JP4581185B2 - Non-woven fabric and fiber product using the same - Google Patents

Non-woven fabric and fiber product using the same Download PDF

Info

Publication number
JP4581185B2
JP4581185B2 JP2000172510A JP2000172510A JP4581185B2 JP 4581185 B2 JP4581185 B2 JP 4581185B2 JP 2000172510 A JP2000172510 A JP 2000172510A JP 2000172510 A JP2000172510 A JP 2000172510A JP 4581185 B2 JP4581185 B2 JP 4581185B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
thermoplastic resin
fiber
thermocompression bonding
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000172510A
Other languages
Japanese (ja)
Other versions
JP2001355176A (en
Inventor
淳治 岩田
輝明 関口
重則 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
JNC Fibers Corp
Original Assignee
Chisso Polypro Fiber Co Ltd
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Polypro Fiber Co Ltd, Chisso Corp filed Critical Chisso Polypro Fiber Co Ltd
Priority to JP2000172510A priority Critical patent/JP4581185B2/en
Publication of JP2001355176A publication Critical patent/JP2001355176A/en
Application granted granted Critical
Publication of JP4581185B2 publication Critical patent/JP4581185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は熱融着性複合繊維からなる不織布及びこれを用いた繊維製品に関する。
【0002】
【従来の技術】
従来、熱融着性複合繊維を原料とした不織布は、適度な柔軟性と機械的強度を有するため、紙おむつや生理用ナプキンの表面材、使い捨ておしぼり、各種ワイパー等に広く利用されてきた。近年、生活様式の多様化に伴い、紙おむつや生理用ナプキン、吸収シート等に代表される吸収性物品の需要は著しく伸び、それに伴い類似製品が市場に溢れてきた。このような状況では、製品の差別化を図った、より高度化,多機能化した製品の開発が求められている。
例えば、衛生材料に使用される不織布には、より高風合いで、肌触り感がよく、耐毛羽立ち性(皮膚や衣類の摩擦に対する毛羽立ちのし難さを意味する)に優れるといった特性が求められている。耐毛羽立ち性が劣る不織布は、摩擦によって不織布の強度低下、毛羽脱落によるゴミの発生や、外観不良等が起こり易いといった欠点を有しているため、床やカーペット等で擦られることが特に多い、紙おむつのバックシートには不向きである。このような理由から、近年は耐毛羽立ち性が重視されている。
【0003】
従来から、熱風による不織布加工によって製造された短繊維不織布は、風合がよいことから衛生材料等に用いられてきた。しかし、近年、不織布の加工はコストを重視し、より生産性のよい点熱圧着による不織布加工へと変わってきた。また最近の傾向として衛生材料の表面材には、より柔らかい風合いが要求されており、そのために熱処理温度を抑えた不織布加工が施されている。これにより得られた不織布は柔らかい風合いとなるものの、接着が不充分となることから耐毛羽立ち性が低下していた。
更に生産性がよい長繊維からなるスパンボンド不織布を用い、これらの問題点を解決することが検討されてきた。
【0004】
スパンボンド不織布のうち、レギュラースパンボンド不織布は、単一成分の熱可塑性樹脂からなる繊維で構成されており、この熱可塑性樹脂が接着成分として機能し、点熱圧着処理によりウェブの繊維同士が接着して不織布状態となる。このとき、ウェブの繊維交絡点は被膜状になり点熱圧着部の接着は強固となることから、耐毛羽立ち性に優れている。しかし、レギュラースパンボンド不織布の原料繊維には、良好な曳糸性を有する比較的剛性の高い熱可塑性樹脂、例えばポリエチレンテレフタレート、ポリプロピレン、ナイロン等が用いられていることから、繊維は硬く、またこれらの繊維で作られた不織布は柔軟性に乏しく風合に劣るといった欠点を有していた。
【0005】
これに対し、複合繊維からなる複合スパンボンド不織布には、レギュラースパンボンド不織布では用いられにくい、単独では曳糸性が悪い剛性の低いプロピレン二元共重合体等の熱可塑性樹脂を用いることが可能であり、これと曳糸性のよい剛性の高い熱可塑性樹脂とを組み合わせて複合繊維として用いることで、曳糸性を良好とできる。これにより得られた繊維は柔らかく、更にこの繊維から作られた不織布は優れた風合を有するものとなる。しかし、複合スパンボンド不織布を構成する熱可塑性樹脂には、熱可塑性樹脂の融点差が大きい低融点樹脂と高融点樹脂とを組み合わせて使用する場合が多く、これによって熱接着加工温度幅が広範囲となるために点熱圧着部では低融点樹脂のみが溶融変形して、高融点樹脂は変形せずに繊維形態が残ることになる。そのため、低融点樹脂が点熱圧着部を充分に被覆できず、点熱圧着部に開孔部や窪みを生じ、点熱圧着部の接着強度は弱く、摩擦等の外力によって毛羽立ち易くなるなど種々の問題を有していた。
【0006】
例えば、特開平5−263353号公報には、鞘芯型複合長繊維の芯成分として剛性の低いエチレンプロピレンランダムコポリマーを使用し、鞘成分として高密度ポリエチレンを使用し、点熱圧着によって一体化された長繊維不織布が開示されている。しかしながら、芯成分にエチレンプロピレンランダムコポリマーを使用することでアイソタクチックポリプロピレンを用いた不織布よりも柔軟性に優れるものの、点熱圧着時のエンボスロール型熱圧着機によるロール間の線圧を非常に高くして不織布加工を行っているために、点圧着部の表面には空孔が生じ、点熱圧着部の繊維の鞘芯剥離が生じ、毛羽立ち易い不織布となっていた。
【0007】
一般に、スパンボンド法による不織布製造は、ライン速度(ウェブ移動速度)が高速であり、そのためウェブへの点熱圧着の処理が短時間となり、接着時の点熱圧着部への熱量供給が不足する傾向となっている。ライン速度が高速の場合には、同様なことが、短繊維からなるウェブに点熱圧着処理を行う場合にも起こりうる。鞘芯型複合スパンボンド不織布の場合、伝熱時間が短いことから、エンボスロールやフラットロールの温度を上げても、複合繊維の芯成分へ充分な熱が伝わらず、芯成分が変形を起こしにくい状態の複合繊維に圧力が掛かるために鞘成分と芯成分が分離する、いわゆる鞘芯剥離が生じてしまう。これにより、点熱圧着部では、毛羽立ちが起こり易い状態となっている。
【0008】
このように、良好な風合と耐毛羽立ち性を兼ね備えた不織布の開発が市場から要望されているにも係わらず、これまで風合と耐毛羽立ち性を両立した不織布の製品は得られていなかった。
【0009】
【発明が解決しようとする課題】
本発明の目的は、風合が良好で、かつ耐毛羽立ち性に優れた不織布を提供することにある。
【0010】
【課題を解決するための手段】
本発明は、前記従来技術の課題を解決するために鋭意研究の結果、以下の条件を満たすようなときに風合、耐毛羽立ち性ともに優れた不織布が得られることを見出し、本発明を完成するに至った。
【0011】
すなわち、本発明は以下の構成を有する。
(1)熱可塑性樹脂Aと、熱可塑性樹脂Aと融点が同じか、または熱可塑性樹脂Aより50℃を越えない範囲で高い融点を有する熱可塑性樹脂Bとからなり、かつ熱可塑性樹脂Aが繊維表面の少なくとも一部を繊維長方向に連続して形成している熱融着性複合繊維を点熱圧着して得られる不織布であって、該不織布の点熱圧着部は、熱融着性複合繊維の熱可塑性樹脂B部分が扁平化した断面構造をしており、熱融着性複合繊維の熱可塑性樹脂A部分が、熱融着性複合繊維同士を融着し、かつ扁平化した熱可塑性樹脂B部分を覆う被膜を形成しており、該被膜は0〜20%の表面空孔率を有する構造をしていることを特徴とする不織布。
(2)熱融着性複合繊維が、熱可塑性樹脂Aを鞘成分とし、熱可塑性樹脂Bを芯成分とする鞘芯型複合繊維であることを特徴とする前記(1)項記載の不織布。
(3)熱可塑性樹脂Aが、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、プロピレンとプロピレン以外のαオレフィンとの二元共重合体、及びプロピレンとプロピレン以外のαオレフィンとの三元共重合体から選ばれた少なくとも1種のオレフィン系結晶性樹脂である前記(1)項または前記(2)項記載の不織布。
(4)熱可塑性樹脂Bが、プロピレンとプロピレン以外のαオレフィンとの二元共重合体、プロピレンとプロピレン以外のαオレフィンとの三元共重合体、及びポリプロピレンから選ばれた少なくとも1種のプロピレン系結晶性樹脂である前記(1)項または前記(2)項記載の不織布。
(5)不織布がスパンボンド法により得られた長繊維不織布である前記(1)〜(4)項のいずれか1項記載の不織布。
(6)前記(1)〜(5)項のいずれか1項記載の不織布と、前記不織布以外の不織布、フィルム、パルプシート、編物、及び織物から選ばれた少なくとも1種の物品を積層した複合化不織布。
(6)前記(1)〜(5)項のいずれか1項記載の不織布、もしくは前記(6)項記載の複合化不織布を用いた吸収性物品。
(7)前記(1)〜(5)項のいずれか1項記載の不織布、もしくは前記(6)項記載の複合化不織布を用いたワイパー。
【0012】
【発明の実施の形態】
次に、本発明の実施の形態を具体的に説明する。
本発明の不織布は、熱融着性複合繊維を主体として構成されており、点熱圧着されて一体化しているものである。該熱融着性複合繊維は、熱可塑性樹脂Aと、熱可塑性樹脂Aと融点が同じか、または熱可塑性樹脂Aより50℃を越えない範囲で高い融点を有する熱可塑性樹脂Bとからなり、繊維表面の少なくとも一部が繊維長方向に連続する熱可塑性樹脂Aにより形成されている。
熱融着性複合繊維の構造は、鞘芯型、偏心鞘芯型、並列型、海島型等のいずれも使用でき、なかでも熱可塑性樹脂Aを鞘成分とし、熱可塑性樹脂Bを芯成分とする鞘芯型複合繊維が良好な熱接着性を有し、熱接着状態が安定しているために特に好ましく利用できる。なお、鞘芯型複合繊維が長繊維からなる場合には、鞘芯型複合長繊維という場合もある。この他、異形断面構造、分割型構造、中空型構造を有する熱融着性複合繊維も使用できる。本発明で用いられる熱融着性複合繊維は、通常は2成分の熱可塑性樹脂の組み合わせからなるが、必要に応じて多成分の熱可塑性樹脂の組み合わせとしてもよい。
【0013】
本発明に用いられる熱融着性複合繊維を構成する熱可塑性樹脂Aおよび熱可塑性樹脂Bとしては、結晶性の熱可塑性樹脂が用いられ、例えば、高密度ポリエチレン,低密度ポリエチレン,直鎖状低密度ポリエチレン,ポリプロピレン,プロピレンとプロピレン以外のαオレフィンとの二元または三元共重合体等のオレフィン系結晶性樹脂や、ナイロン6,ナイロン66等のポリアミド類や、ポリエチレンテレフタレート,ポリブチレンテレフタレート,酸成分としてテレフタル酸とイソフタル酸とを共重合した低融点ポリエステル等のポリエステル類、更には上記熱可塑性樹脂の混合物などが使用できる。なお、プロピレンとプロピレン以外のαオレフィンとの二元共重合体、プロピレンとプロピレン以外のαオレフィンとの三元共重合体、ポリプロピレンを総称してプロピレン系結晶性樹脂という場合もある。
【0014】
前記熱可塑性樹脂Aおよび熱可塑性樹脂Bの組合せの例としては(以下、熱可塑性樹脂A/熱可塑性樹脂Bで表わす)、高密度ポリエチレン/ポリプロピレン、直鎖状低密度ポリエチレン/ポリプロピレン、低密度ポリエチレン/ポリプロピレン、プロピレンとプロピレン以外のαオレフィンとの二元共重合体または三元共重合体/ポリプロピレン、高密度ポリエチレン/プロピレンとプロピレン以外のαオレフィンとの二元共重合体または三元共重合体、直鎖状低密度ポリエチレン/プロピレンとプロピレン以外のαオレフィンとの二元共重合体または三元共重合体、低密度ポリエチレン/プロピレンとプロピレン以外のαオレフィンとの二元共重合体または三元共重合体、直鎖状低密度ポリエチレン/高密度ポリエチレン、低密度ポリエチレン/高密度ポリエチレン、各種のポリエチレン/ナイロン6、ポリプロピレン/ナイロン6、プロピレンとプロピレン以外のαオレフィンとの二元共重合体または三元共重合体/ナイロン6、ナイロン6/ナイロン66、ナイロン6/ポリエステルなどを挙げることができる。
【0015】
これらの中で、熱可塑性樹脂Aと熱可塑性樹脂Bの組み合わせとしては、融点が同じか、または熱可塑性樹脂Aより50℃を越えない範囲で高い融点を有する熱可塑性樹脂Bの組み合わせであり、更に融点が同じか、または熱可塑性樹脂Aより30℃を越えない範囲で高い融点を有する熱可塑性樹脂Bの組み合わせがより好ましく、融点が同じか、熱可塑性樹脂Aより20℃を越えない範囲で高い融点を有する熱可塑性樹脂Bの組み合わせが最もよい。また、風合を重視する衛生材用等の用途では、オレフィン系結晶性樹脂/プロピレン系結晶性樹脂のようなポリオレフィン同士からなる組合せが好ましい。その具体例としては、エチレン・プロピレン・ブテン−1三元共重合体/ポリプロピレン、エチレン・プロピレン二元共重合体/ポリプロピレン、直鎖状低密度ポリエチレン/エチレン・プロピレン・ブテン−1三元共重合体、高密度ポリエチレン/エチレン・プロピレン・ブテン−1三元共重合体、高密度ポリエチレン/エチレン・プロピレン二元共重合体、直鎖状低密度ポリエチレン/エチレン・プロピレン二元共重合体などの組み合わせを挙げることができる。なお、本発明では熱可塑性樹脂Aと熱可塑性樹脂Bとの組み合わせには、同種類の熱可塑性樹脂であっても、融点が異なっていれば、これらを組み合わせても構わないが、同一の熱可塑性樹脂を組み合わせた使用はしない。
【0016】
本発明に用いられる熱融着性複合繊維の熱可塑性樹脂Aと熱可塑性樹脂Bとの複合比は、任意に決定しうる事項であるが、重量比で熱可塑性樹脂A:熱可塑性樹脂B=20〜80:80〜20の範囲が好ましく、より好ましくは30〜70:70〜30である。熱可塑性樹脂Aがこの範囲を超えて少なくなると、点熱圧着部において熱可塑性樹脂Bを充分に被覆できず、また、点熱圧着部を埋め難くなるため、点熱圧着部の接着強度が弱くなり、毛羽立ち易くなる。逆に、熱可塑性樹脂Bがこの範囲を超えて少なくなると、可紡性が低下したり、不織布の強度が低くなるなど、工業利用に実用的でなくなる恐れがある。
【0017】
本発明に用いられる熱可塑性樹脂Aおよび熱可塑性樹脂Bには、本発明の効果を妨げない範囲において、安定剤、難燃剤、抗菌剤、着色剤、滑剤、親水剤などが添加されていてもよい。
【0018】
本発明では熱融着性複合繊維として、ステープルファイバー、メルトブロー繊維等の短繊維や、トウ、スパンボンド等の長繊維を用いることができる。また、本発明に用いられる不織布は、通常、ウェブとした後に、エンボスロール型熱圧着機等により点熱圧着し、不織布とする。このとき用いられるウェブの製造法としては、原料繊維が短繊維からなる場合は、カード法、メルトブロー法等が挙げられ、また、原料繊維が長繊維からなる場合は、トウ開繊法やスパンボンド法等が挙げられる。また、これらウェブを不織布とする製法としては、エンボスロール型熱圧着機等により点熱圧着を行うことが必要であるが、これ以外に、熱接着法(スルーエアー法)、ニードルパンチ法、スパンレース法等を組み合わせて利用してもよく、例えばスパンボンド法で得られた不織布をニードルパンチ法やスパンレース法で更に処理してもよい。これらの中で、原料繊維の製造、ウェブ化及び不織布の製造がインラインで行えるスパンボンド法は生産性に優れていることから、特に好ましく用いられる。
スパンボンド法は、一般に、紡糸工程においてロール引取やエアサッカー引取による細繊度化の後、ネットコンベアー上に堆積したウェブをエンボスロール型熱圧着機に搬送し、加熱されたエンボスロール(凹凸ロール)とフラットロール(平滑ロール)の間を通すことより、長繊維相互間を点熱圧着させ、連続した生産ライン(インライン)で、不織布を製造する方法である。この製造法では、インラインで熱可塑性樹脂から不織布を製造できるため、短繊維を用いた不織布の製造法に比べ、生産性が非常に高い。また、不織布が長繊維で構成されているため、短繊維で構成された不織布と比較して、同じ不織布加工条件で不織布を製造した場合には、不織布強度が高くなる等、優れた物性を有している。
