鳴スペクトル(13C−NMR)にけるPmmmm(プロピレン単位が5個連続してアイソタクチック結合した部位における第3単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)から、式
IPF(%)=(Pmmmm/Pw)×100
によって求めることができる。
The isotactic pentad fraction (IPF) (generally also referred to as mmmm fraction) is a side chain with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. This shows the proportion of the three-dimensional structure in which two methyl groups are located in the same direction. Pmmmm (5 propylene units are isotactic) in the isotope carbon nuclear magnetic resonance spectrum ( 13 C-NMR). From the absorption intensity derived from the methyl group of the third unit at the bonded site and Pw (absorption intensity derived from all methyl groups of the propylene unit), the formula IPF (%) = (Pmmmm / Pw) × 100
Can be obtained.

また、このポリプロピレンは、プロピレンの単独重合体であってもよいし、プロピレンとα−オレフィン(例えばエチレン、ブテン−1など)との共重合体であってもよい。
すなわち、結晶性ポリプロピレンとしては、例えば結晶性を有するアイソタクチックプロピレン単独重合体、エチレン単位の含有量の少ないエチレン−プロピレンランダム共重合体、プロピレン単独重合体からなるホモ部とエチレン単位の含有量の比較的多いエチレン−プロピレンランダム共重合体からなる共重合部とから構成されたプロピレンブロック共重合体、さらに前記プロピレンブロック共重合体における各ホモ部または共重合部が、さらにブテン−1などのα−オレフィンを共重合したものからなる結晶性プロピレン−エチレン−α−オレフィン共重合体などが挙げられる。
なお、本発明においては、前記の鞘部材料である樹脂組成物(A)及び芯部材料である熱可塑性樹脂(B)には、必要に応じ、各種添加剤、例えば耐候剤、耐熱安定剤、難燃剤、着色剤、消臭剤、抗菌剤、芳香剤などを含有させることができる。
Further, the polypropylene may be a propylene homopolymer or a copolymer of propylene and an α-olefin (for example, ethylene, butene-1, etc.).
That is, as crystalline polypropylene, for example, isotactic propylene homopolymer having crystallinity, ethylene-propylene random copolymer having a small ethylene unit content, homo-part consisting of propylene homopolymer and ethylene unit content A propylene block copolymer composed of a copolymer part composed of an ethylene-propylene random copolymer having a relatively large amount of each of the above-mentioned propylene block copolymers, and each homo part or copolymer part in the propylene block copolymer further includes butene-1, etc. Examples thereof include crystalline propylene-ethylene-α-olefin copolymers formed by copolymerizing α-olefins.
In the present invention, the resin composition (A), which is the sheath material, and the thermoplastic resin (B), which is the core material, include various additives such as weathering agents and heat stabilizers as necessary. , Flame retardants, colorants, deodorants, antibacterial agents, fragrances and the like can be included.

[潜在凹凸型鞘芯複合繊維の製造方法]
本発明の潜在凹凸型鞘芯複合繊維を製造する方法に特に制限はないが、例えば下記に示す本発明の方法によれば効率よく製造することができる。
本発明の製造方法は、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなり、ポリオレフィン系樹脂(a)の融点が熱可塑性樹脂(B)の融点及び非晶性樹脂(b)のガラス転移点(Tg)よりも低い樹脂組成物(A)を鞘部とし、熱可塑性樹脂(B)を芯部として鞘芯複合繊維を溶融紡糸する工程、及びポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で熱延伸する工程、を含むことを特徴とする。
[Manufacturing method of latent uneven sheath-core composite fiber]
Although there is no restriction | limiting in particular in the method of manufacturing the latent uneven | corrugated sheath-core composite fiber of this invention, For example, according to the method of this invention shown below, it can manufacture efficiently.
The production method of the present invention comprises a sheath part made of a resin composition (A) containing a polyolefin resin (a) and an amorphous resin (b), and a core part containing a thermoplastic resin (B), A resin composition (A) in which the melting point of the polyolefin resin (a) is lower than the melting point of the thermoplastic resin (B) and the glass transition point (Tg) of the amorphous resin (b) is used as a sheath, and a thermoplastic resin ( B) melt-spinning the sheath-core composite fiber with the core as the core, and heat at a temperature not lower than the Tg of the polyolefin resin (a) and not higher than the melting point and not higher than Tg of the amorphous resin (b). A step of stretching.

