JP3955650B2 - Laminated nonwoven fabric and method for producing the same - Google Patents

Laminated nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP3955650B2
JP3955650B2 JP23672396A JP23672396A JP3955650B2 JP 3955650 B2 JP3955650 B2 JP 3955650B2 JP 23672396 A JP23672396 A JP 23672396A JP 23672396 A JP23672396 A JP 23672396A JP 3955650 B2 JP3955650 B2 JP 3955650B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
composite
melting point
laminated
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23672396A
Other languages
Japanese (ja)
Other versions
JPH09209254A (en
Inventor
泰樹 寺川
真吾 堀内
智 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23672396A priority Critical patent/JP3955650B2/en
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to DE69738870T priority patent/DE69738870D1/en
Priority to EP97925286A priority patent/EP0924328B2/en
Priority to CN97198687A priority patent/CN1092731C/en
Priority to US09/254,366 priority patent/US6187699B1/en
Priority to PCT/JP1997/001913 priority patent/WO1998010130A1/en
Priority to TW086108455A priority patent/TW352396B/en
Publication of JPH09209254A publication Critical patent/JPH09209254A/en
Application granted granted Critical
Publication of JP3955650B2 publication Critical patent/JP3955650B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、積層不織布およびその製造方法に関し、更に詳しくは、複合スパンボンド不織布と複合メルトブロー極細繊維不織布が積層された多層構造不織布に関する。この不織布は紙おむつや生理用ナプキン等の吸収性物品の表面材等の材料として好適に使用される。
【0002】
【従来の技術】
スパンボンド不織布は毛羽立がなく、しかも耐抜毛性に優れる等の理由で紙おむつ等の吸収性物品の表面材として使用されてきた。しかしこのスパンボンド不織布を構成する長繊維は細繊度化が困難であり、極細繊維からなるメルトブロー不織布のようなソフトな風合いを得るのが困難である。またスパンボンド不織布では細繊度化に伴い、単繊維切れが発生し太繊度糸が混合し、風合いが更に悪化するという課題がある。
【0003】
特開昭54−134177号公報にはポリプロピレン極細繊維からなるメルトブロー不織布が、特開昭62−299501、特開平3−75056号公報にはメルトブロー不織布を表面材として使用した紙おむつが開示されている。このようなメルトブロー不織布は繊維径が細いので風合いがソフトであるという利点がある反面、メルトブロー不織布特有の欠点、即ち不織布強力が低い、毛羽立があり、抜毛しやすい等の課題がある。しかも紡糸時にポリマー玉が発生しやすく、ザラツキ感があり、皮膚を刺激するという課題があり、特に新生児用の紙おむつには不適であった。メルトブロー不織布の強力を上げ、抜毛を阻止する目的で熱カレンダーロールや熱エンボスロール等で圧着することも行われているが、逆に温度や圧力等を苛酷な熱圧着条件で処理する必要があり、不織布の見かけ密度を大にし、風合いを悪化するという不都合があった。
【0004】
また特公昭60−11148、特開平2−112458、特開平2−234967号公報にはスパンボンド不織布とメルトブロー不織布を積層し、熱カレンダーロール、熱エンボスロール等でその両層を熱融着した積層不織布が開示されている。該不織布は従来の単層不織布に較べ強力が改善されるが、スパンボンド不織布を構成する長繊維としてレギュラー繊維を使用した物であり、その積層面での融着性や、耐抜毛性、剥離強力が低い等の課題がある。また熱エンボスロールで圧着した物は、前記同様の、苛酷な熱圧着条件を必要とし、見かけ密度を大にする、風合いを悪化する等の課題がある。
【0005】
【発明が解決しようとする課題】
本発明の課題は、高強力で、風合がソフトで、耐抜毛性がよく、ザラツキ感や、皮膚刺激がない積層不織布およびその製造方法を提供することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するため、本願で特許請求する発明は以下のとおりである。
(1)複合スパンボンド不織布と平均繊維径10μm以下の複合メルトブロー極細繊維不織布が積層された多層構造の不織布であって、該複合スパンボンド不織布は、10℃以上の融点差がある低融点樹脂と高融点樹脂を組合せた複合長繊維からなり、該低融点樹脂が繊維表面の少なくとも一部を形成し、かつ該低融点樹脂を介して熱融着された物であり、該複合メルトブロー極細繊維不織布は、10℃以上の融点差がある低融点樹脂と高融点樹脂とからなりかつ該低融点樹脂が繊維表面の少なくとも一部を形成した複合メルトブロー極細繊維が該低融点樹脂を介して熱融着された物であり、該複合スパンボンド不織布と該複合メルトブロー極細繊維不織布とは、該複合スパンボンド不織布の低融点樹脂および/または該複合メルトブロー極細繊維不織布の低融点樹脂の融着により一体化されている積層不織布。
【0007】
(2)複合スパンボンド不織布が繊度0.5〜10d/fの複合長繊維からなり、複合メルトブロー極細繊維不織布が繊維径0.1〜10μmの極細繊維からなり、かつ繊維径0.1mm以上のポリマー玉が10個/m2 以下、該不織布の見かけ密度が0.02〜0.20g/cm3 であり、かつ積層不織布の横強力が0.6kg/5cm以上、均一指数が0.6以下、両層の剥離強力が6g/5cm以上である、請求項1記載の積層不織布。
【0008】
(3)請求項1または2記載の積層不織布が少なくとも一つの部材として使用された吸収性物品。
(4)複合スパンボンド不織布と複合メルトブロー極細繊維不織布の2層構造不織布、または複合メルトブロー極細繊維不織布を少なくともその片方の表面に有する、複合メルトブロー極細繊維不織布と複合スパンボンド不織布との3層以上の多層構造不織布が使用された請求項3記載の吸収性物品。
【0009】
(5)複合スパンボンド法で融点差が10℃以上ある低融点樹脂と高融点樹脂とを該低融点樹脂が繊維表面の少なくとも一部形成するように複合長繊維を紡糸し、ウエブを形成するか、または紡糸後のウエブを熱融着温度以上に加熱し、繊維が熱融着した不織布とし、複合メルトブロー法で、平均繊維径が10μm以下で10℃以上の融点差がある低融点樹脂と高融点樹脂とを該低融点樹脂が繊維表面の少なくとも一部を形成する複合メルトブロー極細繊維を紡糸し、かつ紡糸時の自熱融着がない複合極細繊維ウエブとするか、または紡糸時の自熱融着のある不織布とするか、または紡糸後のウエブや自熱融着のある不織布を熱融着温度以上に加熱し、繊維が熱融着した複合極細繊維不織布とし、該複合スパンボンドウエブまたは熱融着不織布と、複合メルトブロー極細繊維ウエブまたは複合メルトブロー極細繊維熱融着不織布とを積層し、両層が熱融着する温度以上に加熱する積層不織布の製造方法。
【0010】
(6)前記両層のウエブまたは不織布を加熱前または加熱後にニ−ドルパンチまたはスパンレ−ス手段で絡合させる工程を含む請求項5記載の積層不織布の製造方法。
(7)スル−エア型の加熱機を用い、両層の熱融着温度以上に加熱する請求項5また6記載の積層不織布の製造方法。
【0011】
(8)熱圧着面積5〜25%のエンボスロ−ルを用い、両層を熱圧着する請求項5または6記載の積層不織布の製造方法。
(9)複合スパンボンド不織布および複合メルトブロー極細繊維不織布いずれも、均一指数が0.6以下の物を用いる請求項5または6記載の積層不織布の製造方法。
(10)熱風交互噴出型の加熱機を用い、熱風が多層構造不織布の表面側と裏面側から交互に噴出するように両層を加熱する請求項5または6記載の積層不織布の製造方法。
【0012】
本発明における多層構造の不織布は、複合スパンボンド不織布と複合メルトブロー極細繊維不織布が積層された少なくとも2層構造の物であればよい。その用途が紙おむつの表面材やワイパ−等の場合は2〜3層、断熱材や結露防止材の場合は、2〜8層の物が使用される。
【0013】
本発明の多層構造不織布に使用される複合スパンボンド不織布は、融点に10℃以上差がある少なくとも2種の樹脂成分が複合スパンボンド法で紡糸され、繊維の交点が熱融着された不織布である。複合スパンボンド法とは、複数の押出機から複数の樹脂成分を溶融押出し、複合紡糸用口金から複数成分をその低融点樹脂が繊維表面の少なくとも一部を形成するように複合された長繊維を紡糸し、紡糸された繊維をエアサツカ−等の気流牽引型の装置等で引き取り、気流と共に繊維をネツトコンベア−等のウエブ捕集装置で捕集し、その後必要に応じウエブを加熱空気、加熱ロ−ル等の加熱装置を用い融着等の処理をすることによる熱融着不織布の製造方法である。また紡糸後の長繊維を機械延伸した後、前記エアサツカ−等の気流牽引型の装置等で引き取り、気流と共に繊維をネツトコンベア−等のウエブ捕集装置捕集し、前記同様加熱等をし熱融着する等による不織布の製造方法でもよい。これらの樹脂成分は実用上2〜4種の樹脂を使用することができ、その最高融点と最低融点の差が10℃以上あればよい。しかし大抵の用途では2種で十分である。
また該不織布は後述する目付けの均一指数が0.6以下の不織布が特に好ましい。目付けの均一化は、複合スパンボンドの装置や、紡糸条件等を試行錯誤的に設定することにより達成される。
【0014】
本発明で使用する樹脂は紡糸可能な熱可塑性樹脂であれば特別な制限はない。例えばポリプロピレン、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、線状低密度ポリエチレン、プロピレンと他のαオレフインとの2または3元共重合体等のポリオレフイン類、ポリアミド類、ポリエチレンテレフタレ−ト、ポリブチレンテレフタレ−ト、ジオ−ルとテレフタル酸/イソフタル酸等を共重合した低融点ポリエステル、ポリエステルエラストマ−等のポリエステル類、弗素樹脂、上記樹脂の混合物等、その他紡糸可能な樹脂等が使用できる。
【0015】
複合紡糸の際の樹脂の組合せは、例えば、高密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/プロピレン・エチレン・ブテン−1結晶性共重合体、高密度ポリエチレン/ポリエチレンテレフタレ−ト、ナイロン−6/ナイロン66、低融点ポリエステル/ポリエチレンテレフタレ−ト、ポリプロピレン/ポリエチレンテレフタレ−ト、ポリ弗化ビニリデン/ポリエチレンテレフタレ−ト、線状低密度ポリエチレンと高密度ポリエチレンの混合物/ポリプロピレン等を例示できる。
【0016】
複合繊維の形態は鞘芯型、並列型、多層型、中空多層型、異型多層型等で、かつ前記低融点樹脂が繊維表面の少なくとも一部を形成した物であればよい。低融点樹脂と高融点樹脂の融点差は10℃以上必要である。融点差が10℃未満では、該複合スパンボンド不織布または複合メルトブロー極細繊維不織布との積層不織布製造時の加熱処理で温度調節が難しく、熱融着度合が不足し、高強力な不織布が得られないか、または高温加熱でしわが発生したり、不織布全体が溶融し部分的にフイルム化した不織布となる。また得られた積層不織布の耐抜毛性が不足したり、積層面で剥離しやすくなる。
【0017】
該複合スパンボンド長繊維において、低融点樹脂と高融点樹脂の複合比は低融点樹脂が10〜90重量%、高融点樹脂が90〜10重量%である。より好ましくは、低融点樹脂が30〜70重量%、高融点樹脂が70〜30重量%である。低融点樹脂成分が10重量%未満の場合、該複合スパンボンド不織布自体の熱融着が不足するか、または該不織布と後記複合メルトブロー極細繊維不織布の積層面での熱融着が不足し、高強力や耐抜毛性に劣る物となる。
【0018】
該複合長繊維の繊度は特別な限定はないが、紙おむつの表面材の場合、約0.2〜10d/f、ワイパ−の場合約0.5〜20d/f、フイルタ−の場合、約0.2〜4000d/fである。また該不織布の目付けは特に限定されないが、約4〜1000g/m2 である。紙おむつの表面材等の場合、約4〜70g/m2 、ワイパ−等の場合、約10〜600g/m2、フイルタ−等の場合、約20〜1000g/m2である。
該複合スパンボンド不織布は熱エアスル−加熱機、熱カレンダ−ロ−ル、熱エンボスロ−ル等の加熱機を使用することにより一層不織布強力が強い物が得られる。本発明においては、前記の加熱機を用い、加熱条件等をコントロ−ルし、該不織布単体の強力を0.6kg/5cm以上、とすることが好ましい。
【0019】
本発明で複合メルトブロー極細繊維不織布とは、融点に10℃以上差がある少なくとも2種の熱可塑性樹脂を各々独立に溶融押出し、複合型メルトブロー紡糸口金から、低融点極細繊維と高融点極細繊維とをその低融点樹脂が繊維表面の少なくとも一部を形成するように複合紡糸し、更に高温高速の気体によつて極細繊維流としてブロ−紡糸し、捕集装置で複合極細繊維ウエブとし、必要に応じ熱融着処理することにより不織布としたものである。
【0020】
本発明の複合メルトブロー極細繊維では、低融点樹脂が繊維表面の少なくとも一部を形成していればよい。複合比は低融点樹脂が10〜90重量%、高融点樹脂が90〜10重量%である物が特に好ましい。また複合形態は、前記スパンボンドと同様の、鞘芯、並列型等の物であればよい。
樹脂としては、前記複合スパンボンドに使用されたような各種の樹脂が使用できる。また樹脂の組合せとして、前記複合スパンボンドで開示したような種々の組合せが可能である。例えば、高密度ポリエチレン/ポリプロピレン、プロピレン・エチレン・ブテン−1結晶性共重合体、高密度ポリエチレン/ポリエチレンテレフタレ−ト、低融点ポリエステル/ポリエチレンテレフタレ−ト等があげられる。
またブロ−紡糸する際の気体は通常、空気、窒素ガス等の不活性気体が使用される。該気体の温度は約200〜500℃、好ましくは約250〜450℃、圧力は約0.1〜6kg/cm2 、好ましくは約0.2〜5.5kg/cm2 である。この紡糸条件は、使用する樹脂の物性や樹脂の組合せ、目的とする繊維径、紡糸口金等の装置等により、適宜設定される。
【0021】
この不織布は、平均繊維径が10μm以下の複合極細繊維からなる。好ましくは0.1〜9μm、更に好ましくは0.2〜8μmである。繊維径が10μmを超えると、風合いが悪化する。また0.1μm以下の物は製造が困難で、価格が高価となる。
また本発明に用いるメルトブロー不織布はポリマ−玉が10個/m2 以下である物が好ましい。ここでポリマ−玉とは、直径0.1mm以上の円形、楕円形、涙滴形等の形状をした非繊維形状であるものをいう。ポリマ−玉が多くなると直接肌にふれるような用途、例えば紙おむつの表面材、ハツプ剤の基布等には、風合いが柔らかくても、ザラツキ感があり、しかも皮膚刺激があるので使用できない。また眼鏡や家具等のワイパ−等はその両面がメルトブロー不織布であることが好ましいが、前記ザラツキ感以外に、家具等に小さな傷をつけることがある。また本発明では、該不織布は目付けの均一指数が0.6以下の物が特に好ましく使用される。このような不織布は、複合メルトブロー紡糸の紡糸条件や、適切な装置等を適宜選択することにより得られる。
【0022】
本発明に使用する複合メルトブロー極細繊維不織布は、その繊維の交点が熱融着されている。該熱融着は紡糸時の自熱で融着された物でもよく、紡糸後熱スル−エア、熱カレンダ−ロ−ル、熱エンボスロ−ル等の加熱装置を用い、熱融着した物等であってもよい。該不織布の目付けは特別な制限はないが、約3〜1000g/m2 である。紙おむつの表面材の場合約3〜60g/m2 、ワイパ−の場合約5〜500g/m2 、フイルタ−の場合、約15〜1000g/m2 である。また該不織布の見かけ密度は特別な限定はないが、風合いを考慮し、約0.02〜0.40g/cm3 が好ましい。
【0023】
