JP6101012B2 - Divisible uneven composite fiber and non-woven fabric using the same - Google Patents

Divisible uneven composite fiber and non-woven fabric using the same Download PDF

Info

Publication number
JP6101012B2
JP6101012B2 JP2012157949A JP2012157949A JP6101012B2 JP 6101012 B2 JP6101012 B2 JP 6101012B2 JP 2012157949 A JP2012157949 A JP 2012157949A JP 2012157949 A JP2012157949 A JP 2012157949A JP 6101012 B2 JP6101012 B2 JP 6101012B2
Authority
JP
Japan
Prior art keywords
melting point
fiber
point component
composite
splittable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012157949A
Other languages
Japanese (ja)
Other versions
JP2013049943A (en
Inventor
弘文 矢代
弘文 矢代
幸哲 塚原
幸哲 塚原
晋 南
晋 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2012157949A priority Critical patent/JP6101012B2/en
Publication of JP2013049943A publication Critical patent/JP2013049943A/en
Application granted granted Critical
Publication of JP6101012B2 publication Critical patent/JP6101012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、高融点成分(A)と低融点成分(B)とが相互に接合した繊維断面を有する分割性複合繊維の低融点成分(B)からなる繊維表面部が凹凸状を呈している分割性凹凸複合繊維、前記分割性凹凸複合繊維を効率的に製造する方法、及びその繊維を用いてなる不織布に関する。   In the present invention, the fiber surface portion composed of the low melting point component (B) of the splittable composite fiber having a fiber cross section in which the high melting point component (A) and the low melting point component (B) are bonded to each other has an uneven shape. The present invention relates to a splittable uneven composite fiber, a method for efficiently manufacturing the splittable uneven composite fiber, and a nonwoven fabric using the fiber.

不織布は、一般に紡績工程や撚糸工程を経ることなく繊維から直接製造することができるため、その製造工程は織物や編物に比べて簡単である。このような利点を有する不織布は、衛生材料や日用品などに広く利用されている。この不織布の中でポリプロピレン系不織布は、例えば紙おむつやナプキンの表面材、簡易ワイパー、二次電池用のセパレータ、フィルター(ろ材)などに用いられている。このような不織布などにおいては、鞘芯構造を有する複合繊維、例えばポリプロピレン樹脂を芯材とし、ポリエチレン樹脂を鞘材とする鞘芯複合繊維を使用することが行われている。そしてこの鞘芯複合繊維は強度を高めるために、延伸処理が施されている。   Since a nonwoven fabric can generally be manufactured directly from fibers without passing through a spinning process or a twisting process, the manufacturing process is simpler than that of a woven fabric or a knitted fabric. Nonwoven fabrics having such advantages are widely used for sanitary materials and daily necessities. Among these nonwoven fabrics, polypropylene-based nonwoven fabrics are used, for example, as surface materials for paper diapers and napkins, simple wipers, separators for secondary batteries, filters (filter materials), and the like. In such a nonwoven fabric, a composite fiber having a sheath-core structure, for example, a sheath-core composite fiber having a polypropylene resin as a core material and a polyethylene resin as a sheath material is used. The sheath-core composite fiber is subjected to a stretching process in order to increase the strength.

また、短繊維不織布の製造方法としては、カード機を用いて熱接着性複合繊維を引き揃え、所定の目付になるように積層、絡合させたのち、複合2成分のうちの低融点成分を溶融させることによって繊維相互を融着させて、不織布を形成させる方法が知られている。
前記熱接着性複合繊維は、接着剤を使用しなくても熱風や熱ローラーによる熱で比較的簡単に不織布化が可能である。このような熱接着性複合繊維としては、これまで種々のものが開発されており、例えばポリエチレン−ポリプロピレン系複合繊維やポリエチレン−ポリエチレンテレフタレート系複合繊維等の異種ポリマー鞘芯型複合繊維、共重合ポリエステル−ポリエチレンテレフタレート系複合繊維等の同種ポリマー鞘芯型複合繊維等、種々の繊維が開発されている。また、熱接着性鞘芯型複合繊維を材料とする不織布を得るにあたっては、不織布の用途に応じて、熱風融着法と熱ロール融着法とが使い分けられている。
すなわち、得られる不織布の触感や風合いを重視する場合には熱風融着法が、また得られる不織布の強力を重視する場合には熱ロール融着法が、一般に採用されている。
Moreover, as a manufacturing method of a short fiber nonwoven fabric, a heat bonding composite fiber is arranged using a card machine, laminated and entangled so as to have a predetermined basis weight, and then the low melting point component of the composite two components is used. A method of forming a nonwoven fabric by fusing fibers together by melting them is known.
The heat-adhesive conjugate fiber can be made into a non-woven fabric relatively easily by heat from hot air or a heat roller without using an adhesive. As such a heat-adhesive conjugate fiber, various types have been developed so far, for example, a heterogeneous polymer sheath-core type conjugate fiber such as a polyethylene-polypropylene conjugate fiber and a polyethylene-polyethylene terephthalate conjugate fiber, and a copolyester. -Various fibers have been developed, such as homogeneous polymer sheath-core composite fibers such as polyethylene terephthalate composite fibers. Moreover, when obtaining the nonwoven fabric which uses a heat bondable sheath-core type composite fiber as a material, the hot-air fusion method and the hot roll fusion method are properly used depending on the use of the nonwoven fabric.
That is, the hot air fusion method is generally employed when emphasizing the tactile sensation and texture of the obtained nonwoven fabric, and the hot roll fusion method is employed when emphasizing the strength of the obtained nonwoven fabric.

例えば(1)ポリ(メタ)アクリレート系樹脂を20〜50質量%含有するポリエステル組成物と、ポリ(メタ)アクリレート系樹脂を実質的に含まないポリエステルを、質量比3:97〜40:60の割合で複合紡糸し、3500m/分以下の速度で引取った後、得られた未延伸糸を延伸温度55〜95℃で最大延伸倍率の0.62〜0.91倍に延伸することを特徴とする繊維表面に凹凸を有する複合繊維の製造方法(例えば、特許文献1参照)、(2)少なくとも非エラストマー樹脂とエラストマー樹脂で構成された複合長繊維からなる不織布であって、複合長繊維が螺旋構造と表面凹凸構造とを有し、複合長繊維の非エラストマー樹脂/エラストマー樹脂の容積比率(%)が30/70〜5/95の範囲であり、複合長繊維の繊度が5dtex以下であることを特徴とする弾性長繊維不織布(例えば、特許文献2参照)、(3)紡糸口金より紡糸原液を吐出する際の溶融粘度が100Pa・s以上のポリエステル[A]を鞘成分、20Pa・s以下のポリエステル[B]を芯成分とし、上記ポリエステル[A]及び[B]の溶融粘度差が100Pa・sより大きく、350Pa・s未満であり、かつ高融点成分(A)の太細に起因して太細が生じた複合繊維からなるマルチフィラメント糸条であって、糸条の長さ方向に太繊度部15個/m以上を有する特殊斑糸(例えば、特許文献3参照)が開示されている。   For example, (1) a polyester composition containing 20 to 50% by mass of a poly (meth) acrylate-based resin and a polyester substantially free of a poly (meth) acrylate-based resin having a mass ratio of 3:97 to 40:60 The composite spinning is carried out at a rate of 3,500 m / min or less, and the obtained undrawn yarn is drawn to a maximum draw ratio of 0.62 to 0.91 times at a drawing temperature of 55 to 95 ° C. (2) A non-woven fabric composed of a composite long fiber composed of at least a non-elastomeric resin and an elastomer resin, wherein the composite long fiber is The composite long fiber has a non-elastomeric resin / elastomeric resin volume ratio (%) in the range of 30/70 to 5/95, and has a fineness of the composite long fiber. (3) Polyester [A] having a melt viscosity of 100 Pa · s or more when discharging a spinning stock solution from a spinneret is a sheath component. Polyester [B] of 20 Pa · s or less is a core component, and the difference in melt viscosity between the polyesters [A] and [B] is more than 100 Pa · s and less than 350 Pa · s, and the high melting point component (A) A multifilament yarn made of a composite fiber that is thick and thin due to thick and thin, and has a special spotted yarn having a fineness of 15 pieces / m or more in the length direction of the yarn (for example, see Patent Document 3) ) Is disclosed.

一方、特許文献4においては、縦方向に連続した凹溝を有する異形断面繊維の場合、凹溝に毛細管現象が発現し、水を拡散(滲みが大きい)させる効果が大きくなることが開示されている。   On the other hand, Patent Document 4 discloses that, in the case of a modified cross-section fiber having a continuous groove in the vertical direction, a capillary phenomenon appears in the groove and the effect of diffusing water (large bleeding) is increased. Yes.

また、特許文献5には高融点ポリマーセグメントと低融点ポリマーセグメントが相互に接合した断面形状を有する熱分割性複合繊維が提案されている。
さらに、特許文献6には、(A)熱可塑性ポリエステル成分と(B)ポリオレフィン成分との2成分からなる複合繊維であって、繊維中央部に形成された溜り部分から複数の枝分かれ部が放射状に延びた、(A)成分及び(B)成分の一方からなる主セグメントと、この主セグメントにより区画された、(A)成分および(B)成分の他方からなる複数の副セグメントとが相互に接合した繊維断面を有する剥離分割型複合繊維が提案されている。
特許文献5は風合いに優れた触感の不織布を製造するのに適した熱分割性複合繊維の提供、特許文献6は、肌触りが柔らかく密度が高い極細繊維製不織布を得るのに適した剥離分割型複合繊維を提供、を目的としている。
Patent Document 5 proposes a heat-splitting composite fiber having a cross-sectional shape in which a high-melting polymer segment and a low-melting polymer segment are bonded to each other.
Further, Patent Document 6 discloses a composite fiber composed of two components (A) a thermoplastic polyester component and (B) a polyolefin component, and a plurality of branched portions are radially formed from a reservoir portion formed at the center of the fiber. The extended main segment composed of one of the component (A) and the component (B) and a plurality of sub-segments defined by the main segment and composed of the other of the component (A) and the component (B) are joined to each other. An exfoliation split type composite fiber having a cross section of the fiber has been proposed.
Patent Document 5 provides a heat-splitting composite fiber suitable for producing a tactile nonwoven fabric excellent in texture, and Patent Document 6 describes a peel-splitting type suitable for obtaining a non-woven fabric made of ultrafine fibers with a soft touch and high density. The purpose is to provide composite fibers.

特開2001−164428号公報JP 2001-164428 A 特開2004−250795号公報JP 2004-250795 A 特開平8−188925号公報JP-A-8-188925 国際公開第2009/150745号International Publication No. 2009/150745 特許第2904966号公報Japanese Patent No. 2904966 特許第3294665号公報Japanese Patent No. 3294665

しかしながら、前記特許文献1に記載の表面に凹凸を有する複合繊維は、芯成分及び鞘成分共に、ポリオレフィン系樹脂は用いておらず、ポリエステル系樹脂組成物からなるものであって、紡糸速度、延伸温度及び最大延伸倍率に対する延伸倍率を規定し、鞘成分に凹凸を発現させる技術である。
また、前記特許文献2に記載の弾性長繊維不織布は、例えばスチレンーエチレンーブチレン−スチレンブロック共重合体(SEBS)などのエラストマー樹脂、及びポリプロピレン系樹脂などの非エラストマー樹脂で構成された複合繊維からなり、かつ複合繊維の非エラストマー樹脂/エラストマー樹脂の容積比率を規定すると共に、該複合繊維の繊度を5dtex以下に規定して、表面に螺旋構造と凹凸構造を形成してなる複合長繊維から構成された不織布である。
さらに、前記特許文献3に記載の特殊斑糸は、それぞれ溶融粘度を規定したポリエステル[A]を鞘成分、ポリエステル[B]を芯成分とし、かつポリエステル[A]と[B]の溶融粘度の差を規定してなる、高融点成分(A)の太細に起因して太細が生じた複合繊維からなるマルチフィラメント糸条である。
これらの技術においては、いずれも複合繊維そのものの表面に凹凸を形成させる技術であって、高速紡糸が必須であったり、細い繊維にしか適応させることができなかったり、得られる凹凸も比較的小さいものであった。
However, the composite fiber having irregularities on the surface described in Patent Document 1 does not use a polyolefin-based resin for both the core component and the sheath component, and is made of a polyester-based resin composition. This is a technique that regulates the draw ratio with respect to the temperature and the maximum draw ratio, and causes the sheath component to exhibit irregularities.
The elastic long-fiber nonwoven fabric described in Patent Document 2 is a composite fiber composed of an elastomer resin such as styrene-ethylene-butylene-styrene block copolymer (SEBS) and a non-elastomeric resin such as a polypropylene resin. A composite non-elastomeric resin / elastomer resin volume ratio of the composite fiber, a fineness of the composite fiber of 5 dtex or less, and a composite long fiber having a helical structure and an uneven structure formed on the surface. It is the comprised nonwoven fabric.
Further, the special patch described in Patent Document 3 has polyester [A] having a melt viscosity defined as a sheath component, polyester [B] as a core component, and the melt viscosity of polyesters [A] and [B]. This is a multifilament yarn made of a composite fiber that is thick and thin due to the thick and thin high melting point component (A) that defines the difference.
In these techniques, all are techniques for forming irregularities on the surface of the composite fiber itself, and high-speed spinning is essential, can only be applied to thin fibers, and the resulting irregularities are relatively small. It was a thing.

前記特許文献4に記載の技術は、鞘芯型ポリエステル繊維を20質量%以上含み、かつ該ポリエステル繊維として、低融点成分(B)にエチレングリコールを含有すると共に、低融点成分(B)/高融点成分(A)の質量比を規定する異形断面繊維を用いた吸水速乾性織編物を提供する技術である。そして、この縦方向に連続した凹溝を有する異形断面繊維の場合、凹溝に毛細管現象が発現し、該異形断面繊維を用いた織編物は水を拡散(滲みが大きい)させる効果が大きくなることが開示されている。
しかしながら、この異形断面繊維を用いて不織布を作製する際には、熱融着複合繊維であることが好ましいが、熱融着複合繊維の場合、本発明者らの研究によると、異型断面繊維を製造するためのノズルが高価になりコスト高に繋がることと、熱融着時に鞘成分が溶融し凝集するため、シャープな形状となり難く、得られた不織布の毛細管現象発現力も比較的小さいことが分かった。
The technique described in Patent Document 4 includes 20% by mass or more of a sheath-core polyester fiber, and the polyester fiber contains ethylene glycol in the low melting point component (B), and the low melting point component (B) / high This is a technique for providing a water-absorbing quick-drying woven or knitted fabric using a modified cross-section fiber that defines the mass ratio of the melting point component (A). And, in the case of a modified cross-section fiber having a continuous groove in the longitudinal direction, a capillary phenomenon appears in the groove, and the woven or knitted fabric using the modified cross-section fiber has a large effect of diffusing water (large bleeding). It is disclosed.
However, when producing a non-woven fabric using this modified cross-section fiber, it is preferably a heat-bonded composite fiber. It turns out that the nozzle for manufacturing is expensive and leads to high costs, and the sheath component melts and aggregates at the time of heat fusion, so it is difficult to form a sharp shape, and the capillarity manifesting power of the obtained nonwoven fabric is relatively small It was.

前記特許文献5及び特許文献6には、繊維表面に凹凸を形成して触感を向上する技術思想や、不織布の吸水性の向上については開示されていない。   Patent Document 5 and Patent Document 6 do not disclose a technical idea for improving the tactile sensation by forming irregularities on the fiber surface or improving the water absorption of the nonwoven fabric.

本発明はこのような状況下になされたものであり、水を吸水(保水)する性能(効果)が大きな不織布を与え得る分割性凹凸複合繊維、該分割性凹凸複合繊維の効果的な製造方法、及びその繊維を用いてなる不織布を提供することを目的とするものである。   The present invention has been made under such circumstances, and a splittable concavo-convex composite fiber capable of providing a nonwoven fabric having a large performance (effect) for absorbing water (water retention), and an effective method for producing the splittable concavo-convex composite fiber. And the objective is to provide the nonwoven fabric which uses the fiber.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、結晶性熱可塑性樹脂を含む高融点成分(A)と、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物からなる低融点成分(B)とからなる複合繊維であって、該複合繊維は、高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有し、低融点成分(B)からなる繊維表面部が凹凸状を呈してなる分割性凹凸複合繊維とするによって前記目的を達成できることを見出し、本願発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have found that a high melting point component (A) containing a crystalline thermoplastic resin, a polyolefin resin (a), and an amorphous resin (b) A composite fiber comprising a low-melting-point component (B) comprising a resin composition comprising a high-melting-point component (A) and a low-melting-point component (B) having a cross-sectional shape bonded to each other The present invention was completed by finding that the object can be achieved by using a splittable uneven composite fiber in which the fiber surface portion composed of the low melting point component (B) has an uneven shape.