(溶融紡糸工程)
本発明の製造方法における、鞘芯複合繊維を溶融紡糸する工程は、従来、鞘芯複合繊維の製造において使用されている公知の方法を用いることができる。例えば、前記の鞘成分および芯成分を用い、押出し機2台と鞘芯型繊維用ノズルを備えた複合紡糸装置により、紡糸温度200〜300℃程度で溶融紡糸することにより、鞘芯構造の複合繊維が得られる。このようにして得られた鞘芯型複合繊維における芯/鞘断面積比は、通常40/60〜80/20の範囲で選定される。
(Melt spinning process)
The step of melt spinning the sheath-core composite fiber in the production method of the present invention can be a known method conventionally used in the production of sheath-core composite fibers. For example, by using the above-mentioned sheath component and core component, a composite having a sheath-core structure is obtained by melt spinning at a spinning temperature of about 200 to 300 ° C. by a composite spinning apparatus equipped with two extruders and a sheath-core type fiber nozzle. Fiber is obtained. The core / sheath cross-sectional area ratio in the thus obtained sheath-core type composite fiber is usually selected in the range of 40/60 to 80/20.

(熱延伸工程)
本発明の製造方法においては、前記溶融紡糸工程で得られた鞘芯複合繊維を熱延伸処理する。この熱延伸処理は、ポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で行われる。
当該熱延伸工程においては、従来公知の熱延伸処理方法、例えば一般的に知られている金属加熱ロールや金属加熱板などを用いた接触加熱延伸、あるいは温水、常圧〜0.2MPa程度の水蒸気や熱風などの加熱流体、遠赤外線などの熱線を用いた非接触加熱延伸、及びこれらの組み合わせなどの方法を適用することができる。紙おむつ等、風合いを求められる用途において、延伸倍率は、通常2〜6倍程度、好ましくは3〜5倍である。得られた複合延伸繊維における単糸繊度は、通常2〜10dTex程度、好ましくは3〜5dTexである。
(Heat drawing process)
In the production method of the present invention, the sheath-core composite fiber obtained in the melt spinning step is subjected to a heat stretching process. This heat stretching treatment is performed at a temperature not lower than Tg and not higher than the melting point of the polyolefin resin (a) and not higher than Tg of the amorphous resin (b).
In the thermal stretching step, a conventionally known thermal stretching treatment method, for example, contact heating stretching using a generally known metal heating roll or metal heating plate, or hot water, water vapor of about normal pressure to about 0.2 MPa. A method such as heating fluid such as hot air or non-contact heating using a heat ray such as far-infrared rays, or a combination thereof can be applied. In applications such as paper diapers where texture is required, the draw ratio is usually about 2 to 6 times, preferably 3 to 5 times. The single yarn fineness in the obtained composite drawn fiber is usually about 2 to 10 dTex, preferably 3 to 5 dTex.

(捲縮加工)
本発明においては、このようにして得られた複合延伸繊維に、通常捲縮加工が施される。該捲縮加工方法としては、特に制限はなく、従来ポリオレフィン系複合延伸繊維の捲縮加工に慣用されている方法を用いることができる。例えば、該複合延伸繊維に、常法により、捲縮数10〜18個/2.5cm程度、好ましくは12〜16個/2.5cmで機械捲縮を施すことにより、捲縮複合延伸繊維が得られる。
(Crimping)
In the present invention, the composite drawn fiber thus obtained is usually crimped. There is no restriction | limiting in particular as this crimping method, The method conventionally used for the crimping process of the polyolefin-type composite stretched fiber can be used. For example, the composite stretched fiber is subjected to mechanical crimping at a crimp number of about 10 to 18 pieces / 2.5 cm, preferably 12 to 16 pieces / 2.5 cm, by a conventional method. can get.

次に、本発明の不織布について説明する。
[不織布]
本発明の不織布は、前述した潜在凹凸型鞘芯複合繊維から得られた不織布を熱処理して、鞘部表面に凹凸状を発現させてなることを特徴とする。
(不織布の製造方法)
本発明の不織布は、例えば下記の方法により製造することができる。
まず、前述の捲縮加工で得られた捲縮複合延伸繊維を常法に従って、通常15〜80mm、好ましくは25〜60mmに切断して、短繊維の潜在凹凸型鞘芯複合繊維を得る。次いで、この短繊維の潜在凹凸型鞘芯複合繊維を用いて、不織布を作製する。
Next, the nonwoven fabric of this invention is demonstrated.
[Nonwoven fabric]
The non-woven fabric of the present invention is characterized in that the non-woven fabric obtained from the latent concavo-convex sheath-core composite fiber is heat-treated so that the concavo-convex shape is expressed on the surface of the sheath portion.
(Nonwoven fabric manufacturing method)
The nonwoven fabric of this invention can be manufactured by the following method, for example.
First, the crimped composite stretched fiber obtained by the above-described crimping process is usually cut into 15 to 80 mm, preferably 25 to 60 mm, in accordance with a conventional method to obtain a latent-concave uneven sheath-core composite fiber. Subsequently, a nonwoven fabric is produced using this short fiber latent uneven sheath-core composite fiber.