本発明の積層不織布は前記複合スパンボンド不織布と複合メルトブロー不織布とを積層し、熱スル−エア型加熱機、交互熱風噴出型加熱機、熱カレンダ−ロ−ル、熱エンボスロ−ル、ソニツクボンド等の加熱装置を用いて加熱し、その両層を熱融着することにより製造できる。熱スル−エア加熱機や交互熱風噴出型加熱機等を使用した場合、メルトブロー不織布が比較的嵩高な物が得られる。熱スル−エア型加熱機の場合比較的繊度の大きいスパンボンド不織布側から繊度の小さいメルトブロー不織布側に熱が貫通するように熱処理することが、熱が均一に加わり、両層の剥離強度を大きくすることができる。そのメルトブロー不織布側を熱風噴出側に対向して置いてスル−エア−加熱した場合、その熱風圧力や、サクション条件等を適宜設定することにより、メルトブロー極細繊維の単繊維がスパンボンド不織布層に食い込み、かつスパンボンド不織布の内部とその両層で2重に熱融着するので、両層の剥離強力をコントロ−ルすることができる。また熱風が不織布の表および裏側の交互噴出型の加熱機を用いた場合も不織布の嵩が高い物が得られる。また両不織布を積層後、ニ−ドルパンチ法や、スパンレ−ス法で絡合処理等をし、その後加熱処理をし、剥離強力の強い物とすることができる。加熱温度は複合スパンボンド不織布を構成する複合長繊維の低融点樹脂成分が軟化する温度以上または複合メルトブロー不織布の低融点樹脂が軟化する温度以上であればよい。またこの両層の加熱時に積層された何れかの不織布、またはその両方の不織布のそれぞれの繊維同士の熱融着をも兼ねることもできる。一旦熱融着された複合スパンボンド不織布をロ−ル卷きし、この不織布を繰り出し、複合メルトブロー極細繊維不織布を積層し、加熱する場合、加熱温度は、メルトブロー不織布の低融点樹脂が軟化する温度以上であればよい。複合スパンボンド不織布とメルトブロー不織布の両方の低融点樹脂が軟化または融着する温度以上に加熱すると、両層の剥離強力が一層強い物が得られる。また熱エンボスロ−ルによる場合、熱圧着面積を5〜25%とすることが望ましい。この圧着面積が5%未満の場合、耐抜毛性や、不織布強力が劣り、25%を超えると風合いが硬くなる。
【0024】
本発明では、加熱条件や、複合スパンボンド不織布の低融点樹脂や複合メルトブロー極細繊維不織布の低融点樹脂等を適宜選択し、両層の剥離強力が、6g/5cm以上の物とすることが好ましい。該剥離強力は6〜5000g/5cm、より好ましくは約10〜4000g/5cmである。剥離強力が6g/5cm未満であると摩擦等で両層が簡単に剥離するので、紙おむつ等には不充分な物となる。また該スパンボンド不織布の低融点樹脂と該複合メルトブロー極細繊維の低融点樹脂が同じ樹脂が使用された場合、剥離強力が格段に高い物が得られる。
【0025】
本発明の積層不織布は該複合スパンボンド不織布の高強力を利用するため、不織布目付け40g/m2 に換算した時の横方向強力が0.6kg/5cm以上である物が好ましい。ここで横強力とは、スパンボンド不織布層のいわゆるクロスマシン方向(CD)をいう。なおスパンボンド層が多層である場合、縦または横強力のうち、少ない方の強力をいう。また積層後のメルトブロー不織布の見かけ密度が0.02〜0.20g/cm3 とすると、該メルトブロー不織布を構成する極細繊維の柔らかな風合いを多種用途例えば紙おむつの表面材等に利用できるので特に好ましい。該見かけ密度は、紙おむつの表面材やワイパ−等の場合約0.02〜0.20g/cm3 、濾材等の場合約0.025〜0.40g/cm3 である。
本発明の積層不織布は目付けの均一指数が0.6以下の物が特に好ましい。このような不織布は、複合スパンボンド不織布および複合メルトブロー極細不織布の目付けの均一指数が0.6以下の物を使用することにより得られる。
【0026】
本発明の積層不織布は、単独で、または他の部材と積層、縫製、熱融着等をし、各種の用途に使用される。例えばパンツ型使い捨ておむつの一部材として使用する場合、比較的撥水性が要求される部位、例えば、胴部近傍の内側の部材、脚部近傍の内側の部材、等に使用できる。また、脚部近傍が、その内側に液漏れを阻止するための帯状の立体障壁を備える場合、該立体障壁材として、他の部材と熱融着等をして使用できる。もちろん該おむつ等に使用する場合、胴部や脚部を密着するための伸縮部材等を他の部材や該積層不織布と併用することもできる。また該積層不織布はその複合メルトブロー極細繊維不織布側を外側または内側にしてパンツ型使い捨ておむつ等のカバ−材として使用することができる。また該積層不織布は他の不織布やテイシュ、ウエブ、フイルム等と積層し、前記表面材用のカバ−材や前記裏面材用カバ−材等として使用できる。
【0027】
また該積層不織布の何れかの層の不織布またはおよび積層不織布全体に液や湿気を素早く通過するため、約0.1〜9mm2 の透過孔を多数配置し、前記表面材や裏面材等の一部材として使用できる。また該多層不織布は、液透過性をコントロ−ルするための撥水性油剤や、親水性油剤等の油剤や、フッ素系撥水剤等を付着することができる。
本発明の多層不織布は、メルトブロー不織布/スパンボンド不織布/メルトブロー不織布等のように積層し、各種の潤滑剤等を付着し、家具等のワイパ−等に使用できる。
また該積層不織布をひだ折りしたり、さらに筒状に成型したり、該積層不織布をそのまま巻回し筒状に成型したり、該積層不織布を加熱しながら巻回し、その層が熱融着した筒状に成型する等の後加工で濾材とすることができる。
【0028】
【発明の実施の形態】
以下、本発明を実施例で詳細に説明する。なお、以下の例で不織布等の評価は下記による。
繊維径:ウエブまたは不織布から小片を10個切取り、走査型電子顕微鏡で倍率 100〜5000倍の写真を取り、計100本の繊維直径を測定し、平均値を繊維径(単位μm)とした。
【0029】
不織布強力:引っ張り強度試験機を用い、5cm幅の不織布の縦方向の破断強力および横方向の破断強力(kg/5cm)を求め、5個の平均値をとった。
【0030】
風合い:5人のパネラ−が不織布の風合いを、しわ、柔軟性、ザラツキ感等の観点から評価し、下記の基準で判定した。3人以上がしわが無く、柔軟性がよく、ザラツキ感がないと判定した場合、「良」、3人以上がしわがあるか、柔軟性が悪いか、ザラツキ感があるか、またはその両方であると判定した場合、「不良」と判定した。
【0031】
ポリマ−玉:20×20cmの大きさの不織布をランダムに10枚切取り、拡大鏡を用い、繊維径0.1mm以上のポリマ−玉の数を数える(単位、個/m2 )。
【0032】
抜け毛:20×20cmの大きさの不織布を切取り、水平に置く、手を水で濡らし、軽く押圧しながら不織布の表面を円を描くように5回連続的になぞる。その後手に付着した抜毛の有無を確認する。抜毛がある場合、「有り」、抜毛が無い場合、「無し」と判定した。
【0033】
剥離強力:積層不織布を幅5cmに切り取る。カミソリで両層を切りながら剥離し、引っ張り強度試験機を用い、剥離強力を求める。5個の平均値をとった(単位、g/5cm)。
【0034】
不織布目付けの均一指数:積層不織布を5cm×5cmのサンプル片をランダムに40個切り取る。各々の目付け(g/m2 )を測定する。下記の式から均一指数を算出した。
均一指数=(最大目付け−最小目付け)/平均目付け
【0035】
【実施例】
実施例1
複合紡糸機、エアサツカ−、ネツトコンベア−、加熱機等を備えた複合スパンボンド紡糸装置を用い、熱融着した複合スパンボンド不織布を製造した。使用した口金は孔径0.4mmの鞘芯型複合紡糸口金であった。第1成分として融点133℃、MFR22(190℃、g/10分)の高密度ポリエチレンを鞘側に使用し、第2成分として融点164℃、MFR60(230℃、g/10分)のポリプロピレンを芯側に使用し、複合比50/50(重量%)、紡糸温度第1成分285℃、第2成分300℃の条件で紡糸し、エアサツカ−で3000m/分の速度で吸引し、繊維をエア−と共にネツトコンベア−に吹き付けた。吹き付けたエア−はネツトコンベア−下部に備えられた吸引排気装置で吸引除去した。得られたウエブは繊度1.5d/fであった。該ウエブをスル−エア−型加熱機で、温度145℃の条件で加熱し、繊維同士が熱融着した不織布を得た。該不織布は目付けが18g/m2 で、均一指数が0.25、縦強力が2.97kg/5cm、横強力が1.75kg/5cmであった。
【0036】
孔径0.3mmの並列型複合メルトブロー紡糸口金、ネツトコンベア−、等を備えたメルトブロー紡糸装置を用い、複合メルトブロー極細繊維不織布を製造した。第1成分として融点135℃、MFR76(190℃、g/10分)のプロピレン・エチレン・ブテン−1三元共重合体を紡糸温度280℃で紡糸し、第2成分として融点166℃、MFR82(230℃、g/10分)のポリプロピレンを紡糸温度290℃、両成分の複合比50対50重量%の条件で紡糸し、加熱空気温度360℃、圧力1.5kg/cm2 の条件で加熱空気をブロ−し、ネツトコンベア−に吹き付けた。吹き付けたエア−はネツトコンベア−下部に備えられた吸引排気装置で吸引除去した。得られたウエブは繊維径が1.8μmであった。該ウエブをスル−エア−型加熱機を用い、温度135℃で加熱し、低融点極細繊維の融着により繊維交点が熱融着された不織布を得た。
該不織布は目付け20g/m2 、均一指数が0.14、縦強力1.72kg/5cm、横強力0.89kg/5cm、見かけ密度が0.055g/cm3、であった。
【0037】
前記複合スパンボンド不織布と複合メルトブロー不織布とを積層し、スル−エア−型加熱機を用い、温度142℃で加熱し、その両層が熱融着した2層構造の積層不織布を得た。なお熱風は複合スパンボンド側から複合メルトブロー極細繊維側に噴出すように熱処理した。該積層不織布は積層後の熱処理により、目付けがわずかに増加し、40g/m2 であった。該積層不織布は、均一指数が0.18、縦強力が7.26kg/5cm、横強力が5.33kg/5cm、であった。また該積層不織布の積層面をカミソリで切断剥離したメルトブロー不織布の見かけ密度は、積層後の熱処理により、わずかに増加し、0.059g/cm3 であった。
該積層不織布は風合いが良、抜け毛がなし、ポリマ−玉が0個/m2、剥離強力が149g/5cmであった。
【0038】
実施例2
前記実施例1と同様の製造方法で複合メルトブロー極細繊維不織布を製造した。但し紡糸口金は孔形0.3mmの鞘芯型複合メルトブロー紡糸口金を用いた。また紡糸後エアスル−加熱機による処理は行わなかつた。第1成分として融点122℃、MFR122(190℃、g/10分)の線状低密度ポリエチレンを紡糸温度260℃で紡糸し、第2成分として融点165℃、MFR120(230℃、g/10分)のポリプロピレンを用い、第1成分と第2成分の複合比40対60重量%、紡糸温度280℃で紡糸し、加熱空気温度370℃、圧力1.9kg/cm2 の条件で加熱空気をブロ−し、ネツトコンベア−に吹き付けた。得られたウエブは繊維径が3.1μmであった。該ウエブは紡糸時の自熱で繊維間交点に熱融着がある不織布状であった。該不織布は目付け17g/m2 、均一指数0.30、縦強力0.86kg/5cm、横強力0.61kg/5cm、見かけ密度が0.043g/cm3 であった。
【0039】
実施例1で得られた複合スパンボンド不織布と、前記紡糸後加熱処理なしの自熱で熱融着された複合メルトブロー不織布を積層し、前記実施例1同様、温度135℃で加熱し両層が熱融着した2層構造の積層不織布を得た。なお加熱は複合メルトブロー不織布層を熱風噴出側とした。該積層不織布は積層物の加熱処理により目付けが僅かに増加し、36g/m2 であった。また該積層不織布は均一指数が0.28、縦強力が4.01kg/5cm、横強力が3.18kg/5cm、であった。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は、積層後の熱処理により、わずかに増加し、0.046g/cm3 であった。
該積層不織布は風合いが良、抜け毛無し、ポリマ−玉が0個/m2、剥離強力が102g/5cmであった。
【0040】
比較例1
前記実施例1と同様の製造方法でメルトブロー不織布を製造した。また紡糸後エアスル−加熱機による熱処理は行わなかつた。また紡糸口金は孔径0.3mmのレギュラ−繊維用メルトブロー口金を用いた。また、樹脂は融点167℃、MFR21(230℃、g/10分)のポリプロピレンを用い、紡糸温度300℃で紡糸し、加熱空気温度360℃、圧力1.5kg/cm2 の条件で加熱空気をブロ−し極細繊維ウエブを得た。得られたウエブは繊維径が8.9μmであった。該ウエブは紡糸時の自熱で繊維間に熱融着がある不織布状の物であった。該不織布は目付け18g/m2 であった。また該不織布は目視および手触りでポリマ−玉があるのが認められた。該不織布は均一指数0.32、縦強力0.88kg/5cm、横強力0.75kg/5cm、見かけ密度が0.070g/cm3 であった。
【0041】
繊度2.6d/f、目付け20g/m2、均一指数0.08、縦強力4.33kg/5cm、横強力3.01kg/5cmのポリエチレンテレフタレ−トスパンボンド不織布と、前記メルトブロー不織布を積層し、前記実施例1同様、温度158℃で加熱し両層がわずかに熱融着した2層構造の積層不織布を得た。なお前記スパンボンド不織布は、熱エンボスロ−ルで融着された物であった。該積層不織布は積層物の加熱処理により目付けが僅かに増加し、40g/m2 であった。また該積層不織布は、均一指数が0.64、縦強力が6.85kg/5cm、横強力が4.27kg/5cmであった。また該積層不織布の積層面を剥離して測定したメルトブロー不織布の見かけ密度は、積層後の熱処理により、わずかに増加し、0.084g/cm3 であった。また該積層不織布はメルトブロー不織布が波状にしわが発生していた。
該積層不織布は抜け毛は無しであった。また該積層不織布は柔軟性不良、ポリマ−玉によるザラツキ感および該玉による皮膚刺激性があり、風合い不良であった。またポリマ−玉が26個/m2、剥離強力が5g/m2 であった。
【0042】
比較例2
前記実施例1と同様の製造方法で複合メルトブロー極細繊維不織布を製造した。但し紡糸後の加熱処理は行なわなかつた。樹脂は第1成分第2成分共実施例1同様の物を用い両成分の複合比も50対50重量%とした。また紡糸温度を第1成分、第2成分共に250℃で紡糸し、加熱空気温度250℃、圧力0.8kg/cm2 の条件で加熱空気をブロ−し極細繊維ウエブを得た。得られたウエブは繊維径が18.9μmであった。該ウエブは紡糸時の自熱で繊維交点間に熱融着がある不織布状であった。該不織布は目付け16g/m2 、均一指数0.13であった。また該不織布は縦強力0.91kg/5cm、横強力0.52kg/5cm、見かけ密度が0.065g/cm3 であった。
【0043】
実施例1で得られた複合スパンボンド不織布と、前記メルトブロー不織布を積層し、前記実施例1同様、温度140℃で加熱し両層が熱融着した2層構造の積層不織布を得た。該積層不織布は積層物の加熱処理により目付けが僅かに増加し、35g/m2であった。また不織布は均一指数が0.24、縦強力が4.14kg/5cm、横強力が3.01kg/5cmであった。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は、積層後の熱処理により、わずかに増加し、0.068g/cm3 であった。
該積層不織布は抜け毛は無しであった。またポリマ−玉は0個/m2 、剥離強力が61g/cm2 であった。しかしメルトブロー不織布を構成する繊維の径が大きいため、風合いは硬く、不良であった。
【0044】
実施例3
前記実施例1と同様の方法で複合スパンボンド不織布を製造した。但し第1成分として融点135℃、MFR76(230℃、g/10分)のプロピレン・エチレン・ブテン−1三元共重合体を鞘側に用い、第2成分として融点257℃のポリエチレンテレフタレ−トを芯側に用い、複合比50/50(重量%)、紡糸温度第1成分280℃、第2成分295℃の条件で紡糸し、エアサツカ−で2647m/分の速度で吸引し、繊維をエア−と共にネツトコンベア−に吹き付けた。得られたウエブは繊度1.7d/fであった。該ウエブをスル−エア−型加熱機で、温度152℃の条件で加熱し、繊維同士が熱融着した不織布を得た。該不織布は目付けが23g/m2で、均一指数が0.22、縦強力が4.26kg/5cm、横強力が3.81kg/5cmであった。
【0045】
前記実施例1と同様に複合メルトブロー極細繊維不織布を製造した。但し紡糸後、加熱処理はしなかつた。但し紡糸口金は孔径が0.3mmの鞘芯型紡糸口金を用いた。第1成分として実施例1に同じ三元共重合体を鞘側に用い紡糸温度280℃で、第2成分として融点166℃、MFR74(230、g/10分)のポリプロピレンを芯側に用い紡糸温度280℃で、第一成分と第二成分の複合比40対60重量%で紡糸した。また加熱空気温度は380℃、圧力2.3kg/cm2 の条件であった。該不織布は繊維径が2.6μm、目付け20g/m2 であった。また該不織布は紡糸時の自熱で、繊維同士が弱く熱融着した物であった。該不織布は均一指数が0.34、縦強力が、0.54kg/5cm、横強力が0.48kg/5cm、見かけ密度が0.061g/cm3 であった。
【0046】
該スパンボンド不織布と、メルトブロー不織布とを積層し、スパンレ−ス装置を使用し、圧力70kg/cm2 の条件で1段の水柱絡合処理をした。その後該不織布を前記実施例1同様温度150℃で加熱し両層が熱融着した2層構造の積層不織布を得た。該多層不織布は積層物のスパンレ−ス処理または加熱処理の何れかに起因し目付けが僅かに減少し、37g/m2 であった。また該積層不織布は、均一指数が0.13、縦強力が6.03kg/5cm、横強力が5.02kg/5cmであった。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は、積層後のスパンレ−ス処理や熱処理等により増加し、0.092g/cm3 であった。
該積層不織布は風合いが良、抜け毛無しであった。またポリマ−玉は0個/m2、剥離強力が405g/5cmであった。
【0047】
実施例4