すなわち、本発明は、
〔1〕結晶性熱可塑性樹脂を含む高融点成分(A)と、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物からなる低融点成分(B)とからなる複合繊維であって、該複合繊維は、高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有し、低融点成分(B)からなる繊維表面部が凹凸状を呈してなることを特徴とする分割性凹凸複合繊維、
〔2〕ポリオレフィン系樹脂(a)の融点は、結晶性熱可塑性樹脂の融点よりも低く、かつ非晶性樹脂(b)のガラス転移点(Tg)以下の温度で未延伸複合繊維を延伸すること及び、該延伸糸を不織布化する際の熱処理により低融点成分(B)の表面に、該低融点成分(B)の繊維軸方向にわたって凹凸状を形成してなる〔1〕に記載の分割性凹凸複合繊維、
〔3〕前記非晶性樹脂(b)のガラス転移点(Tg)がポリオレフィン系樹脂(a)の融点よりも高い〔2〕に記載の分割性凹凸複合繊維、
〔4〕複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合されてなる〔1〕〜〔3〕のいずれかに記載の分割性凹凸複合繊維、
〔5〕高融点成分(A)の結晶性熱可塑性樹脂が結晶性ポリプロピレン又はポリエチレンテレフタレートであり、かつ低融点成分(B)のポリオレフィン系樹脂(a)が高密度ポリエチレンである〔1〕〜〔4〕のいずれかに記載の分割性凹凸複合繊維、
〔6〕非晶性樹脂(b)が、環状オレフィンコポリマー及び/又はポリカーボネ―トである〔1〕〜〔5〕のいずれかに記載の分割性凹凸複合繊維、
〔7〕非晶性樹脂(b)が、環状オレフィンコポリマーである〔6〕に記載の分割性凹凸複合繊維、
〔8〕低融点成分(B)におけるポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜85:15である〔1〕〜〔7〕のいずれかに記載の分割性凹凸複合繊維、
〔9〕結晶性熱可塑性樹脂を含む高融点成分(A)と、高融点成分(A)の結晶性熱可塑性樹脂の融点よりも低い融点を有するポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物からなる低融点成分(B)を、相互に接合した未延伸複合繊維を溶融紡糸する工程、該未延伸複合繊維をポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で熱延伸する工程、を含むことを特徴とする分割性凹凸複合繊維の製造方法、
〔10〕前記の複合繊維を溶融紡糸する工程において、複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合可能な紡糸ヘッド部を備えた紡糸装置を用い、紡糸ヘッド部における高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度とを調整して、紡糸する〔9〕に記載の分割性凹凸複合繊維の製造方法、
〔11〕前記溶融粘度の調整が、高融点成分(A)の結晶性熱可塑性樹脂のメルトフローレイト(MFRA)と低融点成分(B)のポリオレフィン系樹脂(a)のメルトフローレイト(MFRB)を、MFRA ≧MFRB としてなる〔10〕に記載の分割性凹凸複合繊維の製造方法、及び
〔12〕〔1〕〜〔8〕のいずれかに記載の分割性凹凸複合繊維を用いてなる不織布、
を提供するものである。
That is, the present invention
[1] A composite comprising a high melting point component (A) containing a crystalline thermoplastic resin and a low melting point component (B) comprising a resin composition containing a polyolefin resin (a) and an amorphous resin (b). The composite fiber has a cross-sectional shape in which the high melting point component (A) and the low melting point component (B) are joined to each other, and the fiber surface portion composed of the low melting point component (B) has an uneven shape. A splittable concavo-convex composite fiber, characterized in that
[2] The melting point of the polyolefin resin (a) is lower than the melting point of the crystalline thermoplastic resin, and the unstretched composite fiber is stretched at a temperature not higher than the glass transition point (Tg) of the amorphous resin (b). And the division according to [1], wherein the surface of the low-melting-point component (B) is formed with unevenness over the fiber axis direction of the low-melting-point component (B) by heat treatment when the drawn yarn is made into a non-woven fabric. Concavo-convex composite fiber,
[3] The splittable uneven composite fiber according to [2], wherein the amorphous resin (b) has a glass transition point (Tg) higher than the melting point of the polyolefin resin (a),
[4] In the radial cross section of the composite fiber, the high melting point component (A) and the low melting point component (B) are bonded substantially radially from the center of the fiber toward the fiber surface. The splittable uneven composite fiber according to any one of the above,
[5] The crystalline thermoplastic resin of the high melting point component (A) is crystalline polypropylene or polyethylene terephthalate, and the polyolefin resin (a) of the low melting point component (B) is high density polyethylene. 4] The splittable concavo-convex composite fiber according to any one of
[6] The splittable concavo-convex composite fiber according to any one of [1] to [5], wherein the amorphous resin (b) is a cyclic olefin copolymer and / or polycarbonate.
[7] The splittable concavo-convex composite fiber according to [6], wherein the amorphous resin (b) is a cyclic olefin copolymer,
[8] Any of [1] to [7], wherein the content ratio of the polyolefin resin (a) and the amorphous resin (b) in the low melting point component (B) is 97: 3 to 85:15 by mass ratio The splittable uneven composite fiber according to crab,
[9] A high melting point component (A) containing a crystalline thermoplastic resin, a polyolefin resin (a) having a melting point lower than the melting point of the crystalline thermoplastic resin of the high melting point component (A), and an amorphous resin ( b) a step of melt-spinning unstretched composite fibers joined together with a low-melting-point component (B) comprising a resin composition comprising the resin composition, and the unstretched composite fibers from Tg to the melting point of the polyolefin resin (a) And a step of thermally stretching at a temperature equal to or lower than the Tg of the amorphous resin (b), and a method for producing a splittable concavo-convex composite fiber,
[10] In the step of melt spinning the composite fiber, the high melting point component (A) and the low melting point component (B) are joined together in a radial pattern from the center of the fiber toward the fiber surface in the radial cross section of the composite fiber. Spinning by adjusting the melt viscosity of the high-melting component (A) and the melt viscosity of the low-melting component (B) in the spinning head using a spinning device equipped with a possible spinning head. Production method of splittable uneven composite fiber,
[11] The adjustment of the melt viscosity, melt flow rate (MFR melt flow rate of the crystalline thermoplastic resin having a high melting point component (A) (MFR A) and the polyolefin resin having a low melting point component (B) (a) B ) is a method for producing a splittable uneven composite fiber according to [10], wherein MFR A ≧ MFR B , and a splittable uneven composite fiber according to any one of [12] [1] to [8] Non-woven fabric,
Is to provide.

本発明によれば、毛細管現象の発現により水を吸水(保水)する性能(効果)が大きな不織布を製造できる分割性凹凸複合繊維、該分割性凹凸複合繊維の効率的な製造方法、及び該分割性凹凸複合繊維を用いてなる不織布、を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the splittable uneven | corrugated conjugate fiber which can manufacture a nonwoven fabric with the large performance (effect) which absorbs water (water retention) by expression of a capillary phenomenon, the efficient manufacturing method of this splittable uneven conjugate fiber, and this split The nonwoven fabric formed using a concavo-convex composite fiber can be provided.

本発明の分割性凹凸複合繊維における高融点成分()と低融点成分(B)接合パターンの例を示す模式断面図である。It is a schematic cross section which shows the example of the high melting point component ( A ) and low melting point component (B) joining pattern in the splittable uneven | corrugated conjugate fiber of this invention. 放射状接合断面を有する複合未延伸繊維の断面における高融点成分(A)と低融点成分(B)の接合パターンを示す断面写真である。It is a cross-sectional photograph which shows the joining pattern of the high melting-point component (A) and the low melting-point component (B) in the cross section of the composite unstretched fiber which has a radial joint cross section. 実施例1における、(a)分割性凹凸複合未延伸繊維、(b)分割性凹凸複合延伸繊維、(c)得られた熱風融着不織布のSEM写真である。It is a SEM photograph of (a) splittable uneven composite unstretched fiber, (b) splittable uneven composite stretched fiber, and (c) obtained hot-air fused nonwoven fabric in Example 1. 実施例2により得られた(a)延伸後繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。It is the SEM photograph which shows the state of the fiber after hot-air fusion | melting about (a) the fiber after extending | stretching obtained by Example 2, and (b) the obtained nonwoven fabric. 実施例4により得られた(a)延伸後の繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。(A) The SEM photograph of the fiber after extending | stretching obtained by Example 4, (b) The SEM photograph which shows the state of the fiber after hot-air fusion | melting about the obtained nonwoven fabric. 実施例9により得られた(a)延伸後繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。It is the SEM photograph which shows the state of the fiber after hot-air fusion | melting about (a) the fiber after extending | stretching obtained by Example 9, and (b) the obtained nonwoven fabric. 実施例10により得られた(a)延伸後繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。It is the SEM photograph which shows the state of the fiber after hot-air fusion | melting about (a) the fiber after a stretch obtained by Example 10, and (b) the obtained nonwoven fabric. 比較例1により得られた(a)延伸後の繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。It is the SEM photograph which shows the state of the fiber after hot-air fusion | melting about (a) the fiber after extending | stretching obtained by the comparative example 1, and (b) the obtained nonwoven fabric. 比較例2により得られた(a)延伸後の繊維のSEM写真、(b)得られた不織布について熱風融着後の繊維の状態を示すSEM写真である。It is the SEM photograph which shows the state of the fiber after hot air fusion | melting about (a) the fiber after extending | stretching obtained by the comparative example 2, and (b) the obtained nonwoven fabric.

まず、本発明の分割性凹凸複合繊維について説明する。
本発明の分割性凹凸複合繊維は、結晶性熱可塑性樹脂を含む高融点成分(A)と、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを含む樹脂組成物からなる低融点成分(B)とからなる複合繊維であって、該複合繊維は、高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有し、低融点成分(B)からなる繊維表面部が凹凸状を呈してなることを特徴とする。
First, the splittable concavo-convex composite fiber of the present invention will be described.
The splittable concavo-convex composite fiber of the present invention is a low-melting-point component comprising a resin composition containing a high-melting-point component (A) containing a crystalline thermoplastic resin, a polyolefin resin (a) and an amorphous resin (b). (B), the composite fiber having a cross-sectional shape in which the high melting point component (A) and the low melting point component (B) are joined to each other, and the fiber consisting of the low melting point component (B) The surface portion has an uneven shape.

本発明において、「低融点成分(B)からなる繊維表面部が凹凸状を呈してなる」とは、繊維表面(外周面)において低融点成分に占有されている部分に、不規則な凹凸を呈していることを意味する。この不規則な凹凸は、低融点成分に配合された非晶性樹脂が核となり、熱延伸、さらには、不織布化する際の熱融着処理によって凹凸状が出現する。
複合繊維が「高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有する」とは、繊維軸に直交する断面(以下、「繊維断面」という。)が、図1の(a)〜(g)に示すような状態で、高融点成分(A)と低融点成分(B)が相互に接合した状態で、繊維軸方向に連続していることをいう。
「分割性凹凸複合繊維」の「分割性」とは、高融点成分(A)と低融点成分(B)とが、成分間の熱収縮率の違いにより高温処理や、ウォータージェット処理、カード処理等の機械的処理で、高融点成分(A)と低融点成分(B)に分割して細繊度化できる可能性を有する繊維であることを意味し、必ずしも最終的に分割していることを意味するものではない。
なお、本発明の分割性凹凸複合繊維の断面形状は、円形でなくてもよく、図1の(f)、(g)に示すように矩形でもよく、また、楕円形、或いは星型、十字型等の異型断面であってもよい。
In the present invention, “the fiber surface portion composed of the low melting point component (B) has an uneven shape” means that irregularities are formed on the portion occupied by the low melting point component on the fiber surface (outer peripheral surface). Means presenting. The irregular irregularities are formed by the amorphous resin blended in the low melting point component, and the irregularities appear by heat stretching and further heat fusion treatment when forming a nonwoven fabric.
The composite fiber “having a cross-sectional shape in which the high melting point component (A) and the low melting point component (B) are joined to each other” means that a cross section perpendicular to the fiber axis (hereinafter referred to as “fiber cross section”) is shown in FIG. In the state as shown in (a) to (g), the high melting point component (A) and the low melting point component (B) are joined to each other and are continuous in the fiber axis direction.
“Dividability” of “divided concavo-convex composite fiber” means that the high melting point component (A) and the low melting point component (B) are subjected to high temperature treatment, water jet treatment, card treatment depending on the difference in thermal shrinkage between the components. This means that the fiber has the possibility of being finely divided by dividing it into a high melting point component (A) and a low melting point component (B) by mechanical treatment such as It doesn't mean.
The cross-sectional shape of the splittable concavo-convex composite fiber of the present invention does not have to be circular, but may be rectangular as shown in FIGS. 1 (f) and (g), and is elliptical, star-shaped, cross-shaped. An irregular cross section such as a mold may be used.

本発明の分割性凹凸複合繊維は、繊維径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合されてなる複合未延伸繊維とすることができる。すなわち図1(a)に示す形状や図2(a)〜(e)に示すように2成分が接合された複合未延伸繊維とすることができる。   The splittable concavo-convex composite fiber of the present invention is a composite unstretched structure in which a high melting point component (A) and a low melting point component (B) are bonded substantially radially from the center of the fiber toward the fiber surface in a cross section in the fiber radial direction. It can be a fiber. That is, a composite unstretched fiber in which two components are joined as shown in FIG. 1 (a) or as shown in FIGS. 2 (a) to 2 (e) can be obtained.

[高融点成分(A)を構成する材料]
本発明の分割性凹凸複合繊維においては、高融点成分(A)を構成する材料(以下、高融点成分材料と称することがある。)として、結晶性熱可塑性樹脂が用いられる。
当該結晶性熱可塑性樹脂は、その融点が前述したポリオレフィン系樹脂(a)の融点よりも高いことを要し、例えば結晶性ポリプロピレン、ポリエチレンテレフタレートやポリブチレンテレフタレートなどの結晶性ポリエステル、ポリアミド(ナイロン)、芳香族ポリエステル樹脂(液晶ポリマー)などを用いることができ、これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらの中で、融点が比較的低く、加工性、及びコスト的に優れる、結晶性ポリプロピレンが好ましい。
[Material constituting high melting point component (A)]
In the splittable concavo-convex composite fiber of the present invention, a crystalline thermoplastic resin is used as a material constituting the high melting point component (A) (hereinafter sometimes referred to as a high melting point component material).
The crystalline thermoplastic resin is required to have a melting point higher than that of the polyolefin resin (a) described above. For example, crystalline polypropylene, crystalline polyester such as polyethylene terephthalate or polybutylene terephthalate, polyamide (nylon) , Aromatic polyester resins (liquid crystal polymers) can be used, and these may be used alone or in combination of two or more. Among these, crystalline polypropylene is preferable because it has a relatively low melting point and is excellent in processability and cost.

この結晶性ポリプロピレンとしては、アイソタクチックポリプロピレン系樹脂が好ましく用いられる。中でもアイソタクチックペンタッド分率(IPF)が、好ましくは85%以上、より好ましくは90%以上のものが有利である。また、分子量分布の指標であるQ値(重量平均分子量/数平均分子量Mw/Mn比)は6以下、メルトフローレイト(MFR)(温度230℃、荷重2.16kg)は3〜100g/10分の範囲が好ましい。上記IPFが85%未満では立体規則性が不充分で結晶性が低く、得られる複合繊維における強度などの物性が劣る。   As this crystalline polypropylene, an isotactic polypropylene resin is preferably used. Among them, those having an isotactic pentad fraction (IPF) of preferably 85% or more, more preferably 90% or more are advantageous. The Q value (weight average molecular weight / number average molecular weight Mw / Mn ratio), which is an index of molecular weight distribution, is 6 or less, and the melt flow rate (MFR) (temperature 230 ° C., load 2.16 kg) is 3 to 100 g / 10 min. The range of is preferable. If the IPF is less than 85%, the stereoregularity is insufficient and the crystallinity is low, and the physical properties such as strength of the resulting composite fiber are poor.

なお、アイソタクチックペンタッド分率(IPF)(一般にmmmm分率ともいわれる)は、任意の連続する5つのプロピレン単位で構成される炭素−炭素結合による主鎖に対して、側鎖である5つのメチル基がいずれも同方向に位置する立体構造の割合を示すものであって、同位体炭素核磁気共鳴スペクトル(13C−NMR)にけるPmmmm(プロピレン単位が5個連続してアイソタクチック結合した部位における第3単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)から、式
IPF(%)=(Pmmmm/Pw)×100
によって求めることができる。
The isotactic pentad fraction (IPF) (generally also referred to as mmmm fraction) is a side chain with respect to the main chain of carbon-carbon bonds composed of any five consecutive propylene units. This shows the proportion of the three-dimensional structure in which two methyl groups are located in the same direction. Pmmmm (5 propylene units are isotactic) in the isotope carbon nuclear magnetic resonance spectrum ( 13 C-NMR). From the absorption intensity derived from the methyl group of the third unit at the bonded site and Pw (absorption intensity derived from all methyl groups of the propylene unit), the formula IPF (%) = (Pmmmm / Pw) × 100
Can be obtained.