不織布の作製方法としては、熱融着法、熱ロール法、スパーンレース法、ニードルパンチ法などがあるが、本発明においては、熱融着法、特に熱風融着法を採用するのが有利である。この熱風融着法で不織布を作製した場合、不織布の作製と同時に、鞘芯複合繊維の鞘部表面に不規則な凹凸が発現して、所望の不織布が容易に得られるからである。
この熱風融着法による不織布の製造方法としては特に制限はなく、従来熱風融着加工による不織布の製造において慣用されている方法を用いることができる。例えば前述したようにして得られた短繊維の潜在凹凸型鞘芯複合繊維を、ローラーカード機にてカーディングして所望の目付重量のウェッブを作製したのち、エアースルー方式等の熱風融着法により、当該不織布が得られる。
この際、熱風融着は、ポリオレフィン系樹脂(a)の融点以上の温度、かつ非晶性樹脂(b)のガラス転移点(Tg)近傍又は該Tg以下の温度で行うことが肝要である。
Non-woven fabric production methods include a heat fusion method, a heat roll method, a span lace method, a needle punch method, etc. In the present invention, it is advantageous to employ a heat fusion method, particularly a hot air fusion method. is there. This is because when the nonwoven fabric is produced by this hot-air fusion method, irregular irregularities appear on the surface of the sheath portion of the sheath-core composite fiber simultaneously with the production of the nonwoven fabric, and a desired nonwoven fabric can be easily obtained.
There is no restriction | limiting in particular as a manufacturing method of the nonwoven fabric by this hot-air melt | fusion method, The method conventionally used in manufacture of the nonwoven fabric by a hot-air melt | fusion process can be used. For example, the latent uneven sheath-core composite fiber of short fibers obtained as described above is carded with a roller card machine to produce a web with a desired basis weight, and then a hot-air fusion method such as an air-through method The said nonwoven fabric is obtained.
At this time, it is important that the hot air fusion is performed at a temperature equal to or higher than the melting point of the polyolefin resin (a) and near or below the glass transition point (Tg) of the amorphous resin (b).

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
(1)鞘芯複合未延伸繊維の作製
鞘部材料として、高密度ポリエチレン[京葉ポリエチレン社製、商品名「S6932」、MFR(190℃,21.18N)=20g/10分、融点:約130℃、Tg:約−120℃]と、環状オレフィンコポリマー[ポリプラスチック社製、登録商標「TOPAS 5013」、Tg=134℃]とを質量比95:5の割合で含む樹脂組成物を、芯部材料として、ホモポリプロピレン[プライムポリマー社製、商品名「Y2005GP」、MFR(230℃、21.18N)=20g/10分、融点:161℃]を用い、一軸押出機2台と、径0.4mmのホール数1200個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、第1表に示す条件で紡糸し、単糸繊度が13.8dTexの鞘芯複合未延伸繊維を作製した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
(1) Production of sheath-core composite unstretched fiber As a sheath material, high-density polyethylene [manufactured by Keiyo Polyethylene Co., Ltd., trade name “S6932”, MFR (190 ° C., 21.18 N) = 20 g / 10 min, melting point: about 130 C., Tg: about −120 ° C.) and a cyclic olefin copolymer [polyplastics, registered trademark “TOPAS 5013”, Tg = 134 ° C.] in a mass ratio of 95: 5, As a material, homopolypropylene [manufactured by Prime Polymer Co., Ltd., trade name “Y2005GP”, MFR (230 ° C., 21.18 N) = 20 g / 10 min, melting point: 161 ° C.] was used. A sheath spinning core having a single fiber fineness of 13.8 dTex, spun under the conditions shown in Table 1 by a composite spinning device having a composite fiber nozzle having 1200 holes of 4 mm. The case undrawn fiber was produced.

(2)鞘芯複合延伸繊維の作製
上記(1)で得られた鞘芯複合未延伸繊維を、同じく第1表に示す条件で延伸処理して、延伸倍率4倍の単糸繊度が3.7dTexである鞘芯複合延伸繊維を作製した。
(3)短繊維の鞘芯複合繊維の作製
上記(2)で得られた鞘芯複合延伸繊維に、機械捲縮加工を施した。その後、ロータリーカッターにより、約50mmの長さにカットすることにより、短繊維の鞘芯複合延伸繊維を作製した。
(2) Production of sheath-core composite stretched fiber The sheath-core composite unstretched fiber obtained in (1) above was stretched under the conditions shown in Table 1, and the single yarn fineness at a stretch ratio of 4 was 3. A sheath-core composite drawn fiber having 7 dTex was produced.
(3) Production of short-fiber sheath-core composite fiber The sheath-core composite stretched fiber obtained in (2) above was subjected to mechanical crimping. Then, the short core sheath core composite stretched fiber was produced by cutting to about 50 mm length with a rotary cutter.