【0019】
以下に不織布の製造方法についてスパンボンド法により説明する。
スパンボンド紡糸機を用い、別々に溶融した熱可塑性樹脂Aと熱可塑性樹脂Bを複合紡糸口金より複合形態で紡出し、これらをエアサッカーの高速気流を利用して牽引延伸し、得られた熱融着性複合繊維群を直接、または揺動機構や帯電装置をもつ開繊装置で分散後、移動するネットコンベアー上に堆積させてシート状のウェブを形成した後、これを点熱圧着して不織布とする。
【0020】
点熱圧着を行う装置としては、不織布表面に種々の彫刻印を付与することのできる装置全般が使用でき、これらの装置は、単独で使用するだけでなく、複数を組合わせて使用してもよい。装置としては具体的には、エンボスロール型熱圧着機を挙げることができる。
エンボスロール型熱圧着機を用いる場合、エンボスロール凸部先端の面積(凸部面積)やエンボスロール外周の面積(ロール表面積)に占める全凸部面積の割合(エンボス面積率)により風合等が変化する。一般に凸部面積やエンボス面積率が大きい場合には、得られる不織布は、耐毛羽立ち性に優れるものの、風合や嵩高さなどは低くなる。逆に、凸部面積やエンボス面積率が小さい場合には、得られる不織布は、風合や嵩高さなどは向上するものの、耐毛羽立ち性が低くなる。本発明では、エンボス面積率が、5〜30%、凸部面積が、0.15〜15mm2となるエンボスロールが好ましく使用できる。しかし、エンボス面積率や凸部面積は、本発明をなんら限定するものではない。
【0021】
次に、本発明の被膜化された点熱圧着部について図を用いて説明する。
熱可塑性樹脂Aの軟化点以上、熱可塑性樹脂Bの融点未満の温度で、エンボスロール型熱圧着機により加熱し加圧することで、熱可塑性樹脂Bは溶融せず、熱可塑性樹脂Aが軟化または溶融しながら変形し、隣接する熱融着性複合繊維と結合することで、点熱圧着部が形成される。
本発明の不織布を得るための加工条件としては、熱処理温度を熱可塑性樹脂Aの軟化点以上、融点以下の範囲とし、同時に、エンボスロール型熱圧着機の線圧を適正な値とすることで、熱融着性複合繊維の熱可塑性樹脂B部分を扁平化させ、熱可塑性樹脂B部分を被覆している熱可塑性樹脂A部分が熱可塑性樹脂B部分から剥離しにくい点熱圧着部(図1の1)が形成される。特に、ウェブ移動速度(ライン速度)が高速な場合には、熱処理温度を熱可塑性樹脂Aの(融点−5)℃から(融点+10)℃までの範囲とし、同時に、エンボスロール型熱圧着機の線圧を40N/mm以上、120N/mm未満、より好ましくは、60N/mm以上、90N/mm以下とし、使用する熱可塑性樹脂A,熱可塑性樹脂B、ライン速度及び、上記条件を適宜組み合わせて加工することで、良好な点熱圧着部を生成することが可能である。なお、ライン速度は、30〜400m/minの範囲が通常利用されている。
また、非点圧着部にある繊維中の熱可塑性樹脂B部分の厚みに対する、点熱圧着部の熱可塑性樹脂B部分の点熱圧着時における応力方向の厚みから求められる扁平率が60〜90%であると、剥離が殆どなく、更に熱可塑性樹脂B部分を被覆する熱可塑性樹脂A部分の厚みが薄くなるといった不具合も殆ど起こらず、良好な点熱圧着部が形成できる。なお、ウェブに対するエンボスロール型熱圧着機の熱処理温度が、熱可塑性樹脂Aの(融点−5)℃より大幅に低い温度であった場合でも、エンボスロール型熱圧着機により加圧し、熱可塑性樹脂A部分が軟化しながら変形して、隣接する熱融着性複合繊維同士を結合することで、点熱圧着部は形成されるが、この点熱圧着部中の熱可塑性樹脂B部分は、加圧によって僅かに変形が生じるだけであるため、熱可塑性樹脂A部分に比べ変形度合い(扁平化)が小さくなり、熱可塑性樹脂B部分を被覆する熱可塑性樹脂A部分の厚みが薄くなり、熱可塑性樹脂B部分の剥離が見られる。
【0022】
本発明では、熱可塑性樹脂Aと、熱可塑性樹脂Aと融点が同じか、または熱可塑性樹脂Aより50℃を越えない範囲で高い融点を有する熱可塑性樹脂Bを用いる。熱可塑性樹脂Bの融点が、熱可塑性樹脂Aの融点より50℃を越えて高い場合には、エンボスロール型熱圧着機によって加圧するだけでは熱可塑性樹脂B部分を充分に扁平化させることができず、そのため、熱可塑性樹脂Bの融点付近の温度でウェブを熱処理することになる。しかし、これにより熱可塑性樹脂A部分の溶融による変形・拡散が著しく進み、本来、熱融着性複合繊維の熱可塑性樹脂B部分を被覆している熱可塑性樹脂A部分が、熱可塑性樹脂B部分から剥離し、点熱圧着部に貫通孔が空く不具合や(図2の2)、溶融した熱可塑性樹脂Aが点熱圧着部内部に沈み込み、熱可塑性樹脂B部分を被覆する厚みが薄くなり、また、点熱圧着部に窪み等が生じて点熱圧着部の充填が充分に行われない等の不具合が生じてしまう。このため、熱可塑性樹脂Bの融点が、熱可塑性樹脂Aの融点より50℃を越えて高い組み合わせの場合には、良好な点熱圧着部が構成されにくい。
【0023】
この貫通孔や窪み等の孔は走査型電子顕微鏡等による表面観察で確認できる。ここでは、点熱圧着部の面積に対する貫通孔や窪み等の点熱圧着部表面上での面積割合を表面空孔率(%)と呼び、実際に得られた不織布の表面空孔率を測定する場合には、点熱圧着部の面積に対する点熱圧着部表面上の孔の面積との比率によって求めている。この表面空孔率が高いと、点熱圧着部が充分に熱可塑性樹脂Aによって充填され、貫通孔や窪み等が少なく、表面空孔率が低い場合に比べて曲げ応力が小さくなることから不織布は柔らかくなる傾向となる。しかし、表面空孔率が高いと、繊維を固定する力、いわゆる接着強力が弱くなるため、摩擦によって非点熱圧着部から繊維が移動したり、撚りの力によって点熱圧着部から繊維が剥離するなどが起こり、耐毛羽立ち性が著しく低下してしまう。
【0024】
本発明の不織布における点熱圧着部は、熱可塑性樹脂A部分の溶融変形と共に熱可塑性樹脂B部分の変形扁平化も充分に行わせることで、表面空孔率が減少し、被膜化状態となり、これにより不織布の耐毛羽立ち性を著しく向上させている。この耐毛羽立ち性を向上させるためには、不織布の点熱圧着部全体における表面空孔率が0〜20%とする必要があり、より好ましくは、10%以下とすることである。これは不織布の表裏面共にこの値を満たす必要がある。
不織布全体中の点熱圧着部のうち、表面空孔率が20%を越える箇所が部分的にあってもよいが、このような点熱圧着部が多くなると部分的に耐毛羽立ち性の低下する所が観られるため、1ヵ所の点熱圧着部の表面空孔率は30%以下となることが望ましい。このように点熱圧着部の表面空孔率を制御することで、耐毛羽立ち性に優れた不織布とすることが可能であり、風合についても、前述した樹脂構成やエンボス面積率等を選択することで、優れたものとなる。
【0025】
本発明の不織布における点熱圧着部を形成するためには、エンボス面積率、線圧、加工温度、加工速度等の点熱圧着加工条件を適宜選択することにより達成されるが、前述したように、熱可塑性樹脂A及び熱可塑性樹脂Bの組み合わせが、融点が同じか、または50℃を越えない範囲、好ましくは融点が同じか、または30℃を越えない範囲、更に好ましくは融点が同じか、または20℃を越えない範囲であると、被膜化した点熱圧着部の形成が容易となり好ましい。また、被膜化しにくいときは、点熱圧着加工直前のウェブを予熱することで被膜化が促進できる。予熱方法としては、例えば、スルーエアー型加熱機や遠赤外線ヒーター等の加工機を用いた方法が挙げられ、予熱段階で、熱可塑性樹脂Aが溶融しない処理条件で予熱することにより、風合と耐毛羽立ち性の優れた不織布を得ることができる。
なお、本発明の不織布を得るための製造条件は、生産設備の種類により好ましい条件の組合せが異なる場合があり、特定の製造設備で適用できる製造条件を他の製造設備にそのまま適用できない場合もありえる。本発明の不織布の新規な点および特徴は、本発明の点熱圧着部が前述した表面構造を有した被膜化状態及び熱可塑性樹脂B成分の扁平化状態となっていることである。
【0026】
本発明の不織布において、使用可能な熱融着性複合繊維の繊度は、特に限定されるものではなく、バッテリーセパレーターの様に非常に細い繊度のものが要求されるものから、土木用途に求められる太繊度のものまで、広い繊度範囲の繊維に対応可能である。一例をあげると、バッテリーセパレーター等では1dtex以下の繊度が好ましく、おむつや生理用品などの衛生材料として用いる場合では、約0.2〜6dtex、包装材や農業用として用いる場合では約1〜100dtex、土木一般用途では約1〜300dtex程度が好ましく用いられる。これらの用途のうち、スパンボンド不織布を使用する場合には、主として0.1〜10dtexの繊度のものが好ましく用いられる。
【0027】
本発明の不織布における目付の範囲は、特に限定されるものではないが、均一な目付の不織布の製造や、点熱圧着の処理のし易さ、点熱圧着部の被膜構造の形成を考慮すれば、3〜300g/m2が好ましく用いることができる。また、スパンボンド不織布では、5〜100g/m2が好ましく用いられる。これらのうち、得られる不織布の風合や強度を考慮すれば5〜50g/m2が好ましい。特に衛生材料では、風合を重視されるために5〜30g/m2が好ましい。
【0028】
本発明の不織布において、その効果を妨げない範囲で、上記熱融着性複合繊維とこれ以外の他の繊維とを混合させてウェブとし、これを用いて点熱圧着を行い、目的の不織布を得ることができる。
混合可能な繊維としては、主たる熱融着性複合繊維とは異なる熱可塑性樹脂からなる熱融着性複合繊維や複数の熱融着性複合繊維からなる熱融着性複合繊維群が好ましく使用できる。この他、本発明の不織布の効果を妨げない範囲で、種々の単一樹脂繊維を用いてもよい。
【0029】
混合の方法としては、主たる熱融着性複合繊維と他の繊維をカード法等により混合する方法や、主たる熱融着性複合繊維と他の繊維を別々にウェブとし、これらを積層し、ニードルパンチ等により連続貫通動作することで混合する方法等、種々の混合の方法が利用できる。
【0030】
本発明の不織布において、その効果を妨げない範囲で、他の不織布、フィルム、パルプシート、編物、織物等を積層させ、複合化不織布とすることができる。
他の不織布、フィルム、パルプシート、編物、織物等は、単独で積層させてもよく、また複数組み合わせて積層させてもよい。更に、その素材に制約はなく、種々のものが利用できるが、基となる不織布と接着可能な素材、もしくは接着可能な素材を含んでいることが好ましい。
【0031】
積層させる方法としては、スパンボンド法、エアレイド法、カード法等の各種製造方法で得られたウェブ上に、他の不織布、フィルム、パルプシート、編物、織物等の物品中から選択して積層させる方法や、本発明の不織布と、他の不織布、フィルム、パルプシート、編物、織物の物品中から選択して積層させる方法等がある。積層時の接着方法としては、ホットメルト接着剤や点熱圧着加工等、積層させる素材の種類や用途等によって適した種々の方法が選ばれる。
【0032】
本発明の不織布および複合化不織布は、吸収性物品の素材として利用することが可能である。特に、乳幼児用や大人用の紙おむつ、ナプキン、吸汗パット、皮脂除去用シート材、お手拭き等の衛生材料として好ましく利用できる。この他、飛行機や旅客車両の紙シートカバー、便座カバー、衣服の保温材や型どり基材等としても使用できる。
【0033】
更に、本発明の不織布および複合化不織布は、ワイパーの素材としても好ましく利用できる。一例を挙げると、家庭用使い捨て雑巾、眼鏡拭き、床拭き材、畳拭き材等がある。
【0034】
本発明の不織布および複合化不織布は、上記記載の用途以外にも、べたがけシート、防草シート、果実保護袋、保温シート等の農業資材や、エアフィルター、油吸着材、建設資材、土木資材等の産業資材、外科用ガウン、マスク、帽子等のメディカル資材の素材としても利用可能である。
【0035】
更に、本発明の不織布および複合化不織布は、多くの他資材、例えばネット、布帛、土木シート、金属、木材、ガラス、プラスチック成形体、陶磁器、紙、毛等と組み合わせて使用することができる。
【0036】
【実施例】
以下、実施例、比較例により本発明をさらに詳しく説明するが、本発明はこれに限定されるものではない。
【0037】
(熱可塑性樹脂の融点)
JIS K 7122に準じて示差走査型熱分析装置により試料5mg、昇温速度10℃/minの条件で測定した。
【0038】
(目付)
不織布の任意5カ所から20cm×20cmサイズを切り出した後、各重量を電子天秤にて測定して、その平均値を1m2当りの重量に換算して目付とした(g/m2)。
【0039】
(引張試験)
不織布の任意3カ所から不織布の縦方向(MD)と横方向(CD)のそれぞれに対して、幅2.5cm、長さ20cmの試験片を切り出し、テンシロン型引張試験機を用いて把握長10cm、引張速度10cm/minの条件で各方向3回試験を行い、得られた強伸度曲線から最大強度(N/2.5cm)、最大強度時の伸度(%)を測定し、それぞれの平均値を求めた。
【0040】
(引裂試験)
不織布の任意3カ所から不織布の縦方向(MD)対して、幅4.0cm、長さ20cmの試験片を切り出し、短辺の中央に辺と直角に10cmの切れ目を入れて、テンシロン型引張試験機を用いて把握長10cm、引張速度20cm/minの条件で各方向3回試験を行い、不織布を引き裂くときに示す最大荷重(N)を測定し、その平均値とした。
【0041】
(風合評価)
モニター5人による官能評価で柔らかさを判定した。柔らかさを0〜3点の範囲で採点し、各人の合計点数を以下の範囲で表示した。
◎:12〜15点
○: 8〜11点
△: 4〜 7点
×: 0〜 3点
【0042】
(耐水度測定)
JIS L 1092に準じて耐水度試験装置により、不織布の耐水度を測定した。
【0043】
(耐毛羽立ち性評価)
以下に、得られた不織布の耐毛羽立ち性(毛羽の立ちにくさ)を評価するための方法を記載する。なお、本評価方法は、JIS P 8136に準じて測定した。
▲1▼ 4.5cm×20cmの大きさの不織布サンプルを、MD・CD共に4枚用意する。
▲2▼ これらサンプルの長手方向の両端に両面テープを貼り付ける。このとき、MD・CD共にエンボスロール側摩擦サンプルを2枚、フラットロール側摩擦サンプルを2枚作製する。
▲3▼ 耐摩耗試験機の試料台に試料を貼り付け、摩擦子にカナキン3号布(4cm×5cm)を装着する。
▲4▼ 摩擦子(500g)を不織布の上に置き、往復カウント設定値を150回に合わせ、カウントリセットボタンを押し、スタートボタンを押す。
▲5▼ 摩擦後の不織布表面の粗れ具合(毛玉の発生や毛羽立ち具合)を、官能的に評価する。
ここでは、判定基準に以下の官能指標を定めた。
◎ :毛羽・毛玉ともに観察されない
○ :若干の毛羽・毛玉が観察される
△ :小さな毛玉や毛羽が比較的多く観察される
× :比較的大きな毛玉や比較的大きな毛羽が観察される
××:複数の大きな毛玉や多量の毛羽が観察される
【0044】
(表面空孔率)
得られた不織布の点熱圧着部における表面空孔率を測定する方法を以下に記載する。
▲1▼ 走査型電子顕微鏡により、不織布の片面を観察し、点熱圧着部1点の全容が走査型電子顕微鏡の画面に収まる倍率に設定し、任意の20点を撮影する。
▲2▼ ▲1▼で撮影した点熱圧着部の各写真において、点熱圧着部1点の面積をそれぞれ測定する。そして、点熱圧着部20点の合計面積をaとする。
▲3▼ 次に▲1▼で撮影した点熱圧着部の各写真において、表面空孔部の面積を測定する。そして、点熱圧着部20点の合計表面空孔面積をbとする。
▲4▼ 表面空孔率cを、以下の式より算出する。
点熱圧着部の表面空孔率c(%)=(b/a)×100
▲5▼ 反対側の不織布面についても▲1▼〜▲4▼の手順で測定を行い、表面空孔率cが大きい方の値をその不織布の表面空孔率cとする。
【0045】
(点熱圧着部の被膜化状態の評価)
耐毛羽立ち性試験では、充分に被膜化されていない点熱圧着部より剥離した繊維が毛羽や毛玉となる場合と、点熱圧着部周辺で切断した、繊維が毛羽や毛玉となる場合があるため、点熱圧着部から剥離した繊維本数をもって、点熱圧着部の接合強さ、つまり、被膜化状態を優劣で評価することにした。その方法を以下に記載する。
▲1▼ 得られた不織布を前記の耐毛羽立ち性評価試験と同様に不織布に摩擦を加える(荷重500g、摩擦回数150回)。
▲2▼ 摩擦後の不織布を走査型電子顕微鏡により、任意に選んだ10点の熱圧着部に対して、60°のアングルで点熱圧着部1点、及びその周囲が走査型電子顕微鏡の画面に収まる倍率で撮影する。
▲3▼ ▲2▼で撮影した点熱圧着部10点の各写真より、摩擦による点熱圧着部から剥離した繊維の本数をカウントする。そして、点熱圧着部10点の合計本数をnとする。ここで、剥離した繊維とは、点熱圧着部から完全に剥離したもの、途中まで剥離したものの両方を含む。
ここでは、剥離した繊維本数に対して、以下の評価基準により、被膜化状態を定めた。なお、○以上を被膜化状態が良好とした。
◎:n=10本以下
○:n=11〜20本
△:n=21〜50本
×:n=51本以上
【0046】
(芯成分の扁平率)
点熱圧着部の芯成分の扁平率を測定する方法を以下に記載する。
▲1▼ 走査型電子顕微鏡を用い、点熱圧着部断面を任意の10点を撮影する
▲2▼ 同様の装置を用い、非熱圧着部にある繊維の断面を▲1▼と同倍率で任意の10点撮影する。