前記実施例2で得た、両層が熱融着された2層構造の積層不織布を、そのスパンボンド不織布層が内側でメルトブロー不織布層が外側となるように改めて積層し熱風交互噴出型加熱機を使用し、温度145℃で加熱し該スパンボンド不織布層同士が熱融着した4層構造の不織布を得た。該積層不織布は目付けが74g/m2 、均一指数が0.28、縦強力が14.67kg/5cm、横強力が11.32kg/5cm、メルトブロー不織布の見掛け密度が0.052g/cm3であった。
該積層不織布は風合いが良、抜け毛無しであった。またポリマ−玉は0個/m2 、剥離強力が、204g/5cmであった。該積層不織布はそのままで、または各種潤滑剤等を浸漬法、スプレ−法等で付着し、家庭用のワイパ−として使用できた。
【0048】
比較例3
孔径0.4mmのレギュラ−繊維スパンボンド紡糸口金より、融点165℃、MFR60(230℃、g/10分)のポリプロピレンを、紡糸温度300℃で紡糸し、エアサツカ−で速度3000m/分の速度で吸引し、繊維をエア−と共にネツトコンベア−に吹き付けた。吹き付けたエア−はネツトコンベア−下部に備えられた吸引排気装置で吸引除去した。得られたウエブは繊度1.5d/fのレギュラ−繊維であった。該ウエブをスル−エア−型加熱機で、温度162℃の条件で加熱し、繊維同士が熱融着した不織布を得た。該不織布は目付けが18g/m2で、均一指数が0.75、縦強力が2.10kg/5cm、横強力が1.35kg/5cmであった。該不織布は融点よりやや低い温度で加熱処理したが、融着が不織布の片面が不十分でしかも加熱時の熱収縮でしわが発生していた。
【0049】
前記実施例1と同様の製造方法でメルトブロー不織布を製造した。但し紡糸後のスル−エア−加熱機による熱処理は行なわなかつた。また紡糸口金は孔径0.3mmのレギュラ−繊維用口金を用いた。また、樹脂は融点166℃、MFR74(230℃、g/10分)のポリプロピレンを用い、紡糸温度290℃で紡糸し、加熱空気温度380℃、圧力2.0kg/cm2 の条件で加熱空気をブロ−し極細繊維ウエブを得た。得られたウエブは繊維径が3.2μmであった。該ウエブは紡糸時の自熱で繊維間に熱融着がある不織布状の物であった。該不織布は目付け18g/m2、均一指数0.21であった。該不織布は縦強力0.72kg/5cm、横強力0.60kg/5cm、見かけ密度が0.078g/cm3 であった。
【0050】
該スパンボンド不織布と前記ポリプロピレンメルトブロー不織布を積層し、前記実施例1同様スル−エア−加熱機を使用し、温度162℃で加熱し、その両層が熱融着した目付け39g/m2 の2層構造の不織布を得た。該積層不織布は、均一指数が0.63、縦強力が4.87kg/5cm、横強力が4.24kg/5cmであった。該不織布はポリプロピレンの融点よりやや低温で加熱処理したが熱収縮により、しわが発生していた。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は、積層後の熱処理により増加し、0.081g/cm3 であった。
該積層不織布は抜け毛無しであった。またポリマ−玉は0個/m2、剥離強力が266g/5cmであった。該不織布はしわがあり、風合い不良であった。
【0051】
比較例4
前記実施例1と同様の製造方法でメルトブロー不織布を製造した。但し紡糸口金は孔径0.3mmのレギュラ−繊維用口金を用いた。また紡糸後のスル−エア−加熱機での熱処理は行わなかつた。また樹脂は、融点257℃のポリエチレンテレフタレ−トを用い、紡糸温度300℃で紡糸し、加熱空気温度360℃、圧力1.8kg/cm2 の条件で加熱空気をブロ−し極細繊維ウエブを得た。得られたウエブは平均繊維径が5.2μmであった。該ウエブは紡糸時の自熱による繊維間の熱融着がほとんどなく、ウエブを手で押すと手一面に毛羽が付着する物であった。該ウエブは均一指数0.22、目付け16g/m2 であった。該ウエブは縦強力0.03kg/5cm、横強力0.01kg/5cm、見かけ密度が0.070g/cm3、であった。
【0052】
前記実施例3で得た複合スパンボンド不織布と前記メルトブローウエブを積層し、実施例1同様スル−エア−加熱機を用い、温度148℃で加熱し、その両層が熱融着した2層構造の積層不織布を得た。該不織布は目付けが39g/m2 であった。また不織布は均一指数が0.25、縦強力が4.63kg/5cm、横強力が3.92kg/5cmであった。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は0.072g/cm3 であった。また剥離強力は4.9g/5cmであった。
該積層不織布は風合いが良で、ポリマ−玉は0個/m2 であった。しかし抜け毛が多く抜け毛不良であった。
【0053】
実施例5
前記実施例1で得た複合スパンボンド不織布および前記実施例2で得た鞘芯型複合メルトブロー極細繊維不織布を積層し、熱エンボスロ−ルで熱圧着した。該ロ−ルは、カレンダ−ロ−ルと凸部面積率15%のエンボスロ−ルとを組合せた物を用い、エンボスロ−ル側にメルトブロー不織布が接触するようにした。熱圧着条件は、エンボスロ−ル温度120℃、カレンダ−ロ−ル温度120℃、線圧25kg/cmであった。
該積層不織布は、均一指数0.26、目付け35g/m2 であった。該不織布の積層面をカミソリで切断剥離して測定した複合メルトブロー極細繊維不織布の見かけ密度は、0.11g/cm3であった。該積層不織布の縦強力が8.92kg/5cm、横強力が7.65kg/5cm、剥離強力が827g/5cmであった。
該積層不織布は風合いが良で、ポリマ−玉は0個/m2 であった。また抜け毛も無しであった。
【0054】
実施例6
前記実施例1と同様の製造方法で複合メルトブロー極細繊維不織布を製造した。但し樹脂は、第1成分が融点135℃、MFR28(190、g/10分)の高密度ポリエチレンを用い、紡糸温度280℃で紡糸し、第2成分が融点166℃、MFR36(230℃、g/10分)のポリプロピレンを用い、紡糸温度260℃で紡糸し、加熱空気温度340℃、圧力2.1kg/cm2 の条件で加熱空気をブロ−し複合比50対50重量%の並列型極細複合繊維ウエブを得た。得られたウエブは繊維径が7.6μmであった。該ウエブは紡糸時の自熱で繊維間に熱融着がある不織布状の物であった。該不織布をエアスル−加熱機を用い温度145℃で加熱し、熱融着不織布を得た。該不織布は目付け20g/m2 であった。また該不織布は手触りでポリマ−玉がわずかにあるのが認められた。該不織布は、均一指数が0.32、縦強力1.77kg/5cm、横強力1.09kg/5cm、見かけ密度が0.046g/cm3 であった。
【0055】
実施例1で得られた複合スパンボンド不織布と、前記複合メルトブロー不織布を積層し、前記実施例1同様、温度145℃で加熱し両層が熱融着した2層構造の積層不織布を得た。該積層不織布は積層物の加熱処理により目付けが僅かに増加し、39g/m2 であった。また該積層不織布は均一指数が0.26、縦強力が5.03kg/5cm、横強力が4.16kg/5cmであった。また該積層不織布の積層面をカミソリで切断剥離して測定したメルトブロー不織布の見かけ密度は、積層後の熱処理により、わずかに増加し、0.051g/cm3 で、剥離強力が203g/5cmであった。
該積層不織布は抜け毛は無しであった。またメルトブロー不織布のポリマ−玉は2.8個/m2 であった。また該積層不織布は柔軟性がよく、ポリマ−玉によるザラツキ感がほとんどなく風合い良であった。この積層不織布は、断熱材や、濾材として使用可能である。
【0056】
実施例7
平面が鉄道レ−ルの横断面状の略I型の形状を有する市販の紙おむつを用い、該紙おむつの脚部近傍の表面材のみ、前記実施例1の積層不織布に置換えた。
該市販の紙おむつは、ポリエチレン/ポリプロピレン系熱融着性複合繊維ステープルを用い、かつその繊維の交差点が熱融着された不織布を表面材とし、パルプおよび高吸水樹脂を主成分とする吸水材、およびポリエチレンフイルムを裏面材とする物であった。該おむつから両方の脚部近傍の不織布のみナイフで切断除去した。前記実施例1で得た積層不織布を、複合メルトブロー極細繊維不織布層が肌側で複合スパンボンド不織布層が裏面材のポリエチレンフイルム側となるようにその両方の脚部近傍の部位に積層した。更に前記表面材と、裏面材との間にポリウレタン弾性糸を3本伸長状態で挟持し、前記残余の中央部近傍の不織布と、積層不織布とを熱融着し、更に前記裏面材と積層不織布とを熱融着した。残余の積層不織布をハサミで切り取り、複合メルトブロー極細繊維不織布側が脚部の肌側に配設された紙おむつを得た。このおむつは両脚部に配設された弾性糸により略弓状に湾曲していた。このおむつは、脚部がソフトな風合いであり、かつメルトブロー不織布が撥水性であり該部位からの液漏れの阻止が可能であり、特に新生児用の物として好適であった。
【0057】
【発明の効果】
本発明の積層不織布は、複合スパンボンド不織布と複合メルトブロー極細繊維不織布との積層不織布であり、風合いが良く、しかも不織布強力が大である。また複合メルトブロー極細繊維不織布は繊維の交点同士が熱融着し、かつ複合スパンボンド長繊維不織布の低融点成分等に熱融着しているので剥離強力が大でしかも抜け毛が無い。しかもポリマー玉がないのでザラツキ感や皮膚刺激性が無い。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated nonwoven fabric and a method for producing the same, and more particularly to a multilayered nonwoven fabric in which a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric are laminated. This nonwoven fabric is suitably used as a material such as a surface material for absorbent articles such as paper diapers and sanitary napkins.
[0002]
[Prior art]
Spunbond nonwoven fabrics have been used as a surface material for absorbent articles such as disposable diapers because they have no fluff and are excellent in resistance to hair removal. However, it is difficult to reduce the fineness of the long fibers constituting the spunbonded nonwoven fabric, and it is difficult to obtain a soft texture like a melt blown nonwoven fabric made of ultrafine fibers. In spunbonded nonwoven fabrics, there is a problem that the single fiber breakage occurs with the increase in the fineness, the thick fineness yarn is mixed, and the texture is further deteriorated.
[0003]
Japanese Laid-Open Patent Publication No. 54-134177 discloses a melt blown nonwoven fabric made of polypropylene microfibers, and Japanese Laid-Open Patent Publication No. 62-299501 and Japanese Laid-Open Patent Publication No. 3-75056 disclose a paper diaper using a melt blown nonwoven fabric as a surface material. Such a melt-blown nonwoven fabric has the advantage of having a soft texture due to its thin fiber diameter, but has disadvantages unique to the melt-blown nonwoven fabric, that is, the strength of the nonwoven fabric is low, there is fluffing, and hair removal is easy. Moreover, polymer balls are likely to be generated during spinning, have a rough feeling, and have problems of irritating the skin, and are not suitable particularly for disposable diapers for newborns. In order to increase the strength of the melt blown nonwoven fabric and prevent hair removal, it is also possible to perform crimping with a thermal calender roll or hot embossing roll, but on the contrary, it is necessary to process the temperature and pressure under severe thermocompression bonding conditions. There is a disadvantage that the apparent density of the nonwoven fabric is increased and the texture is deteriorated.
[0004]
JP-B-60-11148, JP-A-2-112458, and JP-A-2-234967 have a laminate in which a spunbond nonwoven fabric and a meltblown nonwoven fabric are laminated, and both layers are heat-sealed with a heat calender roll, a heat embossing roll, or the like. A nonwoven fabric is disclosed. The non-woven fabric is improved in strength compared to conventional single-layer non-woven fabrics, but is a product using regular fibers as long fibers constituting the spunbonded non-woven fabric. There are issues such as low strength. Moreover, the thing crimped | bonded with the hot embossing roll requires the severe thermocompression bonding conditions similar to the above, and there are subjects, such as increasing an apparent density and worsening a texture.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a laminated nonwoven fabric having a high strength, a soft texture, good hair-resistance, no roughness and skin irritation, and a method for producing the same.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) A multilayer nonwoven fabric in which a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric having an average fiber diameter of 10 μm or less are laminated, and the composite spunbond nonwoven fabric has a low melting point resin having a melting point difference of 10 ° C. or more A composite melt blown ultrafine fiber nonwoven fabric comprising composite long fibers combined with a high melting point resin, wherein the low melting point resin forms at least part of the fiber surface and is heat-sealed through the low melting point resin. Is composed of a low melting point resin having a melting point difference of 10 ° C. or higher and a high melting point resin, and the composite melt blown ultrafine fiber in which the low melting point resin forms at least a part of the fiber surface is heat-sealed through the low melting point resin. The composite spunbond nonwoven fabric and the composite meltblown ultrafine fiber nonwoven fabric are a low melting point resin of the composite spunbond nonwoven fabric and / or the composite meltblown electrode. Layered nonwoven fabric are integrated by fusion of the low melting point resin fiber nonwoven fabric.