(4)不織布の作製
上記(3)で得られた短繊維の鞘芯複合繊維を用い、熱風融着法により、温度135℃、風速2.7m/s、処理時間5秒の融着条件にて、鞘部の表面に不規則な凹凸を有する熱風融着不織布を作製した。
図1に鞘芯複合未延伸繊維の走査型電子顕微鏡(SEM)写真を、図2に鞘芯複合延伸繊維のSEM写真を、図3に熱風融着不織布を構成する鞘芯複合繊維のSEM写真を示す。
図1〜図3から分かるように、鞘芯複合未延伸繊維の鞘部表面には凹凸は認められないが、鞘芯複合延伸繊維の鞘部表面には凹凸がかすかに認められる。また、熱風融着不織布を構成する鞘芯複合繊維の鞘部表面には凹凸がかなり認められる。これらの凹凸状態についてもまとめて第1表に示す。
(4) Fabrication of non-woven fabric Using the short-core sheath-core composite fiber obtained in (3) above, the hot air fusion method was used to achieve fusion conditions of a temperature of 135 ° C., a wind speed of 2.7 m / s, and a treatment time of 5 seconds. Thus, a hot-air fused nonwoven fabric having irregular irregularities on the surface of the sheath portion was produced.
FIG. 1 shows a scanning electron microscope (SEM) photograph of the sheath-core composite unstretched fiber, FIG. 2 shows an SEM photograph of the sheath-core composite stretched fiber, and FIG. 3 shows an SEM photograph of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric. Indicates.
As can be seen from FIGS. 1 to 3, the surface of the sheath part of the sheath-core composite unstretched fiber has no irregularities, but the surface of the sheath part of the sheath-core composite stretched fibers is slightly uneven. Further, unevenness is considerably observed on the surface of the sheath portion of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric. These irregularities are also summarized in Table 1.

実施例2
実施例1(1)において、高密度ポリエチレン「S6932」(前出)と、環状オレフィンコポリマー「TOPAS 5013」(前出)との質量比を90:10に変更し、鞘芯複合未延伸繊維の単糸繊度が14.4dTex、鞘芯複合延伸繊維の単糸繊度が3.7dTexである以外は、実施例1と同様な操作を行った。
図4に鞘芯複合未延伸繊維のSEM写真を、図5に鞘芯複合延伸繊維のSEM写真を、図6に熱風融着不織布を構成する鞘芯複合繊維のSEM写真を示す。さらに、図7に熱風融着不織布を構成する鞘芯複合繊維の透過型光学顕微鏡写真を示す。
図4〜図7から分かるように、鞘芯複合未延伸繊維の鞘部表面には凹凸は認められないが、鞘芯複合延伸繊維の鞘部表面には凹凸が認められ、また、熱風融着不織布を構成する鞘芯複合繊維の鞘部表面には大きな凹凸が認められる。
Example 2
In Example 1 (1), the mass ratio of the high density polyethylene “S6932” (supra) and the cyclic olefin copolymer “TOPAS 5013” (supra) was changed to 90:10, The same operation as in Example 1 was performed except that the single yarn fineness was 14.4 dTex and the single-core fineness of the sheath-core composite drawn fiber was 3.7 dTex.
FIG. 4 shows an SEM photograph of the sheath-core composite unstretched fiber, FIG. 5 shows an SEM photograph of the sheath-core composite stretched fiber, and FIG. 6 shows an SEM photograph of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric. Further, FIG. 7 shows a transmission optical micrograph of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric.
As can be seen from FIG. 4 to FIG. 7, no irregularities are observed on the sheath surface of the sheath-core composite unstretched fiber, but irregularities are observed on the sheath surface of the sheath-core composite stretched fiber. Large irregularities are observed on the surface of the sheath portion of the sheath-core composite fiber constituting the nonwoven fabric.