▲3▼ ▲1▼で撮影した点熱圧着部の写真から、点熱圧着の応力方向における芯成分の厚みをそれぞれ測定する。そして点熱圧着部中の芯成分10点の平均厚みをdとする。
▲4▼ ▲2▼で撮影した非点熱圧着部にある繊維の断面写真から、芯成分の厚みをそれぞれ測定する。そして非点熱圧着部中の芯成分10点の平均厚みをeとする。
▲5▼ 芯成分の扁平率fを、以下の式より算出する。fが大きい程、扁平化している。
芯成分の扁平率f(%)=(1−(d/e))×100
【0047】
(ワイピング能力評価)
本発明の不織布・複合化不織布を用いて、ワイピング能力評価をおこなった。
以下にその方法を述べる。
【0048】
(人頭髪捕集試験)
▲1▼ 20cm×20cmの大きさの不織布サンプルをカナキン3号の上に載せ、200gの荷重で不織布のMD方向に10回、CD方向に10回づつ摩擦を加えて、不織布サンプル全面を毛羽立たせる。
▲2▼ 金属製の机上に長さ10cmの人頭髪を12本とり、それらが机上で均一に分布するように散布する。
▲3▼ ▲1▼で作製した不織布サンプルで、軽く3回、円を描くように拭き取る。
▲4▼ 拭き取った後、この不織布サンプルを垂直に1分間つり下げ、捕集不完全な人頭髪を自然脱落させる。
▲5▼不織布サンプルに捕集された人頭髪の数を数える。捕集本数により、以下の分類に基づきワイピング性を評価する。
○:10本以上捕集
×:9本以下の捕集
【0049】
(小麦粉払拭試験)
▲1▼ 20cm×20cmの大きさの不織布サンプルをカナキン3号の上に載せ、200gの荷重で不織布のMD方向に10回、CD方向に10回づつ摩擦を加えて、不織布サンプル全面を毛羽立たせる。
▲2▼ 金属製の机上に市販の小麦粉を0.8gとり、それらが均一に分布するように拡げる。
▲3▼ ▲1▼で作製した不織布サンプルで軽く3回、円を描くように拭き取る。
▲4▼ 拭き取った後、この不織布サンプルを垂直に1分間つり下げ、捕集不完全な小麦粉を自然脱落させる。
▲5▼ 机上に残留した小麦粉の重量を測定し、払拭率を算出する。
払拭率(%)={0.8−(残留した小麦粉の重量)}÷0.8×100
▲6▼ 以下の判定により、払拭性を評価する。
○:75%以上の払拭率
×:75%未満の払拭率
【0050】
実施例1
不織布を得るための方法としてスパンボンド法を選択し、この基本装置系として、孔径0.4mmの鞘芯型複合紡糸口金を含む紡糸装置、高速気流牽引装置、ネットコンベアー型ウェブ捕集装置、開繊装置を使用した。また、点熱圧着工程の装置として、加熱されたエンボスロールとフラットロールからなる、エンボスロール型熱圧着機を使用した。
熱可塑性樹脂Aとして鞘成分に融点が122℃、MFR(190℃、21.18N)が20g/10minの直鎖状低密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が132℃、MFR(230℃、21.18N)が42g/minのエチレン・プロピレン・ブテン−1三元共重合体を用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が118℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表1に示す。表1より、この不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0051】
実施例2
実施例1と同じスパンボンド法不織布製造装置を用いて不織布を製造した。
熱可塑性樹脂Aとして鞘成分に融点が131℃、MFR(190℃、21.18N)が26g/10minの高密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が143℃、MFR(230℃、21.18N)が39g/10minのエチレン・プロピレン・ブテン−1三元共重合体を用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が127℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表1に示す。表1より、この不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0052】
実施例3(参考例1)
実施例1と同じスパンボンド法不織布製造装置を用いて不織布を製造した。熱可塑性樹脂Aとして鞘成分に融点が131℃、MFR(190℃、21.18N)が26g/10minの高密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が151℃、MFR(230℃、21.18N)が43g/10minのエチレン・プロピレン二元共重合体を、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が130℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表1に示す。表1より、この不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0053】
実施例4
実施例1と同じスパンボンド法不織布製造装置を用いて不織布を製造した。
熱可塑性樹脂Aとして鞘成分に融点が151℃、MFR(230℃、21.18N)が43g/10minのエチレン・プロピレン二元共重合体を用い、熱可塑性樹脂Bとして芯成分に融点が162℃、MFR(230℃、21.18N)が40g/10minのポリプロピレンを用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が148℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表1に示す。表1より、この不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0054】
実施例5
実施例1と同じスパンボンド法不織布製造装置を用いて不織布を製造した。
熱可塑性樹脂Aとして鞘成分に融点が131℃、MFR(190℃、21.18N)が26g/10minの高密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が132℃、MFR(230℃、21.18N)が42g/10minのエチレン・プロピレン・ブテン−1三元共重合体を用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が127℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表1に示す。表1より、この不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0055】
比較例1
実施例1と同じ装置および同じ熱可塑性樹脂を使用し、点熱圧着処理の条件を除いては、同様の条件で不織布を製造した。
実施例1で得られた鞘芯型複合長繊維ウェブを、エンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が108℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表2に示す。
表2より、この不織布は、風合はよいが、毛羽立ちの起こり易い不織布であることが分かる。これは、点熱圧着の温度が鞘成分である低融点樹脂の融点よりはるかに低いことから、鞘成分の溶融不足により、芯成分を被覆できず、点熱圧着部が被膜化しなかったためと考えられる。また、この加工温度では熱エンボスロールによる芯成分の扁平化は促進されなかったと考えられる。
【0056】
比較例2
実施例2と同じ装置および同じ熱可塑性樹脂を使用し、点熱圧着処理の条件を除いては、同様の条件で不織布を製造した。
実施例2で得られた鞘芯型複合長繊維ウェブを、エンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が120N/mm、エンボスロールおよびフラットロール温度が127℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表2に示す。
表2より、この不織布は、風合に欠け、また毛羽立ちの起こり易いことが分かる。これは、芯成分である熱可塑性樹脂B部分は扁平化しているが、点熱圧着の線圧が高すぎたため、鞘芯剥離によって、点熱圧着部の表面に空孔が多数発生し、点熱圧着部が充分に被膜化しなかったためと考えられる。
【0057】
比較例3
実施例3と同じ装置および同じ熱可塑性樹脂を使用し、点熱圧着処理の条件を除いては、同様の条件で不織布を製造した。
実施例3で得られた鞘芯型複合長繊維ウェブを、エンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が142℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表2に示す。
表2より、この不織布は、耐毛羽立ち性には優れるが、風合に欠けることが分かる。また、製造時に不織布がエンボスロールに巻き付き、生産性に問題があった。これは、点熱圧着の温度が鞘成分である熱可塑性樹脂Aの融点よりも高過ぎるため、溶融し過ぎた熱可塑性樹脂Aがエンボスロールに付着したものと考えられる。
【0058】
比較例4
不織布を得るための方法としてスパンボンド法を選択し、この基本装置系として、孔径0.4mmの単一成分用紡糸口金を含む紡糸装置、高速気流牽引装置、ネットコンベアー型ウェブ捕集装置、開繊装置を使用した。また、点熱圧着工程の装置として、エンボスロールと、フラットロールからなる、エンボスロール型熱圧着機を使用した。
熱可塑性樹脂として融点が162℃、MFR(230℃、21.18N)が40g/10minのポリプロピレンを単独で用いて紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度2.2dtexのポリプロピレン長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、ポリプロピレン長繊維ウェブを成形した。
このポリプロピレン長繊維不織ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が140℃の条件下で点熱圧着処理を行い、該点熱圧着部のポリプロピレン繊維同士が熱融着した不織布を得た。この不織布の物性値と評価結果を表2に示す。
表2より、この不織布は、耐毛羽立ち性には優れるが、風合に欠けることが分かる。
【0059】
比較例5
実施例1と同じスパンボンド法不織布製造装置を用いて不織布を製造した。
鞘成分に融点が131℃、MFR(190℃、21.18N)が26g/10minの高密度ポリエチレンを用い、芯成分に融点が254℃、固有粘度(IV値、フェノール:テトラクロルエタン=1:1の混溶媒中、20℃で測定)が0.72のポリエチレンテレフタレートを用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度が2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が128℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した不織布を得た。この不織布の点熱圧着部では高融点樹脂が扁平化することなく、被膜化状態もよくなかった。また、不織布の物性値と評価結果を表2に示す。
表2より、この不織布は、風合に欠け、また、耐毛羽立ち性に劣ることが分かる。
【0060】
実施例6
不織布を得るための方法としてスパンボンド法とメルトブロー法を選択し、この基本装置系として、スパンボンド法においては孔径0.4mmの鞘芯型複合紡糸口金を含む紡糸装置、高速気流牽引装置、開繊装置、およびメルトブロー法においては、孔径0.2mmの鞘芯型複合紡糸口金を含む紡糸装置、共通装置としてネットコンベアー型ウェブ捕集装置を使用した。また、点熱圧着工程の装置として、エンボスロールとフラットロールからなるエンボスロール型熱圧着機を使用した。
まずスパンボンド法によって得られた熱融着性複合ウェブ上に、メルトブロー法により得られた熱融着性複合ウェブが積層されるように装置を設定した。なお、スパンボンド法、メルトブロー法ともに実施例1で用いた熱可塑性樹脂A及び熱可塑性樹脂Bを利用した。
まず、スパンボンド法により熱融着性複合繊維である熱接着性長繊維複合ウェブを製造した。
熱可塑性樹脂Aとして鞘成分に融点が122℃、MFR(190℃、21.18N)が20g/10minの直鎖状低密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が132℃、MFR(230℃、21.18N)が42g/minのエチレン・プロピレン・ブテン−1三元共重合体を用いて、鞘芯比50/50(重量比)の割合で紡糸した。これを冷却しつつ、高速気流牽引装置で牽引し、繊度が2.2dtexの熱融着性複合繊維である鞘芯型複合長繊維を得た。次いでこれをネットコンベアー型ウェブ捕集装置上に電気的に開繊させながら吹き付けて、鞘芯型複合長繊維ウェブを成形した。
次いで、メルトブロー法により熱接着性複合長繊維ウェブを作製し、上記スパンボンド法により得られた熱接着性複合長繊維ウェブに積層させる。
熱可塑性樹脂Aとして鞘成分に融点が122℃、MFR(190℃、21.18N)が20g/10minの直鎖状低密度ポリエチレンを用い、熱可塑性樹脂Bとして芯成分に融点が132℃、MFR(230℃、21.18N)が42g/minのエチレン・プロピレン・ブテン−1三元重合体を用いて、鞘芯比50/50(重量比)の割合で紡糸した。吐出孔両サイドより380℃の加熱空気を0.8MPaの圧力で噴出させ、溶融樹脂を細繊化し、次いでこれを前記ネットコンベアー型ウェブ捕集装置上にあるスパンボンド法により得られた熱接着性複合長繊維ウェブ上に吹き付けて積層させた。なお、メルトブロー法によって得られた複合長繊維の平均繊維径は5μmであった。
また、スパンボンド不織布、メルトブロー不織布の目付はそれぞれ、10.3g/m2、8.8g/m2であった。
この鞘芯型複合長繊維ウェブをエンボス面積率が16%、エンボス形状が菱形のエンボスロール、フラットロールからなるエンボスロール型熱圧着機を用いて、線圧が60N/mm、エンボスロールおよびフラットロール温度が118℃の条件下で点熱圧着処理を行い、該点熱圧着部の熱融着性複合繊維同士が熱融着した複合化不織布を得た。この複合化不織布の物性値と評価結果を表3に示す。
表3より、この複合化不織布は、風合がよく、かつ耐毛羽立ち性に優れていることが分かる。
【0061】
実施例7〜10
市販の紙おむつのバックシートを取り除き、実施例7では実施例1で得た不織布を、実施例8では実施例2で得た不織布を、実施例9では実施例3で得た不織布を、実施例10では実施例で得た複合化不織布を取り付けた。なお、実施例9ではスパンボンド不織布面が表となるようにセットした。これらの紙おむつと、元の紙おむつとを比較したところ、同等か、それ以上の地合と風合、および耐毛羽立ち性のよさが観察された。
よって、本発明の不織布及び複合化不織布は、紙おむつ等の吸収性物品に好適に使用することができることが分かった。
【0062】
実施例11、比較例6
市販の紙おむつのサイドギャザーを取り除き、実施例11では実施例で得た複合化不織布を、比較例6では比較例1で得た不織布を取り付けた。なお、実施例11ではスパンボンド不織布面が表となるように折り込んでサイドギャザーを形成した。実施例11の紙おむつのサイドギャザーは、耐水度が大きく装着時に尿の漏れが見られず、また、装着後は毛羽立ちが少ない良好なものであった。一方、比較例6の紙おむつのサイドギャザーは、装着時に尿の漏れはなかったものの、装着後の毛羽立ちは多く観察された。
よって、本発明の複合不織布は、紙おむつ等の吸収性物品に好適に使用することができることが分かった。
【0063】
実施例12〜15
実施例12では実施例1で得た不織布を、実施例13では実施例2で得た不織布を、実施例14では実施例3で得た不織布を、実施例15では実施例6で得た複合化不織布を用いて、上記の人頭髪捕集試験及び小麦粉払拭試験を行った。その結果を表4に示す。
本発明の不織布及び複合化不織布共に全ての人頭髪が捕集され、評価は○であった。また、小麦粉払拭率も共に○となり、良好なワイピング性を示した。
よって、本発明の不織布及び複合化不織布は、ワイパーに好適に使用することができることが分かった。
【0064】
比較例7〜10
比較例7では比較例1で得られた不織布を、比較例8では比較例2で得られた不織布を、比較例9では紙を、比較例10では木綿布を用い、上記の人頭髪捕集試験及び小麦粉払拭試験を行った。その結果を表4に示す。
すべてのサンプルにおいて、人頭髪捕集試験及び小麦粉払拭試験の結果は×であった。
よって、ワイパーとしては不適であった。
【0065】
本発明の不織布及び複合化不織布は、実施例、比較例により示されるような優れた特徴を有するので、衛生材料、医療用材料、建築用、家庭用、被服材料用、その他多くの用途に使用することができる。
また、他の資材例えば布帛、フィルム、金属ネット、建設資材、土木資材、農業資材など、多くの資材と組み合わせて使用することも可能である。
【0066】
【表1】