[0007]
(2) The composite spunbond nonwoven fabric is composed of composite long fibers having a fineness of 0.5 to 10 d / f, the composite meltblown ultrafine fiber nonwoven fabric is composed of ultrafine fibers having a fiber diameter of 0.1 to 10 μm, and the fiber diameter is 0.1 mm or more. 10 polymer balls / m 2 Hereinafter, the apparent density of the nonwoven fabric is 0.02 to 0.20 g / cm. Three The laminated nonwoven fabric according to claim 1, wherein the laminated nonwoven fabric has a lateral strength of 0.6 kg / 5 cm or more, a uniformity index of 0.6 or less, and a peel strength of both layers of 6 g / 5 cm or more.
[0008]
(3) An absorbent article in which the laminated nonwoven fabric according to claim 1 or 2 is used as at least one member.
(4) Two or more layers of a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric, or a composite meltblown ultrafine fiber nonwoven fabric and a composite spunbond nonwoven fabric having at least one surface of the composite meltblown ultrafine fiber nonwoven fabric. The absorbent article according to claim 3, wherein a multilayered nonwoven fabric is used.
[0009]
(5) A composite long fiber is spun into a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more by a composite spunbond method so that the low melting point resin forms at least part of the fiber surface to form a web. Or a low melting point resin having an average fiber diameter of 10 μm or less and a melting point difference of 10 ° C. or more by a composite melt blow method by heating the spun web to a heat fusion temperature or higher to obtain a nonwoven fabric in which the fibers are heat fused. Spin a composite meltblown ultrafine fiber in which the low melting point resin forms at least a part of the fiber surface with a high melting point resin to form a composite ultrafine fiber web that does not have self-heat fusion during spinning. A non-woven fabric with heat fusion or a spun web or a non-woven fabric with self-heat fusion is heated to a temperature higher than the heat fusion temperature to obtain a composite ultrafine fiber nonwoven fabric in which the fibers are heat-sealed, and the composite spunbond web Or heat fusion nonwoven When the composite melt blown and a ultra fine fiber web or a composite melt blown ultrafine fibers heat-fusible non-woven fabric laminated, method for manufacturing a laminated nonwoven fabric both layers are heated above the temperature at which thermal fusion.
[0010]
(6) The method for producing a laminated nonwoven fabric according to claim 5, comprising a step of entanglement of the webs or nonwoven fabrics of both layers before or after heating with a needle punch or a span-lace means.
(7) The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein heating is performed to a temperature equal to or higher than the heat fusion temperature of both layers by using a through-air type heater.
[0011]
(8) The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein an embossing roll having a thermocompression bonding area of 5 to 25% is used and both layers are thermocompression bonded.
(9) The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein the composite spunbond nonwoven fabric and the composite meltblown ultrafine fiber nonwoven fabric use a material having a uniformity index of 0.6 or less.
(10) The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein both layers are heated so that hot air is alternately ejected from the front surface side and the back surface side of the multilayer structure nonwoven fabric using a hot air alternating jet type heating machine.
[0012]
The non-woven fabric having a multilayer structure in the present invention may be an at least two-layer structure in which a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric are laminated. When the application is a surface material of a paper diaper, a wiper, or the like, 2 to 3 layers are used, and when it is a heat insulating material or a dew condensation prevention material, 2 to 8 layers are used.
[0013]
The composite spunbond nonwoven fabric used for the multilayer structure nonwoven fabric of the present invention is a nonwoven fabric in which at least two kinds of resin components having a difference of 10 ° C. or more in the melting point are spun by the composite spunbond method and the intersections of the fibers are heat-sealed. is there. In the composite spunbond method, a plurality of resin components are melt-extruded from a plurality of extruders, and a plurality of components are combined from a composite spinning die so that the low melting point resin forms at least part of the fiber surface. The spun fibers are taken up by an air-flow traction type device such as an air sucker, and the fibers are collected together with a web collecting device such as a net conveyor, and then the web is heated and heated as necessary. A method for producing a heat-sealed nonwoven fabric by performing a process such as fusing using a heating device such as a rubber. Also, after mechanically stretching the spun long fibers, they are taken up with an air-flow traction type device such as the air suction, and the fibers are collected together with the air flow with a web collecting device such as a net conveyor, and heated in the same manner as described above. The manufacturing method of the nonwoven fabric by melt | fusion etc. may be sufficient. As these resin components, 2 to 4 kinds of resins can be used practically, and the difference between the highest melting point and the lowest melting point only needs to be 10 ° C. or more. However, for most applications, two are sufficient.
The nonwoven fabric is particularly preferably a nonwoven fabric having a basis weight uniformity index described below of 0.6 or less. Uniform weight is achieved by setting a composite spunbonding device, spinning conditions and the like on a trial and error basis.
[0014]
The resin used in the present invention is not particularly limited as long as it is a thermoplastic resin that can be spun. For example, polyolefins such as polypropylene, high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, binary or ternary copolymers of propylene and other α-olefins, polyamides, polyethylene terephthalate, Polybutylene terephthalate, low melting point polyester copolymerized with diol and terephthalic acid / isophthalic acid, polyesters such as polyester elastomer, fluorine resin, mixtures of the above resins, and other spinnable resins are used it can.
[0015]
The combination of the resin in the composite spinning is, for example, high density polyethylene / polypropylene, low density polyethylene / propylene / ethylene / butene-1 crystalline copolymer, high density polyethylene / polyethylene terephthalate, nylon-6 / nylon. 66, low melting point polyester / polyethylene terephthalate, polypropylene / polyethylene terephthalate, polyvinylidene fluoride / polyethylene terephthalate, a mixture of linear low density polyethylene and high density polyethylene / polypropylene, and the like.