実施例3
鞘部材料として、高密度ポリエチレン[京葉ポリエチレン社製、商品名「S6932」、MFR(190℃,21.18N)=20g/10分、融点:約130℃、Tg:約−120℃]と、環状オレフィンコポリマー[ポリプラスチック社製、登録商標「TOPAS 5013」、Tg=134℃]とを質量比90:10の割合で含む樹脂組成物を、芯部材料として、ポリエチレンテレフタレート[鐘紡(株)社製、商品名「K101
」、相対粘度0.6、融点:264℃]を用い、一軸押出機2台と、径0.4mmのホール数1200個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、第1表に示す条件で紡糸と延伸を行い、鞘芯複合未延伸繊維の単糸繊度が8.75dTex、鞘芯複合延伸繊維の単糸繊度が3.0dTexである以外は、実施例1と同様な操作を行った。その結果、熱風融着不織布を構成する鞘芯複合繊維の鞘部表面には大きな凹凸が認められた。
Example 3
As the sheath material, high density polyethylene [manufactured by Keiyo Polyethylene Co., Ltd., trade name “S6932”, MFR (190 ° C., 21.18 N) = 20 g / 10 min, melting point: about 130 ° C., Tg: about −120 ° C.] Polyethylene terephthalate [Kanebo Co., Ltd.] with a resin composition containing cyclic olefin copolymer [polyplastics, registered trademark “TOPAS 5013”, Tg = 134 ° C.] in a mass ratio of 90:10 Product name "K101
”, Relative viscosity 0.6, melting point: 264 ° C.], using a composite spinning apparatus including two single-screw extruders and a composite fiber nozzle having 1200 holes with a diameter of 0.4 mm. Spinning and drawing were performed under the conditions shown in the table, and the single yarn fineness of the sheath-core composite unstretched fiber was 8.75 dTex, and the single-fiber fineness of the sheath-core composite drawn fiber was 3.0 dTex. The operation was performed. As a result, large irregularities were observed on the surface of the sheath part of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric.

比較例1
実施例1(1)において、鞘部材料として高密度ポリエチレン「S6932」(前出)のみを用い、鞘芯複合未延伸繊維の単糸繊度が13.9dTex、鞘芯複合延伸繊維の単糸繊度が3.7dTexである以外は、実施例1と同様な操作を行った。
図8に鞘芯複合未延伸繊維のSEM写真を、図9に鞘芯複合延伸繊維のSEM写真を、図10に熱風融着不織布を構成する鞘芯複合繊維のSEM写真を示す。
図8〜図10から分かるように、鞘芯複合未延伸繊維の鞘部表面、鞘芯複合延伸繊維の鞘部表面及び熱風融着不織布を構成する鞘芯複合繊維の鞘部表面には、いずれも凹凸が認められない。
Comparative Example 1
In Example 1 (1), only the high density polyethylene “S6932” (described above) is used as the sheath material, the single yarn fineness of the sheath core composite unstretched fiber is 13.9 dTex, and the single yarn fineness of the sheath core composite stretched fiber The same operation as in Example 1 was performed except that is 3.7 dTex.
FIG. 8 shows an SEM photograph of the sheath-core composite unstretched fiber, FIG. 9 shows an SEM photograph of the sheath-core composite stretched fiber, and FIG. 10 shows an SEM photograph of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric.
As can be seen from FIGS. 8 to 10, the sheath surface of the sheath core composite unstretched fiber, the sheath surface of the sheath core composite stretch fiber, and the sheath surface of the sheath core composite fiber constituting the hot-air fused nonwoven fabric are No irregularities are observed.

比較例2
(1)鞘芯複合未延伸繊維の作製
鞘部材料として、高密度ポリエチレン「S6932」(前出)と、環状オレフィンコポリマー[ポリプラスチックス社製、登録商標「TOPAS 8007」、Tg=78℃]とを、質量比80:20の割合で含む樹脂組成物を、芯部材料として、ホモポリプロピレン「Y2005GP」(前出)を用い、一軸押出機2台と、径0.4mmのホール数1200個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、第1表に示す条件で紡糸し、単糸繊度が7.9dTexの鞘芯複合未延伸繊維を作製した。
Comparative Example 2
(1) Production of sheath-core composite unstretched fiber As sheath material, high-density polyethylene “S6932” (supra) and cyclic olefin copolymer [manufactured by Polyplastics, registered trademark “TOPAS 8007”, Tg = 78 ° C.] Using a homopolypropylene “Y2005GP” (supra) as a core material, and using two uniaxial extruders and 1200 holes having a diameter of 0.4 mm. Was spun under the conditions shown in Table 1 to produce a sheath-core composite unstretched fiber having a single yarn fineness of 7.9 dTex.