Figure 0004581185
【0067】
【表2】
Figure 0004581185
【0068】
【表3】
Figure 0004581185
【0069】
【表4】
Figure 0004581185
【0070】
【発明の効果】
本発明の不織布及び複合化不織布は、耐毛羽立ち性と風合、肌触り感といった特徴を全て兼ね備えており、種々の用途に利用可能である。
また、本発明の不織布及び複合化不織布が、スパンボンド不織布からなる場合は、短繊維を構成繊維とする不織布と比べて、不織布強力が高く且つ生産性に優れるため、その価格を安価にすることが可能である。
【図面の簡単な説明】
【図1】貫通孔のない点熱圧着部の表面図。
【図2】貫通孔を有する点熱圧着部表面の表面図。
【符号の説明】
1:点圧着部
2:貫通孔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a non-woven fabric comprising a heat-fusible conjugate fiber and a fiber product using the same.
[0002]
[Prior art]
Conventionally, non-woven fabrics made from heat-fusible conjugate fibers have been used widely in paper diapers, sanitary napkin surface materials, disposable towels, various wipers, and the like because they have appropriate flexibility and mechanical strength. In recent years, with the diversification of lifestyles, the demand for absorbent articles represented by disposable diapers, sanitary napkins, absorbent sheets and the like has increased remarkably, and similar products have overflowed into the market accordingly. Under these circumstances, there is a need to develop more sophisticated and multifunctional products that differentiate products.
For example, non-woven fabrics used for sanitary materials are required to have characteristics such as higher texture, better feel, and better fuzz resistance (meaning less fuzzing against the friction of skin and clothing). . Non-woven fabrics that are inferior in fluff resistance have the disadvantages that they tend to cause a decrease in strength of the nonwoven fabric due to friction, generation of dust due to fluffing, and poor appearance. It is not suitable for the back sheet. For these reasons, in recent years, fuzz resistance has been emphasized.
[0003]
Conventionally, short fiber nonwoven fabrics manufactured by nonwoven fabric processing with hot air have been used for sanitary materials and the like because of their good texture. However, in recent years, the processing of non-woven fabrics has been changed to non-woven fabric processing by point thermocompression, which is more cost-effective and more productive. Further, as a recent trend, the surface material of the sanitary material is required to have a softer texture, and for this reason, the nonwoven fabric is processed with a reduced heat treatment temperature. Although the nonwoven fabric obtained by this became a soft texture, since the adhesion | attachment became inadequate, the fuzz resistance was falling.
Furthermore, it has been studied to solve these problems by using a spunbonded nonwoven fabric made of long fibers with good productivity.
[0004]
Among the spunbond nonwoven fabrics, regular spunbond nonwoven fabrics are composed of fibers made of a single component thermoplastic resin. This thermoplastic resin functions as an adhesive component, and the fibers of the web are bonded to each other by point thermocompression treatment. And it becomes a nonwoven fabric state. At this time, the fiber entanglement point of the web is in the form of a film and the adhesion of the point thermocompression bonding portion is strengthened, so that the fuzz resistance is excellent. However, since the raw material fibers of the regular spunbond nonwoven fabric are made of thermoplastic resin having good spinnability and relatively high rigidity, such as polyethylene terephthalate, polypropylene, nylon, etc., the fibers are hard and these Nonwoven fabrics made of these fibers had the disadvantage of poor flexibility and poor texture.
[0005]
On the other hand, it is possible to use a thermoplastic resin such as a propylene binary copolymer that is difficult to use with a regular spunbond nonwoven fabric and has poor spinnability and low rigidity, as a composite spunbond nonwoven fabric composed of composite fibers. The combination of this and a thermoplastic resin having a good spinnability and high rigidity can be used as a composite fiber to improve the spinnability. The fibers thus obtained are soft, and the nonwoven fabric made from these fibers has an excellent texture. However, the thermoplastic resin constituting the composite spunbonded nonwoven fabric is often used in combination with a low-melting resin and a high-melting resin, which have a large melting point difference between the thermoplastic resins. Therefore, only the low melting point resin melts and deforms at the point thermocompression bonding portion, and the high melting point resin does not deform and the fiber form remains. For this reason, the low-melting point resin cannot sufficiently cover the point thermocompression bonding part, and an opening or a depression is formed in the point thermocompression bonding part, the adhesive strength of the point thermocompression bonding part is weak, and it becomes easy to fluff due to external force such as friction. Had problems.
[0006]
For example, in Japanese Patent Laid-Open No. 5-263353, a low-rigidity ethylene propylene random copolymer is used as the core component of the sheath-core composite long fiber, and high-density polyethylene is used as the sheath component. A long fiber nonwoven fabric is disclosed. However, using ethylene propylene random copolymer as the core component is superior in flexibility to non-woven fabrics using isotactic polypropylene, but the linear pressure between rolls by the embossing roll type thermocompression machine at the time of spot thermocompression bonding is very high. Since the nonwoven fabric was processed at a high level, voids were generated on the surface of the point press bonding part, and the sheath core peeling of the fiber of the point thermocompression bonding part occurred, resulting in a fluffy nonwoven fabric.
[0007]
In general, the nonwoven fabric production by the spunbond method has a high line speed (web moving speed), so that the point thermal compression treatment to the web takes a short time, and the amount of heat supplied to the point thermocompression bonding portion at the time of bonding is insufficient. It has become a trend. When the line speed is high, the same may occur when performing a point thermocompression treatment on a web of short fibers. In the case of sheath-core type composite spunbonded nonwoven fabric, the heat transfer time is short, so even if the temperature of the embossing roll or flat roll is raised, sufficient heat is not transferred to the core component of the composite fiber, and the core component is not easily deformed. Since pressure is applied to the composite fiber in a state, the sheath component and the core component are separated, so-called sheath core peeling occurs. Thereby, in the point thermocompression bonding part, it is in the state where fuzzing occurs easily.
[0008]
As described above, despite the demand for the development of a nonwoven fabric having both a good texture and a fuzz resistance, there has been no nonwoven fabric product that has both a good texture and a fuzz resistance until now. .
[0009]
[Problems to be solved by the invention]
An object of the present invention is to provide a non-woven fabric having a good feeling and excellent fuzz resistance.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the problems of the prior art, the present invention finds that a nonwoven fabric excellent in texture and fluff resistance can be obtained when the following conditions are satisfied, and the present invention is completed. It came to.
[0011]
That is, the present invention has the following configuration.
(1) The thermoplastic resin A and the thermoplastic resin A are composed of a thermoplastic resin B having the same melting point as that of the thermoplastic resin A or a higher melting point than the thermoplastic resin A in a range not exceeding 50 ° C. A non-woven fabric obtained by spot thermocompression bonding of a heat-fusible composite fiber in which at least a part of the fiber surface is continuously formed in the fiber length direction. The thermoplastic resin B portion of the composite fiber has a flattened cross-sectional structure, and the thermoplastic resin A portion of the heat-fusible composite fiber fuses the heat-fusible composite fibers with each other and is flattened. A non-woven fabric characterized in that a film covering the plastic resin B portion is formed, and the film has a structure having a surface porosity of 0 to 20%.
(2) The nonwoven fabric according to (1) above, wherein the heat-fusible conjugate fiber is a sheath-core conjugate fiber having the thermoplastic resin A as a sheath component and the thermoplastic resin B as a core component.
(3) Three of the thermoplastic resin A is low density polyethylene, linear low density polyethylene, high density polyethylene, binary copolymer of propylene and α-olefin other than propylene, and α-olefin other than propylene and propylene. The nonwoven fabric according to (1) or (2) above, which is at least one olefin-based crystalline resin selected from an original copolymer.
(4) At least one propylene selected from thermoplastic resin B selected from a binary copolymer of propylene and an α-olefin other than propylene, a terpolymer of propylene and an α-olefin other than propylene, and polypropylene. The nonwoven fabric according to (1) or (2), which is a crystalline resin.
(5) The nonwoven fabric according to any one of (1) to (4), wherein the nonwoven fabric is a long fiber nonwoven fabric obtained by a spunbond method.
(6) A composite in which the nonwoven fabric according to any one of (1) to (5) above and at least one article selected from nonwoven fabrics other than the nonwoven fabric, films, pulp sheets, knitted fabrics, and woven fabrics are laminated. Non-woven fabric.
(6) An absorbent article using the nonwoven fabric according to any one of (1) to (5) or the composite nonwoven fabric according to (6).
(7) A wiper using the nonwoven fabric according to any one of (1) to (5) or the composite nonwoven fabric according to (6).
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be specifically described.
The nonwoven fabric of the present invention is composed mainly of heat-fusible conjugate fibers, and is integrated by point thermocompression bonding. The heat-fusible conjugate fiber is composed of a thermoplastic resin A and a thermoplastic resin B having the same melting point as the thermoplastic resin A or a higher melting point than the thermoplastic resin A within a range not exceeding 50 ° C. At least a part of the fiber surface is formed of the thermoplastic resin A continuous in the fiber length direction.
As the structure of the heat-fusible conjugate fiber, any of a sheath core type, an eccentric sheath core type, a parallel type, and a sea-island type can be used. Among them, the thermoplastic resin A is a sheath component, and the thermoplastic resin B is a core component. The sheath-core type composite fiber to be used can be particularly preferably used because it has good thermal adhesiveness and a stable thermal adhesive state. In addition, when a sheath core type composite fiber consists of a long fiber, it may be called a sheath core type composite long fiber. In addition, a heat-fusible conjugate fiber having an irregular cross-sectional structure, a split structure, or a hollow structure can be used. The heat-fusible conjugate fiber used in the present invention is usually composed of a combination of two-component thermoplastic resins, but may be a combination of multi-component thermoplastic resins as necessary.
[0013]
As the thermoplastic resin A and the thermoplastic resin B constituting the heat-fusible conjugate fiber used in the present invention, a crystalline thermoplastic resin is used, for example, high density polyethylene, low density polyethylene, linear low Density polyethylene, polypropylene, olefinic crystalline resins such as binary or ternary copolymer of propylene and α-olefin other than propylene, polyamides such as nylon 6, nylon 66, polyethylene terephthalate, polybutylene terephthalate, acid As the component, polyesters such as low-melting point polyester obtained by copolymerizing terephthalic acid and isophthalic acid, and a mixture of the above thermoplastic resins can be used. In some cases, a binary copolymer of propylene and an α-olefin other than propylene, a ternary copolymer of propylene and an α-olefin other than propylene, and polypropylene are collectively referred to as a propylene-based crystalline resin.
[0014]
Examples of combinations of the thermoplastic resin A and the thermoplastic resin B (hereinafter referred to as thermoplastic resin A / thermoplastic resin B) include high density polyethylene / polypropylene, linear low density polyethylene / polypropylene, and low density polyethylene. / Polypropylene, binary copolymer or ternary copolymer of propylene and α-olefin other than propylene / Polypropylene, high density polyethylene / binary copolymer or ternary copolymer of propylene and α-olefin other than propylene , Linear low-density polyethylene / binary copolymer or ternary copolymer of propylene and α-olefin other than propylene, low-density polyethylene / binary copolymer or ternary of propylene and α-olefin other than propylene Copolymer, linear low density polyethylene / high density polyethylene, low density polyethylene / High density polyethylene, various polyethylene / nylon 6, polypropylene / nylon 6, binary copolymer of propylene and α-olefin other than propylene or terpolymer / nylon 6, nylon 6 / nylon 66, nylon 6 / Polyester can be mentioned.
[0015]
Among these, the combination of the thermoplastic resin A and the thermoplastic resin B is a combination of the thermoplastic resin B having the same melting point or a higher melting point in the range not exceeding 50 ° C. than the thermoplastic resin A, Further, a combination of the thermoplastic resins B having the same melting point or a higher melting point in the range not exceeding 30 ° C. than the thermoplastic resin A is more preferable, and the melting point is the same or not exceeding 20 ° C. than the thermoplastic resin A. The combination of the thermoplastic resin B having a high melting point is the best. For applications such as sanitary materials where emphasis is placed on the texture, a combination of polyolefins such as olefin-based crystalline resin / propylene-based crystalline resin is preferred. Specific examples thereof include ethylene / propylene / butene-1 terpolymer / polypropylene, ethylene / propylene binary copolymer / polypropylene, linear low density polyethylene / ethylene / propylene / butene-1 ternary copolymer. Combined, high density polyethylene / ethylene / propylene / butene-1 terpolymer, high density polyethylene / ethylene / propylene binary copolymer, linear low density polyethylene / ethylene / propylene binary copolymer, etc. Can be mentioned. In the present invention, the combination of the thermoplastic resin A and the thermoplastic resin B may be the same type of thermoplastic resin, as long as they have different melting points, but these may be combined. Do not use in combination with plastic resin.
[0016]
The composite ratio of the thermoplastic resin A and the thermoplastic resin B of the heat-fusible composite fiber used in the present invention is an item that can be arbitrarily determined, but the weight ratio of the thermoplastic resin A: the thermoplastic resin B = The range of 20-80: 80-20 is preferable, More preferably, it is 30-70: 70-30. If the amount of the thermoplastic resin A decreases beyond this range, the thermoplastic resin B cannot be sufficiently covered in the point thermocompression bonding part, and it becomes difficult to fill the point thermocompression bonding part, so the adhesive strength of the point thermocompression bonding part is weak. It becomes easy to fluff. On the other hand, if the thermoplastic resin B decreases beyond this range, the spinnability may be lowered, or the strength of the nonwoven fabric may be reduced, which may make it impractical for industrial use.
[0017]
The thermoplastic resin A and the thermoplastic resin B used in the present invention may contain a stabilizer, a flame retardant, an antibacterial agent, a colorant, a lubricant, a hydrophilic agent, and the like as long as the effects of the present invention are not hindered. Good.
[0018]
In the present invention, short fibers such as staple fibers and meltblown fibers, and long fibers such as tows and spunbonds can be used as the heat-fusible conjugate fibers. The nonwoven fabric used in the present invention is usually made into a web and then subjected to point thermocompression bonding with an embossing roll type thermocompression bonding machine or the like to obtain a nonwoven fabric. Examples of the web production method used here include a card method, a melt blow method, and the like when the raw material fibers are short fibers, and a tow opening method and a spunbond when the raw material fibers are long fibers. Law. In addition, as a production method using these webs as a nonwoven fabric, it is necessary to perform point thermocompression bonding with an embossing roll type thermocompression bonding machine or the like, but besides this, thermal bonding (through air method), needle punch method, span A lace method or the like may be used in combination. For example, a nonwoven fabric obtained by a spunbond method may be further processed by a needle punch method or a spunlace method. Among these, the spunbond method, in which the raw fiber production, the web formation, and the nonwoven fabric production can be performed in-line, is particularly preferable because it is excellent in productivity.
In the spunbond method, in general, after the fineness is reduced by roll take-up or air soccer take-up in the spinning process, the web deposited on the net conveyor is transported to an embossing roll type thermocompression bonding machine and heated embossing roll (concave / convex roll) And a flat roll (smooth roll) are passed between the long fibers and subjected to point thermocompression bonding to produce a nonwoven fabric on a continuous production line (inline). In this manufacturing method, since a nonwoven fabric can be manufactured in-line from a thermoplastic resin, productivity is very high compared with the manufacturing method of the nonwoven fabric using a short fiber. In addition, since the nonwoven fabric is composed of long fibers, it has excellent physical properties such as increased strength of the nonwoven fabric when the nonwoven fabric is produced under the same nonwoven fabric processing conditions as compared to the nonwoven fabric composed of short fibers. is doing.
[0019]
The nonwoven fabric production method will be described below by the spunbond method.
Using a spunbond spinning machine, separately melted thermoplastic resin A and thermoplastic resin B were spun in a composite form from a composite spinneret, and these were pulled and drawn using a high-speed air stream of air soccer. Disperse the fusible composite fiber group directly or with a fiber-spreading device with a swinging mechanism or charging device, and then deposit it on a moving net conveyor to form a sheet-like web. Use non-woven fabric.
[0020]
As a device for performing the spot thermocompression bonding, all devices capable of applying various engraving marks to the nonwoven fabric surface can be used. These devices can be used not only independently but also in combination of a plurality. Good. Specific examples of the apparatus include an emboss roll type thermocompression bonding machine.
When using an embossing roll type thermocompression bonding machine, the texture or the like may be affected by the ratio of the total convex area (embossing area ratio) to the area of the embossing roll convexity tip (convex area) or the outer periphery of the embossing roll (roll surface area). Change. In general, when the convex area or the embossed area ratio is large, the resulting nonwoven fabric has excellent fluff resistance but has low texture and bulkiness. On the contrary, when the convex area and the embossed area ratio are small, the obtained nonwoven fabric is improved in texture, bulkiness and the like, but has low fuzz resistance. In the present invention, the embossed area ratio is 5 to 30%, and the convex area is 0.15 to 15 mm.2The embossing roll that becomes can be preferably used. However, the embossed area ratio and the convex area do not limit the present invention.
[0021]
Next, the coated spot thermocompression bonding part of the present invention will be described with reference to the drawings.
By heating and pressurizing with an embossing roll type thermocompression bonding machine at a temperature equal to or higher than the softening point of the thermoplastic resin A and lower than the melting point of the thermoplastic resin B, the thermoplastic resin B does not melt and the thermoplastic resin A softens or A point thermocompression bonding part is formed by deforming while melting and bonding with the adjacent heat-fusible conjugate fiber.
As processing conditions for obtaining the nonwoven fabric of the present invention, the heat treatment temperature is in the range from the softening point of the thermoplastic resin A to the melting point and below, and at the same time, the linear pressure of the embossing roll thermocompression bonding machine is set to an appropriate value. The thermoplastic resin B portion of the heat-fusible conjugate fiber is flattened, and the thermoplastic resin A portion covering the thermoplastic resin B portion is difficult to peel off from the thermoplastic resin B portion (FIG. 1). Of 1) is formed. In particular, when the web moving speed (line speed) is high, the heat treatment temperature is in the range from (melting point−5) ° C. to (melting point + 10) ° C. of the thermoplastic resin A. The linear pressure is 40 N / mm or more and less than 120 N / mm, more preferably 60 N / mm or more and 90 N / mm or less, and the thermoplastic resin A, the thermoplastic resin B to be used, the line speed, and the above conditions are appropriately combined. By processing, it is possible to produce a good point thermocompression bonding part. The line speed is usually in the range of 30 to 400 m / min.