[0016]
The form of the composite fiber may be a sheath core type, a parallel type, a multilayer type, a hollow multilayer type, an irregular multilayer type, or the like, and the low melting point resin may form at least a part of the fiber surface. The difference in melting point between the low melting point resin and the high melting point resin must be 10 ° C. or more. When the difference in melting point is less than 10 ° C., it is difficult to control the temperature by heat treatment during the production of the laminated nonwoven fabric with the composite spunbond nonwoven fabric or the composite meltblown ultrafine fiber nonwoven fabric, the degree of thermal fusion is insufficient, and a high strength nonwoven fabric cannot be obtained. Alternatively, wrinkles are generated by high temperature heating, or the whole nonwoven fabric is melted to be partially filmed. Moreover, the anti-bleaching resistance of the obtained laminated nonwoven fabric is insufficient, or it becomes easy to peel off on the laminated surface.
[0017]
In the composite spunbond long fiber, the low melting point resin and the high melting point resin have a composite ratio of 10 to 90% by weight for the low melting point resin and 90 to 10% by weight for the high melting point resin. More preferably, the low melting point resin is 30 to 70% by weight, and the high melting point resin is 70 to 30% by weight. When the low melting point resin component is less than 10% by weight, the thermal fusion of the composite spunbonded nonwoven fabric itself is insufficient, or the thermal fusion on the laminated surface of the nonwoven fabric and the composite meltblown ultrafine fiber nonwoven fabric is insufficient. It will be inferior in strength and hair removal resistance.
[0018]
The fineness of the composite long fiber is not particularly limited, but is about 0.2 to 10 d / f in the case of a surface material of a paper diaper, about 0.5 to 20 d / f in the case of a wiper, and about 0 in the case of a filter. .2 to 4000 d / f. The basis weight of the nonwoven fabric is not particularly limited, but is about 4 to 1000 g / m. 2 It is. In the case of the surface material of paper diapers, etc., about 4 to 70 g / m 2 In the case of wipers, etc., about 10 to 600 g / m 2 In the case of a filter or the like, about 20 to 1000 g / m 2 It is.
The composite spunbonded non-woven fabric has a stronger non-woven fabric strength by using a heating machine such as a hot air through-heater, a hot calender roll, a hot embossing roll or the like. In the present invention, it is preferable to control the heating conditions and the like using the above-mentioned heater, and to set the strength of the nonwoven fabric alone to 0.6 kg / 5 cm or more.
[0019]
In the present invention, the composite melt blown ultrafine fiber nonwoven fabric is obtained by independently melt-extruding at least two thermoplastic resins having a difference of 10 ° C. or more in melting points, and from the melt-blown spinneret of the composite melt blown ultrafine fiber and high melting point ultrafine fiber. The low melting point resin is composite-spun so that at least a part of the fiber surface is formed, and then blow-spun as an ultra-fine fiber stream with a high-temperature and high-speed gas, and a composite ultra-fine fiber web is formed by a collecting device. Accordingly, a non-woven fabric is obtained by heat-sealing treatment.
[0020]
In the composite melt blown ultrafine fiber of the present invention, the low melting point resin only needs to form at least a part of the fiber surface. The composite ratio is particularly preferably 10 to 90% by weight for the low melting point resin and 90 to 10% by weight for the high melting point resin. The composite form may be a sheath core, a parallel type, or the like, similar to the spunbond.
As the resin, various resins such as those used in the composite spunbond can be used. Various combinations of resins as disclosed in the composite spunbond are possible. For example, high-density polyethylene / polypropylene, propylene / ethylene / butene-1 crystalline copolymer, high-density polyethylene / polyethylene terephthalate, low-melting point polyester / polyethylene terephthalate, and the like.
Further, as the gas for blow spinning, an inert gas such as air or nitrogen gas is usually used. The temperature of the gas is about 200 to 500 ° C., preferably about 250 to 450 ° C., and the pressure is about 0.1 to 6 kg / cm. 2 , Preferably about 0.2 to 5.5 kg / cm 2 It is. The spinning conditions are appropriately set depending on the physical properties of the resin used, the combination of the resins, the target fiber diameter, the spinneret, and other devices.
[0021]
This nonwoven fabric is composed of composite ultrafine fibers having an average fiber diameter of 10 μm or less. Preferably it is 0.1-9 micrometers, More preferably, it is 0.2-8 micrometers. When the fiber diameter exceeds 10 μm, the texture is deteriorated. Moreover, the thing of 0.1 micrometer or less is difficult to manufacture, and a price becomes expensive.
The melt blown nonwoven fabric used in the present invention has 10 polymer balls / m. 2 The following are preferred. Here, the polymer ball means a non-fiber shape having a circular shape, an elliptical shape, a teardrop shape or the like having a diameter of 0.1 mm or more. Applications that directly touch the skin when the amount of polymer balls increases, such as the surface material of a paper diaper, the base fabric of a haptic agent, etc., can be used because it has a rough feeling and a skin irritation. Moreover, it is preferable that both surfaces of a wiper or the like such as glasses or furniture are a melt blown nonwoven fabric, but in addition to the rough feeling, the furniture or the like may be slightly damaged. In the present invention, the nonwoven fabric preferably has a basis weight uniformity index of 0.6 or less. Such a non-woven fabric can be obtained by appropriately selecting spinning conditions for composite melt blow spinning, an appropriate apparatus, and the like.
[0022]
In the composite melt blown ultrafine fiber nonwoven fabric used in the present invention, the intersection of the fibers is heat-sealed. The heat fusion may be a material fused by self-heating at the time of spinning, or a material fused by heat using a heating device such as heat-through air, heat-calender roll, heat-embossing roll after spinning, etc. It may be. The basis weight of the nonwoven fabric is not particularly limited, but is about 3 to 1000 g / m. 2 It is. In the case of the surface material of a paper diaper, about 3-60g / m 2 In the case of a wiper, about 5 to 500 g / m 2 In the case of a filter, about 15 to 1000 g / m 2 It is. The apparent density of the nonwoven fabric is not particularly limited, but considering the texture, it is about 0.02 to 0.40 g / cm. Three Is preferred.
[0023]
The laminated nonwoven fabric of the present invention is a laminate of the composite spunbond nonwoven fabric and the composite meltblown nonwoven fabric, such as a hot-through air type heating machine, an alternating hot air jet type heating machine, a thermal calendar roll, a hot embossing roll, a sonic bond, etc. It can manufacture by heating using a heating apparatus and heat-sealing both the layers. When a hot slew air heater, an alternating hot air jet type heater, or the like is used, a melt-blown nonwoven fabric having a relatively high bulk can be obtained. In the case of a heat-through-air type heater, heat treatment is performed so that heat penetrates from the relatively spun bonded nonwoven fabric side to the less fine melt blown nonwoven fabric side, so that heat is uniformly applied and the peel strength of both layers is increased. can do. When the melt blown nonwoven fabric side is placed opposite to the hot air jet side and heated through air, by setting the hot air pressure, suction conditions, etc., the melt blown ultrafine fiber single fiber bites into the spunbond nonwoven fabric layer. In addition, since the inside of the spunbonded nonwoven fabric and its both layers are heat-sealed twice, the peel strength of both layers can be controlled. Moreover, when the hot air uses a non-woven fabric front and back side alternating jet type heater, a nonwoven fabric with a high bulk can be obtained. Moreover, after laminating | stacking both nonwoven fabrics, an entanglement process etc. can be carried out by the needle punch method or the span-lace method, and it can heat-process after that, and can make it a thing with strong peeling strength. The heating temperature should just be more than the temperature which the low melting point resin component of the composite long fiber which comprises a composite spunbond nonwoven fabric softens, or the temperature which the low melting point resin of a composite melt blown nonwoven fabric softens. Moreover, it can also serve as the heat fusion of each fiber of either the nonwoven fabric laminated | stacked at the time of both layers heating, or both of those nonwoven fabrics. When the composite spunbond nonwoven fabric that has been heat-sealed once is rolled, this nonwoven fabric is drawn out, and the composite meltblown ultrafine fiber nonwoven fabric is laminated and heated. The heating temperature is the temperature at which the low melting point resin of the meltblown nonwoven fabric is softened. That is all you need. When heating is performed at a temperature higher than the temperature at which the low melting point resins of both the composite spunbond nonwoven fabric and the melt blown nonwoven fabric are softened or fused, a product having a stronger peel strength between both layers can be obtained. Moreover, when using a hot embossing roll, it is desirable that the thermocompression bonding area be 5 to 25%. When this crimping area is less than 5%, the hair removal resistance and the nonwoven fabric strength are inferior, and when it exceeds 25%, the texture becomes hard.
[0024]
In the present invention, it is preferable to appropriately select heating conditions, a low melting point resin of a composite spunbond nonwoven fabric, a low melting point resin of a composite meltblown ultrafine fiber nonwoven fabric, and the like, and a peel strength of both layers of 6 g / 5 cm or more. . The peel strength is 6 to 5000 g / 5 cm, more preferably about 10 to 4000 g / 5 cm. If the peel strength is less than 6 g / 5 cm, both layers are easily peeled off due to friction or the like, which is insufficient for a paper diaper or the like. In addition, when the same resin is used as the low melting point resin of the spunbond nonwoven fabric and the low melting point resin of the composite meltblown ultrafine fiber, a product having a remarkably high peel strength can be obtained.
[0025]
Since the laminated nonwoven fabric of the present invention utilizes the high strength of the composite spunbond nonwoven fabric, the nonwoven fabric weight is 40 g / m. 2 The thing whose lateral direction strength when converted into is 0.6 kg / 5 cm or more is preferable. Here, lateral strength refers to the so-called cross machine direction (CD) of the spunbond nonwoven fabric layer. In addition, when a spunbond layer is a multilayer, it means the lesser of the longitudinal or lateral strength. The apparent density of the meltblown nonwoven fabric after lamination is 0.02 to 0.20 g / cm. Three Then, the soft texture of the ultrafine fibers constituting the melt blown nonwoven fabric is particularly preferable because it can be used for various purposes such as a surface material of a paper diaper. The apparent density is about 0.02 to 0.20 g / cm in the case of a surface material of a paper diaper or a wiper. Three In the case of filter media, etc., about 0.025 to 0.40 g / cm Three It is.
The laminated nonwoven fabric of the present invention is particularly preferably a fabric having a basis weight uniformity index of 0.6 or less. Such a nonwoven fabric can be obtained by using a composite spunbond nonwoven fabric or a composite meltblown ultrafine nonwoven fabric having a basis weight uniformity index of 0.6 or less.
[0026]
The laminated nonwoven fabric of the present invention is used alone or in various applications for lamination, sewing, heat fusion and the like with other members. For example, when it is used as one member of a pants-type disposable diaper, it can be used for a portion requiring relatively water repellency, for example, an inner member near the trunk, an inner member near the leg, and the like. Further, in the case where the vicinity of the leg portion is provided with a belt-like three-dimensional barrier for preventing liquid leakage inside, the three-dimensional barrier material can be used by being heat-sealed with other members. Of course, when using for this diaper etc., the expansion-contraction member etc. for closely_contact | adhering a trunk | drum or a leg part can also be used together with another member or this laminated nonwoven fabric. The laminated nonwoven fabric can be used as a cover material for a pants-type disposable diaper with the composite meltblown ultrafine fiber nonwoven fabric side facing outside or inside. The laminated nonwoven fabric can be laminated with other nonwoven fabrics, tissues, webs, films, etc., and used as the cover material for the surface material, the cover material for the back surface material, or the like.
[0027]
In addition, in order to quickly pass liquid and moisture through the nonwoven fabric of any layer of the laminated nonwoven fabric or the entire laminated nonwoven fabric, about 0.1 to 9 mm 2 A large number of through holes can be arranged and used as one member such as the front surface material and the back surface material. The multilayer nonwoven fabric can be attached with a water repellent oil agent for controlling liquid permeability, an oil agent such as a hydrophilic oil agent, and a fluorine-based water repellent agent.
The multilayer nonwoven fabric of the present invention can be laminated as melt blown nonwoven fabric / spunbond nonwoven fabric / melt blown nonwoven fabric, and can be used for wipers such as furniture by attaching various lubricants.
In addition, the laminated nonwoven fabric is folded, further molded into a cylindrical shape, or the laminated nonwoven fabric is wound as it is to be molded into a cylindrical shape, or the laminated nonwoven fabric is wound while being heated, and the layer is thermally fused. It can be used as a filter medium by post-processing such as molding into a shape.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to examples. In the following examples, the evaluation of the nonwoven fabric and the like is as follows.
Fiber diameter: Ten small pieces were cut out from the web or nonwoven fabric, a photograph with a magnification of 100 to 5000 was taken with a scanning electron microscope, the fiber diameter of 100 fibers was measured, and the average value was defined as the fiber diameter (unit: μm).
[0029]
Nonwoven fabric strength: Using a tensile strength tester, the longitudinal breaking strength and the transverse breaking strength (kg / 5 cm) of a nonwoven fabric having a width of 5 cm were determined, and an average value of 5 pieces was taken.
[0030]
Texture: Five panelists evaluated the texture of the nonwoven fabric from the viewpoints of wrinkles, flexibility, roughness, etc., and judged according to the following criteria. If 3 or more people have no wrinkles, good flexibility, and no rough feeling, “good”, 3 or more people have wrinkles, poor flexibility, rough feeling, or both When it was determined that it was, it was determined as “bad”.
[0031]
Polymer balls: 10 pieces of 20 × 20 cm non-woven fabric are randomly cut and the number of polymer balls having a fiber diameter of 0.1 mm or more is counted using a magnifying glass (unit, pieces / m 2 ).
[0032]
Hair loss: Cut a non-woven fabric having a size of 20 × 20 cm, place it horizontally, wet the hand with water, and trace the surface of the non-woven fabric 5 times in a circle while gently pressing. Then check for hair removal on the hands. When there was hair removal, it was judged as “present”, and when there was no hair removal, it was judged as “none”.
[0033]
Peel strength: Cut the laminated nonwoven fabric to a width of 5 cm. Peel off while cutting both layers with a razor, and determine the peel strength using a tensile strength tester. The average value of 5 was taken (unit, g / 5 cm).
[0034]
Uniform index of non-woven fabric weight: 40 sample pieces of 5 cm × 5 cm are randomly cut out from the laminated non-woven fabric. Each basis weight (g / m 2 ). The uniformity index was calculated from the following formula.
Uniformity index = (maximum basis weight-minimum basis weight) / average basis weight
[0035]
【Example】
Example 1
Using a composite spunbond spinning apparatus equipped with a composite spinning machine, an air suction, a net conveyor, a heating machine, etc., a heat-bonded composite spunbond nonwoven fabric was produced. The base used was a sheath core type composite spinneret with a hole diameter of 0.4 mm. A high-density polyethylene having a melting point of 133 ° C. and MFR22 (190 ° C., g / 10 minutes) is used as the first component on the sheath side, and a polypropylene having a melting point of 164 ° C. and MFR60 (230 ° C., g / 10 minutes) is used as the second component. Used on the core side, spun at a composite ratio of 50/50 (% by weight), spinning temperature of first component 285 ° C., second component 300 ° C., sucked at a speed of 3000 m / min with an air sucker, and the fiber is air -And sprayed onto the net conveyor. The sprayed air was removed by suction with a suction exhaust device provided at the bottom of the net conveyor. The obtained web had a fineness of 1.5 d / f. The web was heated with a through-air heater at a temperature of 145 ° C. to obtain a nonwoven fabric in which the fibers were heat-sealed. The nonwoven fabric has a basis weight of 18 g / m 2 The uniformity index was 0.25, the longitudinal strength was 2.97 kg / 5 cm, and the lateral strength was 1.75 kg / 5 cm.
[0036]
A composite meltblown ultrafine fiber nonwoven fabric was manufactured using a meltblown spinning apparatus equipped with a parallel type composite meltblown spinneret having a pore diameter of 0.3 mm, a net conveyor, and the like. A propylene / ethylene / butene-1 terpolymer having a melting point of 135 ° C. and MFR 76 (190 ° C., g / 10 min) was spun at a spinning temperature of 280 ° C. as a first component, and a melting point of 166 ° C. and MFR 82 ( 230 ° C., g / 10 min) of polypropylene at a spinning temperature of 290 ° C. and a composite ratio of both components of 50 to 50% by weight, heated air temperature of 360 ° C., pressure of 1.5 kg / cm 2 The heated air was blown under the following conditions and sprayed onto the net conveyor. The sprayed air was removed by suction with a suction exhaust device provided at the bottom of the net conveyor. The obtained web had a fiber diameter of 1.8 μm. The web was heated at a temperature of 135 ° C. using a through-air heating machine to obtain a nonwoven fabric in which fiber intersections were heat-sealed by fusing low-melting ultrafine fibers.
The nonwoven fabric has a basis weight of 20 g / m. 2 Uniformity index 0.14, longitudinal strength 1.72kg / 5cm, lateral strength 0.89kg / 5cm, apparent density 0.055g / cm Three ,Met.
[0037]
The composite spunbonded nonwoven fabric and the composite meltblown nonwoven fabric were laminated and heated at a temperature of 142 ° C. using a through-air heating machine to obtain a laminated nonwoven fabric having a two-layer structure in which both layers were thermally fused. The hot air was heat-treated so as to be jetted from the composite spunbond side to the composite meltblown ultrafine fiber side. The fabric weight of the laminated nonwoven fabric is slightly increased by heat treatment after lamination, and 40 g / m 2 Met. The laminated nonwoven fabric had a uniformity index of 0.18, a longitudinal strength of 7.26 kg / 5 cm, and a lateral strength of 5.33 kg / 5 cm. Further, the apparent density of the melt blown nonwoven fabric obtained by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor slightly increased by the heat treatment after the lamination, 0.059 g / cm Three Met.
The laminated nonwoven fabric has a good texture, no hair loss, and 0 polymer balls / m 2 The peel strength was 149 g / 5 cm.
[0038]
Example 2
A composite meltblown ultrafine fiber nonwoven fabric was produced by the same production method as in Example 1. However, the spinneret was a sheath core type composite melt blow spinneret having a hole shape of 0.3 mm. Further, after spinning, no treatment with an air-through heater was performed. A linear low density polyethylene having a melting point of 122 ° C. and MFR 122 (190 ° C., g / 10 minutes) as a first component was spun at a spinning temperature of 260 ° C., and a melting point of 165 ° C., MFR 120 (230 ° C., g / 10 minutes) as a second component. ), A composite ratio of the first component and the second component is 40: 60% by weight, spinning at a spinning temperature of 280 ° C., heated air temperature of 370 ° C., pressure of 1.9 kg / cm 2 The heated air was blown under the following conditions and sprayed onto the net conveyor. The obtained web had a fiber diameter of 3.1 μm. The web was in the form of a non-woven fabric with heat fusion at the intersection between fibers due to self-heating during spinning. The nonwoven fabric has a basis weight of 17 g / m 2 , Uniformity index 0.30, Longitudinal strength 0.86kg / 5cm, Lateral strength 0.61kg / 5cm, Apparent density 0.043g / cm Three Met.
[0039]
The composite spunbond nonwoven fabric obtained in Example 1 and the composite meltblown nonwoven fabric heat-sealed by self-heating without post-spinning heat treatment were laminated and heated at 135 ° C. as in Example 1 to form both layers. A heat-fused laminated nonwoven fabric having a two-layer structure was obtained. The heating was performed with the composite meltblown nonwoven fabric layer on the hot air ejection side. The fabric weight of the laminated nonwoven fabric is slightly increased by heat treatment of the laminate, and is 36 g / m 2 Met. The laminated nonwoven fabric had a uniformity index of 0.28, a longitudinal strength of 4.01 kg / 5 cm, and a lateral strength of 3.18 kg / 5 cm. Further, the apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor was slightly increased by the heat treatment after lamination, and 0.046 g / cm. Three Met.
The laminated nonwoven fabric has a good texture, no hair loss, 0 polymer balls / m 2 The peel strength was 102 g / 5 cm.
[0040]
Comparative Example 1
A melt blown nonwoven fabric was produced by the same production method as in Example 1. Further, no heat treatment was performed by an air-through heater after spinning. The spinneret used was a melt blower for regular fibers having a hole diameter of 0.3 mm. The resin is polypropylene having a melting point of 167 ° C. and MFR 21 (230 ° C., g / 10 min), and is spun at a spinning temperature of 300 ° C., heated air temperature is 360 ° C., and pressure is 1.5 kg / cm. 2 Heated air was blown under the following conditions to obtain an ultrafine fiber web. The obtained web had a fiber diameter of 8.9 μm. The web was a non-woven fabric with heat fusion between the fibers due to self-heating during spinning. The nonwoven fabric has a basis weight of 18 g / m 2 Met. Further, it was confirmed that the nonwoven fabric had polymer balls visually and by hand. The nonwoven fabric has a uniform index of 0.32, a longitudinal strength of 0.88 kg / 5 cm, a lateral strength of 0.75 kg / 5 cm, and an apparent density of 0.070 g / cm. Three Met.
[0041]
Fineness 2.6d / f, basis weight 20g / m 2 A polyethylene terephthalate spunbond nonwoven fabric having a uniformity index of 0.08, a longitudinal strength of 4.33 kg / 5 cm, and a lateral strength of 3.01 kg / 5 cm and the melt blown nonwoven fabric are laminated and heated at a temperature of 158 ° C. as in Example 1. A laminated nonwoven fabric having a two-layer structure in which both layers were slightly heat-sealed was obtained. The spunbonded nonwoven fabric was fused with a hot embossing roll. The fabric weight of the laminated nonwoven fabric is slightly increased by heat treatment of the laminate, and is 40 g / m 2 Met. The laminated nonwoven fabric had a uniformity index of 0.64, a longitudinal strength of 6.85 kg / 5 cm, and a lateral strength of 4.27 kg / 5 cm. Moreover, the apparent density of the melt blown nonwoven fabric measured by peeling the laminated surface of the laminated nonwoven fabric slightly increased by the heat treatment after lamination, and was 0.084 g / cm. Three Met. The laminated nonwoven fabric was wavy and melt blown nonwoven fabric.
The laminated nonwoven fabric had no hair loss. Further, the laminated nonwoven fabric had poor flexibility, rough feeling due to polymer balls, and skin irritation due to the balls, and the texture was poor. Also, 26 polymer balls / m 2 , Peel strength is 5g / m 2 Met.
[0042]
Comparative Example 2
A composite meltblown ultrafine fiber nonwoven fabric was produced by the same production method as in Example 1. However, the heat treatment after spinning was not performed. The resin used was the same as that used in Example 1 for the first component and the second component, and the composite ratio of both components was 50 to 50% by weight. In addition, the spinning temperature of both the first component and the second component is spun at 250 ° C., the heating air temperature is 250 ° C., and the pressure is 0.8 kg / cm. 2 Heated air was blown under the following conditions to obtain an ultrafine fiber web. The obtained web had a fiber diameter of 18.9 μm. The web was in the form of a nonwoven fabric with self-heating during spinning and heat fusion between the fiber intersections. The nonwoven fabric has a basis weight of 16 g / m 2 The uniformity index was 0.13. The nonwoven fabric has a longitudinal strength of 0.91 kg / 5 cm, a lateral strength of 0.52 kg / 5 cm, and an apparent density of 0.065 g / cm. Three Met.
[0043]
The composite spunbonded nonwoven fabric obtained in Example 1 and the melt blown nonwoven fabric were laminated, and similarly to Example 1, a laminated nonwoven fabric having a two-layer structure in which both layers were heat-sealed by heating at 140 ° C. was obtained. The fabric weight of the laminated nonwoven fabric is slightly increased by heat treatment of the laminate, and is 35 g / m. 2 Met. The nonwoven fabric had a uniformity index of 0.24, a longitudinal strength of 4.14 kg / 5 cm, and a lateral strength of 3.01 kg / 5 cm. Further, the apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor slightly increased by the heat treatment after the lamination, and was 0.068 g / cm. Three Met.
The laminated nonwoven fabric had no hair loss. Polymer balls are 0 / m 2 , Peel strength 61g / cm 2 Met. However, since the diameter of the fibers constituting the meltblown nonwoven fabric is large, the texture is hard and poor.
[0044]
Example 3
A composite spunbonded nonwoven fabric was produced in the same manner as in Example 1. However, a propylene / ethylene / butene-1 terpolymer having a melting point of 135 ° C. and MFR 76 (230 ° C., g / 10 min) was used as the first component on the sheath side, and a polyethylene terephthalate having a melting point of 257 ° C. as the second component. Is used on the core side, and is spun at a composite ratio of 50/50 (% by weight), a spinning temperature of the first component of 280 ° C., and a second component of 295 ° C., and sucked with an air sucker at a speed of 2647 m / min. It was sprayed onto the net conveyor together with air. The obtained web had a fineness of 1.7 d / f. The web was heated with a through-air heater at a temperature of 152 ° C. to obtain a nonwoven fabric in which the fibers were heat-sealed. The nonwoven fabric has a basis weight of 23 g / m 2 The uniformity index was 0.22, the longitudinal strength was 4.26 kg / 5 cm, and the lateral strength was 3.81 kg / 5 cm.
[0045]
A composite meltblown ultrafine fiber nonwoven fabric was produced in the same manner as in Example 1. However, no heat treatment was performed after spinning. However, as the spinneret, a sheath core type spinneret having a hole diameter of 0.3 mm was used. Spinning using the same terpolymer as in Example 1 as the first component on the sheath side at a spinning temperature of 280 ° C., and the second component as a melting point of 166 ° C. and MFR74 (230, g / 10 min) polypropylene on the core side. Spinning was performed at a temperature of 280 ° C. with a composite ratio of the first component and the second component of 40 to 60% by weight. The heating air temperature is 380 ° C. and the pressure is 2.3 kg / cm. 2 It was the condition of. The nonwoven fabric has a fiber diameter of 2.6 μm and a basis weight of 20 g / m. 2 Met. The non-woven fabric was weakly heat-sealed due to self-heating during spinning. The nonwoven fabric has a uniformity index of 0.34, a longitudinal strength of 0.54 kg / 5 cm, a lateral strength of 0.48 kg / 5 cm, and an apparent density of 0.061 g / cm. Three Met.
[0046]
The spunbond nonwoven fabric and the melt blown nonwoven fabric are laminated, and a pressure of 70 kg / cm is used by using a spunlace device. 2 The first stage water column entanglement treatment was performed under the conditions of Thereafter, the nonwoven fabric was heated at a temperature of 150 ° C. as in Example 1 to obtain a laminated nonwoven fabric having a two-layer structure in which both layers were heat-sealed. The multilayer nonwoven fabric has a slightly reduced basis weight due to either the spunlace treatment or the heat treatment of the laminate, and is 37 g / m 2 Met. The laminated nonwoven fabric had a uniformity index of 0.13, a longitudinal strength of 6.03 kg / 5 cm, and a lateral strength of 5.02 kg / 5 cm. Further, the apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor was increased by the spunlace treatment or heat treatment after the lamination, and was 0.092 g / cm. Three Met.