(2)鞘芯複合延伸繊維の作製
上記(1)で得られた鞘芯複合未延伸繊維を、第1表に示す条件で延伸処理して、延伸倍率3.7倍の単糸繊度が2.6dTexである鞘芯複合延伸繊維を作製した。
(3)短繊維の鞘芯複合繊維の作製
上記(2)で得られた鞘芯複合延伸繊維に、機械捲縮加工を施した。その後、ロータリーカッターにより、約50mmの長さにカットすることにより、短繊維の鞘芯複合延伸繊維を作製した。
(2) Production of sheath-core composite stretched fiber The sheath-core composite unstretched fiber obtained in the above (1) is stretched under the conditions shown in Table 1, and the single yarn fineness with a draw ratio of 3.7 is 2. A sheath-core composite drawn fiber having a diameter of 6 dTex was produced.
(3) Production of short-fiber sheath-core composite fiber The sheath-core composite stretched fiber obtained in (2) above was subjected to mechanical crimping. Then, the short core sheath core composite stretched fiber was produced by cutting to about 50 mm length with a rotary cutter.

(4)不織布の作製
上記(3)で得られた短繊維の鞘芯複合繊維を用い、熱風融着法により、温度135℃、風速2.7m/s、処理時間5秒の融着条件にて、熱風融着不織布を作製した。
この熱風融着不織布を構成する鞘芯複合繊維をSEMで観察したところ、鞘部の表面には凹凸は発現していなかった。
(4) Fabrication of non-woven fabric Using the short-core sheath-core composite fiber obtained in (3) above, the hot air fusion method was used to achieve fusion conditions of a temperature of 135 ° C., a wind speed of 2.7 m / s, and a treatment time of 5 seconds. Thus, a hot air fusion nonwoven fabric was produced.
When the sheath-core composite fiber constituting the hot-air fused nonwoven fabric was observed with an SEM, the surface of the sheath portion did not show any unevenness.

比較例3
(1)鞘芯複合未延伸繊維の作製
鞘部材料として、高密度ポリエチレン「S6932」(前出)と、環状オレフィンコポリマー[ポリプラスチックス社製、登録商標「TOPAS 8007」、Tg=78℃]とを、質量比50:50の割合で含む樹脂組成物を、芯部材料として、ホモポリプロピレン「Y2005GP」(前出)を用い、一軸押出機2台と、径0.4mmのホール数1200個を有する複合型繊維用ノズルとを備えた複合紡糸装置により、第1表に示す条件で紡糸し、単糸繊度が4.6dTexの鞘芯複合未延伸繊維を作製した。
Comparative Example 3
(1) Production of sheath-core composite unstretched fiber As sheath material, high-density polyethylene “S6932” (supra) and cyclic olefin copolymer [manufactured by Polyplastics, registered trademark “TOPAS 8007”, Tg = 78 ° C.] Using a homopolypropylene “Y2005GP” (supra) as a core material, and using two uniaxial extruders and 1200 holes with a diameter of 0.4 mm. Was spun under the conditions shown in Table 1 to produce a sheath-core composite unstretched fiber having a single yarn fineness of 4.6 dTex.

(2)鞘芯複合延伸繊維の作製
上記(1)で得られた鞘芯複合未延伸繊維を、第1表に示す条件で延伸処理して、延伸倍率1.8倍の単糸繊度が2.9dTexである鞘芯複合延伸繊維を作製した。
(3)短繊維の鞘芯複合繊維の作製
上記(2)で得られた鞘芯複合延伸繊維に、機械捲縮加工を施した。その後、ロータリーカッターにより、約50mmの長さにカットすることにより、短繊維の鞘芯複合延伸繊維を作製した。
(2) Production of sheath-core composite stretched fiber The sheath-core composite unstretched fiber obtained in (1) above is stretched under the conditions shown in Table 1, and the single yarn fineness with a draw ratio of 1.8 is 2 A sheath-core composite drawn fiber having a diameter of 9 dTex was produced.
(3) Production of short-fiber sheath-core composite fiber The sheath-core composite stretched fiber obtained in (2) above was subjected to mechanical crimping. Then, the short core sheath core composite stretched fiber was produced by cutting to about 50 mm length with a rotary cutter.

(4)不織布の作製
上記(3)で得られた短繊維の鞘芯複合繊維を用い、熱風融着法により、温度135℃、風速2.7m/s、処理時間5秒の融着条件にて、熱風融着不織布を作製した。
図11に熱風融着不織布を構成する鞘芯複合繊維の光学顕微鏡写真を示す。図11から分かるように、熱風融着不織布を構成する鞘芯複合繊維の鞘部表面には凹凸は認められない。
(4) Fabrication of non-woven fabric Using the short-core sheath-core composite fiber obtained in (3) above, the hot air fusion method was used to achieve fusion conditions of a temperature of 135 ° C., a wind speed of 2.7 m / s, and a treatment time of 5 seconds. Thus, a hot air fusion nonwoven fabric was produced.
FIG. 11 shows an optical micrograph of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric. As can be seen from FIG. 11, no irregularities are observed on the surface of the sheath portion of the sheath-core composite fiber constituting the hot-air fused nonwoven fabric.