Moreover, the flatness calculated | required from the thickness of the stress direction at the time of the point thermo-compression of the thermoplastic resin B part of the point thermocompression bonding part with respect to the thickness of the thermoplastic resin B part in the fiber in a non-point compression bonding part is 60 to 90%. When it is, there is almost no peeling and the trouble that the thickness of the thermoplastic resin A part which coat | covers the thermoplastic resin B part becomes thin hardly arises, and a favorable point thermocompression bonding part can be formed. Even if the heat treatment temperature of the embossing roll type thermocompression machine for the web is significantly lower than the (melting point−5) ° C. of the thermoplastic resin A, the embossing roll type thermocompression machine is pressurized with the thermoplastic resin. The point A is deformed while softening and the adjacent heat-fusible conjugate fibers are joined together to form a point thermocompression bonding part. The thermoplastic resin B part in the point thermocompression bonding part is Since only slight deformation occurs due to the pressure, the degree of deformation (flattening) is smaller than that of the thermoplastic resin A portion, and the thickness of the thermoplastic resin A portion covering the thermoplastic resin B portion is reduced, so that the thermoplasticity Peeling of the resin B portion is observed.
[0022]
In the present invention, the thermoplastic resin A and the thermoplastic resin B having the same melting point as that of the thermoplastic resin A or having a higher melting point than the thermoplastic resin A in a range not exceeding 50 ° C. are used. When the melting point of the thermoplastic resin B is higher than the melting point of the thermoplastic resin A by more than 50 ° C., the thermoplastic resin B portion can be sufficiently flattened only by pressurizing with an embossing roll type thermocompression bonding machine. Therefore, the web is heat-treated at a temperature near the melting point of the thermoplastic resin B. However, deformation / diffusion due to melting of the thermoplastic resin A portion has advanced remarkably, and the thermoplastic resin A portion that originally covers the thermoplastic resin B portion of the heat-fusible conjugate fiber is replaced with the thermoplastic resin B portion. Or the through-hole in the point thermocompression bonding part (2 in FIG. 2), the molten thermoplastic resin A sinks into the point thermocompression bonding part, and the thickness covering the thermoplastic resin B part is reduced. In addition, a depression or the like is generated in the point thermocompression bonding part, and problems such as insufficient filling of the point thermocompression bonding part occur. For this reason, in the case of a combination in which the melting point of the thermoplastic resin B is higher than the melting point of the thermoplastic resin A by more than 50 ° C., it is difficult to form a good point thermocompression bonding part.
[0023]
Holes such as through holes and depressions can be confirmed by surface observation with a scanning electron microscope or the like. Here, the area ratio on the surface of the point thermal compression bonding part such as through-holes and depressions with respect to the area of the point thermal compression bonding part is called the surface porosity (%), and the surface porosity of the actually obtained nonwoven fabric is measured. When it does, it calculates | requires by the ratio with the area of the hole on the surface of a point thermocompression bonding part with respect to the area of a point thermocompression bonding part. When this surface porosity is high, the point thermocompression bonding portion is sufficiently filled with the thermoplastic resin A, and there are few through-holes, dents, etc., and the bending stress is smaller than when the surface porosity is low. Tend to be soft. However, if the surface porosity is high, the fiber fixing force, the so-called adhesive strength, becomes weak, so that the fiber moves from the non-spot thermocompression bonding part due to friction, or the fiber peels off from the point thermocompression bonding part due to twisting force. Will occur and the fuzz resistance will be significantly reduced.
[0024]
The point thermocompression bonding part in the nonwoven fabric of the present invention is sufficiently deformed and flattened in the thermoplastic resin B part together with the melt deformation of the thermoplastic resin A part, so that the surface porosity is reduced and becomes a coating state. This significantly improves the fuzz resistance of the nonwoven fabric. In order to improve the fuzz resistance, the surface porosity in the whole point thermocompression bonding portion of the nonwoven fabric needs to be 0 to 20%, and more preferably 10% or less. This needs to satisfy this value on both the front and back surfaces of the nonwoven fabric.
Of the point thermal compression bonded parts in the whole nonwoven fabric, there may be a part where the surface porosity exceeds 20%. However, when the number of such point thermal pressure bonded parts is increased, the fluff resistance is partially reduced. Therefore, it is desirable that the surface porosity of one point thermocompression bonding part is 30% or less. Thus, by controlling the surface porosity of the point thermocompression bonding part, it is possible to obtain a non-woven fabric having excellent fuzz resistance, and also for the texture, the above-described resin configuration, embossed area ratio, etc. are selected. It will be excellent.
[0025]
In order to form the point thermocompression bonding part in the nonwoven fabric of the present invention, it is achieved by appropriately selecting the point thermocompression processing conditions such as the embossed area ratio, linear pressure, processing temperature, processing speed, etc. The combination of the thermoplastic resin A and the thermoplastic resin B has the same melting point or a range not exceeding 50 ° C, preferably the same melting point or not exceeding 30 ° C, more preferably the same melting point, Alternatively, it is preferable that the temperature does not exceed 20 ° C. because the formation of a film-coated point thermocompression bonding portion is facilitated. Moreover, when it is difficult to form a film, the film formation can be promoted by preheating the web immediately before the point thermocompression bonding. As the preheating method, for example, a method using a processing machine such as a through-air type heater or a far infrared heater can be mentioned. In the preheating stage, by preheating under a processing condition in which the thermoplastic resin A does not melt, A nonwoven fabric having excellent fuzz resistance can be obtained.
In addition, the manufacturing conditions for obtaining the nonwoven fabric of the present invention may differ in the combination of preferable conditions depending on the type of production equipment, and the manufacturing conditions applicable to a specific manufacturing equipment may not be directly applicable to other manufacturing equipment. . The novel point and characteristic of the nonwoven fabric of the present invention are that the point thermocompression bonding portion of the present invention is in a coated state having the surface structure described above and a flattened state of the thermoplastic resin B component.
[0026]
In the nonwoven fabric of the present invention, the fineness of the heat-fusible conjugate fiber that can be used is not particularly limited, and is required for civil engineering applications because it requires a very fine fineness like a battery separator. Applicable to fibers with a wide range of fineness, up to thick ones. For example, a fineness of 1 dtex or less is preferable for battery separators, etc., when used as sanitary materials such as diapers and sanitary products, about 0.2 to 6 dtex, and when used as packaging materials or agricultural products, about 1 to 100 dtex, In general civil engineering applications, about 1 to 300 dtex is preferably used. Among these uses, when a spunbonded nonwoven fabric is used, those having a fineness of 0.1 to 10 dtex are preferably used.
[0027]
The range of the basis weight in the nonwoven fabric of the present invention is not particularly limited. However, in consideration of the manufacture of a nonwoven fabric with a uniform basis weight, the ease of the spot thermocompression treatment, and the formation of the coating structure of the spot thermocompression bonding portion. 3 to 300 g / m2Can be preferably used. In spunbond nonwoven fabric, 5 to 100 g / m2Is preferably used. Among these, considering the texture and strength of the resulting nonwoven fabric, 5 to 50 g / m2Is preferred. Especially in sanitary materials, the emphasis is placed on the texture, so 5-30 g / m2Is preferred.
[0028]
In the nonwoven fabric of the present invention, the heat-fusible conjugate fiber and other fibers other than this are mixed to the web as long as the effect thereof is not hindered. Obtainable.
As the fibers that can be mixed, a heat-fusible conjugate fiber made of a thermoplastic resin different from the main heat-fusible conjugate fiber or a group of heat-fusible conjugate fibers made of a plurality of heat-fusible conjugate fibers can be preferably used. . In addition, various single resin fibers may be used as long as the effects of the nonwoven fabric of the present invention are not hindered.
[0029]
As a mixing method, the main heat-fusible conjugate fiber and other fibers are mixed by the card method or the like, or the main heat-fusible conjugate fiber and other fibers are separately made into a web, these are laminated, and the needle Various mixing methods can be used, such as a method of mixing by continuously penetrating with a punch or the like.
[0030]
In the nonwoven fabric of the present invention, other nonwoven fabrics, films, pulp sheets, knitted fabrics, woven fabrics, and the like can be laminated within a range that does not impede the effect, thereby forming a composite nonwoven fabric.
Other nonwoven fabrics, films, pulp sheets, knitted fabrics, woven fabrics, and the like may be laminated alone or in combination. Furthermore, there is no restriction | limiting in the raw material, Although a various thing can be utilized, It is preferable that the raw material which can be adhere | attached with the nonwoven fabric used as a base, or the raw material which can be adhere | attached is included.
[0031]
As a method of laminating, it is selected from other non-woven fabrics, films, pulp sheets, knitted fabrics, woven fabrics and the like on a web obtained by various production methods such as the spunbond method, airlaid method, card method and the like. And a method of laminating the nonwoven fabric of the present invention and other nonwoven fabrics, films, pulp sheets, knitted fabrics and woven fabrics. As a bonding method at the time of lamination, various methods such as a hot melt adhesive and a point thermocompression bonding process, which are suitable depending on the kind of materials to be laminated and the use, are selected.
[0032]
The nonwoven fabric and composite nonwoven fabric of the present invention can be used as a material for absorbent articles. In particular, it can be preferably used as sanitary materials such as baby diapers and adult paper diapers, napkins, sweat-absorbing pads, sebum removing sheet materials, and towels. In addition, it can also be used as a paper sheet cover, toilet seat cover, clothes heat insulating material, mold base material, etc. for airplanes and passenger vehicles.
[0033]
Furthermore, the nonwoven fabric and the composite nonwoven fabric of the present invention can be preferably used as a wiper material. As an example, there are household disposable wipes, glasses wipes, floor wipes, tatami wipes, and the like.
[0034]
The non-woven fabric and composite non-woven fabric of the present invention are not limited to the above-mentioned uses, but include agricultural materials such as solid sheets, herbicidal sheets, fruit protection bags, heat insulation sheets, air filters, oil adsorbents, construction materials, and civil engineering materials. It can also be used as a material for medical materials such as industrial materials such as surgical gowns, masks and hats.
[0035]
Furthermore, the nonwoven fabric and composite nonwoven fabric of the present invention can be used in combination with many other materials such as nets, fabrics, civil engineering sheets, metals, wood, glass, plastic moldings, ceramics, paper, hairs and the like.
[0036]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not limited to this.
[0037]
(Melting point of thermoplastic resin)
According to JIS K7122, the sample was measured with a differential scanning thermal analyzer under the conditions of a sample of 5 mg and a heating rate of 10 ° C./min.
[0038]
(Weight)
After cutting out a 20 cm × 20 cm size from five arbitrary locations of the nonwoven fabric, each weight was measured with an electronic balance, and the average value was 1 m.2The weight per unit weight (g / m2).
[0039]
(Tensile test)
A test piece having a width of 2.5 cm and a length of 20 cm is cut out from three arbitrary positions of the nonwoven fabric in the longitudinal direction (MD) and the transverse direction (CD) of the nonwoven fabric, and a grasping length is 10 cm using a Tensilon type tensile tester. The test was conducted three times in each direction under the conditions of a tensile speed of 10 cm / min, and the maximum strength (N / 2.5 cm) and the elongation at the maximum strength (%) were measured from the obtained strength-elongation curve. The average value was obtained.
[0040]
(Tear test)
A test piece with a width of 4.0 cm and a length of 20 cm is cut from any three locations of the nonwoven fabric in the machine direction (MD) of the nonwoven fabric. Using a machine, the test was conducted three times in each direction under the conditions of a grasping length of 10 cm and a tensile speed of 20 cm / min, and the maximum load (N) indicated when the nonwoven fabric was torn was measured.
[0041]
(Feeling evaluation)
Softness was judged by sensory evaluation by five monitors. The softness was scored in the range of 0 to 3 points, and the total score of each person was displayed in the following range.
◎: 12-15 points
○: 8-11 points
Δ: 4 to 7 points
×: 0 to 3 points
[0042]
(Water resistance measurement)
The water resistance of the nonwoven fabric was measured with a water resistance tester according to JIS L 1092.
[0043]
(Evaluation of fluff resistance)
Below, the method for evaluating the fluff resistance (hardness of fluffing) of the obtained nonwoven fabric is described. This evaluation method was measured according to JIS P 8136.
(1) Prepare four non-woven fabric samples of 4.5 cm × 20 cm in both MD and CD.
(2) A double-sided tape is applied to both ends in the longitudinal direction of these samples. At this time, two embossing roll side friction samples and two flat roll side friction samples are prepared for both MD and CD.
(3) A sample is attached to the sample table of the abrasion resistance tester, and a No. 3 cloth (4 cm × 5 cm) is attached to the friction element.
(4) Place a friction element (500 g) on the nonwoven fabric, set the reciprocating count setting value to 150 times, press the count reset button, and press the start button.
{Circle around (5)} The surface roughness of the nonwoven fabric after rubbing (generation of fluff and fluff) is evaluated sensuously.
Here, the following sensory indices were defined as criteria.
◎: Neither fluff nor fluff is observed
○: Some fluff and fluff are observed
Δ: Relatively many small pills and fluff are observed
X: A relatively large fluff or a relatively large fluff is observed
XX: Multiple large fuzz balls and a large amount of fluff are observed
[0044]
(Surface porosity)
A method for measuring the surface porosity in the point thermocompression bonding portion of the obtained nonwoven fabric is described below.
{Circle around (1)} Observe one side of the nonwoven fabric with a scanning electron microscope, set the magnification so that the entire point of the point thermocompression bonding part fits on the screen of the scanning electron microscope, and photograph any 20 points.
{Circle over (2)} In each photograph of the spot heat compression part photographed in (1), the area of one point of the point heat pressure bonding part is measured. The total area of the 20 point thermocompression bonding parts is a.
(3) Next, in each photograph of the spot thermocompression bonding photographed in (1), the area of the surface hole portion is measured. Then, the total surface pore area of the 20 point thermocompression bonding parts is defined as b.
(4) The surface porosity c is calculated from the following formula.
Surface porosity c (%) of point thermocompression bonding part = (b / a) × 100
(5) The other nonwoven fabric surface is also measured according to procedures (1) to (4), and the value with the larger surface porosity c is defined as the surface porosity c of the nonwoven fabric.
[0045]
(Evaluation of coating state of spot thermocompression bonding part)
In the fuzz resistance test, there are cases where the fibers peeled off from the point-heat-bonded part that is not sufficiently coated become fluff and fluff, and the fibers cut around the point-heat-bonded part may become fluff and fluff. For this reason, it was decided to evaluate the bonding strength of the point thermocompression bonding part, that is, the coating state, with the number of fibers peeled from the point thermocompression bonding part. The method is described below.
{Circle around (1)} The obtained nonwoven fabric is rubbed against the nonwoven fabric in the same manner as in the fuzzing resistance evaluation test (load 500 g, number of friction times 150).
(2) One point of the thermocompression bonding part at an angle of 60 ° and its surroundings are the screen of the scanning electron microscope with respect to the 10 thermocompression bonding parts arbitrarily selected by the scanning electron microscope. Shoot at a magnification that fits.
(3) Count the number of fibers peeled off from the point thermal compression bonded part due to friction from each photograph of the point thermal compression bonded part photographed in (2). And let the total number of the 10 point thermocompression bonding parts be n. Here, the peeled fiber includes both those completely peeled off from the point thermocompression bonding part and those peeled off halfway.
Here, the coating state was determined for the number of peeled fibers according to the following evaluation criteria. In addition, the film formation state was made favorable in O or more.
A: n = 10 or less
○: n = 11-20
Δ: n = 21-50
X: n = 51 or more
[0046]
(Flat ratio of core component)
A method for measuring the flatness of the core component of the point thermocompression bonding part is described below.
(1) Using a scanning electron microscope, photograph any 10 points on the cross section of the spot thermocompression bonding section.
{Circle around (2)} Using the same device, photograph any 10 points of the cross section of the fiber in the non-thermocompression bonding section at the same magnification as {circle over (1)}.
(3) The thickness of the core component in the stress direction of the point thermal compression bonding is measured from the photograph of the point thermal compression bonding photographed in (1). And let d be the average thickness of 10 core components in the point thermocompression bonding part.
(4) The thickness of the core component is measured from the cross-sectional photograph of the fiber in the astigmatic thermocompression bonding section taken in (2). And let e be the average thickness of 10 core components in the astigmatic thermocompression bonding part.
(5) The flatness f of the core component is calculated from the following formula. The larger f is, the flatter it is.
Flatness ratio f (%) of core component = (1− (d / e)) × 100
[0047]
(Wiping ability evaluation)
Wiping ability evaluation was performed using the nonwoven fabric and composite nonwoven fabric of the present invention.
The method is described below.
[0048]
(Human hair collection test)
(1) A nonwoven fabric sample of 20 cm × 20 cm in size is placed on Kanakin No. 3 and friction is applied 10 times in the MD direction of the nonwoven fabric and 10 times in the CD direction with a load of 200 g to make the entire surface of the nonwoven fabric fluffy. .
(2) Take 12 pieces of human hair having a length of 10 cm on a metal desk and spray them so that they are evenly distributed on the desk.
(3) Lightly wipe the nonwoven fabric sample prepared in (1) three times in a circle.
{Circle around (4)} After wiping, the nonwoven fabric sample is suspended vertically for 1 minute to allow natural hair of incompletely collected human hair to fall off.
(5) Count the number of human hair collected in the nonwoven fabric sample. The wiping property is evaluated based on the number of collected items based on the following classification.
○: Collect 10 or more