The laminated nonwoven fabric had a good texture and no hair loss. Polymer balls are 0 / m 2 The peel strength was 405 g / 5 cm.
[0047]
Example 4
The laminated nonwoven fabric of the two-layer structure obtained in Example 2 in which both layers are heat-sealed is newly laminated so that the spunbond nonwoven fabric layer is on the inner side and the melt blown nonwoven fabric layer is on the outer side, and the hot air alternating jetting type heating machine is used. And heated at a temperature of 145 ° C. to obtain a nonwoven fabric having a four-layer structure in which the spunbonded nonwoven fabric layers were thermally fused. The laminated nonwoven fabric has a basis weight of 74 g / m. 2 The uniformity index is 0.28, the longitudinal strength is 14.67 kg / 5 cm, the transverse strength is 11.32 kg / 5 cm, and the apparent density of the melt blown nonwoven fabric is 0.052 g / cm. Three Met.
The laminated nonwoven fabric had a good texture and no hair loss. Polymer balls are 0 / m 2 The peel strength was 204 g / 5 cm. The laminated nonwoven fabric can be used as a household wiper as it is or with various lubricants or the like adhered thereto by a dipping method, a spray method or the like.
[0048]
Comparative Example 3
Polypropylene with a melting point of 165 ° C. and MFR 60 (230 ° C., g / 10 min) was spun from a regular fiber spunbond spinneret with a hole diameter of 0.4 mm at a spinning temperature of 300 ° C., and at a speed of 3000 m / min with an air sucker. The fibers were sucked and the fibers were sprayed onto the net conveyor together with air. The sprayed air was removed by suction with a suction exhaust device provided at the bottom of the net conveyor. The obtained web was a regular fiber having a fineness of 1.5 d / f. The web was heated with a through-air heater at a temperature of 162 ° C. to obtain a nonwoven fabric in which the fibers were heat-sealed. The nonwoven fabric has a basis weight of 18 g / m 2 The uniformity index was 0.75, the longitudinal strength was 2.10 kg / 5 cm, and the lateral strength was 1.35 kg / 5 cm. The nonwoven fabric was heat-treated at a temperature slightly lower than the melting point. However, one side of the nonwoven fabric was not sufficiently fused, and wrinkles were generated due to heat shrinkage during heating.
[0049]
A melt blown nonwoven fabric was produced by the same production method as in Example 1. However, no heat treatment by a through air heater after spinning was performed. The spinneret used was a regular fiber die having a hole diameter of 0.3 mm. The resin is polypropylene having a melting point of 166 ° C. and MFR 74 (230 ° C., g / 10 min), and is spun at a spinning temperature of 290 ° C., heated air temperature is 380 ° C., and pressure is 2.0 kg / cm. 2 Heated air was blown under the following conditions to obtain an ultrafine fiber web. The obtained web had a fiber diameter of 3.2 μm. The web was a non-woven fabric with heat fusion between the fibers due to self-heating during spinning. The nonwoven fabric has a basis weight of 18 g / m 2 The uniformity index was 0.21. The nonwoven fabric has a longitudinal strength of 0.72 kg / 5 cm, a lateral strength of 0.60 kg / 5 cm, and an apparent density of 0.078 g / cm. Three Met.
[0050]
The spunbond nonwoven fabric and the polypropylene melt blown nonwoven fabric were laminated and heated at a temperature of 162 ° C. using a slew air heater as in Example 1, with a basis weight of 39 g / m. 2 A two-layer nonwoven fabric was obtained. The laminated nonwoven fabric had a uniformity index of 0.63, a longitudinal strength of 4.87 kg / 5 cm, and a lateral strength of 4.24 kg / 5 cm. The nonwoven fabric was heat-treated at a temperature slightly lower than the melting point of polypropylene, but wrinkles were generated due to thermal shrinkage. Further, the apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor was increased by heat treatment after lamination, and was 0.081 g / cm. Three Met.
The laminated nonwoven fabric had no hair loss. Polymer balls are 0 / m 2 The peel strength was 266 g / 5 cm. The nonwoven fabric had wrinkles and poor texture.
[0051]
Comparative Example 4
A melt blown nonwoven fabric was produced by the same production method as in Example 1. However, a regular fiber base having a hole diameter of 0.3 mm was used as the spinneret. Further, no heat treatment was performed with a through-air heater after spinning. The resin is polyethylene terephthalate having a melting point of 257 ° C., and is spun at a spinning temperature of 300 ° C., heated air temperature is 360 ° C., and pressure is 1.8 kg / cm. 2 Heated air was blown under the following conditions to obtain an ultrafine fiber web. The obtained web had an average fiber diameter of 5.2 μm. The web had almost no thermal fusion between fibers due to self-heating during spinning, and fluff adhered to one hand when the web was pushed by hand. The web has a uniform index of 0.22 and a basis weight of 16 g / m. 2 Met. The web has a longitudinal strength of 0.03 kg / 5 cm, a lateral strength of 0.01 kg / 5 cm, and an apparent density of 0.070 g / cm. Three ,Met.
[0052]
The composite spunbonded nonwoven fabric obtained in Example 3 and the melt blow web were laminated and heated at a temperature of 148 ° C. using a through-air heater as in Example 1, and both layers were heat-sealed. A laminated nonwoven fabric was obtained. The nonwoven fabric has a basis weight of 39 g / m 2 Met. The nonwoven fabric had a uniformity index of 0.25, a longitudinal strength of 4.63 kg / 5 cm, and a lateral strength of 3.92 kg / 5 cm. The apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor was 0.072 g / cm. Three Met. The peel strength was 4.9 g / 5 cm.
The laminated nonwoven fabric has a good texture, and the polymer balls are 0 pieces / m. 2 Met. However, there were many hair loss and the hair loss was poor.
[0053]
Example 5
The composite spunbond nonwoven fabric obtained in Example 1 and the sheath-core type composite meltblown ultrafine fiber nonwoven fabric obtained in Example 2 were laminated and thermocompression bonded with a hot embossing roll. The roll used was a combination of a calender roll and an emboss roll having a convex area ratio of 15%, and the melt blown nonwoven fabric was in contact with the emboss roll. The thermocompression bonding conditions were an embossing roll temperature of 120 ° C., a calendar roll temperature of 120 ° C., and a linear pressure of 25 kg / cm.
The laminated nonwoven fabric has a uniformity index of 0.26 and a basis weight of 35 g / m. 2 Met. The apparent density of the composite meltblown ultrafine fiber nonwoven fabric measured by cutting and peeling the laminated surface of the nonwoven fabric with a razor was 0.11 g / cm. Three Met. The laminated nonwoven fabric had a longitudinal strength of 8.92 kg / 5 cm, a lateral strength of 7.65 kg / 5 cm, and a peel strength of 827 g / 5 cm.
The laminated nonwoven fabric has a good texture, and the polymer balls are 0 pieces / m. 2 Met. There was no hair loss.
[0054]
Example 6
A composite meltblown ultrafine fiber nonwoven fabric was produced by the same production method as in Example 1. However, the resin was spun at a spinning temperature of 280 ° C. using a high-density polyethylene whose first component had a melting point of 135 ° C. and MFR28 (190, g / 10 min), and the second component had a melting point of 166 ° C. and MFR36 (230 ° C., g / 10 min) polypropylene, spinning at a spinning temperature of 260 ° C., heated air temperature of 340 ° C., pressure of 2.1 kg / cm 2 Heated air was blown under the following conditions to obtain a parallel type ultrafine composite fiber web having a composite ratio of 50 to 50% by weight. The obtained web had a fiber diameter of 7.6 μm. The web was a non-woven fabric with heat fusion between the fibers due to self-heating during spinning. The nonwoven fabric was heated at a temperature of 145 ° C. using an air heater to obtain a heat-sealed nonwoven fabric. The nonwoven fabric has a basis weight of 20 g / m. 2 Met. In addition, the nonwoven fabric was slightly touched with polymer beads. The nonwoven fabric has a uniformity index of 0.32, a longitudinal strength of 1.77 kg / 5 cm, a lateral strength of 1.09 kg / 5 cm, and an apparent density of 0.046 g / cm. Three Met.
[0055]
The composite spunbonded nonwoven fabric obtained in Example 1 and the composite meltblown nonwoven fabric were laminated, and similarly to Example 1, a laminated nonwoven fabric having a two-layer structure in which both layers were heat-sealed by heating at a temperature of 145 ° C. was obtained. The fabric weight of the laminated nonwoven fabric is slightly increased by heat treatment of the laminate, and 39 g / m 2 Met. The laminated nonwoven fabric had a uniformity index of 0.26, a longitudinal strength of 5.03 kg / 5 cm, and a lateral strength of 4.16 kg / 5 cm. Further, the apparent density of the melt blown nonwoven fabric measured by cutting and peeling the laminated surface of the laminated nonwoven fabric with a razor slightly increased by the heat treatment after the lamination, and was 0.051 g / cm. Three The peel strength was 203 g / 5 cm.
The laminated nonwoven fabric had no hair loss. The polymer ball of melt blown nonwoven fabric is 2.8 pieces / m. 2 Met. The laminated nonwoven fabric had good flexibility and was almost free from roughness due to polymer balls. This laminated nonwoven fabric can be used as a heat insulating material or a filter medium.
[0056]
Example 7
Using a commercially available paper diaper having a substantially I-shaped cross section of a railroad rail, only the surface material near the leg of the paper diaper was replaced with the laminated nonwoven fabric of Example 1.
The commercially available paper diaper uses a polyethylene / polypropylene-based heat-fusible composite fiber staple, and a non-woven fabric in which the intersection of the fibers is heat-fused as a surface material, and a water-absorbing material mainly composed of pulp and a highly water-absorbing resin, And it was a thing which uses a polyethylene film as a back surface material. Only the nonwoven fabric in the vicinity of both leg portions was cut and removed from the diaper with a knife. The laminated nonwoven fabric obtained in Example 1 was laminated in the vicinity of both leg portions such that the composite meltblown ultrafine fiber nonwoven fabric layer was on the skin side and the composite spunbond nonwoven fabric layer was on the polyethylene film side of the back material. Further, three polyurethane elastic yarns are sandwiched between the surface material and the back surface material in a stretched state, the non-woven fabric in the vicinity of the remaining central portion and the laminated non-woven fabric are heat-sealed, and the back material and the laminated non-woven fabric are further bonded. And heat-sealed. The remaining laminated nonwoven fabric was cut off with scissors to obtain a disposable diaper having the composite meltblown ultrafine fiber nonwoven fabric side disposed on the skin side of the leg. This diaper was curved in a substantially bow shape by elastic yarns arranged on both leg portions. This diaper has a soft texture at the leg and water-repellent melt blown nonwoven fabric, and can prevent liquid leakage from the site, and is particularly suitable as a product for newborns.
[0057]
【The invention's effect】
The laminated nonwoven fabric of the present invention is a laminated nonwoven fabric of a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric, has a good texture, and has a high nonwoven fabric strength. The composite meltblown ultrafine fiber nonwoven fabric has a high peel strength and no hair loss because the fiber intersections are thermally fused to each other and to the low melting point component of the composite spunbond long fiber nonwoven fabric. Moreover, since there is no polymer ball, there is no roughness or skin irritation.

Claims (10)

複合スパンボンド不織布と平均繊維径10μm以下の複合メルトブロー極細繊維不織布が積層された多層構造の不織布であって、該複合スパンボンド不織布は、10℃以上の融点差がある低融点樹脂と高融点樹脂を組合せた複合長繊維からなり、該低融点樹脂が繊維表面の少なくとも一部を形成し、かつ該低融点樹脂を介して熱融着された物であり、該複合メルトブロー極細繊維不織布は、10℃以上の融点差がある低融点樹脂と高融点樹脂とからなりかつ該低融点樹脂が繊維表面の少なくとも一部を形成した複合メルトブロー極細繊維が該低融点樹脂を介して熱融着された物であり、該複合スパンボンド不織布と該複合メルトブロー極細繊維不織布とは、該複合スパンボンド不織布の低融点樹脂および/または該複合メルトブロー極細繊維不織布の低融点樹脂の融着により一体化されている積層不織布。A nonwoven fabric having a multilayer structure in which a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric having an average fiber diameter of 10 μm or less are laminated, wherein the composite spunbond nonwoven fabric has a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more. In which the low-melting point resin forms at least part of the fiber surface and is heat-sealed through the low-melting point resin. A composite melt blown ultrafine fiber comprising a low melting point resin and a high melting point resin having a melting point difference of not less than 0 ° C., wherein the low melting point resin forms at least part of the fiber surface, and is heat-sealed through the low melting point resin The composite spunbond nonwoven fabric and the composite meltblown ultrafine fiber nonwoven fabric are a low melting point resin of the composite spunbond nonwoven fabric and / or the composite meltblown ultrafine fiber. Layered nonwoven fabric are integrated by fusion of the low melting point resin of the fabric. 複合スパンボンド不織布が繊度0.5〜10d/fの複合長繊維からなり、複合メルトブロー極細繊維不織布が繊維径0.1〜10μmの極細繊維からなり、かつ繊維径0.1mm以上のポリマ−玉が10個/m2 以下、該不織布の見かけ密度が0.02〜0.20g/cm3 であり、かつ積層不織布の横強力が0.6kg/5cm以上、均一指数が0.6以下、両層の剥離強力が6g/5cm以上である、請求項1記載の積層不織布。A polymer spunbond nonwoven fabric comprising composite long fibers having a fineness of 0.5 to 10 d / f, a composite meltblown ultrafine fiber nonwoven fabric comprising ultrafine fibers having a fiber diameter of 0.1 to 10 μm, and a polymer ball having a fiber diameter of 0.1 mm or more 10 pieces / m 2 or less, the apparent density of the nonwoven fabric is 0.02 to 0.20 g / cm 3 , the transverse strength of the laminated nonwoven fabric is 0.6 kg / 5 cm or more, the uniformity index is 0.6 or less, both The laminated nonwoven fabric according to claim 1, wherein the peel strength of the layer is 6 g / 5 cm or more. 請求項1または2記載の積層不織布が少なくとも一つの部材として使用された吸収性物品。An absorbent article in which the laminated nonwoven fabric according to claim 1 or 2 is used as at least one member. 複合スパンボンド不織布と複合メルトブロ−極細繊維不織布の2層構造不織布、または複合メルトブロー極細繊維不織布を少なくともその片方の表面に有する、複合メルトブロー極細繊維不織布と複合スパンボンド不織布との3層以上の多層構造不織布が使用された請求項3記載の吸収性物品。A two-layer structure nonwoven fabric of a composite spunbond nonwoven fabric and a composite meltblown ultrafine fiber nonwoven fabric, or a multilayer structure of three or more layers of a composite meltblown ultrafine fiber nonwoven fabric and a composite spunbond nonwoven fabric having a composite meltblown ultrafine fiber nonwoven fabric on at least one surface thereof The absorbent article according to claim 3, wherein a nonwoven fabric is used. 複合スパンボンド法で融点差が10℃以上ある低融点樹脂と高融点樹脂とを該低融点樹脂が繊維表面の少なくとも一部形成するように複合長繊維を紡糸し、ウエブを形成するか、または紡糸後のウエブを熱融着温度以上に加熱し、繊維が熱融着した不織布とし、複合メルトブロー法で、平均繊維径が10μm以下で10℃以上の融点差がある低融点樹脂と高融点樹脂とを該低融点樹脂が繊維表面の少なくとも一部を形成する複合メルトブロー極細繊維を紡糸し、かつ紡糸時の自熱融着がない複合極細繊維ウエブとするか、または紡糸時の自熱融着のある不織布とするか、または紡糸後のウエブや自熱融着のある不織布を熱融着温度以上に加熱し、繊維が熱融着した複合極細繊維不織布とし、該複合スパンボンドウエブまたは熱融着不織布と、複合メルトブロー極細繊維ウエブまたは複合メルトブロー極細繊維熱融着不織布とを積層し、両層が熱融着する温度以上に加熱する積層不織布の製造方法。A composite long fiber is spun into a low melting point resin and a high melting point resin having a melting point difference of 10 ° C. or more by a composite spunbond method so that the low melting point resin forms at least part of the fiber surface, or a web is formed, or A low-melting resin and a high-melting resin having an average fiber diameter of 10 μm or less and a melting point difference of 10 ° C. or more by a composite melt blow method by heating the spun web to a temperature higher than the heat-sealing temperature to heat-fuse the fibers. A composite meltblown ultrafine fiber in which the low-melting-point resin forms at least a part of the fiber surface, and a composite ultrafine fiber web without autothermal fusion at the time of spinning, or autothermal fusion at the time of spinning Or a spun web or a non-heat-bonded nonwoven fabric heated to a temperature equal to or higher than the heat fusing temperature to obtain a composite ultrafine fiber nonwoven fabric in which fibers are heat-fused. Non-woven fabric, If melt blown and a ultra fine fiber web or a composite melt blown ultrafine fibers heat-fusible non-woven fabric laminated, method for manufacturing a laminated nonwoven fabric both layers are heated above the temperature at which thermal fusion. 前記両層のウエブまたは不織布を加熱前または加熱後にニードルパンチまたはスパンレース手段で絡合させる工程を含む請求項5記載の積層不織布の製造方法。The method for producing a laminated nonwoven fabric according to claim 5, comprising a step of entanglement of the webs or nonwoven fabrics of both layers before or after heating with a needle punch or spunlace means. スルーエア型の加熱機を用い、両層の熱融着温度以上に加熱する請求項5また6記載の積層不織布の製造方法。The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein heating is performed at a temperature equal to or higher than the heat fusion temperature of both layers using a through-air type heater. 熱圧着面積5〜25%のエンボスロールを用い、両層を熱圧着する請求項5または6記載の積層不織布の製造方法。The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein an embossing roll having a thermocompression bonding area of 5 to 25% is used and both layers are thermocompression bonded. 複合スパンボンド不織布および複合メルトブロー極細繊維不織布いずれも、均一指数が0.6以下の物を用いる請求項5または6記載の積層不織布の製造方法。The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein the composite spunbonded nonwoven fabric and the composite meltblown ultrafine fiber nonwoven fabric use a uniform index of 0.6 or less. 熱風交互噴出型の加熱機を用い、熱風が多層構造不織布の表面側と裏面側から交互に噴出するように両層を加熱する請求項5または6記載の積層不織布の製造方法。The method for producing a laminated nonwoven fabric according to claim 5 or 6, wherein both layers are heated so that hot air is alternately ejected from the front surface side and the back surface side of the multilayer nonwoven fabric using a hot air alternating jet type heating machine.
JP23672396A 1995-11-20 1996-09-06 Laminated nonwoven fabric and method for producing the same Expired - Lifetime JP3955650B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP23672396A JP3955650B2 (en) 1995-11-20 1996-09-06 Laminated nonwoven fabric and method for producing the same
EP97925286A EP0924328B2 (en) 1996-09-06 1997-06-05 Laminated nonwoven fabric and method of manufacturing same
CN97198687A CN1092731C (en) 1996-09-06 1997-06-05 Laminated nonwoven fabric and method of manufacturing same
US09/254,366 US6187699B1 (en) 1996-09-06 1997-06-05 Laminated nonwoven fabric and method of manufacturing same
DE69738870T DE69738870D1 (en) 1996-09-06 1997-06-05 NONWOVEN COMPOSITE WELDING AND ASSOCIATED METHOD OF MANUFACTURING
PCT/JP1997/001913 WO1998010130A1 (en) 1996-09-06 1997-06-05 Laminated nonwoven fabric and method of manufacturing same
TW086108455A TW352396B (en) 1996-09-06 1997-06-17 Laminated woven fabrics, their process for manufacturing and absorbency

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30154795 1995-11-20
JP7-301547 1995-11-20
JP23672396A JP3955650B2 (en) 1995-11-20 1996-09-06 Laminated nonwoven fabric and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09209254A JPH09209254A (en) 1997-08-12
JP3955650B2 true JP3955650B2 (en) 2007-08-08

Family

ID=26532814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23672396A Expired - Lifetime JP3955650B2 (en) 1995-11-20 1996-09-06 Laminated nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP3955650B2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0959165A4 (en) * 1997-12-04 2000-04-19 Mitsui Chemicals Inc Flexible laminate of nonwoven fabrics
KR100478751B1 (en) * 1998-11-07 2005-08-10 도레이새한 주식회사 Manufacturing method of composite nonwoven fabric with excellent light transmittance and bacterial barrier
JP2001140153A (en) * 1999-11-04 2001-05-22 Kanebo Ltd Nonwoven fabric heat-insulating material and method for producing the same
JP4352575B2 (en) * 2000-04-21 2009-10-28 チッソ株式会社 Thermoplastic composite nonwoven fabric and fiber product using the same
JP4581185B2 (en) * 2000-06-08 2010-11-17 チッソ株式会社 Non-woven fabric and fiber product using the same
US8129297B2 (en) * 2002-07-29 2012-03-06 E. I. Du Pont De Nemours And Company Method and apparatus for heating nonwoven webs
JP4011029B2 (en) * 2004-03-05 2007-11-21 大王製紙株式会社 Multilayer nonwoven fabric and method for producing the same
JP4011030B2 (en) * 2004-03-05 2007-11-21 大王製紙株式会社 Method for producing multilayer nonwoven fabric
DE102004036099B4 (en) 2004-07-24 2008-03-27 Carl Freudenberg Kg Multi-component spunbonded nonwoven, process for its preparation and use of multi-component spunbonded nonwovens
DK1658970T3 (en) * 2004-11-23 2009-08-17 Reifenhaeuser Gmbh & Co Kg Laminate of at least three layers and method of making a laminate of at least three layers
JP4646760B2 (en) * 2005-09-22 2011-03-09 花王株式会社 Method for producing elastic nonwoven fabric
JP4646878B2 (en) * 2005-09-22 2011-03-09 花王株式会社 Method for producing elastic nonwoven fabric
US8513148B2 (en) 2006-01-25 2013-08-20 Asahi Kasei Fibers Corporation Thermally adhesive laminated nonwoven fabric
JP4236117B2 (en) * 2006-03-02 2009-03-11 株式会社日本吸収体技術研究所 Highly breathable water-resistant sheet and absorbent article having the same
WO2007100040A1 (en) * 2006-03-02 2007-09-07 Japan Absorbent Technology Institute Highly air-permeable water-resistant sheet, highly air-permeable water-resistant sheet composite body, absorbent article, method for producing highly air-permeable water-resistant sheet, and method for producing highly air-permeable water-resistant sheet composite body
WO2008065748A1 (en) * 2006-11-28 2008-06-05 Tomoegawa Co., Ltd. Air permeable and water resistant sheet and absorbent article using the same
WO2011069996A1 (en) * 2009-12-09 2011-06-16 Colbond B.V. Primary carpet backing
KR101551554B1 (en) * 2011-02-15 2015-09-08 미쓰이 가가쿠 가부시키가이샤 Nonwoven laminate
JP6034022B2 (en) * 2011-12-27 2016-11-30 旭化成株式会社 Nonwoven laminate
KR101379069B1 (en) * 2012-04-06 2014-04-02 웅진케미칼 주식회사 Manufacturing method of filter assembly for fan type cooling apparatus
JP5925322B2 (en) * 2012-08-22 2016-05-25 三井化学株式会社 Nonwoven laminate
JP6074617B2 (en) * 2012-09-20 2017-02-08 パナソニックIpマネジメント株式会社 Air filter medium, air filter and air purifier using the same
US20140358101A1 (en) * 2013-05-30 2014-12-04 The Procter & Gamble Company Nonwoven Web Material Having Enhanced Glide Softness And Good Strength Attributes, And Method For Manufacturing
JP6195776B2 (en) * 2013-10-22 2017-09-13 ユニチカ株式会社 Method for producing three-layer laminated nonwoven fabric
JP6238806B2 (en) * 2014-03-24 2017-11-29 日本バイリーン株式会社 Ultrafine fiber nonwoven fabric and nonwoven fabric manufacturing equipment
JP6829418B2 (en) * 2017-03-08 2021-02-10 Jnc株式会社 Laminated non-woven fabric and vent filter
CN109629118A (en) * 2019-01-15 2019-04-16 厦门延江新材料股份有限公司 A kind of cloth for cleaning and its manufacturing method
CN111074427A (en) * 2020-01-17 2020-04-28 厦门延江新材料股份有限公司 Melt-blown composite non-woven fabric and manufacturing method thereof
CN111588917A (en) * 2020-05-15 2020-08-28 广东顺事德智能科技有限公司 Melt-blown cloth for local anesthesia of human body and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05230754A (en) * 1992-02-17 1993-09-07 Unitika Ltd Nonwoven fabric composed of core-sheath type conjugate filament and its production
JP3261728B2 (en) * 1992-02-18 2002-03-04 チッソ株式会社 Thermal adhesive fiber sheet

Also Published As

Publication number Publication date
JPH09209254A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP3955650B2 (en) Laminated nonwoven fabric and method for producing the same
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
US6187699B1 (en) Laminated nonwoven fabric and method of manufacturing same
JP3110534B2 (en) Laminated nonwoven fabric and method for producing the same
JPH0673650A (en) Non-woven fabric made of strand of multi- component polymer containing mixture of polyolefin and thermoplastic elastomer material
JP2005537405A (en) Method for forming a web stretchable in at least one direction
JP3760599B2 (en) Laminated nonwoven fabric and absorbent article using the same
JP2011047098A (en) Multilayered nonwoven fabric of conjugate spun-bonded filament having improved characteristic, and method for producing the same
JP3736014B2 (en) Laminated nonwoven fabric
JP2001140158A (en) Stretchable composite nonwoven fabric and absorbing article using the same
JPH0288058A (en) Surface material for sanitary good
CN111630221B (en) Nonwoven fabric of composite long fibers using eccentric sheath-core composite fibers on at least one surface
JP4587410B2 (en) Composite nonwoven fabric, method for producing the same, absorbent article using the nonwoven fabric, and wiping cloth
JPH1086256A (en) Composite nonwoven fabric and absorbent article using the same
JP5567836B2 (en) Eccentric hollow composite long fiber, long fiber nonwoven fabric comprising the same, and use thereof
JPH06128852A (en) Laminated nonwoven fabric
JP2000355866A (en) Nonwoven fabric made of conjugated filament yarn and absorptive article using the same
JPH09105060A (en) Laminated nonwoven fabric and its production
JP5276305B2 (en) Mixed fiber non-woven fabric
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JPH09111635A (en) Laminated nonwoven fabric
JP2002173862A (en) Composite nonwoven fabric and textile product using the same
JPH0375056A (en) Facing of sanitary equipment
JP2001200463A (en) Nonwoven fabric and fiber article using the same
JP5503768B2 (en) Mixed fiber non-woven fabric

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term