本発明の潜在凹凸型鞘芯複合繊維は、幅広い範囲の繊度を有し、触感や風合い、ソフト感や膨らみ感を改良すると共に、水を拡散(滲みが大きい)させる効果が大きな不織布を与えることができる。   The latent uneven sheath-core composite fiber of the present invention has a wide range of fineness, improves tactile sensation, texture, softness and swelling, and gives a non-woven fabric having a large effect of diffusing water (large bleeding) Can do.

Claims (8)

ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなる複合繊維であって、ポリオレフィン系樹脂(a)の融点は熱可塑性樹脂(B)の融点よりも低く、かつ非晶性樹脂(b)のガラス転移点(Tg)はポリオレフィン系樹脂(a)の融点よりも高く、該複合繊維を熱処理することにより鞘部の表面に凹凸状を形成できる潜在凹凸型鞘芯複合繊維。   A composite fiber comprising a sheath part made of a resin composition (A) containing a polyolefin resin (a) and an amorphous resin (b) and a core part containing a thermoplastic resin (B), the polyolefin fiber The melting point of the resin (a) is lower than the melting point of the thermoplastic resin (B), and the glass transition point (Tg) of the amorphous resin (b) is higher than the melting point of the polyolefin resin (a). A latent concavo-convex sheath-core composite fiber capable of forming a concavo-convex shape on the surface of the sheath by heat-treating. 熱可塑性樹脂(B)が結晶性ポリプロピレンであり、かつポリオレフィン系樹脂(a)が高密度ポリエチレンである請求項1に記載の潜在凹凸型鞘芯複合繊維。   The latent uneven sheath-core composite fiber according to claim 1, wherein the thermoplastic resin (B) is crystalline polypropylene and the polyolefin resin (a) is high-density polyethylene. 非晶性樹脂(b)が、環状オレフィンコポリマー及び/又はポリカーボネ―トである請求項1又は2に記載の潜在凹凸型鞘芯複合繊維。   The latent uneven sheath-core composite fiber according to claim 1 or 2, wherein the amorphous resin (b) is a cyclic olefin copolymer and / or a polycarbonate. 非晶性樹脂(b)が、環状オレフィンコポリマーである請求項3に記載の潜在凹凸型鞘芯複合繊維。   The latent uneven sheath-core composite fiber according to claim 3, wherein the amorphous resin (b) is a cyclic olefin copolymer. 樹脂組成物(A)におけるポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜70:30である請求項1〜4のいずれかに記載の潜在凹凸型鞘芯複合繊維。   The latent ratio according to any one of claims 1 to 4, wherein a content ratio of the polyolefin resin (a) and the amorphous resin (b) in the resin composition (A) is 97: 3 to 70:30 by mass ratio. Uneven type sheath-core composite fiber. 請求項1〜5のいずれかに記載の潜在凹凸型鞘芯複合繊維から得られた不織布を熱処理して、鞘部の表面に凹凸状を発現させてなることを特徴とする不織布。   A nonwoven fabric obtained by heat-treating a nonwoven fabric obtained from the latent uneven sheath-core composite fiber according to any one of claims 1 to 5 to develop an uneven shape on the surface of the sheath portion. 熱処理を、ポリオレフィン系樹脂(a)の融点以上の温度、かつ非晶性樹脂(b)のガラス転移点(Tg)近傍又は該Tg以下の温度で行う請求項6に記載の不織布。   The nonwoven fabric according to claim 6, wherein the heat treatment is performed at a temperature equal to or higher than the melting point of the polyolefin resin (a) and near or below the glass transition point (Tg) of the amorphous resin (b). ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物(A)からなる鞘部と、熱可塑性樹脂(B)を含む芯部とからなり、ポリオレフィン系樹脂(a)の融点が熱可塑性樹脂(B)の融点及び非晶性樹脂(b)のガラス転移点(Tg)よりも低い樹脂組成物(A)を鞘部とし、熱可塑性樹脂(B)を芯部として鞘芯複合繊維を溶融紡糸する工程、及びポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で熱延伸する工程、を含むことを特徴とする潜在凹凸型鞘芯複合繊維の製造方法。   A polyolefin resin (a) and a non-crystalline resin (b) are composed of a sheath portion made of a resin composition (A) and a core portion containing a thermoplastic resin (B). The sheath is composed of the resin composition (A) having a melting point lower than the melting point of the thermoplastic resin (B) and the glass transition point (Tg) of the amorphous resin (b), and the thermoplastic resin (B) as the core. A step of melt spinning the core composite fiber, and a step of hot drawing at a temperature not lower than the melting point Tg of the polyolefin resin (a) and not higher than the melting point and not higher than Tg of the amorphous resin (b). A method for producing a latent uneven sheath-core composite fiber characterized by
JP2010094123A 2010-04-15 2010-04-15 Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same Active JP5619467B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010094123A JP5619467B2 (en) 2010-04-15 2010-04-15 Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010094123A JP5619467B2 (en) 2010-04-15 2010-04-15 Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same