×: Collection of 9 or less
[0049]
(Wheat flour wiping test)
(1) A nonwoven fabric sample of 20 cm × 20 cm in size is placed on Kanakin No. 3 and friction is applied 10 times in the MD direction of the nonwoven fabric and 10 times in the CD direction with a load of 200 g to make the entire surface of the nonwoven fabric fluffy. .
(2) Take 0.8 g of commercially available flour on a metal desk and spread it so that they are evenly distributed.
(3) Lightly wipe the nonwoven fabric sample prepared in (1) three times in a circle.
{Circle around (4)} After wiping, the nonwoven fabric sample is suspended vertically for 1 minute to allow the incompletely collected flour to fall off naturally.
(5) Measure the weight of the flour remaining on the desk and calculate the wiping rate.
Wiping rate (%) = {0.8− (weight of remaining flour)} ÷ 0.8 × 100
(6) The wiping property is evaluated by the following judgment.
○: Wiping rate of 75% or more
X: Wiping rate less than 75%
[0050]
Example 1
The spunbond method was selected as a method for obtaining the nonwoven fabric, and as this basic device system, a spinning device including a sheath core type composite spinneret with a hole diameter of 0.4 mm, a high-speed airflow traction device, a net conveyor type web collecting device, an open A fiber device was used. Moreover, the embossing roll type thermocompression bonding machine which consists of a heated embossing roll and a flat roll was used as an apparatus of a point thermocompression bonding process.
As the thermoplastic resin A, a linear low density polyethylene having a melting point of 122 ° C. and MFR (190 ° C., 21.18N) of 20 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 132 ° C. and MFR as the core component. Spinning was performed at a ratio of sheath / core ratio of 50/50 (weight ratio) using an ethylene / propylene / butene-1 ternary copolymer having (230 ° C., 21.18 N) of 42 g / min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type embossing roll having an embossed area ratio of 16% and a rhombus embossing shape, and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 118 ° C. to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were heat-sealed. Table 1 shows the physical property values and evaluation results of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has a good texture and excellent fuzz resistance.
[0051]
Example 2
A nonwoven fabric was produced using the same spunbond nonwoven fabric production apparatus as in Example 1.
As the thermoplastic resin A, a high-density polyethylene having a melting point of 131 ° C. and an MFR (190 ° C., 21.18N) of 26 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 143 ° C. and MFR (230 ° C.) as the core component. 21.18N) was spun at a ratio of 50/50 (weight ratio) in the sheath-core ratio using an ethylene / propylene / butene-1 terpolymer having 39 g / 10 min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type embossing roll having an embossed area ratio of 16% and a rhombus embossing shape, and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 127 ° C. to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonded part were thermally fused. Table 1 shows the physical property values and evaluation results of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has a good texture and excellent fuzz resistance.
[0052]
  Example 3(Reference Example 1)
  A nonwoven fabric was produced using the same spunbond nonwoven fabric production apparatus as in Example 1. As the thermoplastic resin A, high-density polyethylene having a melting point of 131 ° C. and MFR (190 ° C., 21.18 N) of 26 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 151 ° C. and MFR (230 ° C.) as the core component. An ethylene / propylene binary copolymer having a ratio of 21.18N of 43 g / 10 min was spun at a sheath / core ratio of 50/50 (weight ratio). While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web. Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type thermocompression machine comprising an embossing area ratio of 16%, an embossing shape of rhombus, and a flat roll, an embossing roll and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 130 ° C. to obtain a non-woven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were heat-sealed. Table 1 shows the physical property values and evaluation results of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has a good texture and excellent fuzz resistance.
[0053]
Example 4
A nonwoven fabric was produced using the same spunbond nonwoven fabric production apparatus as in Example 1.
As the thermoplastic resin A, an ethylene / propylene binary copolymer having a melting point of 151 ° C. for the sheath component and MFR (230 ° C., 21.18N) of 43 g / 10 min is used, and as the thermoplastic resin B, the melting point is 162 ° C. for the core component. , MFR (230 ° C., 21.18 N) was spun at a ratio of sheath core ratio of 50/50 (weight ratio) using polypropylene of 40 g / 10 min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type embossing roll having an embossed area ratio of 16% and a rhombus embossing shape, and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 148 ° C. to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were heat-sealed. Table 1 shows the physical property values and evaluation results of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has a good texture and excellent fuzz resistance.
[0054]
Example 5
A nonwoven fabric was produced using the same spunbond nonwoven fabric production apparatus as in Example 1.
As the thermoplastic resin A, high-density polyethylene having a melting point of 131 ° C. and MFR (190 ° C., 21.18 N) of 26 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 132 ° C. and MFR (230 ° C.) as the core component. 21.18N) was spun at a ratio of sheath / core ratio of 50/50 (weight ratio) using an ethylene / propylene / butene-1 terpolymer having 42 g / 10 min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type thermocompression machine comprising an embossing area ratio of 16%, an embossing shape of rhombus, and a flat roll, an embossing roll and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 127 ° C. to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonded part were thermally fused. Table 1 shows the physical property values and evaluation results of this nonwoven fabric. From Table 1, it can be seen that this nonwoven fabric has a good texture and excellent fuzz resistance.
[0055]
Comparative Example 1
Using the same apparatus and the same thermoplastic resin as Example 1, the nonwoven fabric was manufactured on the same conditions except the conditions of the spot thermocompression treatment.
The sheath core-type composite long fiber web obtained in Example 1 was subjected to a linear pressure of 60 N / mm using an embossing roll type thermocompression bonding machine comprising an embossing area ratio of 16%, an embossing shape having a rhombus shape, and a flat roll. mm, an embossing roll, and a flat roll temperature were 108 degreeC, the point thermocompression bonding process was performed, and the nonwoven fabric in which the heat-fusible conjugate fiber of this point thermocompression bonding part was heat-seal | fused was obtained. Table 2 shows the physical property values and evaluation results of this nonwoven fabric.
From Table 2, it can be seen that this nonwoven fabric is a nonwoven fabric that feels good, but easily fluffs. This is thought to be because the core component could not be coated due to insufficient melting of the sheath component, and the point thermocompression bonding portion was not coated, because the temperature of the point thermocompression bonding was much lower than the melting point of the low melting point resin that is the sheath component. It is done. In addition, it is considered that flattening of the core component by the hot embossing roll was not promoted at this processing temperature.
[0056]
Comparative Example 2
Using the same apparatus and the same thermoplastic resin as Example 2, the nonwoven fabric was manufactured on the same conditions except the conditions of the spot thermocompression treatment.
The sheath core-type composite long fiber web obtained in Example 2 was subjected to a linear pressure of 120 N / mm using an embossing roll type thermocompression bonding machine comprising an embossing area ratio of 16%, an embossing shape having a rhombus shape, and a flat roll. mm, an embossing roll, and a flat roll temperature were 127 degreeC, and the point thermocompression bonding process was performed, and the nonwoven fabric in which the heat-fusible conjugate fiber of this point thermocompression bonding part was heat-seal | fused was obtained. Table 2 shows the physical property values and evaluation results of this nonwoven fabric.
From Table 2, it can be seen that this nonwoven fabric lacks the texture and is prone to fluffing. This is because the thermoplastic resin B portion, which is the core component, is flattened, but because the linear pressure of the point thermocompression bonding is too high, many vacancies are generated on the surface of the point thermocompression bonding portion due to the sheath core peeling. This is probably because the thermocompression bonding part was not sufficiently coated.
[0057]
Comparative Example 3
Using the same apparatus and the same thermoplastic resin as Example 3, the nonwoven fabric was manufactured on the same conditions except the conditions of the spot thermocompression-bonding process.
The sheath core type composite long fiber web obtained in Example 3 was subjected to a line pressure of 60 N / mm using an embossing roll type thermocompression bonding machine comprising an embossing area ratio of 16%, an embossing shape having a rhombus shape, and a flat roll. mm, an embossing roll, and a flat roll temperature was 142 ° C., and a point thermocompression treatment was performed to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were heat-sealed. Table 2 shows the physical property values and evaluation results of this nonwoven fabric.
From Table 2, it can be seen that this nonwoven fabric is excellent in fuzz resistance but lacks the texture. Moreover, the nonwoven fabric wound around the embossing roll at the time of manufacture, and there was a problem in productivity. This is presumably because the melted thermoplastic resin A adhered to the embossing roll because the temperature of the point thermocompression bonding was too higher than the melting point of the thermoplastic resin A as the sheath component.
[0058]
Comparative Example 4
The spunbond method was selected as a method for obtaining the nonwoven fabric, and as this basic equipment system, a spinning device including a single-component spinneret with a hole diameter of 0.4 mm, a high-speed airflow traction device, a net conveyor type web collecting device, an open A fiber device was used. Moreover, the embossing roll type thermocompression bonding machine which consists of an embossing roll and a flat roll was used as an apparatus of a point thermocompression bonding process.
As a thermoplastic resin, spinning was performed using a polypropylene having a melting point of 162 ° C. and MFR (230 ° C., 21.18 N) of 40 g / 10 min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a polypropylene long fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a polypropylene long fiber web.
Using this embossed roll type thermocompression bonding machine, the embossing roll and the flat roll temperature are obtained by using an embossing roll type thermocompression machine comprising an embossing area ratio of 16%, embossing shape rhombus embossing roll, and flat roll. Was subjected to a point thermocompression treatment under the condition of 140 ° C. to obtain a non-woven fabric in which the polypropylene fibers of the point thermocompression bonded portion were thermally fused. Table 2 shows the physical property values and evaluation results of this nonwoven fabric.
From Table 2, it can be seen that this nonwoven fabric is excellent in fuzz resistance but lacks the texture.
[0059]
Comparative Example 5
A nonwoven fabric was produced using the same spunbond nonwoven fabric production apparatus as in Example 1.
A high-density polyethylene having a melting point of 131 ° C. and MFR (190 ° C., 21.18N) of 26 g / 10 min is used as the sheath component, and a melting point of 254 ° C. and an intrinsic viscosity (IV value, phenol: tetrachloroethane = 1: 1). Using a polyethylene terephthalate having a ratio of 0.72 (measured at 20 ° C. in a mixed solvent of No. 1), spinning was performed at a sheath / core ratio of 50/50 (weight ratio). While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber which is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting device to form a sheath-core type composite continuous fiber web.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type embossing roll having an embossed area ratio of 16% and a rhombus embossing shape, and a flat roll. A point thermocompression treatment was performed under the condition of a temperature of 128 ° C. to obtain a nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were thermally fused. In the point thermocompression bonding portion of this nonwoven fabric, the high melting point resin was not flattened, and the film was not good. Moreover, the physical property value and evaluation result of a nonwoven fabric are shown in Table 2.
From Table 2, it can be seen that this nonwoven fabric lacks the texture and is inferior in fluff resistance.
[0060]
Example 6
The spunbond method and the melt blow method are selected as methods for obtaining the nonwoven fabric. As the basic device system, the spunbond method includes a spinning device including a sheath core type composite spinneret having a hole diameter of 0.4 mm, a high-speed airflow traction device, an open device. In the fiber apparatus and the melt-blowing method, a net conveyor type web collecting apparatus was used as a spinning apparatus including a sheath core type composite spinneret having a hole diameter of 0.2 mm and a common apparatus. Moreover, the embossing roll type thermocompression bonding machine which consists of an embossing roll and a flat roll was used as an apparatus of a point thermocompression bonding process.
First, the apparatus was set so that the heat-fusible composite web obtained by the melt blowing method was laminated on the heat-fusible composite web obtained by the spunbond method. Note that the thermoplastic resin A and the thermoplastic resin B used in Example 1 were used for both the spunbond method and the melt blow method.
First, a heat-adhesive long fiber composite web, which is a heat-fusible composite fiber, was produced by a spunbond method.
As the thermoplastic resin A, a linear low density polyethylene having a melting point of 122 ° C. and MFR (190 ° C., 21.18N) of 20 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 132 ° C. and MFR as the core component. Spinning was performed at a ratio of sheath / core ratio of 50/50 (weight ratio) using an ethylene / propylene / butene-1 ternary copolymer having (230 ° C., 21.18 N) of 42 g / min. While cooling this, it was pulled by a high-speed airflow pulling device to obtain a sheath-core type composite long fiber that is a heat-fusible composite fiber having a fineness of 2.2 dtex. Next, this was sprayed while being electrically opened on a net conveyor type web collecting apparatus to form a sheath-core type composite continuous fiber web.
Next, a heat-adhesive composite long fiber web is prepared by the melt blow method, and is laminated on the heat-adhesive composite long fiber web obtained by the spunbond method.
As the thermoplastic resin A, a linear low density polyethylene having a melting point of 122 ° C. and MFR (190 ° C., 21.18N) of 20 g / 10 min is used as the sheath component, and as the thermoplastic resin B, the melting point is 132 ° C. and MFR as the core component. Spinning was performed at a ratio of sheath / core ratio of 50/50 (weight ratio) using an ethylene / propylene / butene-1 terpolymer having (230 ° C., 21.18N) of 42 g / min. Heat bonding at 380 ° C. is ejected from both sides of the discharge hole at a pressure of 0.8 MPa, the molten resin is made finer, and then this is bonded by the spunbond method on the net conveyor type web collecting device. The composite composite long fiber web was sprayed and laminated. The average fiber diameter of the composite continuous fiber obtained by the melt blow method was 5 μm.
In addition, the basis weight of the spunbond nonwoven fabric and the melt blown nonwoven fabric is 10.3 g / m, respectively.28.8 g / m2Met.
Using this embossed roll type thermocompression bonding machine, the sheath core type composite continuous fiber web is made of an embossing roll type embossing roll having an embossed area ratio of 16% and a rhombus embossing shape, and a flat roll. Point thermal compression treatment was performed under the condition of a temperature of 118 ° C. to obtain a composite nonwoven fabric in which the heat-fusible conjugate fibers of the point thermocompression bonding part were thermally fused. Table 3 shows the physical property values and evaluation results of this composite nonwoven fabric.
From Table 3, it can be seen that this composite nonwoven fabric has a good texture and excellent fuzz resistance.
[0061]
Examples 7-10
The back sheet of a commercially available paper diaper was removed, the nonwoven fabric obtained in Example 1 in Example 7, the nonwoven fabric obtained in Example 2 in Example 8, and the nonwoven fabric obtained in Example 3 in Example 9. 10 is an example6The composite nonwoven fabric obtained in 1 was attached. In Example 9, the spunbond nonwoven fabric was set so that the surface was the front. When these paper diapers were compared with the original paper diapers, the same or better texture and texture, and better fuzz resistance were observed.
Therefore, it turned out that the nonwoven fabric and composite nonwoven fabric of this invention can be used conveniently for absorbent articles, such as a paper diaper.
[0062]
Example 11, Comparative Example 6
The side gathers of commercially available paper diapers were removed, and Example 11 was an example.6In Comparative Example 6, the nonwoven fabric obtained in Comparative Example 1 was attached. In Example 11, side gathers were formed by folding so that the spunbond nonwoven fabric surface would be the front. The side gathers of the disposable diaper of Example 11 had a high water resistance and no leakage of urine at the time of wearing, and were good with little fluffing after wearing. On the other hand, in the side gathers of the disposable diaper of Comparative Example 6, although there was no urine leakage at the time of wearing, a lot of fluffing after wearing was observed.
Therefore, the composite of the present inventionConversionIt turned out that a nonwoven fabric can be used conveniently for absorbent articles, such as a paper diaper.
[0063]
Examples 12-15
In Example 12, the nonwoven fabric obtained in Example 1, in Example 13, the nonwoven fabric obtained in Example 2, in Example 14, the nonwoven fabric obtained in Example 3, and in Example 15, the composite obtained in Example 6 The above-described human hair collection test and flour wiping test were conducted using the modified nonwoven fabric. The results are shown in Table 4.
All human hair was collected in the nonwoven fabric and composite nonwoven fabric of the present invention, and the evaluation was good. In addition, the flour wiping rate was also good, indicating good wiping performance.
Therefore, it turned out that the nonwoven fabric and composite nonwoven fabric of this invention can be used conveniently for a wiper.
[0064]
Comparative Examples 7-10
In Comparative Example 7, the nonwoven fabric obtained in Comparative Example 1 was used, in Comparative Example 8 the nonwoven fabric obtained in Comparative Example 2 was used, in Comparative Example 9, paper was used, and in Comparative Example 10, cotton cloth was used. A test and a wheat flour wiping test were conducted. The results are shown in Table 4.
In all samples, the results of the human hair collection test and the flour wiping test were x.
Therefore, it was unsuitable as a wiper.
[0065]
The non-woven fabric and composite non-woven fabric of the present invention have excellent characteristics as shown in Examples and Comparative Examples, so they are used for hygiene materials, medical materials, building materials, household materials, clothing materials, and many other applications. can do.
Further, other materials such as fabrics, films, metal nets, construction materials, civil engineering materials, and agricultural materials can be used in combination with many materials.
[0066]
[Table 1]
Figure 0004581185
[0067]
[Table 2]
Figure 0004581185
[0068]
[Table 3]
Figure 0004581185
[0069]
[Table 4]
Figure 0004581185
[0070]
【The invention's effect】
The non-woven fabric and composite non-woven fabric of the present invention have all the characteristics such as fuzz resistance, texture and feel, and can be used for various applications.
In addition, when the nonwoven fabric and the composite nonwoven fabric of the present invention are made of a spunbond nonwoven fabric, the nonwoven fabric has high strength and excellent productivity as compared with a nonwoven fabric comprising short fibers, so that the price is reduced. Is possible.
[Brief description of the drawings]
FIG. 1 is a surface view of a point thermocompression bonding part without a through hole.
FIG. 2 is a surface view of a surface of a point thermocompression bonding part having a through hole.
[Explanation of symbols]
1: Point crimping part
2: Through hole