また、このポリプロピレンは、プロピレンの単独重合体であってもよいし、プロピレンとα−オレフィン(例えばエチレン、ブテン−1など)との共重合体であってもよい。
すなわち、結晶性ポリプロピレンとしては、例えば結晶性を有するアイソタクチックプロピレン単独重合体、エチレン単位の含有量の少ないエチレン−プロピレンランダム共重合体、プロピレン単独重合体からなるホモ部とエチレン単位の含有量の比較的多いエチレン−プロピレンランダム共重合体からなる共重合部とから構成されたプロピレンブロック共重合体、さらに前記プロピレンブロック共重合体における各ホモ部または共重合部が、さらにブテン−1などのα−オレフィンを共重合したものからなる結晶性プロピレン−エチレン−α−オレフィン共重合体などが挙げられる。
なお、本発明においては、前記の低融点成分(B)材料である樹脂組成物及び高融点成分(A)材料である結晶性熱可塑性樹脂には、必要に応じ、各種添加剤、例えば耐候剤、耐熱安定剤、難燃剤、着色剤、消臭剤、抗菌剤、芳香剤などを含有させることができる。
Further, the polypropylene may be a propylene homopolymer or a copolymer of propylene and an α-olefin (for example, ethylene, butene-1, etc.).
That is, as crystalline polypropylene, for example, isotactic propylene homopolymer having crystallinity, ethylene-propylene random copolymer having a small ethylene unit content, homo-part consisting of propylene homopolymer and ethylene unit content A propylene block copolymer composed of a copolymer part composed of an ethylene-propylene random copolymer having a relatively large amount of each of the above-mentioned propylene block copolymers, and each homo part or copolymer part in the propylene block copolymer further includes butene-1, etc. Examples thereof include crystalline propylene-ethylene-α-olefin copolymers formed by copolymerizing α-olefins.
In the present invention, the resin composition that is the low-melting-point component (B) material and the crystalline thermoplastic resin that is the high-melting-point component (A) material include various additives such as a weathering agent as necessary. , Heat stabilizers, flame retardants, colorants, deodorants, antibacterial agents, fragrances, and the like.

[低融点成分(B)を構成する材料]
本発明の分割性凹凸複合繊維においては、低融点成分(B)を構成する材料(以下、低融点成分材料と称することがある。)として、ポリオレフィン系樹脂(a)と非晶性樹脂(b)とを併用してなる樹脂組成物が用いられる。
(ポリオレフィン系樹脂(a))
低融点成分(B)の一成分として用いられるポリオレフィン系樹脂(a)は、その融点が、高融点成分(A)を構成する材料として用いられる結晶性熱可塑性樹脂の融点よりも低いことを要する。ポリオレフィン系樹脂(a)の融点が上記条件を満たさない場合、熱接着性を有する分割性凹凸複合繊維が得られにくく、熱風融着法による不織布の作製が困難となる上、例え不織布が作製できたとしても、低融点成分(B)表面に不規則な凹凸が形成されにくい。
当該ポリオレフィン系樹脂(a)としては、前述した性状を有するものであればよく、特に制限されず、例えば高密度、中密度、低密度ポリエチレンや直鎖状低密度ポリエチレンなどのエチレン系重合体、プロピレンと他のα−オレフィンとの共重合体、具体的にはプロピレン−ブテン−1ランダム共重合体、プロピレン−エチレン−ブテン−1ランダム共重合体、あるいは軟質ポリプロピレンなどの非結晶性プロピレン系重合体、ポリ4−メチルペンテン−1などを挙げることができる。これらのポリオレフィン系樹脂(a)は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
これらの中で、曳糸性やコストなどを考慮すると高密度ポリエチレン(融点:130℃)が好適である。また高密度ポリエチレンのメルトフローレイト(MFR)(温度190℃、荷重2.16kg)は3〜60g/10分の範囲が好ましい。
[Material constituting low melting point component (B)]
In the splittable concavo-convex composite fiber of the present invention, a polyolefin resin (a) and an amorphous resin (b) are used as materials constituting the low melting point component (B) (hereinafter sometimes referred to as a low melting point component material). ) Is used in combination.
(Polyolefin resin (a))
The polyolefin resin (a) used as one component of the low melting point component (B) needs to have a melting point lower than the melting point of the crystalline thermoplastic resin used as the material constituting the high melting point component (A). . When the melting point of the polyolefin-based resin (a) does not satisfy the above conditions, it is difficult to obtain a splittable concave-convex composite fiber having thermal adhesiveness, making it difficult to produce a nonwoven fabric by hot air fusion method, and for example, producing a nonwoven fabric. Even if, irregular irregularities are hardly formed on the surface of the low melting point component (B).
The polyolefin-based resin (a) is not particularly limited as long as it has the properties described above. For example, an ethylene-based polymer such as high-density, medium-density, low-density polyethylene or linear low-density polyethylene, A copolymer of propylene and another α-olefin, specifically, a non-crystalline propylene-based heavy polymer such as propylene-butene-1 random copolymer, propylene-ethylene-butene-1 random copolymer, or soft polypropylene. Examples thereof include polymer and poly-4-methylpentene-1. These polyolefin resin (a) may be used individually by 1 type, and may be used in combination of 2 or more type.
Among these, high density polyethylene (melting point: 130 ° C.) is preferable in consideration of spinnability and cost. The melt flow rate (MFR) (temperature 190 ° C., load 2.16 kg) of high-density polyethylene is preferably in the range of 3 to 60 g / 10 min.

(非晶性樹脂(b))
低融点成分(B)の成分として、前述のポリオレフィン系樹脂(a)と併用される非晶性樹脂(b)は、そのガラス転移点(Tg)が延伸温度よりも高いことを要する。その理由は、低融点成分(B)におけるポリオレフィン系樹脂(a)と非晶性樹脂(b)との当該延伸温度における延伸性の違いにより凹凸状を形成させるためである。
当該非晶性樹脂(b)としては、環状オレフィン系重合体やポリカーボネートなどを挙げることができる。
環状オレフィン系重合体としては、例えばエチレンとノルボルネンとの共重合体である環状オレフィンコポリマー[ポリプラスチックス社製、登録商標「TOPAS」、5013のTg=134℃]、エチレンと環状オレフィンとの共重合体である環状オレフィンコポリマー[三井化学社製、登録商標「アペル」、APL5014DPのTg=135℃]、ノルボルネン誘導体のメタセシス開環重合により得られたシクロオレフィンポリマー[日本ゼオン社製、登録商標「ZEONEX」、480RのTg=138℃]、トリシクロデカン構造を有するシクロオレフィンポリマー[JSR社製、登録商標「ARTON」、Tg=171℃]などを挙げることができる。
本発明においては、前記非晶性樹脂(b)は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよいが、特に環状オレフィンコポリマー及び/又はポリカーボネートが性能の観点から好ましい。
(Amorphous resin (b))
As a component of the low melting point component (B), the amorphous resin (b) used in combination with the above-described polyolefin resin (a) needs to have a glass transition point (Tg) higher than the stretching temperature. The reason for this is to form irregularities due to the difference in stretchability between the polyolefin resin (a) and the amorphous resin (b) in the low melting point component (B) at the stretch temperature.
Examples of the amorphous resin (b) include cyclic olefin polymers and polycarbonate.
Examples of the cyclic olefin polymer include a cyclic olefin copolymer that is a copolymer of ethylene and norbornene [manufactured by Polyplastics Co., Ltd., registered trademark “TOPAS”, Tg of 5013 = 134 ° C.], a copolymer of ethylene and cyclic olefin. Cyclic olefin copolymer as a polymer [Mitsui Chemicals, registered trademark “Apel”, APL5014DP Tg = 135 ° C.], cycloolefin polymer obtained by metathesis ring-opening polymerization of norbornene derivative [manufactured by Nippon Zeon, registered trademark “ ZEONEX ”, Tg of 480R = 138 ° C.], cycloolefin polymer having a tricyclodecane structure [manufactured by JSR, registered trademark“ ARTON ”, Tg = 171 ° C.] and the like.
In the present invention, the amorphous resin (b) may be used singly or may be used in combination of two or more, and in particular, a cyclic olefin copolymer and / or polycarbonate is used from the viewpoint of performance. preferable.

なお、非晶性樹脂(b)として環状オレフィン共重合体を用いる場合は、環状オレフィン共重合体の流動性、即ち溶融粘度の指標としては、一般的にメルトボリュームレイト(MVR)が用いられているので、本発明の分割性凹凸複合繊維の低融点成分(B)の非晶性樹脂(b)としては、溶融紡糸安定、延伸性の観点から、MVRが試験法ISO 1133準拠、測定条件:260℃、2.16kgにおいて10ml/10分以上が好ましく、14ml/10分以上がより好ましい。なお、流動性の指標であるMVRは、例えばエチレン単位とノルボルネン単位を含むエチレン・ノルボルネン共重合体を環状オレフィン共重合体として選択するときは、エチレン単位の重合度X、ノルボルネン単位の重合度Yに基づく分子量及び環状オレフィン共重合体全体の分子量分布により、調節されたものから採択することができる。   When a cyclic olefin copolymer is used as the amorphous resin (b), melt volume rate (MVR) is generally used as an index of fluidity of the cyclic olefin copolymer, that is, melt viscosity. Therefore, as the amorphous resin (b) of the low melting point component (B) of the splittable concavo-convex composite fiber of the present invention, MVR is based on the test method ISO 1133 from the viewpoint of melt spinning stability and stretchability, and measurement conditions: In 260 degreeC and 2.16kg, 10 ml / 10min or more is preferable, and 14 ml / 10min or more is more preferable. The MVR, which is an index of fluidity, is, for example, when an ethylene / norbornene copolymer containing an ethylene unit and a norbornene unit is selected as the cyclic olefin copolymer, the polymerization degree X of the ethylene unit and the polymerization degree Y of the norbornene unit. The molecular weight based on the above and the molecular weight distribution of the whole cyclic olefin copolymer can be selected from those regulated.

本発明の分割性凹凸複合繊維において、低融点成分(B)材料として用いられる樹脂組成物は、低融点成分(B)表面に不規則な凹凸状を形成させる観点から、前述したポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合は、質量比で97:3〜85:15であることが好ましく、95:5〜90:10であることがより好ましい。   In the splittable concavo-convex composite fiber of the present invention, the resin composition used as the low-melting-point component (B) material is a polyolefin-based resin (described above) from the viewpoint of forming irregular concavo-convex shapes on the surface of the low-melting-point component (B). The content ratio of a) and the amorphous resin (b) is preferably 97: 3 to 85:15, more preferably 95: 5 to 90:10, by mass ratio.

[分割性凹凸複合繊維の製造方法]
本発明の分割性凹凸複合繊維は、結晶性熱可塑性樹脂を含む高融点成分(A)と、高融点成分(A)よりも低い融点を有するポリオレフィン系樹脂(a)と延伸温度よりも高いガラス転移点(Tg)を有する非晶性樹脂(b)とを含む樹脂組成物からなる低融点成分(B)を相互に接合した未延伸複合繊維を溶融紡糸する工程、該未延伸複合繊維をポリオレフィン系樹脂(a)のTg以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で熱延伸する工程、を含む本発明の製造方法によれば効率よく製造することができる。
さらに、前記の複合繊維を溶融紡糸する工程において、複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合可能な紡糸ヘッド部を備えた紡糸装置を用い、紡糸ヘッド部における高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度とを調整して、紡糸する分割性凹凸複合繊維の製造方法とすることができる。
[Production method of splittable uneven composite fiber]
The splittable concavo-convex composite fiber of the present invention comprises a high melting point component (A) containing a crystalline thermoplastic resin, a polyolefin resin (a) having a melting point lower than that of the high melting point component (A), and a glass higher than the stretching temperature. A step of melt-spinning unstretched composite fibers in which low melting point components (B) made of a resin composition containing an amorphous resin (b) having a transition point (Tg) are bonded to each other; According to the production method of the present invention, the step of heat-stretching at a temperature not lower than the Tg of the resin (a) and not higher than the melting point and not higher than the Tg of the amorphous resin (b) is efficiently produced. be able to.
Furthermore, in the process of melt spinning the above-mentioned composite fiber, the high melting point component (A) and the low melting point component (B) can be joined substantially radially from the center of the fiber toward the fiber surface in the radial cross section of the composite fiber. Of a splittable concavo-convex composite fiber to be spun by adjusting the melt viscosity of the high-melting component (A) and the melt viscosity of the low-melting component (B) in the spinning head using a spinning device equipped with a flexible spinning head It can be a method.

(溶融紡糸工程)
本発明の製造方法における、分割性凹凸複合繊維を溶融紡糸する工程は、従来、分割性複合繊維の製造において使用されている公知の方法を用いることができる。例えば、前記の低融点成分および高融点成分を用い、押出し機2台と分割型繊維用ノズルを備えた複合紡糸装置により、紡糸温度200〜300℃程度で溶融紡糸することにより、複数の2成分が接合された構造の複合繊維が得られる。このようにして得られた分割性凹凸複合繊維における高融点成分/低融点成分断面積比は、通常40/60〜80/20の範囲で選定される。
(Melt spinning process)
In the production method of the present invention, the step of melt spinning the splittable concavo-convex composite fiber may be a known method conventionally used in the production of splittable composite fibers. For example, by using the above-mentioned low melting point component and high melting point component, and melt spinning at a spinning temperature of about 200 to 300 ° C. with a composite spinning apparatus equipped with two extruders and a split fiber nozzle, a plurality of two components A composite fiber having a structure in which is bonded is obtained. The high melting point component / low melting point component cross-sectional area ratio in the splittable concavo-convex composite fiber thus obtained is usually selected in the range of 40/60 to 80/20.

前記の複合繊維を溶融紡糸する工程において、複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合可能な紡糸ヘッド部を備えた紡糸装置を用い、紡糸ヘッド部における高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度とを調整して、紡糸する分割性凹凸複合繊維の製造方法における溶融粘度の調整は、以下の方法で行うことができる。
すなわち、高融点成分(A)の結晶性熱可塑性樹脂のメルトフローレイト(MFRA)と低融点成分(B)のポリオレフィン系樹脂(a)のメルトフローレイト(MFRB)を、適宜勘案して、各成分の溶融紡糸機の設定温度を調整し、紡糸ノズルから吐出される時点において、高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度のバランスを調整することで、高融点成分(A)及び低融点成分(B)のいずれが繊維断面の中央部に位置させるか、或いは2成分をほぼ均等に放射状に配列させるかを意図的に変更することができる。
In the step of melt spinning the above-mentioned composite fiber, in the radial cross section of the composite fiber, the high melting point component (A) and the low melting point component (B) can be joined substantially radially from the center of the fiber toward the fiber surface. In a method for producing a splittable concavo-convex composite fiber for spinning by adjusting a melt viscosity of a high-melting component (A) and a melt viscosity of a low-melting component (B) in a spinning head using a spinning device equipped with a head. The melt viscosity can be adjusted by the following method.
That is, the melt flow rate of the melt flow rate of the crystalline thermoplastic resin having a high melting point component (A) (MFR A) and the polyolefin resin having a low melting point component (B) (a) (MFR B), taking into consideration appropriately By adjusting the set temperature of the melt spinning machine for each component and adjusting the balance between the melt viscosity of the high-melting component (A) and the melt viscosity of the low-melting component (B) at the time when it is discharged from the spinning nozzle, It is possible to intentionally change which of the high melting point component (A) and the low melting point component (B) is positioned at the center of the fiber cross section, or whether the two components are arranged radially evenly.

分割性複合未延伸繊維の断面パターン1
図2(a)、(b)は、高融点成分(A)の溶融粘度が低融点成分(B)の溶融粘度より高い場合、即ち、具体的には高融点成分(A)のメルトフローレイト(MFRA)が低融点成分(B)(HDPEと環状ポリオレフィン共重合体)のメルトフローレイト(MFRB)よりも低い場合、低融点成分(B)が未延伸繊維断面の中央部を占め、そこから繊維の外周に向かって放射状に広がる複合未延伸繊維断面を形成している。この場合は、低融点成分(B)が中央で接合し、外周比率も高いためか、紡糸性悪化の傾向があり、また、延伸による凹凸発現後に低融点成分(B)を分割して細繊度化するのが難しい。また、繊維内の体積、及び繊維表面積のうち低融点成分(B)の占める比率が相対的に高いため、凹凸発現の核となる環状オレフィン共重合体も繊維断面の中央部を含む繊維全体に広く分散することとなり、その結果、不織布化後の凹凸は小さなものとなる。
Cross-sectional pattern 1 of splittable composite unstretched fiber
FIGS. 2A and 2B show the case where the melt viscosity of the high melting point component (A) is higher than the melt viscosity of the low melting point component (B), specifically, the melt flow rate of the high melting point component (A). If (MFR a) is lower than the low-melting component (B) melt flow rate (HDPE and cyclic polyolefin copolymer) (MFR B), the low-melting component (B) occupies the central portion of the unstretched fiber cross section, From there, a composite unstretched fiber cross section is formed which spreads radially toward the outer periphery of the fiber. In this case, the low melting point component (B) is joined at the center and the outer periphery ratio is high, so that the spinnability tends to be deteriorated. It is difficult to convert. In addition, since the ratio of the low melting point component (B) in the volume in the fiber and the fiber surface area is relatively high, the cyclic olefin copolymer serving as the core of the unevenness development is also included in the entire fiber including the center of the fiber cross section. As a result, the unevenness after forming into a non-woven fabric becomes small.

分割性複合未延伸繊維の断面パターン2
図2(c)、(d)は、高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度がほぼ等しい場合に形成される未延伸繊維断面形状で、各成分が未延伸繊維断面の中央部からほぼ均等な放射状に接合された断面が形成される。
中央部の接合割合及び、外周部の比率が同等の場合、紡糸性良好の傾向があるので、生産安定性の点で好ましい。延伸による凹凸発現後に、高融点成分(A)、低融点成分(B)共に細繊度化されやすい。また断面パターン1よりも低融点成分(B)の体積、及び繊維表面積が小さいため凹凸の核が密になり、不織布化後の凹凸も若干大きくなる。なお、ポリプロピレン(PP)/高密度ポリエチレン(HDPE)の分割繊維は、強力にウォータージェット処理を行うことで達成される。よって、分割性の改善効果も特徴のひとつとして挙げられる。
Cross-sectional pattern 2 of splittable composite unstretched fiber
2 (c) and 2 (d) are unstretched fiber cross-sectional shapes formed when the melt viscosity of the high melting point component (A) and the melt viscosity of the low melting point component (B) are substantially equal, and each component is unstretched. A cross section is formed that is radially joined from the center of the cross section of the fiber.
When the joint ratio of the central part and the ratio of the outer peripheral part are equal, there is a tendency for good spinnability, which is preferable in terms of production stability. Both the high melting point component (A) and the low melting point component (B) are likely to be finer after the unevenness due to stretching. Moreover, since the volume of the low-melting-point component (B) and the fiber surface area are smaller than those of the cross-sectional pattern 1, the uneven core becomes dense, and the unevenness after forming into a nonwoven fabric is also slightly increased. The split fiber of polypropylene (PP) / high density polyethylene (HDPE) can be achieved by powerful water jet treatment. Therefore, the improvement effect of the division property can be cited as one of the characteristics.

分割性複合未延伸繊維の断面パターン3
図2(e)は、前記分割性複合未延伸繊維の断面パターン1とは逆に、高融点成分(A)の溶融粘度が、低融点成分(B)の溶融粘度よりも低い場合の複合未延伸繊維の断面を表している。即ち、具体的には高融点成分(A)のメルトフローレイト(MFRA)が低融点成分(B)(HDPEと環状ポリオレフィン共重合体)のメルトフローレイト(MFRB)よりも高い場合、高融点成分(A)が、中央部で接合し、外周比率も大きい。紡糸性は最も良好な傾向にあり、延伸により低融点成分(B)(凹凸発現成分)の細繊度化が可能である。また、A成分とB成分の界面で微細な隙間が形成され、毛細管現象が発現しやすい構造をとる。低融点成分(B)が分割し、高融点成分(A)から離脱した場合も、高融点成分(A)が形成するV溝が吸水性(保水性)を発揮しやすい構造を呈する。
また、高融点成分(A)が未延伸繊維断面の中央部を占め、そこから繊維の外周に向かって放射状に広がる複合繊維断面を形成している。断面パターン1、2よりも低融点成分(B)の体積、及び繊維表面積が小さいため、凹凸の核となる環状オレフィン共重合体がより密集しており、不織布化後の凹凸が一番大きくなる傾向がある。
以上、紡糸性及び凹凸が形成された低融点成分(B)を細繊度に分割する観点から、溶融粘度の調整は、高融点成分(A)の結晶性熱可塑性樹脂のメルトフローレイト(MFRA)と低融点成分(B)のポリオレフィン系樹脂(a)のメルトフローレイト(MFRB)を、MFRA ≧MFRB となるよう、各成分の原料のメルトフローレイト(MFR)を調整することが好ましい。また、凹凸の核となる環状オレフィン共重合体の分布密度の関係からも、MFRA ≧MFRBとすることが、低融点成分(B)の体積、及び繊維表面積を小さくすることができるので好ましい。
Cross-sectional pattern 3 of splittable composite unstretched fiber
FIG. 2 (e) shows a case where the melt viscosity of the high melting point component (A) is lower than the melt viscosity of the low melting point component (B), contrary to the cross-sectional pattern 1 of the splittable composite unstretched fiber. The cross section of the drawn fiber is represented. That, in particular when the melt flow rate of the high melting point component (A) (MFR A) is higher than the low-melting component (B) (HDPE and cyclic polyolefin copolymer) melt flow rate (MFR B) of the high Melting | fusing point component (A) joins in the center part, and an outer periphery ratio is also large. The spinnability tends to be the best, and the fineness of the low melting point component (B) (unevenness manifesting component) can be reduced by stretching. In addition, a fine gap is formed at the interface between the A component and the B component, and a capillary phenomenon is easily exhibited. Even when the low melting point component (B) is divided and separated from the high melting point component (A), the V-groove formed by the high melting point component (A) exhibits a structure that easily exhibits water absorption (water retention).
Further, the high melting point component (A) occupies the center of the cross section of the unstretched fiber, and forms a cross section of the composite fiber that spreads radially from there to the outer periphery of the fiber. Since the volume of the low melting point component (B) and the fiber surface area are smaller than those of the cross-sectional patterns 1 and 2, the cyclic olefin copolymer serving as the core of the unevenness is more dense, and the unevenness after making into a nonwoven fabric is the largest. Tend.
Above, the low melting point component of spinnability and irregularities are formed a (B) from the viewpoint of dividing the fineness, the adjustment of the melt viscosity, melt flow rate of the crystalline thermoplastic resin having a high melting point component (A) (MFR A ) and a melt flow rate of the polyolefin resin having a low melting point component (B) (a) (MFR B), so as to be MFR a ≧ MFR B, to adjust a melt flow rate (MFR) of the raw material of each component preferable. Also, from the relationship of the distribution density of the cyclic olefin copolymer that becomes the core of the unevenness, it is preferable that MFR A ≧ MFR B because the volume of the low melting point component (B) and the fiber surface area can be reduced. .

(熱延伸工程)
本発明の製造方法においては、前記溶融紡糸工程で得られた未延伸複合繊維を熱延伸処理する。この熱延伸処理は、ポリオレフィン系樹脂(a)のガラス転移温度(Tg)以上、融点以下の温度であって、かつ非晶性樹脂(b)のTg以下の温度で行われる。
当該熱延伸工程においては、従来公知の熱延伸処理方法、例えば一般的に知られている金属加熱ロールや金属加熱板などを用いた接触加熱延伸、あるいは温水、常圧〜0.2MPa(ゲージ圧)程度の水蒸気や熱風などの加熱流体、高圧蒸気延伸、遠赤外線などの熱線を用いた非接触加熱延伸、及びこれらの組み合わせた方法などを適用することができる。
紙おむつ等、風合いを求められる用途において、延伸倍率は、繊維強度を発現させる観点から通常2〜6倍程度、好ましくは3〜5倍である。得られた分割性凹凸複合(延伸)繊維における単糸繊度は、通常1〜10dtex程度、好ましくは2〜7dtexである。分割性凹凸複合繊維は、その繊維断面における区画成分の数に対応して分割され、細繊度化することができる。
(Heat drawing process)
In the production method of the present invention, the unstretched composite fiber obtained in the melt spinning step is subjected to a heat stretching process. This heat stretching treatment is performed at a temperature not lower than the glass transition temperature (Tg) of the polyolefin resin (a) and not higher than the melting point, and not higher than Tg of the amorphous resin (b).
In the heat drawing step, a conventionally known heat drawing method, for example, contact heating drawing using a generally known metal heating roll or metal heating plate, or hot water, normal pressure to 0.2 MPa (gauge pressure). ) Heating fluid such as water vapor and hot air, high-pressure steam stretching, non-contact heating stretching using heat rays such as far-infrared rays, and a combination of these can be applied.
In applications where texture is required, such as paper diapers, the draw ratio is usually about 2 to 6 times, preferably 3 to 5 times, from the viewpoint of developing fiber strength. The single yarn fineness in the obtained splittable uneven composite (drawn) fiber is usually about 1 to 10 dtex, preferably 2 to 7 dtex. The splittable concavo-convex composite fiber can be split in accordance with the number of partition components in the fiber cross section, and can be made finer.

(捲縮加工)
本発明においては、このようにして得られた分割性凹凸複合延伸繊維に、通常捲縮加工が施される。該捲縮加工方法としては、特に制限はなく、従来ポリオレフィン系複合延伸繊維の捲縮加工に慣用されている方法を用いることができる。例えば、該分割性凹凸複合延伸繊維に、常法により、捲縮数10〜18個/2.5cm程度、好ましくは12〜16個/2.5cmで機械捲縮を施すことにより、捲縮分割性凹凸複合延伸繊維が得られる。
また、この工程で繊維に油剤を塗付(付着)することによって、繊維及び熱風融着後の不織布特性として、カーディング等に対する高次加工性、不織布としての初期透水性、耐久親水性、撥水性等様々な性能を付与することができる。
(Crimping)
In the present invention, the splittable concavo-convex composite drawn fiber thus obtained is usually crimped. There is no restriction | limiting in particular as this crimping method, The method conventionally used for the crimping process of the polyolefin-type composite stretched fiber can be used. For example, the splittable concavo-convex composite stretched fiber is subjected to mechanical crimping by a conventional method at a crimp number of about 10 to 18 pieces / 2.5 cm, preferably 12 to 16 pieces / 2.5 cm. Is obtained.
Also, by applying (attaching) an oil to the fiber in this step, the non-woven fabric characteristics after fiber and hot air fusion are high-order workability with respect to carding and the like, initial water permeability as a non-woven fabric, durable hydrophilicity, repellent properties. Various performances such as aqueous properties can be imparted.

(切断工程)
分割性凹凸複合延伸繊維は延伸により、低融点成分(B)の非晶性樹脂(b)に起因する凹凸の核が形成され、必要に応じて乾燥処理を経て、3〜100mmに切断される。
(Cutting process)
The splittable concavo-convex composite stretched fiber is formed into concavo-convex nuclei due to the amorphous resin (b) of the low melting point component (B) by stretching, and is cut into 3 to 100 mm through a drying treatment as necessary. .

(分割性凹凸複合延伸繊維の分割による細繊度化)
得られた捲縮分割性凹凸複合延伸繊維について、さらに細繊度化したい場合は、不織布化後にウォータージェット処理するなどして繊維を分割し、細繊度化することができる。
次に、本発明の不織布について説明する。
(Fineness refinement by splitting splittable uneven composite stretched fiber)
If the crimped splittable concavo-convex composite stretched fiber is desired to be further finer, it can be made finer by splitting the fiber, for example, by water jet treatment after making it into a nonwoven fabric.
Next, the nonwoven fabric of this invention is demonstrated.

[不織布]
本発明の前述した分割性凹凸複合繊維から得られた繊維は、不織布化する際の熱処理によって、低融点成分(B)表面に凹凸状を顕在(発現)させてなる不織布とすることができる。(不織布の製造方法)
不織布は、例えば下記の方法により製造することができる。
まず、前述の捲縮加工で得られた捲縮複合延伸繊維を常法に従って、通常15〜80mm、好ましくは25〜60mmに切断して、短繊維の分割性凹凸複合繊維を得る。次いで、この短繊維の分割性凹凸複合繊維を用いて、後述する製造方法から選択される方法によって不織布を作製する。
なお、低融点成分(B)ポリオレフィン系樹脂にTgが高い環状オレフィン共重合体(coc)を添加し、凹凸繊維不織布とした場合、未添加品と比較し不織布強力がMD方向で2割、CD方向では3割低下するという実体がある。本発明においては、元々接着成分(低融点成分)の表面割合がノズル設計上50%前後であり、前述した通り、樹脂粘度により接着成分の表面割合も変化し接着性繊維としての接着性能は以下の通り低下する。
(i)接着成分の表面割合が60%程度(=推定である。)では同芯タイプ(鞘芯型)未添加品と比較して、接着強力は7〜8割低下。
(ii)接着成分の表面割合が50%程度(=推定である。)では同芯タイプ未添加品と比較して、接着強力は8〜9割低下。
(iii)接着成分の表面割合が40%程度(=推定である。)では接着性能は殆どないと思われる。
上述の通り、接着力が低いことから、熱融着不織布とした場合は、同芯複合繊維(PP又はPET/HDPE)との混綿による使用が好ましい。
[Nonwoven fabric]
The fiber obtained from the above-described splittable concavo-convex composite fiber of the present invention can be made into a non-woven fabric in which the concavo-convex shape is manifested (expressed) on the surface of the low melting point component (B) by heat treatment when forming the non-woven fabric. (Nonwoven fabric manufacturing method)
A nonwoven fabric can be manufactured by the following method, for example.
First, the crimped composite drawn fiber obtained by the above-described crimping process is usually cut into 15 to 80 mm, preferably 25 to 60 mm, in accordance with a conventional method, to obtain a splittable uneven composite fiber of short fibers. Subsequently, a nonwoven fabric is produced by a method selected from the production methods described later using the splittable uneven composite fiber of short fibers.
In addition, when the cyclic olefin copolymer (coc) having a high Tg is added to the low melting point component (B) polyolefin-based resin to form a concavo-convex fiber nonwoven fabric, the nonwoven fabric strength is 20% in the MD direction compared to the unadded product, CD In the direction, there is an entity that falls by 30%. In the present invention, the surface ratio of the adhesive component (low melting point component) is originally about 50% in terms of the nozzle design. As described above, the surface ratio of the adhesive component also changes depending on the resin viscosity, and the adhesive performance as an adhesive fiber is as follows. It goes down as follows.
(I) When the surface ratio of the adhesive component is about 60% (= estimated), the adhesive strength is reduced by 70 to 80% as compared with a concentric type (sheath core type) non-added product.
(ii) When the surface ratio of the adhesive component is about 50% (= estimated), the adhesive strength is reduced by 80 to 90% compared to the unadded core type product.
(iii) When the surface ratio of the adhesive component is about 40% (= estimated), it seems that there is almost no adhesive performance.
As described above, since the adhesive strength is low, when a heat-fused nonwoven fabric is used, it is preferably used by blending with concentric composite fibers (PP or PET / HDPE).

不織布の作製方法としては、熱融着法、熱ロール法、スパンレース法、ニードルパンチ法などがあるが、本発明においては、熱融着法、特に熱風融着法を採用するのが有利である。この熱融着法、特に熱風融着法で不織布を作製した場合、不織布の作製と同時に、分割性凹凸複合繊維の低融点成分(B)表面に不規則な凹凸が発現して、所望の不織布が容易に得られるからである。
この熱風融着法による不織布の製造方法としては特に制限はなく、従来熱風融着加工による不織布の製造において慣用されている方法を用いることができる。例えば前述したようにして得られた短繊維の分割性凹凸複合繊維を、ローラーカード機にてカーディングして所望の目付重量のウェッブを作製したのち、エアースルー方式等の熱風融着法により、当該不織布が得られる。
この際、熱風融着は、ポリオレフィン系樹脂(a)の融点以上の温度で行うことが肝要であり、特に、ポリオレフィン系樹脂(a)の融点以上、かつ非晶性樹脂(b)のガラス転移点(Tg)以下の温度で行うことがより好ましい。
Nonwoven fabric production methods include a heat fusion method, a heat roll method, a spunlace method, a needle punch method, etc. In the present invention, it is advantageous to employ a heat fusion method, particularly a hot air fusion method. is there. When a nonwoven fabric is produced by this heat fusion method, particularly the hot air fusion method, irregular irregularities appear on the surface of the low melting point component (B) of the splittable irregular composite fiber simultaneously with the production of the nonwoven fabric, and the desired nonwoven fabric. This is because it can be easily obtained.
There is no restriction | limiting in particular as a manufacturing method of the nonwoven fabric by this hot-air melt | fusion method, The method conventionally used in manufacture of the nonwoven fabric by a hot-air melt | fusion process can be used. For example, after splitting concavo-convex composite fibers of short fibers obtained as described above are carded with a roller card machine to produce a web with a desired weight per unit area, by a hot air fusion method such as an air-through method, The said nonwoven fabric is obtained.
At this time, it is important that the hot air fusion is performed at a temperature equal to or higher than the melting point of the polyolefin resin (a). In particular, the glass transition of the amorphous resin (b) is equal to or higher than the melting point of the polyolefin resin (a). It is more preferable to carry out at a temperature below the point (Tg).

前述のようにして得られた不織布は、熱風融着によって繊維表面に形成された凹凸形状、及び、未分割部分においては高融点成分(A)と低融点成分(B)の界面に形成された微細な隙間とによって、毛細管現象が発現しやすい構造となり、不織布は高い吸水性(保水性)を有する。また低融点成分(B)が分割し、高融点成分(A)から離脱した場合も、高融点成分(A)が形成するV溝によって更に効果を発揮することができる。   The nonwoven fabric obtained as described above was formed at the interface between the high melting point component (A) and the low melting point component (B) in the uneven shape formed on the fiber surface by hot air fusion, and in the undivided portion. A fine gap causes a structure in which capillary action is likely to occur, and the nonwoven fabric has high water absorption (water retention). Even when the low melting point component (B) is divided and separated from the high melting point component (A), the effect can be further exhibited by the V-groove formed by the high melting point component (A).

[凹凸発現のメカニズムの考察]
非晶性樹脂(b)は紡糸によりポリオレフィン系樹脂(a)内で引き伸ばされた棒状態で存在していると考えられる。延伸の際、ポリオレフィン系樹脂(a)のガラス転移点(Tg)及び融点(Tm)、非晶性樹脂(b)のガラス転移点(Tg)、そして延伸温度の関係によって凹凸発現の有無、大きさが決定され、次のようにパターン化できる。
[Consideration of the mechanism of unevenness]
It is considered that the amorphous resin (b) exists in a rod state stretched in the polyolefin resin (a) by spinning. During stretching, the presence or absence of unevenness depending on the relationship between the glass transition point (Tg) and melting point (Tm) of the polyolefin resin (a), the glass transition point (Tg) of the amorphous resin (b), and the stretching temperature. Is determined and can be patterned as follows.

(i)凹凸発現パターン(1):非晶性樹脂(b)のガラス転移点(Tg) > ポリオレフィン系樹脂(a)の融点(Tm) > 延伸温度のとき
非晶性樹脂(b)のガラス転移点(Tg)が延伸温度よりも高いため棒状の非晶性樹脂(b)は伸びにくく、弱い延伸で破断しポリオレフィン系樹脂(a)の延伸部分よりも太い径の大きな塊(凹凸の核)を形成する。一方ポリオレフィン系樹脂(a)は結晶性で伸びやすいため、そのまま延伸され続ける。その結果、延伸糸には比較的大きな非晶性樹脂(b)が断続的に存在する状態となると考えられる。そして、不織布化に際して、熱風融着時に加熱にされることで、非晶性樹脂(b)は千切れた形状から表面張力で凝集し丸型になるため、その際に凹凸が発現すると考えられる。
(I) Concavity and convexity expression pattern (1): Glass transition point (Tg) of amorphous resin (b)> Melting point (Tm) of polyolefin resin (a)> When stretching temperature Glass of amorphous resin (b) Since the transition point (Tg) is higher than the stretching temperature, the rod-shaped amorphous resin (b) is not easily stretched, breaks by weak stretching, and has a larger diameter (uneven core) than the stretched portion of the polyolefin resin (a). ). On the other hand, since the polyolefin resin (a) is crystalline and easily stretched, it continues to be stretched as it is. As a result, it is considered that relatively large amorphous resin (b) is intermittently present in the drawn yarn. And when making into a non-woven fabric, the amorphous resin (b) is agglomerated by a surface tension from a shredded shape to become a round shape by being heated at the time of hot-air fusion, and it is considered that irregularities appear at that time. .

(ii)凹凸発現パターン(2):ポリオレフィン系樹脂(a)の融点(Tm) > 非晶性樹脂(b)のガラス転移点(Tg) > 延伸温度のとき
非晶性樹脂(b)のガラス転移点(Tg)と延伸温度が近いため、棒状の非晶性樹脂(b)は伸びやすい状態にあり、非晶性樹脂(b)はある程度までは伸び続け細くなった後に延伸可能極限倍率を超過して破断し、破断した塊(凹凸の核)は前記(i)よりも小さくなり、その結果、熱風融着後の凹凸形状も小さくなるものと考えられる。
(Ii) Concavity and convexity expression pattern (2): Melting point (Tm) of polyolefin resin (a)> Glass transition point (Tg) of amorphous resin (b)> When stretching temperature Glass of amorphous resin (b) Since the transition point (Tg) and the stretching temperature are close, the rod-shaped amorphous resin (b) is in an easily stretchable state, and the amorphous resin (b) continues to stretch to a certain extent and then stretches to a limit magnification that can be stretched. It is considered that the ruptured lump (uneven core) is smaller than the above (i), and as a result, the uneven shape after hot-air fusion is also reduced.

(iii)凹凸発現パターン(3):ポリオレフィン系樹脂(a)の融点(Tm) > 延伸温度 > 非晶性樹脂(b)のガラス転移点(Tg)のとき
非晶性樹脂(b)のガラス転移点(Tg)が延伸温度よりも低いため、非晶性樹脂(b)は延伸温度で剛性と粘度が低下しポリオレフィン系樹脂(a)と共に円滑に延伸され、凹凸の核となる非晶性樹脂(b)の塊が形成されないため凹凸が発現しないものと考えられる。
(Iii) Concavity and convexity expression pattern (3): Melting point (Tm) of polyolefin resin (a)> Stretching temperature> When glass transition point (Tg) of amorphous resin (b) Glass of amorphous resin (b) Since the transition point (Tg) is lower than the stretching temperature, the amorphous resin (b) is reduced in rigidity and viscosity at the stretching temperature, and is smoothly stretched together with the polyolefin resin (a). Since the resin (b) lump is not formed, it is considered that unevenness does not appear.

次に、本発明を実施例により、さらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。なお、以下の実施例、比較例において、共通する紡糸工程における冷却条件及び延伸ローラーの温度条件についてまとめて示す。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples. In the following examples and comparative examples, the cooling conditions in the common spinning process and the temperature conditions of the stretching roller are collectively shown.

(1)紡糸工程における冷却条件
以下の実施例及び比較例において、分割性凹凸複合繊維の紡糸工程における紡出繊維の冷却は、横風冷却装置を用い、冷却風速3.5m/sec、風温15℃、サイクルを30Hzとして行った。
(2)延伸ローラー温度条件
分割性複合未延伸繊維を所定のトータル繊度に集束し、それぞれの表面温度に制御可能な第1〜第4の延伸ローラーを用い、第1ローラー温度80℃、第2ローラー温度100℃、第3ローラー温度85℃、第4ローラー温度75℃とし、延伸温度としてのローラー間の温度を98℃として4倍及び2倍の延伸を行った。
(1) Cooling conditions in the spinning process In the following examples and comparative examples, the spinning fibers in the spinning process of the splittable uneven composite fiber were cooled by a cross wind cooling device using a cooling wind speed of 3.5 m / sec and a wind temperature of 15 C., and the cycle was 30 Hz.
(2) Stretching roller temperature conditions The first to fourth stretching rollers that are capable of controlling the respective surface temperatures by focusing the splittable composite unstretched fibers to a predetermined total fineness, the first roller temperature of 80 ° C., the second The roller temperature was 100 ° C., the third roller temperature was 85 ° C., the fourth roller temperature was 75 ° C., and the temperature between the rollers as the stretching temperature was 98 ° C., and stretching was performed 4 times and 2 times.

繊維表面の凹凸状態の評価は、以下のようにして行った。
(i)分割性凹凸複合繊維の未延伸繊維、及び延伸繊維の凹凸状態の評価
未延伸繊維及び延伸繊維の側面のSEM写真を撮影し、その写真を視認観察して以下のような基準で定性評価を行った。
○:繊維の高融点成分と低融点成分の境目が明確で、低融点成分に明確な凹部または凸部が形成されている場合
△:繊維の高融点成分と低融点成分の境目が形成され、低融点成分に僅かに凹凸形状が認められる場合
×:繊維の高融点成分と低融点成分の境目が不明瞭で、凹凸形状が認められず平滑な表面の場合
(ii) 分割性凹凸複合繊維を熱風融着処理して作製された不織布の凹凸状態の評価
分割性凹凸複合繊維を熱風融着処理して作製された不織布のSEM写真を撮影し、その写真を視認観察して以下のような基準で定性評価を行った。
◎:繊維の低融点成分側に大きな凸部が形成され、凸部間に空洞が開く程の凹部が形成されている場合
○:繊維の低融点成分側に断続的な凸部のみが形成されている場合
×:繊維の低融点成分に凸部や凹部がなくスジ状突起のみが存在している場合
Evaluation of the uneven state on the fiber surface was performed as follows.
(i) Evaluation of unstretched fiber of splittable concavo-convex composite fiber and concavo-convex state of stretched fiber Take SEM photographs of unstretched fiber and side surfaces of stretched fiber, visually observe the photographs, and qualitatively according to the following criteria Evaluation was performed.
○: When the boundary between the high melting point component and the low melting point component of the fiber is clear and a clear concave or convex portion is formed in the low melting point component Δ: The boundary between the high melting point component and the low melting point component of the fiber is formed, When the uneven shape is slightly observed in the low melting point component x: When the boundary between the high melting point component and the low melting point component of the fiber is unclear, and the uneven surface is not recognized, the surface is smooth
(ii) Evaluation of uneven state of nonwoven fabric produced by hot-air fusion treatment of splittable concavo-convex composite fiber A SEM photograph of a nonwoven fabric produced by hot-air fusion treatment of splittable concavo-convex composite fiber was taken, and the photograph Visual observation was performed and qualitative evaluation was performed according to the following criteria.
A: When a large convex part is formed on the low melting point component side of the fiber and a concave part is formed so that a cavity is opened between the convex parts. ○: Only an intermittent convex part is formed on the low melting point component side of the fiber. When X: When the low melting point component of the fiber has no protrusions or recesses and only streaky protrusions exist

実施例1
(1)分割性凹凸複合繊維の作製
高融点成分(A)材料として、ホモポリプロピレン[プライムポリマー社製、商品名「Y6005GM」、MFR(230℃、2.16kg)=60g/10分、融点:161℃]、低融点成分(B)材料として、高密度ポリエチレン[京葉ポリエチレン社製、商品名「S6932」、MFR(190℃、2.16kg)=20g/10分、融点:130℃、Tg:−120℃]と、環状オレフィンコポリマー[ポリプラスチック社製、登録商標「TOPAS 5013」、Tg=134℃、260℃/2.16kgでのメルトボリュームレイト(MVR)=48ml/10分]を質量比90:10の割合で含む樹脂組成物を用い、一軸押出機2台と孔径0.4mmのホールを600個有する8分割型複合繊維用ノズルを備えた複合紡糸装置により、紡糸温度260℃、前記の冷却条件、及び引取速度300m/分で紡糸し、高融点成分(A)と低融点成分(B)が各4区分され、これらが交互に接合した8分割の図2(e)に示す断面形状を有する単糸繊度が8.1dtexの分割性凹凸複合未延伸繊維を作製した。原料組成、紡糸条件等をまとめて第1表に示す。
Example 1
(1) Production of splittable concavo-convex composite fiber As a high melting point component (A) material, homopolypropylene [manufactured by Prime Polymer Co., Ltd., trade name “Y6005GM”, MFR (230 ° C., 2.16 kg) = 60 g / 10 min, melting point: 161 ° C.] As a low melting point component (B) material, high-density polyethylene [manufactured by Keiyo Polyethylene Co., Ltd., trade name “S6932”, MFR (190 ° C., 2.16 kg) = 20 g / 10 min, melting point: 130 ° C., Tg: -120 ° C] and cyclic olefin copolymer [manufactured by Polyplastics, registered trademark “TOPAS 5013”, Tg = 134 ° C., melt volume rate (MVR) at 260 ° C./2.16 kg = 48 ml / 10 min] Using a resin composition containing 90:10, an 8-split composite fiber having 2 single-screw extruders and 600 holes with a hole diameter of 0.4 mm Spinning at a spinning temperature of 260 ° C., the above-mentioned cooling conditions, and a take-up speed of 300 m / min by a composite spinning device equipped with a nozzle for high-melting component (A) and low-melting component (B) are divided into 4 parts each. A splittable concavo-convex composite unstretched fiber having a single yarn fineness of 8.1 dtex having a cross-sectional shape shown in FIG. Table 1 summarizes the raw material composition, spinning conditions, and the like.

(2)分割性凹凸複合延伸繊維の作製
上記(1)で得られた分割性凹凸複合未延伸繊維を、前記の延伸ローラー温度条件のローラー間で、延伸温度98℃の条件で延伸処理して、延伸倍率4倍で単糸繊度が2.2dTexである分割性凹凸複合繊維を作製した。
(3)短繊維の分割性凹凸複合繊維の作製
上記(2)で得られた分割性凹凸複合繊維に、機械捲縮加工を施した。その後、ロータリーカッターで、50mmの長さにカットすることにより、短繊維の分割性凹凸複合繊維を作製した。
(2) Production of splittable concavo-convex composite stretched fiber The splittable concavo-convex composite unstretched fiber obtained in (1) above is stretched under the conditions of a stretching temperature of 98 ° C between rollers of the above-mentioned stretching roller temperature conditions. A splittable concavo-convex composite fiber having a draw ratio of 4 and a single yarn fineness of 2.2 dTex was produced.
(3) Production of splittable concavo-convex composite fiber of short fibers The crimpable concavo-convex composite fiber obtained in (2) above was subjected to mechanical crimping. Then, the splittable uneven | corrugated composite fiber of a short fiber was produced by cutting to 50 mm length with a rotary cutter.

(4)不織布の作製
上記(3)で得られた短繊維の分割性凹凸複合繊維を用い、360mm幅のローラーカード機にて20m/分の速度でカーディングし、目付10g/m2のウェッブを吐出させて3層に積層し、目付30g/m2のウェッブを得た。次に、このウェッブを幅350mm、速度5m/minの金網ベルトに載せ、風温135℃、風速2.7m/secの熱風を5秒間吹きつける熱風融着法により、低融点成分(B)の表面に不規則な凹凸を有する熱風融着不織布を作製した。
図3(a)に分割性凹凸複合未延伸繊維の走査型電子顕微鏡(SEM)写真を、図3(b)に分割性凹凸複合繊維のSEM写真を、図3(c)に熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を示す。
図3(a)〜(c)から分かるように、分割性凹凸複合未延伸繊維の低融点成分(B)表面には凹凸は認められない(判定:×)が、分割性凹凸複合延伸繊維の低融点成分(B)表面には凹凸が僅かに認められる(判定:△)。また、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた(判定:○)。これらの凹凸状態についてまとめて第1表に示す。
(4) Fabrication of nonwoven fabric Using the short-fiber splittable concavo-convex composite fiber obtained in (3) above, carded at a speed of 20 m / min with a roller card machine having a width of 360 mm, and a web having a basis weight of 10 g / m 2 Were laminated in three layers to obtain a web having a basis weight of 30 g / m 2 . Next, this web is placed on a wire mesh belt having a width of 350 mm and a speed of 5 m / min, and the low melting point component (B) is heated by a hot air fusion method in which hot air having a wind temperature of 135 ° C. and a wind speed of 2.7 m / sec is blown for 5 seconds. A hot-air fused nonwoven fabric having irregular irregularities on the surface was produced.
FIG. 3 (a) shows a scanning electron microscope (SEM) photograph of the splittable uneven composite unstretched fiber, FIG. 3 (b) shows an SEM photograph of the splittable uneven composite fiber, and FIG. 3 (c) shows a hot-air fused nonwoven fabric. The SEM photograph of the splittable uneven | corrugated composite fiber which comprises is shown.
As can be seen from FIGS. 3 (a) to 3 (c), no irregularities are observed on the surface of the low melting point component (B) of the splittable uneven composite unstretched fiber (judgment: x). Slight irregularities are observed on the surface of the low melting point component (B) (judgment: Δ). Moreover, only the intermittent convex part was formed in the low melting-point component (B) of the splittable uneven | corrugated composite fiber which comprises a hot-air melt | fusion nonwoven fabric (determination: (circle)). These irregularities are summarized in Table 1.

実施例2
実施例1(1)において、環状オレフィンコポリマーを「TOPAS 6013」〔Tg=138℃、260℃/2.16kgでのMVR=14ml/10分〕に変更した以外は実施例1と同様にして、分割性凹凸複合未延伸繊維を得た。4倍延伸を試みたが、2倍迄しか延伸できず単糸繊度が4.4dtexである以外は、実施例1と同様な操作を行った。分割性凹凸複合未繊維の断面は図2(e)に近似していた。
図4(a)に分割性凹凸複合延伸繊維のSEM写真を、図4(b)に熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を示す。
図4(a)、(b)から分かるように、分割性凹凸複合延伸繊維の表面には大きな凹部が認められており(判定:○)、また熱風融着不織布を構成する分割性凹凸複合繊維には大きな凸部が形成され、繊維に空洞が開く程の凹部が形成されていた(判定:◎)。これは、実施例1に使用した環状オレフィンコポリマーと比較して、環状オレフィンコポリマーのメルトボリュームレイト(MVR)(260℃/2.16kg)が14(ml/10分)と低いため、10質量%の配合では、高密度ポリエチレンとの混合分散が必ずしも均一とならず、延伸倍率も上がらず、且つ高い延伸応力により、低融点成分(B)に部分的に剥離力が働いたものと思われる。
Example 2
In Example 1 (1), except that the cyclic olefin copolymer was changed to “TOPAS 6013” (Tg = 138 ° C., MVR at 260 ° C./2.16 kg = 14 ml / 10 minutes), the same as in Example 1, A splittable uneven composite unstretched fiber was obtained. Although 4 times stretching was tried, the same operation as Example 1 was performed except that it was able to stretch only up to 2 times and the single yarn fineness was 4.4 dtex. The cross section of the splittable concavo-convex composite non-fiber approximated that shown in FIG.
FIG. 4A shows an SEM photograph of the splittable uneven composite stretched fiber, and FIG. 4B shows an SEM photograph of the splittable uneven composite fiber constituting the hot-air fused nonwoven fabric.
As can be seen from FIGS. 4 (a) and 4 (b), large concave portions are recognized on the surface of the splittable concave / convex composite stretched fibers (judgment: ◯), and the splittable concave / convex composite fibers constituting the hot-air fused nonwoven fabric. A large convex portion was formed on the surface, and a concave portion was formed so as to open a cavity in the fiber (judgment: A). This is because the melt volume rate (MVR) (260 ° C./2.16 kg) of the cyclic olefin copolymer is as low as 14 (ml / 10 minutes) compared with the cyclic olefin copolymer used in Example 1, 10% by mass. In this composition, it is considered that the mixing and dispersion with the high-density polyethylene is not necessarily uniform, the stretching ratio is not increased, and the peeling force is partially applied to the low melting point component (B) due to the high stretching stress.

実施例3
実施例2において、高融点成分(A)材料として、ホモポリプロピレン[プライムポリマー社製、商品名「S119」、MFR(230℃、2.16kg)=60g/10分、融点:161℃]を用い、低融点成分(B)材料として、実施例2と同一の高密度ポリエチレンと、環状オレフィンコポリマーとを質量比95:5の割合で含む樹脂組成物とした外は、実施例2と同様な操作を行った。延伸は4倍の延伸が可能であった。分割性凹凸複合未延伸繊維の断面は図2(e)に近似していた。分割性凹凸複合延伸繊維の低融点成分(B)表面には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
Example 3
In Example 2, homopolypropylene [manufactured by Prime Polymer Co., Ltd., trade name “S119”, MFR (230 ° C., 2.16 kg) = 60 g / 10 min, melting point: 161 ° C.] was used as the high melting point component (A) material. , as a low-melting component (B) material, the same high density polyethylene as in example 2, the cyclic olefin copolymer and the mass ratio of 95: is except that the resin composition in a proportion of 5, similar to example 2 The operation was performed. Stretching could be 4 times. The cross section of the splittable concavo-convex composite unstretched fiber was close to that shown in FIG. Slight irregularities are observed on the surface of the low melting point component (B) of the splittable uneven composite stretched fiber (judgment: Δ), and the low melting point component (B) of the splittable uneven composite fiber constituting the hot-air fused nonwoven fabric is intermittent. Only the convex part was formed. (Judgment: ○).

実施例4
実施例1(1)において、高融点成分(A)材料として、ホモポリプロピレン[プライムポリマー社製、商品名「S119」、MFR(230℃、2.16kg)=60g/10分、融点:161℃]を用い、低融点成分(B)材料として環状オレフィンコポリマーを「TOPAS 7010」(Tg=110℃、260℃/2.16kgでのMVR=40ml/10分)に変更し、その他の条件は実施例1と同様にして、分割性凹凸複合未延伸繊維を得た。
4倍の延伸が可能だった。分割性凹凸複合未延伸繊維の断面は図2(e)に近似していた。
図5(a)に分割性凹凸複合延伸繊維のSEM写真を、図5(b)に熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を示す。
実施例1と比べ若干小さいが、分割性凹凸延伸複合繊維の低融点成分(B)表面には凹凸が僅かに認められた(判定:△)。また熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されたが、凹凸は実施例1と比べ小さかった(判定:○)。これは前述の凹凸発現パターン(2)で示したとおり、非晶性樹脂(b)のガラス転移点(Tg)と延伸温度が近いため、形成された凹凸の核が小さくなったことが原因であると考えられる。
Example 4
In Example 1 (1), as a high melting point component (A) material, homopolypropylene [manufactured by Prime Polymer Co., Ltd., trade name “S119”, MFR (230 ° C., 2.16 kg) = 60 g / 10 min, melting point: 161 ° C. ], The cyclic olefin copolymer was changed to “TOPAS 7010” (Tg = 110 ° C., MVR = 260 ml / 2.16 kg = 40 ml / 10 min) as the low melting point component (B) material, and other conditions were carried out In the same manner as in Example 1, a splittable uneven composite unstretched fiber was obtained.
It was possible to stretch 4 times. The cross section of the splittable concavo-convex composite unstretched fiber was close to that shown in FIG.
FIG. 5A shows an SEM photograph of the splittable uneven composite stretched fiber, and FIG. 5B shows an SEM photograph of the splittable uneven composite fiber constituting the hot-air fused nonwoven fabric.
Although slightly smaller than Example 1, slight unevenness was observed on the surface of the low melting point component (B) of the splittable uneven stretched composite fiber (judgment: Δ). Moreover, although only the intermittent convex part was formed in the low melting-point component (B) of the splittable uneven | corrugated composite fiber which comprises a hot-air melt | fusion nonwoven fabric, the unevenness | corrugation was small compared with Example 1 (judgment: (circle)). This is because, as shown in the above-described concavo-convex expression pattern (2), since the glass transition point (Tg) of the amorphous resin (b) and the stretching temperature are close, the core of the concavo-convex formed is reduced. It is believed that there is.

実施例5
実施例3において、低融点成分(B)における環状ポリオレフィンコポリマーの配合比率を10質量%とし、実施例2で使用した「TOPAS 6013」と実施例1で使用した「TOPAS 5013」を各5質量%ずつ使用した。それ以外は実施例3と同様とし、分割性凹凸複合繊維及び熱風融着不織布を得、繊維表面の凹凸状態を観察した。分割性凹凸複合未延伸繊維の断面は図2(e)に近似していた。分割性凹凸複合延伸繊維には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
Example 5
In Example 3, the blending ratio of the cyclic polyolefin copolymer in the low-melting-point component (B) was 10% by mass, and “TOPAS 6013” used in Example 2 and “TOPAS 5013” used in Example 1 were each 5% by mass. Used one by one. Other than that was carried out similarly to Example 3, the division | segmentation uneven | corrugated composite fiber and the hot-air fusion | melting nonwoven fabric were obtained, and the uneven | corrugated state of the fiber surface was observed. The cross section of the splittable concavo-convex composite unstretched fiber was close to that shown in FIG. Slight irregularities are observed in the splittable concave / convex composite stretched fibers (judgment: Δ), and only intermittent convex portions are formed in the low melting point component (B) of the splittable concave / convex composite fibers constituting the hot-air fused nonwoven fabric. It was. (Judgment: ○).

実施例6
実施例5と同様に、低融点成分(B)における環状ポリオレフィンコポリマーの配合比率を10質量%とし、実施例2で使用した「TOPAS 6013」と、環状オレフィンコポリマー「TOPAS 8007」(Tg=78℃、260℃/2.16kgでのMVR=32ml/10分)を各5質量%ずつ使用した。それ以外は実施例5と同様とし、分割性凹凸複合繊維及び熱風融着不織布を得、繊維表面の凹凸状態を観察した。分割性凹凸複合未延伸繊維の断面は図2(e)に近似していた。分割性凹凸複合延伸繊維には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
Example 6
In the same manner as in Example 5, the blending ratio of the cyclic polyolefin copolymer in the low melting point component (B) was 10% by mass, and “TOPAS 6013” used in Example 2 and the cyclic olefin copolymer “TOPAS 8007” (Tg = 78 ° C.). , 260 ° C./2.16 kg MVR = 32 ml / 10 min) was used at 5 mass% each. Other than that was carried out similarly to Example 5, obtained the splittable uneven | corrugated composite fiber and the hot-air fusion nonwoven fabric, and observed the uneven | corrugated state of the fiber surface. The cross section of the splittable concavo-convex composite unstretched fiber was close to that shown in FIG. Slight irregularities are observed in the splittable concave / convex composite stretched fibers (judgment: Δ), and only intermittent convex portions are formed in the low melting point component (B) of the splittable concave / convex composite fibers constituting the hot-air fused nonwoven fabric. It was. (Judgment: ○).

実施例7
繊維断面における高融点成分(A)と低融点成分(B)の面積比率を同等にすべく、高融点成分(B)にMFRの異なる2種のホモポリプロピレン、即ち、プライムポリマー社製、商品名「Y2005GP」(MFR=20g/10分、融点:161℃)と同社製「S119」(MFRが60g/10分、融点:161℃)を60質量%/40質量%の比率で混合して目標MFRを31g/10分相当とし、分割性凹凸複合繊維、熱風融着繊維を得た。分割性凹凸複合延伸繊維には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
分割性凹凸複合未延伸繊維の断面は、図2(c)に示すように、繊維の中心部から高融点成分と低融点成分が放射状に広がり高融点成分(A)と低融点成分(B)の面積比率がほぼ同等であった。
Example 7
In order to equalize the area ratio of the high melting point component (A) and the low melting point component (B) in the fiber cross section, the high melting point component (B) is a homopolypropylene having a different MFR, that is, a product name of Prime Polymer Co., Ltd. “Y2005GP” (MFR = 20 g / 10 min, melting point: 161 ° C.) and “S119” (MFR 60 g / 10 min, melting point: 161 ° C.) manufactured by the same company are mixed at a ratio of 60% by mass / 40% by mass. The MFR was set to be equivalent to 31 g / 10 minutes, and splittable concavo-convex composite fibers and hot air fused fibers were obtained. Slight irregularities are observed in the splittable concave / convex composite stretched fibers (judgment: Δ), and only intermittent convex portions are formed in the low melting point component (B) of the splittable concave / convex composite fibers constituting the hot-air fused nonwoven fabric. It was. (Judgment: ○).
As shown in FIG. 2 (c), the cross section of the splittable concavo-convex composite unstretched fiber has a high melting point component (A) and a low melting point component (B). The area ratio was almost the same.

実施例8
実施例7と同様に、繊維断面における高融点成分(A)と低融点成分(B)の面積比率を同等にすべく、高融点成分(B)にMFRの異なる2種のホモポリプロピレン、即ち、プライムポリマー社製、商品名「Y2005GP」(MFR=20g/10分、融点:161℃)と同社製「S119」(MFRが60g/10分、融点:161℃)を30質量%/70質量%の比率で混合して目標のMFRを43g/10min相当とし、その他は実施例1と同様にして、分割性凹凸複合繊維、熱風融着繊維を得た。その結果、分割性凹凸複合延伸繊維には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
分割性凹凸複合未延伸繊維の断面は、図2(d)に示すように、実施例6とほぼ同様であった。
なお実施例7、8は2種類のホモポリプロピレンを用いてMFRを調整し「相当」としているが、この場合、2種のMFRと質量%から求められるブレンド物のMFRは、メルトフローレイトに関する以下の方程式によって計算される。
log(MFRフ゛レント゛) = w1log(MFR1) + w2log(MFR2) +…+wilog(MFRi) +…+ wnlog(MFRn)
式中、wiは構成成分iの重量分画、MFRiは構成要素iのメルトフローレイト、nはブレンド中の構成成分の総数、及びw1+w2+…+wi+…wn = 1
である。
Example 8
As in Example 7, in order to make the area ratio of the high melting point component (A) and the low melting point component (B) in the fiber cross section equal, two types of homopolypropylenes having different MFRs in the high melting point component (B), that is, 30% by mass / 70% by mass of Prime Polymer Co., Ltd., trade name “Y2005GP” (MFR = 20 g / 10 min, melting point: 161 ° C.) and “S119” (MFR 60 g / 10 min, melting point: 161 ° C.) In the same manner as in Example 1 except that the target MFR was equivalent to 43 g / 10 min, and a splittable uneven composite fiber and hot-air fused fiber were obtained. As a result, slight unevenness was observed in the splittable uneven composite stretched fiber (judgment: Δ), and only intermittent convex portions were present in the low melting point component (B) of the splittable uneven composite fiber constituting the hot-air fused nonwoven fabric. Was formed. (Judgment: ○).
The cross section of the splittable concavo-convex composite unstretched fiber was substantially the same as that of Example 6, as shown in FIG.
In Examples 7 and 8, the MFR was adjusted to “equivalent” by using two types of homopolypropylene. In this case, the MFR of the blend obtained from the two types of MFR and mass% is as follows regarding the melt flow rate: Calculated by the equation
log (MFR Brent) = w 1 log (MFR 1 ) + w 2 log (MFR 2 ) +… + w i log (MFR i ) +… + w n log (MFR n )
Where w i is the weight fraction of component i, MFR i is the melt flow rate of component i, n is the total number of components in the blend, and w 1 + w 2 +… + w i +… w n = 1
It is.

実施例9
高融点成分(A)として、プライムポリマー社製ホモポリプロピレン[商品名「Y2005GP」、MFR(230℃、2.16kg)=20g/10分]を35質量%と、同じく[商品名「Y900GV」、MFR(230℃、2.16kg)=9g/10分]を35質量%、及び相溶化剤として無水カルボン酸で酸変成したポリプロピレン[MFR(230℃、2.16kg)=524g/10分、融点:137℃]を30質量%配合し、目標MFRを40g/10分相当として、繊維断面における高融点成分(A)と低融点成分(B)の面積比率を同等にすることを目標とした以外は実施例1と同様にして、分割性凹凸複合未繊維を得た。分割性凹凸複合未延伸繊維の断面は図2(c)に近似していた。
得られた分割性凹凸複合未延伸繊維の紡糸繊度は12.2dtexが限度で、延伸倍率4倍のときに単糸繊度3.3dtexの分割性凹凸複合繊維を得た。分割性凹凸複合延伸繊維には僅かに凹凸が認められ(判定:△)、熱風融着不織布を構成する分割性凹凸複合繊維の低融点成分(B)には断続的な凸部のみが形成されていた。(判定:○)。
得られた分割性凹凸延伸複合繊維のSEM写真を図6(a)に示す。また実施例1と同様にして得られた熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を図6(b)に示す。
Example 9
As a high melting point component (A), a homopolypropylene manufactured by Prime Polymer Co., Ltd. [trade name “Y2005GP”, MFR (230 ° C., 2.16 kg) = 20 g / 10 min] is 35% by mass, similarly [trade name “Y900GV”, 35% by mass of MFR (230 ° C., 2.16 kg) = 9 g / 10 min] and polypropylene modified with acid anhydride with carboxylic anhydride as a compatibilizer [MFR (230 ° C., 2.16 kg) = 524 g / 10 min, melting point 137 ° C.], 30% by mass, target MFR is equivalent to 40 g / 10 min, and the area ratio of the high melting point component (A) and the low melting point component (B) in the fiber cross section is equal. Was obtained in the same manner as in Example 1 to obtain a splittable uneven composite non-fiber. The cross section of the splittable concavo-convex composite unstretched fiber was similar to FIG.
The spinnable fineness of the obtained splittable uneven composite unstretched fiber was 12.2 dtex, and a splittable uneven composite fiber having a single yarn fineness of 3.3 dtex was obtained when the draw ratio was 4 times. Slight irregularities are observed in the splittable concave / convex composite stretched fibers (judgment: Δ), and only intermittent convex portions are formed in the low melting point component (B) of the splittable concave / convex composite fibers constituting the hot-air fused nonwoven fabric. It was. (Judgment: ○).
An SEM photograph of the obtained splittable uneven stretched composite fiber is shown in FIG. Moreover, the SEM photograph of the splittable concavo-convex composite fiber constituting the hot-air fused nonwoven fabric obtained in the same manner as in Example 1 is shown in FIG.

実施例10
高融点成分(A)材料として、ホモポリプロピレン[プライムポリマー社製、商品名「S119」、MFR(230℃、2.16kg)=60g/10分]を用い、低融点成分(B)材料には、高密度ポリエチレン[京葉ポリエチレン社製、商品名「S6932」、MFR(190℃、2.16kg)=20g/10分、融点:130℃、Tg:−120℃]60質量%と、環状オレフィンコポリマー[ポリプラスチック社製、登録商標「TOPAS 5013」、Tg=134℃、260℃/2.16kgでのMVR=48ml/10分]10質量%、実施例9で用いた無水カルボン酸で酸変成したポリプロピレン[MFR(230℃、2.16kg)=524g/10分、融点:137℃]を低融点成分(B)に30質量%添加し、その他は実施例1と同様にして、2.2dtexの分割性凹凸複合繊維を得た。分割性凹凸複合延伸繊維には大きな凹部が認められており(判定:○)、また熱風融着不織布を構成する分割性凹凸複合繊維には大きな凸部が形成され、繊維に空洞が開く程の凹部が形成されていた(判定:◎)。
得られた分割性凹凸延伸複合繊維のSEM写真を図7(a)に示す。また実施例1と同様にして得られた熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を図7(b)に示す。
Example 10
Homopolypropylene (manufactured by Prime Polymer Co., Ltd., trade name “S119”, MFR (230 ° C., 2.16 kg) = 60 g / 10 min) is used as the high melting point component (A) material. , High density polyethylene [trade name “S6932” manufactured by Keiyo Polyethylene Co., Ltd., MFR (190 ° C., 2.16 kg) = 20 g / 10 min, melting point: 130 ° C., Tg: −120 ° C.] 60% by mass, cyclic olefin copolymer [Made of Polyplastics, registered trademark “TOPAS 5013”, Tg = 134 ° C., MVR at 260 ° C./2.16 kg = 48 ml / 10 min] 10% by mass, acid-modified with carboxylic anhydride used in Example 9 30% by mass of polypropylene [MFR (230 ° C., 2.16 kg) = 524 g / 10 min, melting point: 137 ° C.] added to the low melting point component (B), Example 1 In the same manner as to obtain a division of irregularities conjugate fiber of 2.2 dtex. A large concave portion is recognized in the splittable uneven composite stretched fiber (judgment: ◯), and a large convex portion is formed in the splittable concave-convex composite fiber constituting the hot-air fused nonwoven fabric, so that a cavity is opened in the fiber. A recess was formed (judgment: A).
An SEM photograph of the obtained splittable concavo-convex stretched composite fiber is shown in FIG. Moreover, the SEM photograph of the splittable uneven | corrugated composite fiber which comprises the hot air fusion | melting nonwoven fabric obtained by carrying out similarly to Example 1 is shown in FIG.7 (b).

比較例1
実施例1において、低融点成分に非晶性樹脂(b)(TOPAS、5013)を添加しない以外は、実施例1と同様に行った。延伸繊維の表面は平滑で凹凸はなく(判定:×)、熱風融着後の繊維低融点成分には凸部や凹部がなくスジ状突起しか存在しなかった(判定:×)。なお未延伸繊維の断面は図2(e)に近似したものであった。
得られた分割性凹凸延伸複合繊維のSEM写真を図8(a)に示す。また実施例1と同様にして得られた熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を図8(b)に示す。原料組成、紡糸条件等をまとめて第2表に示す。
Comparative Example 1
In Example 1, it carried out like Example 1 except not adding amorphous resin (b) (TOPAS, 5013) to a low melting point component. The surface of the drawn fiber was smooth and had no irregularities (judgment: x), and the fiber low-melting point component after hot-air fusion had no projections or depressions and only streaky projections (judgment: x). The cross section of the undrawn fiber was similar to that shown in FIG.
An SEM photograph of the obtained splittable concavo-convex stretched composite fiber is shown in FIG. Moreover, the SEM photograph of the splittable uneven | corrugated composite fiber which comprises the hot air fusion | melting nonwoven fabric obtained by carrying out similarly to Example 1 is shown in FIG.8 (b). The raw material composition, spinning conditions, etc. are summarized in Table 2.

比較例2
実施例1において、低融点成分の非晶性樹脂(b)を(TOPAS、5013)から、(TOPAS、8007、Tg=78℃、260℃/2.16kgにおけるMVR=32ml/10分)に代えた以外は、実施例1と同様にして、2.2dtexの分割性複合繊維を得た。未延伸繊維の断面は図2(e)に近似したものであった。また延伸複合繊維は平滑で凹凸はなく(判定:×)、熱風融着後の分割性複合繊維にも凹凸がなくスジ状突起しか存在しなかった(判定:×)。
得られた分割性凹凸延伸複合繊維のSEM写真を図9(a)に示す。また実施例1と同様にして得られた熱風融着不織布を構成する分割性凹凸複合繊維のSEM写真を図9(b)に示す。結果を第2表に示す。
Comparative Example 2
In Example 1, the amorphous resin (b) of the low melting point component was changed from (TOPAS, 5013) to (TOPAS, 8007, Tg = 78 ° C., MVR at 260 ° C./2.16 kg = 32 ml / 10 minutes). Except for the above, a 2.2 dtex splittable conjugate fiber was obtained in the same manner as in Example 1. The cross section of the undrawn fiber was similar to that shown in FIG. Further, the stretched composite fiber was smooth and had no unevenness (judgment: x), and the splittable composite fiber after hot-air fusion had no unevenness, and only streak-like protrusions were present (judgment: x).
An SEM photograph of the obtained splittable uneven stretched composite fiber is shown in FIG. Moreover, the SEM photograph of the splittable uneven | corrugated composite fiber which comprises the hot air fusion | melting nonwoven fabric obtained by carrying out similarly to Example 1 is shown in FIG.9 (b). The results are shown in Table 2.

比較例3
実施例1において、低融点成分(B)の非晶性樹脂(b)を(TOPAS、5013)から、(TOPAS、9506、Tg=65℃、260℃/2.16kgにおけるMVR=5.5ml/10分)に代えた以外は、実施例1と同様にして、2.2dtexの分割性複合繊維を得た。未延伸繊維の断面は、図2(e)に近似したものであった。また、延伸複合繊維は平滑で凹凸はなく(判定:×)、熱風融着後の分割性複合繊維にも凹凸がなくスジ状突起しか存在しなかった(判定:×)。結果を第2表に示す。
Comparative Example 3
In Example 1, the low melting point component (B) amorphous resin (b) was changed from (TOPAS, 5013) to (TOPAS, 9506, Tg = 65 ° C., MVR at 260 ° C./2.16 kg = 5.5 ml / Except for changing to 10 minutes), a 2.2 dtex splittable conjugate fiber was obtained in the same manner as in Example 1. The cross section of the undrawn fiber was similar to that shown in FIG. In addition, the stretched conjugate fiber was smooth and had no irregularities (judgment: x), and the splittable conjugate fiber after hot-air fusion had no irregularities and only streak-like projections (judgment: x). The results are shown in Table 2.

分割性凹凸複合繊維の評価
(1)延伸複合繊維の染色性
分割性凹凸延伸複合繊維の高融点成分(A)、低融点成分(B)、各成分の界面等の微細構造の違いを見るため、実施例1、実施例4、実施例10、比較例1、及び、比較例2について、染料による染色性の違いを見た。染色用サンプルは、幅30mm×長さ70mm、厚み1mmのステンレス板に穿孔した直径1.5mmの孔に、サンプルとしての分割性凹凸延伸複合繊維束の周りをビスコースレーヨン繊維で包んで過密状態で通し、ステンレス板の両面を、剃刀刃でカットして調製した。
これを、コンゴーレッド(ナカライテスク社製)5質量%の20℃の染色浴中で1分間染色した。
染色されたサンプルを光学顕微鏡下での繊維断面写真を撮影し染色状況を観察し、以下の基準で延伸複合繊維の染色性を判定した。
◎:染色液によって濃厚に染色され、繊維断面において8分割された2成分の界面の判別が全くできない場合
○:前記「◎」よりは薄いが染色されており、繊維断面の2成分界面の判別ができる場合
×:染色液に染色されることがなく、繊維断面の2成分界面が明確に判別できる場合
上記の方法により延伸複合繊維の染色状況を観察した結果、低融点成分(B)に非晶性樹脂を含まず、延伸後に凹凸状を呈していない比較例1と比較例2は、染色されることなく繊維断面において8分割された2成分の界面が明確な状態であった(判定:×)。一方、実施例1と実施例4では、凹凸による毛細管現象の効果により低融点成分と高融点成分の界面に染料が入り込み、高融点成分側と同化した色調となっていた(判定:○)。
実施例10は、延伸繊維の表面に大きな凹凸が観察され、一部断面成分は分割もしているため濃色に染色されており、繊維断面で8分割された2成分の界面の判別が全くできなかった(判定:◎)。これらをまとめて第3表に示す。
Evaluation of splittable concavo-convex composite fiber (1) Dyeability of stretched composite fiber To see the difference in microstructure such as high melting point component (A), low melting point component (B), interface of each component of splittable concavo-convex stretched composite fiber Example 1, Example 4, Example 10, Comparative Example 1 and Comparative Example 2 showed differences in dyeability with dyes. Samples for dyeing are packed in a viscose rayon fiber around a splittable concavo-convex stretched composite fiber bundle as a sample in a 1.5 mm diameter hole perforated on a stainless steel plate 30 mm wide x 70 mm long and 1 mm thick And both sides of the stainless steel plate were prepared by cutting with a razor blade.
This was dyed for 1 minute in a dye bath at 20 ° C. of 5% by mass of Congo Red (manufactured by Nacalai Tesque).
The dyed sample was taken with a cross-sectional photograph of the fiber under an optical microscope to observe the dyeing situation, and the dyeability of the drawn composite fiber was determined according to the following criteria.
◎: Densely dyed with the dyeing solution, and when the two-component interface divided into eight on the fiber cross section cannot be discriminated at all. ○: Although it is thinner than the “◎”, it is dyed and the two-component interface on the fiber cross-section is discriminated. X: When the dye component is not dyed and the two-component interface of the fiber cross section can be clearly identified As a result of observing the dyeing condition of the drawn composite fiber by the above method, the low melting point component (B) is not Comparative Example 1 and Comparative Example 2 that do not contain a crystalline resin and do not exhibit unevenness after stretching were in a state where the two-component interface divided into eight in the fiber cross section without being dyed was clear (determination: X). On the other hand, in Examples 1 and 4, the dye entered the interface between the low melting point component and the high melting point component due to the effect of capillary action due to the unevenness, and the color tone was assimilated with the high melting point component side (determination: ◯).
In Example 10, large irregularities were observed on the surface of the drawn fiber, and some of the cross-sectional components were also divided so that they were dyed darkly, and the two-component interface divided into eight at the fiber cross-section could be completely discriminated. There was no (judgment: A). These are summarized in Table 3.

(2)吸い上げ性能の評価
実施例1、実施例4、実施例10、比較例1、及び比較例2の分割性複合繊維をそれぞれ、熱風融着法により温度135℃、風速2.7m/sec、処理時間5秒の融着条件にて不織布を作製した。得られた不織布について、JIS L 1907 のバイレック法に準拠して吸い上げ性能の比較を行った。
具体的には、長さ200mm×幅25mmに切り出した不織布の長さ方向の先端20mmを生理食塩水に浸け、10分後の吸い上げ高さ(mm)を測定した。
吸い上げ高さの結果は、凹凸形状が大きければ大きいほど高い結果となった。これは凹凸の発現によって繊維の表面積が大きくなり、毛細管現象が働いたことが原因である。結果を第3表に示す。
(2) Evaluation of siphoning performance Each of the splittable composite fibers of Example 1, Example 4, Example 10, Comparative Example 1 and Comparative Example 2 was heated at a temperature of 135 ° C. and a wind speed of 2.7 m / sec. A non-woven fabric was produced under the fusion conditions of a treatment time of 5 seconds. About the obtained nonwoven fabric, the siphoning performance was compared based on the birec method of JISL1907.
Specifically, the tip 20 mm in the length direction of the nonwoven fabric cut into a length of 200 mm × width of 25 mm was immersed in physiological saline, and the suction height (mm) after 10 minutes was measured.
The result of sucking height was higher as the uneven shape was larger. This is because the surface area of the fiber increases due to the appearance of irregularities, and the capillary phenomenon works. The results are shown in Table 3.

(3)吸水率(保水率)
実施例1、実施例4、実施例10、比較例1、及び比較例2の分割性複合繊維不織布について、JIS L 1907 の吸水率測定に準拠して吸水率の測定を行った。
具体的には、75mm×75mmに切り出した不織布を生理食塩水に20分浸漬させ、その後2枚の乾燥した濾紙で挟み、ロールを用いて25mm/secで加圧し吸水率を算出した。
吸水率(保水率)においても吸い上げ高さの結果と同傾向の結果が見られた。吸水率(保水性)は上記の毛細管現象の働きの他に、凹凸によって発生した微細な隙間に水分が保持されたことにも起因している。結果を第3表に示す。
(3) Water absorption rate (water retention rate)
About the splittable composite fiber nonwoven fabric of Example 1, Example 4, Example 10, Comparative Example 1, and Comparative Example 2, the water absorption was measured based on the water absorption measurement of JIS L1907.
Specifically, a non-woven fabric cut out to 75 mm × 75 mm was immersed in physiological saline for 20 minutes, and then sandwiched between two dried filter papers, and pressurized with a roll at 25 mm / sec to calculate the water absorption rate.
In the water absorption rate (water retention rate), the same tendency as the result of the suction height was observed. The water absorption rate (water retention) is attributed to the fact that moisture is retained in the fine gaps generated by the irregularities in addition to the action of the capillary phenomenon. The results are shown in Table 3.

(4) 耐久親水性評価
実施例1、実施例4、実施例10、比較例1、及び比較例2の分割性複合繊維不織布について、次の一滴法を用いて耐久親水性を比較した。
<一滴法>
(i)100mm×100mmに切り出した不織布を濾紙の上に置く。
(ii)不織布に撥水性マジックでランダムに、小さく「・」印を20箇所マークする。
(iii)「・」印をつけた箇所に生理食塩水を10mmの高さから1滴滴下する。
(iv)滴下終了から5秒以内に吸水された箇所を数える。
(v)不織布を濾紙で挟み水分を除去し、1回目と同じ「・」印の箇所に再度滴下する。
(vi)(iii)〜(v)を5回繰り返し、吸水箇所を測定する。
前述の捲縮工程にて付着させた仕上げ油剤としては、以下の2点を使用した。
条件1:初期透水油剤(ミヨシ油脂社製、ソフトオイル120)付着率0.5質量%で使用時
条件2:耐久親水油剤(竹本油脂社製、UN−594)付着率0.5質量%で使用時
初期透水油剤は初期透水速度に特化した油剤であり、一度水分と接触すると水と共に油剤が流れ落ちてしまう性能を持っている。そのような性能にも関わらず、実施例10では2回目以降の滴下においても高い親水性を保持していた。これは大きな凹凸によって繊維の表面積が大きくなり毛細管現象が強く働いたことや、凹凸によって生じた微細な隙間に水分が保持されやすくなったこと、更には微細な隙間に油剤が入り込み落ちにくくなったことが原因であると考えられる。実施例1、実施例4は実施例10には及ばないが、凹凸によって同様の現象が働き耐久親水性が向上した。しかし凹凸の発現しなかった比較例1、比較例2は初期透水油剤の性能どおり、1回の滴下で油剤が全て流れ落ちてしまっていた。
耐久親水油剤は初期透水油剤よりも繰り返し滴下に優れている油剤である。この油剤でも、初期透水油剤と同様の原因により、凹凸発現の大きさに比例して耐久親水性が向上していた。
初期透水油剤に対する耐久親水性の評価を第4表に、耐久親水油剤に対する耐久親水性の評価を第5表に示す。
(4) Durability hydrophilicity evaluation About the splittable composite fiber nonwoven fabric of Example 1, Example 4, Example 10, Comparative Example 1, and Comparative Example 2, durable hydrophilicity was compared using the following one drop method.
<One drop method>
(I) A non-woven fabric cut into 100 mm × 100 mm is placed on a filter paper.
(Ii) Randomly mark 20 “•” marks on the nonwoven fabric with water repellent magic.
(Iii) A drop of physiological saline is dropped from a height of 10 mm to the location marked “•”.
(Iv) Count the places where water was absorbed within 5 seconds from the end of dropping.
(V) The nonwoven fabric is sandwiched between filter papers to remove moisture, and dropped again at the same place as the first mark “·”.
(Vi) Repeat steps (iii) to (v) five times to measure the water absorption location.
The following two points were used as the finishing oil adhered in the crimping process described above.
Condition 1: Initial water-permeable oil agent (Miyoshi Oil & Fats Co., Ltd., Soft Oil 120) adherence rate 0.5 mass% when used Condition 2: Durable hydrophilic oil agent (Takemoto Oil & Fat Co., Ltd. UN-594) Adhesion rate 0.5% by mass In use The initial water-permeable oil agent is an oil agent specialized in the initial water-permeation speed, and once it comes into contact with moisture, the oil agent flows down with water. Despite such performance, in Example 10, high hydrophilicity was maintained even in the second and subsequent drops. This is because the surface area of the fiber increased due to the large unevenness, and the capillary phenomenon worked strongly, the moisture was easily held in the fine gaps caused by the unevenness, and the oil agent did not easily enter the fine gaps. This is considered to be the cause. Although Example 1 and Example 4 did not reach Example 10, the same phenomenon acted by unevenness and durability hydrophilicity improved. However, Comparative Example 1 and Comparative Example 2 in which unevenness did not appear, all of the oil agent had flowed down by one drop according to the performance of the initial water-permeable oil agent.
The durable hydrophilic oil agent is an oil agent that is excellent in repeated dripping than the initial water-permeable oil agent. Even in this oil agent, durability hydrophilicity was improved in proportion to the size of the unevenness due to the same cause as the initial water-permeable oil agent.
Table 4 shows the evaluation of durable hydrophilicity with respect to the initial water-permeable oil agent, and Table 5 shows the evaluation of durable hydrophilicity with respect to the durable hydrophilic oil agent.

本発明の分割性凹凸複合繊維は、水を吸水(保水)する性能(効果)が大きな不織布用の繊維として利用できる。
また本発明の分割性凹凸複合繊維の製造方法は、当該分割性凹凸複合繊維の効果的な製造方法として利用できる。
分割性凹凸複合繊維について考えられる用途としては、当該分割性凹凸複合繊維と他の繊維との混綿使用で、紙おむつやナプキンの表面材、当該表面材で、吸水性(保水性)が期待される場合は、セカンドシートでの用途が考えられる。すなわち、最近の紙おむつは、吸収体/セカンドシート/トップシートの構成を取っており、セカンドシートの目的は、尿をより早く吸水し、吸収体へ移動させる為に使用されるので、高い吸水性(保水性)を有する本発明の分割性凹凸複合繊維の機能の発現が期待される。また、分割細繊度化により風合いを向上させ、トップシートに利用することも期待される。
また、本発明の分割性凹凸複合繊維の単独使用の用途としては、ウォータージェット(WJ)処理により分割細繊度化して、フローリングワイパーに適応することが考えられる。
フローリングワイパーは、WJ処理後乾燥工程があるので、この乾燥熱処理にて、凹凸をより顕在化させることが可能であり、接着性能が低下していることで、不織布の自由繊維が確保可能となり、ワイパー性能(髪の毛や固形ごみ「パンくず」を絡め取る効果)の高い製品が期待できる。
The splittable concavo-convex composite fiber of the present invention can be used as a fiber for a nonwoven fabric having a large performance (effect) for absorbing (holding) water.
Moreover, the manufacturing method of the splittable uneven composite fiber of the present invention can be used as an effective manufacturing method of the splittable uneven composite fiber.
Possible uses for splittable uneven composite fibers include the use of mixed cotton of the splittable uneven composite fibers and other fibers, and the surface material of paper diapers and napkins, and the surface material is expected to absorb water (water retention). In this case, it is possible to use the second sheet. That is, recent paper diapers have an absorbent body / second sheet / top sheet structure, and the purpose of the second sheet is to absorb urine more quickly and move it to the absorbent body. Expression of the function of the splittable concavo-convex composite fiber of the present invention having (water retention) is expected. It is also expected to improve the texture by dividing finer and use it for the top sheet.
In addition, as a single use application of the splittable concavo-convex composite fiber of the present invention, it is conceivable that the split fineness is reduced by a water jet (WJ) treatment to be applied to a flooring wiper.
Since the flooring wiper has a drying step after WJ treatment, it is possible to make the unevenness more prominent in this drying heat treatment, and because the adhesive performance is reduced, it becomes possible to secure free fibers of the nonwoven fabric, Products with high wiper performance (effect of entwining hair and solid waste “breadcrumbs”) can be expected.

Claims (12)

結晶性熱可塑性樹脂を含む高融点成分(A)と、
ポリオレフィン系樹脂(a)と、環状オレフィンコポリマー及び/又はポリカーボネートである非晶性樹脂(b)とをポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜85:15の割合で含み、かつポリオレフィン系樹脂(a)のガラス転移点(Tg)が非晶性樹脂(b)のガラス転移点(Tg)よりも低い樹脂組成物からなる低融点成分(B)とからなる複合延伸繊維であって、
該複合延伸繊維は、高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有し、低融点成分(B)からなる繊維表面部が該低融点成分(B)の繊維軸方向にわたって、凹部と凸部とを呈しており、凸部が主として非晶性樹脂(b)の塊で形成されていることを特徴とする分割性凹凸複合延伸繊維。
A high melting point component (A) comprising a crystalline thermoplastic resin;
The content ratio of the polyolefin resin (a) and the amorphous resin (b), which is a cyclic olefin copolymer and / or polycarbonate, to the polyolefin resin (a) and the amorphous resin (b) is 97: 3-85: see contains 15 ratio, and a low melting point glass transition point of the polyolefin resin (a) (Tg) is made of a low resin composition than the glass transition point (Tg) of the amorphous resin (b) A composite drawn fiber comprising component (B),
The composite stretched fiber has a cross-sectional shape in which the high melting point component (A) and the low melting point component (B) are joined to each other, and the fiber surface portion composed of the low melting point component (B) is the low melting point component (B). A splittable concavo-convex composite stretched fiber, characterized in that it has concave and convex portions along the fiber axis direction, and the convex portions are mainly formed of a mass of an amorphous resin (b) .
前記非晶性樹脂(b)のガラス転移点(Tg)がポリオレフィン系樹脂(a)の融点よりも高い請求項1に記載の分割性凹凸複合延伸繊維。   The splittable concavo-convex composite stretched fiber according to claim 1, wherein a glass transition point (Tg) of the amorphous resin (b) is higher than a melting point of the polyolefin resin (a). 複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合されてなる請求項1又は2に記載の分割性凹凸複合延伸繊維。   The splittable unevenness according to claim 1 or 2, wherein the high melting point component (A) and the low melting point component (B) are joined substantially radially from the fiber central portion toward the fiber surface in the radial cross section of the composite fiber. Composite drawn fiber. 高融点成分(A)の結晶性熱可塑性樹脂が結晶性ポリプロピレン又はポリエチレンテレフタレートであり、かつ低融点成分(B)のポリオレフィン系樹脂(a)が高密度ポリエチレンである請求項1〜3のいずれかに記載の分割性凹凸複合延伸繊維。   The crystalline thermoplastic resin of the high melting point component (A) is crystalline polypropylene or polyethylene terephthalate, and the polyolefin resin (a) of the low melting point component (B) is high density polyethylene. The splittable uneven composite stretched fiber described in 1. 非晶性樹脂(b)が、環状オレフィンコポリマーである請求項1〜4のいずれかに記載の分割性凹凸複合延伸繊維。   The splittable concavo-convex composite stretched fiber according to any one of claims 1 to 4, wherein the amorphous resin (b) is a cyclic olefin copolymer. 結晶性熱可塑性樹脂を含む高融点成分(A)と、高融点成分(A)の結晶性熱可塑性樹脂の融点よりも低い融点を有するポリオレフィン系樹脂(a)と、環状オレフィンコポリマー及び/又はポリカーボネートである非晶性樹脂(b)とをポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜85:15の割合で含む樹脂組成物からなる低融点成分(B)を相互に接合した未延伸複合繊維を溶融紡糸する工程、該未延伸複合繊維をポリオレフィン系樹脂(a)のTg以上、融点より低い温度であって、かつ非晶性樹脂(b)のTgより低い温度で熱延伸する工程、を含むことを特徴とする分割性凹凸複合延伸繊維の製造方法。   High melting point component (A) containing crystalline thermoplastic resin, polyolefin resin (a) having a melting point lower than the melting point of crystalline thermoplastic resin of high melting point component (A), cyclic olefin copolymer and / or polycarbonate The amorphous resin (b) is a low resin composition comprising a polyolefin resin (a) and an amorphous resin (b) in a mass ratio of 97: 3 to 85:15. A step of melt-spinning the unstretched composite fiber in which the melting point components (B) are joined to each other; the unstretched composite fiber is at least Tg of the polyolefin resin (a) and at a temperature lower than the melting point; a process for heat-stretching at a temperature lower than the Tg of b). 前記の複合繊維を溶融紡糸する工程において、複合繊維の径方向の断面において、繊維中央部から繊維表面に向かって高融点成分(A)及び低融点成分(B)が略放射状に接合可能な紡糸ヘッド部を備えた紡糸装置を用い、紡糸ヘッド部における高融点成分(A)の溶融粘度と低融点成分(B)の溶融粘度とを調整して、紡糸する請求項6に記載の分割性凹凸複合延伸繊維の製造方法。   In the step of melt spinning the above-mentioned composite fiber, in the radial cross section of the composite fiber, the high melting point component (A) and the low melting point component (B) can be joined substantially radially from the center of the fiber toward the fiber surface. The splitting unevenness according to claim 6, wherein spinning is performed by using a spinning device having a head part and adjusting the melt viscosity of the high melting point component (A) and the melt viscosity of the low melting point component (B) in the spinning head part. A method for producing a composite drawn fiber. 前記溶融粘度の調整が、高融点成分(A)の結晶性熱可塑性樹脂のメルトフローレイト(MFR)と低融点成分(B)のポリオレフィン系樹脂(a)のメルトフローレイト(MFR)を、MFR≧ MFR としてなる請求項7に記載の分割性凹凸複合延伸繊維の製造方法。 The adjustment of the melt viscosity, the melt flow rate (MFR B) of the melt flow rate of the crystalline thermoplastic resin having a high melting point component (A) (MFR A) and the polyolefin resin having a low melting point component (B) (a) The manufacturing method of the splittable uneven | corrugated composite stretched fiber according to claim 7, wherein MFR A ≥ MFR B. 熱融着不織布であって、下記の条件及び状態を満たす分割性凹凸複合延伸繊維を含んでなる熱融着不織布。
該分割性凹凸複合延伸繊維は、結晶性熱可塑性樹脂を含む高融点成分(A)と、ポリオレフィン系樹脂(a)と、環状オレフィンコポリマー及び/又はポリカーボネートである非晶性樹脂(b)とをポリオレフィン系樹脂(a)と非晶性樹脂(b)との含有割合が質量比で97:3〜85:15であり、かつポリオレフィン系樹脂(a)のガラス転移点(Tg)が非晶性樹脂(b)のガラス転移点(Tg)よりも低い樹脂組成物からなる低融点成分(B)とからなる複合延伸繊維であって、該複合延伸繊維は、高融点成分(A)と低融点成分(B)が相互に接合した断面形状を有し、低融点成分(B)からなる繊維表面部が該低融点成分(B)の繊維軸方向にわたって、凹部と凸部とを呈しており、凸部が主として非晶性樹脂(b)の塊で形成されている。
A heat-bonding nonwoven fabric comprising a splittable concavo-convex composite stretched fiber that satisfies the following conditions and conditions.
The splittable concavo-convex composite stretched fiber comprises a high melting point component (A) containing a crystalline thermoplastic resin, a polyolefin resin (a), and an amorphous resin (b) that is a cyclic olefin copolymer and / or polycarbonate. The content ratio of the polyolefin resin (a) and the amorphous resin (b) is 97: 3 to 85:15 by mass ratio, and the glass transition point (Tg) of the polyolefin resin (a) is amorphous. A composite drawn fiber comprising a low melting point component (B) made of a resin composition lower than the glass transition point (Tg) of the resin (b), the composite drawn fiber comprising a high melting point component (A) and a low melting point sectional shape of the component (B) are bonded to each other, across the direction of fiber axis of the fiber surface portion comprising a low-melting component (B) is low-melting component (B), which caused a the concave portion and the convex portion The convex part is mainly formed by a mass of amorphous resin (b). It is.
前記高融点成分(A)の結晶性熱可塑性樹脂が結晶性ポリプロピレン又はポリエチレンテレフタレートであり、かつ低融点成分(B)のポリオレフィン系樹脂(a)が高密度ポリエチレンである請求項9に記載の熱融着不織布。   The heat according to claim 9, wherein the crystalline thermoplastic resin of the high melting point component (A) is crystalline polypropylene or polyethylene terephthalate, and the polyolefin resin (a) of the low melting point component (B) is high density polyethylene. Fusion nonwoven fabric. 前記非晶性樹脂(b)が、環状オレフィンコポリマーである請求項9又は10に記載の熱融着不織布。   The heat-bonded nonwoven fabric according to claim 9 or 10, wherein the amorphous resin (b) is a cyclic olefin copolymer. 前記請求項9〜11のいずれかに記載の熱融着不織布を、結晶性熱可塑性樹脂を含む高融点成分(A)の融点より低い温度であって、ポリオレフィン系樹脂(a)の融点以上の温度で熱風融着法により製造することを特徴とする熱融着不織布の製造方法。 The heat-bonded nonwoven fabric according to any one of claims 9 to 11 is at a temperature lower than the melting point of the high-melting-point component (A) containing a crystalline thermoplastic resin, and is equal to or higher than the melting point of the polyolefin resin (a). A method for producing a heat-sealed nonwoven fabric, characterized in that it is produced by hot air fusion at a temperature.
JP2012157949A 2011-08-01 2012-07-13 Divisible uneven composite fiber and non-woven fabric using the same Active JP6101012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157949A JP6101012B2 (en) 2011-08-01 2012-07-13 Divisible uneven composite fiber and non-woven fabric using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011168741 2011-08-01
JP2011168741 2011-08-01
JP2012157949A JP6101012B2 (en) 2011-08-01 2012-07-13 Divisible uneven composite fiber and non-woven fabric using the same

Publications (2)

Publication Number Publication Date
JP2013049943A JP2013049943A (en) 2013-03-14
JP6101012B2 true JP6101012B2 (en) 2017-03-22

Family

ID=48012185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157949A Active JP6101012B2 (en) 2011-08-01 2012-07-13 Divisible uneven composite fiber and non-woven fabric using the same

Country Status (1)

Country Link
JP (1) JP6101012B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6082055B2 (en) 2015-06-03 2017-02-15 ポリプラスチックス株式会社 Thermal bond nonwoven fabric containing cyclic olefin resin
PL3246443T3 (en) * 2016-05-18 2020-11-16 Fibertex Personal Care A/S Nonwoven fabric comprising a high loft layer

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5836210A (en) * 1981-08-12 1983-03-03 Toray Ind Inc Thick and thin polyamide filament and its preparation
JP2904966B2 (en) * 1991-04-16 1999-06-14 宇部日東化成株式会社 Thermally splittable composite fiber
JP3309181B2 (en) * 1999-03-08 2002-07-29 チッソ株式会社 Polyolefin-based splittable composite fiber and fiber molded article using the same
JP3774114B2 (en) * 1999-11-02 2006-05-10 大和紡績株式会社 Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JP4315663B2 (en) * 2002-10-17 2009-08-19 ユニチカ株式会社 Method for producing nonwoven fabric comprising core-sheath composite long fiber
US7736737B2 (en) * 2003-01-30 2010-06-15 Dow Global Technologies Inc. Fibers formed from immiscible polymer blends

Also Published As

Publication number Publication date
JP2013049943A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP6633783B2 (en) Extensible nonwoven fabric
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
US6632504B1 (en) Multicomponent apertured nonwoven
EP1369518B1 (en) Non-woven fabrics of wind-shrink fiber and laminates thereof
JP4599366B2 (en) A flexible and extensible nonwoven web containing fibers with high melt flow rate
JP3955650B2 (en) Laminated nonwoven fabric and method for producing the same
JP2011058157A (en) Spun-bonded nonwoven fabric excellent in softness and method for producing the same
KR20160123280A (en) Sea-island composite fiber, composite ultra-fine fiber, and fiber product
JP2011047098A (en) Multilayered nonwoven fabric of conjugate spun-bonded filament having improved characteristic, and method for producing the same
WO2018092666A1 (en) Laminated nonwoven fabric sheet
CN1946896A (en) Nonwoven fabrics comprising strata with differing levels or combinations of additives and process of making the same
JP2020151605A (en) Absorber and sanitation product
JP6643494B2 (en) Non-woven fabric with improved feel
JP3736014B2 (en) Laminated nonwoven fabric
JP4587410B2 (en) Composite nonwoven fabric, method for producing the same, absorbent article using the nonwoven fabric, and wiping cloth
JP5172217B2 (en) Laminated nonwoven fabric and method for producing the same
CN103038406B (en) Bonded mat and preparation thereof
JP6101012B2 (en) Divisible uneven composite fiber and non-woven fabric using the same
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
KR102254669B1 (en) Modified cross-section fiber
JP4507389B2 (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JP5619467B2 (en) Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same
JP2014148774A (en) Nonwoven fabric and method for producing the same
JP2013170340A (en) Fiber for air-laid nonwoven fabric and air-laid nonwoven fabric using the fiber
CN107532353B (en) Nonwoven fabric and method for forming a nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170224

R150 Certificate of patent or registration of utility model

Ref document number: 6101012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250