Publications (2)

Publication Number Publication Date
JP2011226002A true JP2011226002A (en) 2011-11-10
JP5619467B2 JP5619467B2 (en) 2014-11-05

Family

ID=45041690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010094123A Active JP5619467B2 (en) 2010-04-15 2010-04-15 Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same

Country Status (1)

Country Link
JP (1) JP5619467B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115522270A (en) * 2022-10-26 2022-12-27 山东金冠网具有限公司 Conductive polymer fiber with skin-core structure and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519296A (en) * 1999-12-30 2003-06-17 ビービーエイ・ノンウォーヴンズ・シンプソンヴィル,インコーポレイテッド Multicomponent fibers and fabrics made therefrom
JP2004137626A (en) * 2002-10-17 2004-05-13 Unitika Ltd Nonwoven fabric composed of core-sheath conjugate fiber and method for producing the same
JP2005305817A (en) * 2004-04-21 2005-11-04 Unitika Ltd Composite sheet
JP2006517008A (en) * 2003-01-30 2006-07-13 ダウ グローバル テクノロジーズ インコーポレイティド Fibers formed from immiscible polymer blends

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003519296A (en) * 1999-12-30 2003-06-17 ビービーエイ・ノンウォーヴンズ・シンプソンヴィル,インコーポレイテッド Multicomponent fibers and fabrics made therefrom
JP2004137626A (en) * 2002-10-17 2004-05-13 Unitika Ltd Nonwoven fabric composed of core-sheath conjugate fiber and method for producing the same
JP2006517008A (en) * 2003-01-30 2006-07-13 ダウ グローバル テクノロジーズ インコーポレイティド Fibers formed from immiscible polymer blends
JP2005305817A (en) * 2004-04-21 2005-11-04 Unitika Ltd Composite sheet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115522270A (en) * 2022-10-26 2022-12-27 山东金冠网具有限公司 Conductive polymer fiber with skin-core structure and preparation method thereof
CN115522270B (en) * 2022-10-26 2023-04-28 山东金冠网具有限公司 Conductive polymer fiber with sheath-core structure and preparation method thereof

Also Published As

Publication number Publication date
JP5619467B2 (en) 2014-11-05

Similar Documents

Publication Publication Date Title
JP6216013B2 (en) Nonwoven fabric, absorbent article sheet, and absorbent article using the same
JP6069554B2 (en) Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article
JP5233053B2 (en) Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric
US20040161994A1 (en) Extensible fibers and nonwovens made from large denier splittable fibers
JP2011047098A (en) Multilayered nonwoven fabric of conjugate spun-bonded filament having improved characteristic, and method for producing the same
JP4104299B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
KR102433449B1 (en) Nonwoven fabric with improved hand-feel
JP6397210B2 (en) Absorbent article surface sheet and absorbent article including the same
JP4589417B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
JP5172217B2 (en) Laminated nonwoven fabric and method for producing the same
JP5320197B2 (en) Crimpable composite fiber and fiber assembly using the same
JPH0921055A (en) Composite nonwoven fabric and its production
JP2007126806A (en) Crimping conjugate fiber and non-woven fabric using the same
JP5619467B2 (en) Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same
AU2015300833B2 (en) Self-crimped ribbon fiber and nonwovens manufactured therefrom
JP6101012B2 (en) Divisible uneven composite fiber and non-woven fabric using the same
JP4507389B2 (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JP6598951B2 (en) Absorbent article surface sheet and absorbent article including the same
JP2014148774A (en) Nonwoven fabric and method for producing the same
KR101929327B1 (en) The method for preparing spunbond nonwoven fabric having an excellent absorbing and elastic property
JP2009084737A (en) Polycarbonate split type conjugate fiber, fiber aggregate and nonwoven fabric using the same
JP2014033802A (en) Cushioning material and composite short fiber for cushioning material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140917

R150 Certificate of patent or registration of utility model

Ref document number: 5619467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250