Claims (9)

熱可塑性樹脂Aと、熱可塑性樹脂Aと融点が同じか、または熱可塑性樹脂Aより12℃を越えない範囲で高い融点を有する熱可塑性樹脂Bとからなり、かつ熱可塑性樹脂Aが繊維表面の少なくとも一部を繊維長方向に連続して形成している熱融着性複合繊維を点熱圧着して得られる不織布であって、熱融着性複合繊維が、熱可塑性樹脂Aを鞘成分とし、熱可塑性樹脂Bを芯成分とする鞘芯型複合繊維であり、不織布がスパンボンド法により得られた長繊維不織布であり、該不織布の点熱圧着部は、熱融着性複合繊維の熱可塑性樹脂B部分が扁平化した断面構造をしており、熱融着性複合繊維の熱可塑性樹脂A部分が、熱融着性複合繊維同士を融着し、かつ扁平化した熱可塑性樹脂B部分を覆う被膜を形成しており、該被膜は0〜20%の表面空孔率を有する構造をしていることを特徴とする不織布。The thermoplastic resin A and the thermoplastic resin A have the same melting point as that of the thermoplastic resin A or a thermoplastic resin B having a higher melting point than the thermoplastic resin A in a range not exceeding 12 ° C., and the thermoplastic resin A is on the fiber surface. A non-woven fabric obtained by spot thermocompression bonding of a heat-fusible conjugate fiber, at least part of which is continuously formed in the fiber length direction, wherein the heat-fusible conjugate fiber has thermoplastic resin A as a sheath component. , A sheath-core type composite fiber having thermoplastic resin B as a core component, and the non-woven fabric is a long-fiber non-woven fabric obtained by a spunbond method. The thermoplastic resin B portion has a flattened cross-sectional structure, the thermoplastic resin A portion of the heat-fusible conjugate fiber fuses the heat-fusible conjugate fibers, and is flattened. A film covering 0 to 20% of the surface. A non-woven fabric characterized by having a structure having porosity. 点熱圧着部の芯成分の扁平率が60〜90%である請求項1記載の不織布。The nonwoven fabric according to claim 1, wherein the flatness of the core component of the point thermocompression bonding part is 60 to 90%. 熱可塑性樹脂Aが、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン、プロピレンとプロピレン以外のαオレフィンとの二元共重合体、及びプロピレンとプロピレン以外のαオレフィンとの三元共重合体から選ばれた少なくとも1種のオレフィン系結晶性樹脂である請求項1記載の不織布。  The thermoplastic resin A is low density polyethylene, linear low density polyethylene, high density polyethylene, binary copolymer of propylene and α-olefin other than propylene, and ternary copolymer of propylene and α-olefin other than propylene. The nonwoven fabric according to claim 1, which is at least one olefin-based crystalline resin selected from coalescence. 熱可塑性樹脂Bが、プロピレンとプロピレン以外のαオレフィンとの二元共重合体、プロピレンとプロピレン以外のαオレフィンとの三元共重合体、及びポリプロピレンから選ばれた少なくとも1種のプロピレン系結晶性樹脂である請求項1記載の不織布。  The thermoplastic resin B is at least one propylene crystallinity selected from a binary copolymer of propylene and an α-olefin other than propylene, a terpolymer of propylene and an α-olefin other than propylene, and polypropylene. The nonwoven fabric according to claim 1, which is a resin. 請求項1〜のいずれか1項記載の不織布と、前記不織布以外の不織布、フィルム、パルプシート、編物、及び織物から選ばれた少なくとも1種の物品を積層した複合化不織布。The composite nonwoven fabric which laminated | stacked the nonwoven fabric of any one of Claims 1-4 , and the at least 1 sort (s) of articles chosen from the nonwoven fabric other than the said nonwoven fabric, a film, a pulp sheet, a knitted fabric, and a textile fabric. 請求項1〜のいずれか1項記載の不織布、もしくは請求項記載の複合化不織布を用いた吸収性物品。An absorbent article using the nonwoven fabric according to any one of claims 1 to 4 , or the composite nonwoven fabric according to claim 5 . 請求項1〜のいずれか1項記載の不織布、もしくは請求項記載の複合化不織布を用いたワイパー。A wiper using the nonwoven fabric according to any one of claims 1 to 4 , or the composite nonwoven fabric according to claim 5 . 熱可塑性樹脂Aが繊維表面の少なくとも一部を繊維長方向に連続して形成してなる、熱可塑性樹脂Aを鞘成分、熱可塑性樹脂Bを芯成分とする鞘芯型複合繊維を紡糸して、ウェブを形成した後、該ウェブに点熱圧着を行うことによって、熱可塑性樹脂Aの溶融変形と共に熱可塑性樹脂Bの変形扁平化を行わせる不織布の製造方法において、熱可塑性樹脂Bとして、熱可塑性樹脂Aと融点が同じか、または熱可塑性樹脂Aより12℃を超えない範囲で高い融点を有する熱可塑性樹脂を使用する不織布の製造方法。Spinning a sheath-core type composite fiber in which the thermoplastic resin A is formed by continuously forming at least a part of the fiber surface in the fiber length direction and the thermoplastic resin A is a sheath component and the thermoplastic resin B is a core component. In the method for producing a nonwoven fabric in which the thermoplastic resin B is deformed and flattened together with the melt deformation of the thermoplastic resin A by performing point thermocompression bonding on the web after forming the web, The manufacturing method of the nonwoven fabric which uses the thermoplastic resin which has the same melting | fusing point as the thermoplastic resin A, or has a high melting point in the range which does not exceed 12 degreeC from the thermoplastic resin A. 不織布の製造方法におけるウェブ移動速度が30〜400m/minの範囲において、熱処理温度が熱可塑性樹脂Aの(融点−5)℃から(融点+10)℃までの範囲であり、エンボスロール型熱圧着機の線圧が60N/mm以上、90N/mm以下で、点熱圧着することを特徴とする請求項8記載の不織布の製造方法。In the nonwoven fabric production method, the web moving speed is in the range of 30 to 400 m / min, and the heat treatment temperature is in the range from (melting point−5) ° C. to (melting point + 10) ° C. of the thermoplastic resin A. The method for producing a nonwoven fabric according to claim 8, wherein the linear pressure is 60 N / mm to 90 N / mm.
JP2000172510A 2000-06-08 2000-06-08 Non-woven fabric and fiber product using the same Expired - Fee Related JP4581185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172510A JP4581185B2 (en) 2000-06-08 2000-06-08 Non-woven fabric and fiber product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172510A JP4581185B2 (en) 2000-06-08 2000-06-08 Non-woven fabric and fiber product using the same

Publications (2)

Publication Number Publication Date
JP2001355176A JP2001355176A (en) 2001-12-26
JP4581185B2 true JP4581185B2 (en) 2010-11-17

Family

ID=18674899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172510A Expired - Fee Related JP4581185B2 (en) 2000-06-08 2000-06-08 Non-woven fabric and fiber product using the same

Country Status (1)

Country Link
JP (1) JP4581185B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8782843B2 (en) 2008-01-25 2014-07-22 Diversey, Inc. Floor finish application pad and method
JP2014028032A (en) * 2012-07-31 2014-02-13 Oji Holdings Corp Pollutant wiping sheet
US20230158428A1 (en) * 2020-04-09 2023-05-25 Toray Advanced Materials Korea Inc. Composite non-woven fabric and article comprising same
WO2023090200A1 (en) * 2021-11-18 2023-05-25 東レ株式会社 Spunbond nonwoven fabric

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266056A (en) * 1997-03-27 1998-10-06 Oji Paper Co Ltd Conjugate polyolefin filament nonwoven fabric and its production
JPH11107153A (en) * 1997-09-30 1999-04-20 Unitika Ltd Packaging material comprising conjugate filament nonwoven fabric
JP2000054251A (en) * 1998-08-07 2000-02-22 Chisso Corp Nonwoven fabric and absorbing article using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58169560A (en) * 1982-03-26 1983-10-06 日本バイリーン株式会社 Production of nonwoven fabric
JPH073606A (en) * 1993-06-11 1995-01-06 Unitika Ltd Laminated non-woven fabric and production thereof
JP3955650B2 (en) * 1995-11-20 2007-08-08 チッソ株式会社 Laminated nonwoven fabric and method for producing the same
JP3658884B2 (en) * 1996-09-11 2005-06-08 チッソ株式会社 Method for producing composite long-fiber nonwoven fabric
JP2001200463A (en) * 2000-01-14 2001-07-27 Chisso Corp Nonwoven fabric and fiber article using the same
JP2001248049A (en) * 2000-03-01 2001-09-14 Chisso Corp Nonwoven fabric and soft goods using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10266056A (en) * 1997-03-27 1998-10-06 Oji Paper Co Ltd Conjugate polyolefin filament nonwoven fabric and its production
JPH11107153A (en) * 1997-09-30 1999-04-20 Unitika Ltd Packaging material comprising conjugate filament nonwoven fabric
JP2000054251A (en) * 1998-08-07 2000-02-22 Chisso Corp Nonwoven fabric and absorbing article using the same

Also Published As

Publication number Publication date
JP2001355176A (en) 2001-12-26

Similar Documents

Publication Publication Date Title
US5635290A (en) Knit like nonwoven fabric composite
JP4068171B2 (en) Laminated nonwoven fabric and method for producing the same
KR100384663B1 (en) Conjugate Fiber Nonwoven Fabric
MXPA01010254A (en) Microcreped wipers.
JPH11107155A (en) Laminated nonwoven fabric and absorptive material by using the same
JP5884733B2 (en) Laminated nonwoven fabric and its products
JP3736014B2 (en) Laminated nonwoven fabric
CN111630221B (en) Nonwoven fabric of composite long fibers using eccentric sheath-core composite fibers on at least one surface
JP4581185B2 (en) Non-woven fabric and fiber product using the same
JP5276305B2 (en) Mixed fiber non-woven fabric
JP2001200463A (en) Nonwoven fabric and fiber article using the same
JP2001336033A (en) Polyester-based conjugate yarn and nonwoven fabric using the same
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JP2002173862A (en) Composite nonwoven fabric and textile product using the same
JP2003201670A (en) Hydrophilic nonwoven filament cloth, laminated nonwoven cloth and absorbing article made thereof
JPH09105060A (en) Laminated nonwoven fabric and its production
JP5503768B2 (en) Mixed fiber non-woven fabric
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
JP2001248049A (en) Nonwoven fabric and soft goods using the same
JP2000054251A (en) Nonwoven fabric and absorbing article using the same
WO2022004505A1 (en) Surface material for sanitary material and production method therefor
JP4442013B2 (en) Composite nonwoven fabric and fiber product using the same
JP2001288669A (en) Nonwoven fabric and fiber product using the same
MXPA97006860A (en) Fabric conjug non-woven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees