JP2001336033A - Polyester-based conjugate yarn and nonwoven fabric using the same - Google Patents

Polyester-based conjugate yarn and nonwoven fabric using the same

Info

Publication number
JP2001336033A
JP2001336033A JP2000158451A JP2000158451A JP2001336033A JP 2001336033 A JP2001336033 A JP 2001336033A JP 2000158451 A JP2000158451 A JP 2000158451A JP 2000158451 A JP2000158451 A JP 2000158451A JP 2001336033 A JP2001336033 A JP 2001336033A
Authority
JP
Japan
Prior art keywords
polyethylene
nonwoven fabric
component
composite fiber
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000158451A
Other languages
Japanese (ja)
Other versions
JP4441987B2 (en
Inventor
Hirokazu Terada
博和 寺田
Yukinori Kataoka
之典 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2000158451A priority Critical patent/JP4441987B2/en
Priority to DE10126126.8A priority patent/DE10126126B4/en
Priority to US09/866,469 priority patent/US6391443B1/en
Publication of JP2001336033A publication Critical patent/JP2001336033A/en
Application granted granted Critical
Publication of JP4441987B2 publication Critical patent/JP4441987B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain both a polyethylene-based conjugate yarn not dropping card processability, suitably used for a pressure adhesion processing method and a through air adhesion processing method, capable of providing a nonwoven fabric having a soft feeling and exhibiting high tenacity, and the nonwoven fabric using the same. SOLUTION: The polyethylene-based conjugate yarn is characterized in that the yarn in a sheath-core type conjugate yarn composed of a polyethylene-based resin, wherein a first component (core component) is composed of a polyethylene resin having >=0.940 g/cm3 density and a second component (sheath component) comprises a polyethylene resin having <=3.0 Q value (weight-average molecular weight Mw/number-average molecular weight Mn) and polymerized by a metallocene catalyst. This nonwoven fabric is obtained by using the polyethylene-based conjugate yarn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエチレン系複
合繊維および該繊維を用いた不織布に関する。さらに詳
しくは、柔軟で風合に優れ、嵩高でかつ高強力なポリエ
チレン系複合繊維、該繊維を用いた不織布およびこれら
を用いた医療用物品、衛生材料用物品に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyethylene composite fiber and a nonwoven fabric using the fiber. More specifically, the present invention relates to a polyethylene-based composite fiber which is flexible, has excellent texture, is bulky and has high strength, a nonwoven fabric using the fiber, a medical article and a sanitary article using the same.

【0002】[0002]

【従来の技術】現在医療分野では、不織布から作られる
使い捨ての手術帽、シーツ、手術用覆布、手術用ガウン
等が急速に普及しつつある。これは、MRSA(メチシ
リン耐性ブドウ球菌)、肝炎、HIV(後天性免疫不全
症候群)等の院内感染を防ごうとする動きに対応するた
めである。また、クリーニングの必要のない使い捨ての
不織布製品を使用することは、看護の質を落とさずに看
護業務を簡略でき、現在深刻な社会問題となっている人
手不足解消の一助ともなる。医療分野で使用される不織
布には、バクテリアバリア性、耐浸透性、撥水性、リン
トフリー性等が要求されるが、人体に直接接するもので
あること、1回切りの使い捨てであることから、着用
感、強度、コストも重要な要素となる。
2. Description of the Related Art In the medical field, disposable surgical caps, sheets, surgical coverings, surgical gowns and the like made of non-woven fabrics are rapidly spreading. This is to cope with a movement to prevent hospital-acquired infections such as MRSA (methicillin-resistant staphylococci), hepatitis, and HIV (acquired immunodeficiency syndrome). Also, using disposable non-woven products that do not require cleaning can simplify nursing work without deteriorating the quality of nursing, and help to alleviate the labor shortage that is now a serious social problem. Nonwoven fabrics used in the medical field are required to have bacterial barrier properties, penetration resistance, water repellency, lint-free properties, etc., but since they are in direct contact with the human body and are single-use disposables, The feeling of wearing, strength, and cost are also important factors.

【0003】不織布用途の繊維の原料樹脂としては、ポ
リエチレン系樹脂、ポリプロピレン系樹脂およびポリエ
ステル系樹脂が一般的であるが、医療分野で使用される
不織布についてもこの例外ではない。このような医療分
野で使用される不織布は、しばしば放射線より滅菌され
ることがあるが、ポリプロピレン系樹脂は放射線を照射
された際、高分子鎖が3級炭素原子の結合部位で切断さ
れ、不織布の強度が著しく低下してしまうために、この
ように放射線で滅菌されるような用途に対し、使用が制
限されるという問題がある。また、ポリエステル系の樹
脂は放射線による強力の低下はないが、原料樹脂がポリ
オレフィン系樹脂よりもコスト高となること、体の動き
に追従して破れない程度の強度を与えたり、透けないよ
うにするため不織布を高目付とした場合には、不織布が
硬くなってしまい着用感が悪い、原料樹脂の特性から軽
量感に欠ける、といった難点があるため使用者側から敬
遠されがちで普及の妨げとなっている。これに対してポ
リエチレン系樹脂は、原料樹脂が柔らかいことから柔軟
な不織布が得られる。3級炭素原子を持たないことか
ら、放射線照射による不織布強度低下がない、といった
長所があるため、医療用不織布材料として優れている。
[0003] As raw material resins for fibers for use in nonwoven fabrics, polyethylene resins, polypropylene resins and polyester resins are generally used, but nonwoven fabrics used in the medical field are no exception. Such nonwoven fabrics used in the medical field are often sterilized by radiation. However, when irradiated with radiation, the polypropylene resin cuts the polymer chains at the tertiary carbon atom bonding sites, resulting in nonwoven fabrics. The use of such a device that is sterilized by radiation is limited because the strength of the material is significantly reduced. In addition, polyester-based resin does not decrease in strength due to radiation, but the raw material resin is more expensive than polyolefin-based resin, so that it follows the movement of the body and gives strength enough to not break or does not pass through Therefore, when the nonwoven fabric is made to have a high basis weight, the nonwoven fabric becomes hard and the feeling of wearing is poor, and the lightness is lacking due to the characteristics of the raw material resin. Has become. On the other hand, a soft nonwoven fabric can be obtained from the polyethylene resin because the raw material resin is soft. Since it has no tertiary carbon atoms, it has the advantage that the strength of the nonwoven fabric does not decrease due to radiation irradiation, and is therefore excellent as a medical nonwoven fabric material.

【0004】しかしながら、単成分のみで構成された従
来のポリエチレン繊維は、不織布加工の際、加圧ロール
によるポイントボンド加工およびカレンダー加工での不
織布化は比較的容易であるが、スルーエアー加工には適
さず、得られた不織布は柔軟性に欠ける。また、上記欠
点を解消すべく、例えば特表平6−508892(国際
公開番号はWO93/01334)により、高密度ポリ
エチレンを第一成分に、エチレンとα−オレフィンの共
重合体(以下直鎖状低密度ポリエチレン(L−LDP
E)と略記する)を第二成分としたポリエチレン系複合
繊維が開示されているが、第二成分に通常のL−LDP
Eを用いた場合、鞘と芯の融点差が小さくスルーエアー
加工等には適さない。また、第一成分と第二成分の融点
差をとるために、第二成分に比較的密度の低い直鎖状低
密度ポリエチレン樹脂、verylow densit
y polyethylene(VLDPE)およびu
ltra low density polyethy
lene(ULDPE)を使用した場合、樹脂密度を下
げることにより繊維表面にべたつきが発生し、カード加
工時のネップ発生等の加工性の低下と、スルーエアー不
織布とした際の嵩および接着強力が低下するという欠点
が発生する。
[0004] However, conventional polyethylene fibers composed of only a single component can be relatively easily formed into non-woven fabrics by point bonding and calendering using a pressure roll during non-woven fabric processing. Unsuitable, the resulting non-woven fabric lacks flexibility. In order to solve the above-mentioned drawbacks, for example, Japanese Patent Application Laid-Open No. 6-508892 (International Publication No. WO93 / 01334) discloses a copolymer of ethylene and α-olefin (hereinafter referred to as linear Low density polyethylene (L-LDP
E)), a polyethylene-based conjugate fiber having a second component is disclosed.
When E is used, the melting point difference between the sheath and the core is so small that it is not suitable for through-air processing or the like. In order to obtain a difference in melting point between the first component and the second component, a relatively low-density linear low-density polyethylene resin, very low density, is used for the second component.
y polyethylene (VLDPE) and u
ltra low density polyethy
When "lene" (ULDPE) is used, the resin density is reduced to cause stickiness on the fiber surface, resulting in a reduction in workability such as NEP during card processing, and a decrease in bulk and adhesive strength when used as a through-air nonwoven fabric. Disadvantage occurs.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を解消し、カード加工性を落とさず、加
圧接着加工法およびスルーエアー接着加工法に好適に用
いられ、柔軟な風合いを有してかつ、高強力を示す不織
布を得ることを可能とするポリエチレン系複合繊維およ
び、それを用いた不織布を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks of the prior art, to reduce the card workability, to be suitably used for the pressure bonding method and the through-air bonding method, and to be flexible. It is an object of the present invention to provide a polyethylene-based conjugate fiber capable of obtaining a nonwoven fabric having a texture and exhibiting high strength, and a nonwoven fabric using the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記従来の
ポリエチレン系繊維の課題を解決すべく鋭意検討を重ね
た結果、密度0.940g/cm3以上のポリエチレン樹
脂からなる第一成分と、メタロセン触媒により重合され
たQ値が3.0以下のポリエチレン樹脂を含む第二成分
からなるポリエチレン系複合繊維が、所期の目的を達成
できることを知り、本発明を完成するに至った。本発明
は以下の構成を有する。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems of the conventional polyethylene fibers, and as a result, have found that the first component consisting of a polyethylene resin having a density of 0.940 g / cm 3 or more has The present inventors have found that a polyethylene-based composite fiber comprising a second component containing a polyethylene resin having a Q value of 3.0 or less polymerized by a metallocene catalyst can achieve the intended purpose, and have completed the present invention. The present invention has the following configuration.

【0007】(1)ポリエチレン系樹脂からなる鞘芯型
複合繊維であって、第一成分(芯成分)が密度0.94
0g/cm3以上のポリエチレン樹脂からなり、第二成
分(鞘成分)がメタロセン触媒により重合されたQ値
(重量平均分子量Mw/数平均分子量Mn)3.0以下
のポリエチレン樹脂を含むことを特徴とするポリエチレ
ン系複合繊維。 (2)第一成分が密度0.945〜0.965g/c
3、融点125〜135℃の高密度ポリエチレンであ
る上記(1)項に記載のポリエチレン系複合繊維。 (3)第一成分がメルトフローレート5〜45g/10min
(190℃、2160g、B法)を有する高密度ポリエ
チレンである、上記(1)または(2)項に記載のポリ
エチレン系複合繊維。 (4)第二成分に含まれるポリエチレン樹脂が、メタロ
セン触媒により重合された密度0.850〜0.930g
/cm3、Q値2.5以下のポリエチレン樹脂である上記
(1)項に記載のポリエチレン系複合繊維。 (5)第二成分に含まれるポリエチレン樹脂が、メタロ
セン触媒により重合されたメルトフローレート5〜45
g/10min(190℃、2160g、B法)を有するポリ
エチレンである上記(1)〜(4)項のいずれか1項に
記載のポリエチレン系複合繊維。 (6)第一成分と第二成分の融点差が、5℃以上である
ことを特徴とする上記(1)、(4)および(5)のい
ずれか1項に記載のポリエチレン系複合繊維。 (7)上記(1)〜(6)項のいずれか1項に記載のポ
リエチレン系複合繊維を用いた不織布。 (8)スルーエアー加工により繊維同士を熱融着させた
上記(7)項に記載の不織布。 (9)ポイントボンド加工により繊維同士を点接着させ
た上記(7)項に記載の不織布。 (10)上記(1)〜(6)項のいずれか1項に記載の
ポリエチレン系複合繊維と、該繊維が熱接着する温度で
は実質的に非接着性である繊維を混綿した不織布。 (11)繊維同士を水流交絡させた上記(7)〜(1
0)項のいずれか1項に記載の不織布。 (12)スパンボンド法により得られる上記(7)〜
(9)項のいずれか1項に記載の不織布。 (13)120℃加工におけるウェブ収縮率が15%以
下である上記(7)〜(12)項のいずれか1項に記載
の不織布。 (14)上記(7)〜(13)項のいずれか1項に記載
の不織布を用いた医療用物品。 (15)上記(7)〜(13)項のいずれか1項に記載
の不織布を用いた衛生材料用物品。以下、本発明につい
て詳細に説明する。
(1) A sheath-core composite fiber made of a polyethylene resin, wherein the first component (core component) has a density of 0.94.
It consists 0 g / cm 3 or more polyethylene resins, characterized in that it comprises a second component Q value (sheath component) is polymerized with a metallocene catalyst (weight average molecular weight Mw / number average molecular weight Mn) 3.0 The following polyethylene resin Polyethylene composite fiber. (2) The first component has a density of 0.945 to 0.965 g / c.
The polyethylene-based conjugate fiber according to the above (1), which is a high-density polyethylene having a m 3 and a melting point of 125 to 135 ° C. (3) The first component has a melt flow rate of 5 to 45 g / 10 min.
(1) The polyethylene-based composite fiber according to the above (1) or (2), which is a high-density polyethylene having a temperature (190 ° C., 2160 g, method B). (4) Density 0.850 to 0.930 g of the polyethylene resin contained in the second component polymerized by the metallocene catalyst
The polyethylene-based composite fiber according to the above (1), which is a polyethylene resin having a Q / cm 3 and a Q value of 2.5 or less. (5) A melt flow rate of 5-45 in which the polyethylene resin contained in the second component is polymerized by a metallocene catalyst.
The polyethylene-based composite fiber according to any one of the above (1) to (4), which is a polyethylene having a g / 10 min (190 ° C., 2160 g, method B). (6) The polyethylene composite fiber according to any one of the above (1), (4) and (5), wherein a difference in melting point between the first component and the second component is 5 ° C. or more. (7) A nonwoven fabric using the polyethylene-based composite fiber according to any one of the above (1) to (6). (8) The nonwoven fabric according to the above (7), wherein the fibers are thermally fused to each other by through-air processing. (9) The nonwoven fabric according to the above (7), wherein the fibers are point-bonded to each other by point bonding. (10) A nonwoven fabric obtained by mixing the polyethylene-based conjugate fiber according to any one of the above items (1) to (6) with a fiber that is substantially non-adhesive at a temperature at which the fiber is thermally bonded. (11) The above (7) to (1) wherein the fibers are hydroentangled with each other.
The nonwoven fabric according to any one of the above items 0). (12) The above (7) to-obtained by the spun bond method
(9) The nonwoven fabric according to any one of the above (9). (13) The nonwoven fabric according to any one of the above (7) to (12), wherein the web shrinkage at 120 ° C. processing is 15% or less. (14) A medical article using the nonwoven fabric according to any one of the above (7) to (13). (15) An article for a sanitary material using the nonwoven fabric according to any one of the above (7) to (13). Hereinafter, the present invention will be described in detail.

【0008】[0008]

【本発明の実施の形態】本発明でいう第一成分のポリエ
チレン樹脂とは、公知のチーグラーナッタ触媒を用いて
低圧法で重合された、エチレン単独の重合体もしくはエ
チレンを主成分とし最大2重量%までの割合のC3〜C
12のアルケンをコモノマーとして含む共重合体であり、
一般に0.940〜0.965g/cm3好ましくは0.9
45〜0.960g/cm3の密度、および125〜13
5℃の融点を有し、5〜45g/10min好ましくは
20〜40g/10minのメルトフローレート(MF
R:JIS K7210(190℃、2160g、B
法)によって規定される値。以下、本発明でいうメルト
フローレートとは、この条件で測定される値をいう。)
を有する高密度ポリエチレン樹脂である。
BEST MODE FOR CARRYING OUT THE INVENTION The polyethylene resin as the first component in the present invention refers to a polymer of ethylene alone or a maximum of 2% by weight of ethylene alone polymerized by a low pressure method using a known Ziegler-Natta catalyst. % Of C 3 -C
A copolymer containing 12 alkenes as a comonomer,
Generally 0.940 to 0.965 g / cm 3, preferably 0.9
A density of 45-0.960 g / cm 3 , and 125-13
It has a melting point of 5 ° C. and a melt flow rate (MF) of 5 to 45 g / 10 min, preferably 20 to 40 g / 10 min.
R: JIS K7210 (190 ° C., 2160 g, B
Value). Hereinafter, the melt flow rate in the present invention refers to a value measured under these conditions. )
Is a high-density polyethylene resin having

【0009】本発明でいう第二成分のポリエチレン樹脂
とはメタロセン触媒を用いて重合された、実質的な長分
岐鎖を持たない、通常15重量%以下の割合のC3〜C
12のアルケンをコモノマーとして含むエチレン共重合体
を指しており、一般に0.850〜0.930g/cm3
の密度および125℃未満の融点、3.0以下のQ値を
有し、5〜45g/10min好ましくは25〜40g
/10minのメルトフローレートを有する直鎖状低密
度ポリエチレン樹脂である。(以下、このポリエチレン
樹脂をメタロセンポリエチレン樹脂という。) 第二成分に用いるメタロセンポリエチレン樹脂の密度が
0.850g/cm3未満の樹脂を用いた場合には、繊維
にべたつきが発生し、カード加工性の低下を引き起こ
す。また、0.930g/cm3を超える樹脂を用いた場
合には、樹脂の融点が高くなり、第一成分と第二成分の
融点差が取れないことから、不織布加工する際の加工温
度幅がとれず、得られた不織布の強力は高いが、風合が
低下するといった問題が生じる。このことから、第二成
分に用いるメタロセンポリエチレン樹脂の好適な密度
は、0.850〜0.930g/cm3、好ましくは0.9
00〜0.925g/cm3の範囲である。Q値として好
ましい値は、3.0以下、より好ましくは2.5以下であ
る。Q値が3.0を超えると、樹脂成分における低分子
量成分の割合が多くなるため、得られる繊維はべたつき
性を増し、また接着強力が低下する。
The polyethylene resin of the second component as used in the present invention is a polymer which has been polymerized using a metallocene catalyst and has substantially no long branched chain, and usually has a proportion of C 3 -C of not more than 15% by weight.
12- alkene as a comonomer and generally ranges from 0.850 to 0.930 g / cm 3
And a melting point of less than 125 ° C., a Q value of 3.0 or less, and 5 to 45 g / 10 min, preferably 25 to 40 g.
It is a linear low-density polyethylene resin having a melt flow rate of / 10 min. (Hereinafter, this polyethylene resin will be referred to as a metallocene polyethylene resin.) When the density of the metallocene polyethylene resin used as the second component is less than 0.850 g / cm 3 , the fibers become sticky and the card processability increases. Causes a drop in Further, when a resin exceeding 0.930 g / cm 3 is used, the melting point of the resin becomes high, and the melting point difference between the first component and the second component cannot be obtained. Although the strength of the obtained nonwoven fabric is high, there is a problem that the feeling is reduced. From this, the suitable density of the metallocene polyethylene resin used for the second component is 0.850 to 0.930 g / cm 3 , preferably 0.9.
The range is from 0.000 to 0.925 g / cm 3 . A preferred value for the Q value is 3.0 or less, more preferably 2.5 or less. When the Q value exceeds 3.0, the proportion of the low molecular weight component in the resin component increases, so that the resulting fiber has increased tackiness and reduced adhesive strength.

【0010】上記範囲内のメタロセンポリエチレン樹脂
は、メタロセン触媒を用いることで容易に得られる。こ
のようなメタロセン触媒として代表的な化合物は、ビス
(シクロペンタジエニル)ジルコニウムジクロライド、
ビス(シクロペンタジエニル)ハフニウムジクロライ
ド、エチレンビス(インデニル)ジルコニウムジクロラ
イド、エチレンビス(インデニル)ハフニウムジクロラ
イド、イソプロピリデン(シクロペンタジエニル−9−
フルオレニル)ジルコニウムジクロライド、イソプロピ
リデン(シクロペンタジエニル−9−フルオレニル)ハ
フニウムジクロライド、イソプロピリデン(シクロペン
タジエニル−2,7−ジメチル−9−フルオレニル)ジ
ルコニウムジクロライド、イソプロピリデン(シクロペ
ンタジエニル−2,7−ジメチル−9−フルオレニル)
ハフニウムジクロライド、ジメチルシランジイルビス
(2,4,5−トリメチルシクロペンタジエニル)ジル
コニウムジクロライド、ジメチルシランジイルビス
(2,4−ジメチルシクロペンタジエニル)ジルコニウ
ムジクロライド、ジメチルシランジイルビス(2,4,
5−トリメチルシクロペンタジエニル)ハフニウムジク
ロライド、ジメチルシランジイルビス(2,4−ジメチ
ルシクロペンタジエニル)ハフニウムジクロライドなど
である。これらの触媒を用いて製造されたメタロセンポ
リエチレン樹脂は、商業的に販売されているものも多
く、それらの中から上記に規定した範囲の密度、融点、
Q値、メルトフローレートを持つポリエチレン樹脂を適
宜選んで使用することも可能である。
The metallocene polyethylene resin within the above range can be easily obtained by using a metallocene catalyst. A typical compound as such a metallocene catalyst is bis (cyclopentadienyl) zirconium dichloride,
Bis (cyclopentadienyl) hafnium dichloride, ethylenebis (indenyl) zirconium dichloride, ethylenebis (indenyl) hafnium dichloride, isopropylidene (cyclopentadienyl-9-
Fluorenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-9-fluorenyl) hafnium dichloride, isopropylidene (cyclopentadienyl-2,7-dimethyl-9-fluorenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-2) , 7-dimethyl-9-fluorenyl)
Hafnium dichloride, dimethylsilanediylbis (2,4,5-trimethylcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis (2,4
5-trimethylcyclopentadienyl) hafnium dichloride and dimethylsilanediylbis (2,4-dimethylcyclopentadienyl) hafnium dichloride. Many metallocene polyethylene resins produced using these catalysts are commercially available, and among them, the density, melting point,
It is also possible to appropriately select and use a polyethylene resin having a Q value and a melt flow rate.

【0011】メタロセンポリエチレン樹脂とチーグラー
ナッタ触媒を用いて重合されたポリエチレン樹脂とを比
較した場合、密度が同程度であっても、メタロセンポリ
エチレン樹脂の融点の方が低く、かつ、べたつき成分が
少ないという特徴がある。また、分子量分布が狭いとい
う特徴から、紡糸性が安定し、得られた繊維を用いた不
織布は、柔軟で風合が良く、接着強力およびヒートシー
ル強力が向上する。第二成分には、メタロセンポリエチ
レン樹脂以外に、上記の特徴を阻害しない程度であれ
ば、LDPE、L−LDPE、VLDPE、ULDP
E、HDPEをブレンドして用いても良い。
When comparing a metallocene polyethylene resin with a polyethylene resin polymerized using a Ziegler-Natta catalyst, it is found that the metallocene polyethylene resin has a lower melting point and a less sticky component even if the density is almost the same. There are features. In addition, due to the feature that the molecular weight distribution is narrow, the spinnability is stable, and the nonwoven fabric using the obtained fiber is flexible and has a good feel, and the adhesive strength and the heat seal strength are improved. In addition to the metallocene polyethylene resin, the second component may be any of LDPE, L-LDPE, VLDPE, ULDP as long as the above characteristics are not impaired.
E and HDPE may be blended and used.

【0012】本発明で構成されるポリエチレン系複合繊
維は、公知の溶融紡糸法およびスパンボンド法にて製造
することができる。また、鞘芯型、偏心鞘芯型等の複合
繊維とすることができる。複合繊維を製造する場合の第
一成分と第二成分の複合比は、重量比で80/20〜2
0/80の範囲が好ましく、さらに好ましくは50/5
0〜70/30である。芯成分となる第一成分の高密度
ポリエチレン樹脂を上記範囲より少なくする場合は、繊
維の剛性が低下する傾向を示すので、カード通過性が低
下したり、不織布とした際に嵩が低下し風合いを損なう
ことのないよう注意が必要である。逆に、上記範囲より
第一成分を多くし、第二成分を少なくする場合は、得ら
れる不織布の接着強力が低下する傾向があるので注意し
なければならない。このため、鞘芯比は上記範囲内が最
も良好となる。本発明のポリエチレン系繊維を構成する
第一成分と第二成分の融点差は、好ましくは5℃以上で
あり、さらに好ましくは15℃以上である。この融点差
が大きいほど、不織布加工する際の加工温度範囲が広く
なり、不織布作製が容易になる。本発明でいう融点差と
は、繊維を示差走査熱分析装置(DSC)にて分析した
DSC曲線状で観察される高融点側のピークと低融点側
のピークの温度差を示す。融点差が大きいことに加え
て、第二成分の融点が示差走査熱分析でシャープなピー
クとなって現れることが好ましく、第二成分にQ値の小
さいメタロセンポリエチレン樹脂を使用することは、こ
の点においても大きく寄与する。本発明の繊維に用いる
第一成分と第二成分のいずれかまたは両方の原料となる
ポリエチレン樹脂には、従来公知の酸化防止剤、耐光
剤、難燃剤、顔料などを本発明の目的を損なわない範囲
で含有させることができる。
[0012] The polyethylene-based composite fiber constituted by the present invention can be produced by a known melt spinning method and a spunbond method. In addition, composite fibers such as a sheath-core type and an eccentric sheath-core type can be used. When producing a composite fiber, the composite ratio of the first component and the second component is 80/20 to 2 by weight.
The range of 0/80 is preferable, and 50/5 is more preferable.
0 to 70/30. When the high-density polyethylene resin of the first component to be the core component is less than the above range, the rigidity of the fiber tends to decrease, so that the card permeability decreases or the bulk decreases when the nonwoven fabric is used. Care must be taken not to impair the performance. Conversely, when the first component is increased and the second component is decreased from the above range, care must be taken since the adhesive strength of the obtained nonwoven fabric tends to decrease. Therefore, the sheath-core ratio is most preferably in the above range. The difference between the melting points of the first component and the second component constituting the polyethylene fiber of the present invention is preferably 5 ° C. or more, more preferably 15 ° C. or more. The larger the melting point difference, the wider the processing temperature range when processing the nonwoven fabric, and the easier the nonwoven fabric production. The melting point difference referred to in the present invention refers to a temperature difference between a peak on a high melting point side and a peak on a low melting point side observed in a DSC curve obtained by analyzing a fiber with a differential scanning calorimeter (DSC). In addition to the large melting point difference, it is preferable that the melting point of the second component appears as a sharp peak in the differential scanning calorimetry, and the use of a metallocene polyethylene resin having a small Q value for the second component is important in this respect. Also greatly contributes. The polyethylene resin used as a raw material of either or both of the first component and the second component used in the fiber of the present invention does not impair the object of the present invention by using conventionally known antioxidants, light-proofing agents, flame retardants, pigments, and the like. It can be contained in a range.

【0013】本発明で構成されるポリエチレン系複合繊
維を延伸する方法としては、公知の熱ロール延伸、温水
延伸などを用いることができ、一段延伸方式、2段延伸
方式、多段延伸方式を用いることができる。カード通過
性が良好でより嵩高な不織布を得るためには、繊維の結
晶配向度を促進させ繊維の剛性を高めることが有効であ
る。繊維の結晶配向度を上げる手法としては、繊維の溶
融紡糸時に、高速で引き取り、配向させる方法と、高延
伸倍率で延伸する方法が考えられる。後者の方法を用る
場合には、少なくとも5〜8倍以上の延伸倍率で延伸さ
れることが好ましく、より好ましくは10倍以上の高延
伸倍率で延伸することで剛性を有するポリエチレン系複
合繊維が得られる。また、繊維の捲縮保持力も重要であ
り、公知のスタッファボックスによる機械捲縮を付与す
る場合は、スタッファボックスに入る寸前の繊維に十分
熱を加えることで、繊維の捲縮保持力が向上する。
As the method for stretching the polyethylene-based conjugate fiber constituted by the present invention, known hot roll stretching, hot water stretching and the like can be used, and a one-stage stretching system, a two-stage stretching system, or a multi-stage stretching system is used. Can be. In order to obtain a more bulky nonwoven fabric having good card passing property, it is effective to promote the degree of crystal orientation of the fiber and increase the rigidity of the fiber. As a method of increasing the degree of crystal orientation of the fiber, a method of taking out and orienting the fiber at a high speed during melt spinning of the fiber and a method of drawing at a high draw ratio can be considered. When using the latter method, it is preferable to stretch at a draw ratio of at least 5 to 8 times or more, and more preferably a polyethylene-based composite fiber having rigidity by stretching at a high draw ratio of 10 times or more. can get. Further, the crimp holding force of the fiber is also important, and when mechanical crimping is performed using a known stuffer box, the fiber crimp holding force can be increased by sufficiently applying heat to the fiber just before entering the stuffer box. improves.

【0014】本発明のポリエチレン系複合繊維には、該
繊維が熱接着する温度では実質的に非熱接着性である他
の繊維、例えばポリプロピレン繊維、ポリエステル繊
維、ポリアミド繊維、ポリアクリル系ビニロンなどの合
成繊維、レーヨン、キュプラ、アセテート、木綿、羊
毛、絹、麻、パルプ繊維などの再生繊維、動物繊維を本
発明の効果を妨げない範囲において混繊、混綿すること
ができる。
The polyethylene-based conjugate fiber of the present invention has other fibers which are substantially non-heat-adhesive at the temperature at which the fiber is heat-bonded, such as polypropylene fiber, polyester fiber, polyamide fiber, polyacrylic vinylon and the like. Regenerated fibers such as synthetic fibers, rayon, cupra, acetate, cotton, wool, silk, hemp, and pulp fibers, and animal fibers can be mixed or mixed within a range that does not impair the effects of the present invention.

【0015】本発明のポリエチレン系複合繊維は、不織
布の原料として好適に使用できる。例えば、公知のポイ
ントボンド法(エンボス法ともいう)、スルーエアー
法、ニードルパンチ法、水流絡合法等により不織布とす
ることができ、特に本発明で得られるポリエチレン系複
合繊維は、鞘芯に融点差があることから不織布とする際
の加工温度巾が広くとれ、ポイントボンド法、スルーエ
アー法を用いた熱融着結合法に好適に用いることができ
る。スルーエアー法にて不織布を得る場合、繊維の熱収
縮率が大きいと加工時の熱により繊維が収縮し、得られ
る不織布の寸法安定性不良、地合不良、ひきつり等の問
題が生じるため、繊維のウェブ収縮率は、15%以下、
好ましくは10%以下(120℃ オーブン加熱)に抑
える必要がある。ウェブ収縮を抑制させるには、ノズル
から溶融される樹脂の流動性を上げる必要がある。その
方法として、紡糸時の溶融温度を上げる、またはメルト
インデックスの比較的高い樹脂を使用する等が考えられ
る。ポリエチレン樹脂は高い温度で溶融させるとゲル
(熱架橋劣化物)が発生し、紡糸時の糸切れの要因とな
るため、ウェブ収縮を抑制するには、後者がより有効な
手段となる。本発明のポリエチレン系複合繊維は、特に
放射線照射による劣化が少ないので、得られる不織布は
放射線照射着用衣をはじめとして、手術帽、シーツ、手
術用被服布、手術用ガウン、診察衣等の医療用途として
広く利用することができる。また、本発明の不織布は、
吸収性物品として、特に乳児用や大人用の使い捨ておむ
つ、ナプキン等をはじめ、更には、吸汗パット、皮脂除
去用シート材、お手拭き、トイレ拭き、ワイパー等の衛
材用物品として好ましく利用できる。
The polyethylene composite fiber of the present invention can be suitably used as a raw material for a nonwoven fabric. For example, the nonwoven fabric can be formed into a nonwoven fabric by a known point bond method (also referred to as an embossing method), a through air method, a needle punch method, a hydroentanglement method, and the like. Because of the difference, the processing temperature range for forming the nonwoven fabric can be widened, and the nonwoven fabric can be suitably used for the heat bonding method using the point bonding method and the through air method. When a nonwoven fabric is obtained by a through-air method, if the heat shrinkage of the fiber is large, the fiber shrinks due to heat during processing, and the resulting nonwoven fabric has problems such as poor dimensional stability, poor formation, and tightness. Has a web shrinkage of 15% or less,
It is necessary to suppress it to preferably 10% or less (120 ° C. oven heating). In order to suppress web shrinkage, it is necessary to increase the fluidity of the resin melted from the nozzle. Examples of the method include raising the melting temperature during spinning, or using a resin having a relatively high melt index. When the polyethylene resin is melted at a high temperature, a gel (thermally crosslinked deterioration product) is generated, which causes a yarn breakage during spinning. Therefore, the latter is a more effective means for suppressing web shrinkage. Since the polyethylene-based composite fiber of the present invention is not particularly deteriorated by radiation irradiation, the obtained non-woven fabric is used for medical applications such as radiation-irradiated clothing, surgical caps, sheets, surgical clothing, surgical gowns, and medical examination clothing. Can be widely used as. Further, the nonwoven fabric of the present invention,
As an absorbent article, it can be preferably used especially as a disposable diaper for infants and adults, a napkin, etc., and also as an article for a sanitary material such as a sweat absorbing pad, a sebum removing sheet material, a hand wipe, a toilet wipe, and a wiper.

【0016】[0016]

【実施例】以下、実施例および比較例を示し本発明をよ
り具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。なお、本発明中における原綿作製
条件、実施例および比較例の各物性の評価法、測定値は
以下に示す通りである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The conditions for producing raw cotton, the methods for evaluating the properties of the examples and the comparative examples, and the measured values in the present invention are as shown below.

【0017】本発明に使用した原綿作製条件としては、
表1に示す第一成分、第二成分のポリエチレン樹脂の組
み合わせにて、第一成分を240℃、第二成分を200
℃で、孔経0.8mmφの紡糸口金から押し出し、紡糸
速度376m/minで引き取り18.7dtexのポ
リエチレン複合繊維を得た。この未延伸糸を90℃の温
水で満たした温水延伸装置を用いて、10倍で延伸した
のち、押し込み型のクリンパーでジグザグ状の捲縮を付
与し、80℃の熱風サクションドライヤーにて乾燥後、
51mm長にカットした。得られた繊維の繊度は2.2
dtexとなった。
The raw cotton production conditions used in the present invention include:
In the combination of the first component and the second component polyethylene resin shown in Table 1, the first component was 240 ° C., and the second component was 200 ° C.
At ℃, it was extruded from a spinneret having a hole diameter of 0.8 mmφ and was taken out at a spinning speed of 376 m / min to obtain a polyethylene composite fiber having 18.7 dtex. After stretching this unstretched yarn at a draw ratio of 10 using a hot water stretching device filled with warm water at 90 ° C., applying a zigzag crimp with a push-in crimper and drying it with a hot air suction dryer at 80 ° C. ,
It was cut to a length of 51 mm. The fineness of the obtained fiber is 2.2
dtex.

【0018】ウェブ作製は、大和機工製 高速型サンプ
ルローラーカードを用い、目付20g/m2のウェブを
作製した。このときのネップの発生状況、地合を観察
し、下記の評価に基づき判断した。 ○…ネップが発生することなく均一なウェブが得られ
た。 △…少量のネップが観察されたが均一なウェブが得られ
た。 ×…多量のネップが発生し均一なウェブが得られなかっ
た。
The web was produced using a high-speed sample roller card manufactured by Daiwa Kiko Co., Ltd. to produce a web having a basis weight of 20 g / m 2 . At this time, the occurrence state and formation of the neps were observed, and the judgment was made based on the following evaluation. …: A uniform web was obtained without nep. Δ: A small amount of NEP was observed, but a uniform web was obtained. X: A large amount of neps were generated and a uniform web could not be obtained.

【0019】上記で得られた目付20g/m2のウェブ
をスルーエアー加工および、エンボス加工を行い不織布
とした。不織布加工条件を以下に示す。 スルーエアー加工:熱風循環式サクションバンドドライ
ヤーを用い、0.8m/sの風速、8.5m/minの加
工速度にて熱融着を行った。加工温度は110、11
5、120、125℃とした。 エンボス加工:エンボス面積率25%のエンボスロール
とフラットロールの上下一対からなるエンボス加工機を
用い、1.96Mpaの線圧、6.0m/min加工速度
で熱圧着を行った。加工温度は105、110、11
5、120℃とした。
The web having a basis weight of 20 g / m 2 obtained above was subjected to through-air processing and embossing to obtain a nonwoven fabric. The nonwoven fabric processing conditions are shown below. Through-air processing: Using a hot-air circulation type suction band dryer, heat fusion was performed at an air speed of 0.8 m / s and a processing speed of 8.5 m / min. Processing temperature is 110, 11
5, 120 and 125 ° C. Embossing: Thermocompression bonding was performed at a linear pressure of 1.96 Mpa and a processing speed of 6.0 m / min using a pair of upper and lower embossing rolls having an embossing area ratio of 25% and a flat roll. Processing temperature is 105, 110, 11
5, and 120 ° C.

【0020】不織布強度測定は、得られたスルーエアー
不織布とエンボス不織布を15cm×5cm(MD×C
D:MD強度測定サンプル)、5cm×15cm(MD
×CD:CD強度測定サンプル)に切断し、島津製作所
製オートグラフAG−500Dを用い、引張り速度20
0m/minにてサンプルの破断強度を求めた。
The strength of the nonwoven fabric was measured by measuring the obtained through-air nonwoven fabric and embossed nonwoven fabric in a size of 15 cm × 5 cm (MD × C
D: MD strength measurement sample), 5 cm × 15 cm (MD
× CD: CD strength measurement sample), and using an Autograph AG-500D manufactured by Shimadzu Corporation at a tensile speed of 20
The breaking strength of the sample was determined at 0 m / min.

【0021】ウェブ収縮測定は、高速サンプルローラー
カードを使用し、原綿100gを通し、ウェブを作製し
た。このウェブを25×25cmに切断しMD方向に切
り出しサンプルの中央とサイドから1cm中央部(上
下)、計3ヶ所を計り、この平均値をAとした。次に、
切り出しサンプルを120℃に加熱された、オーブンに
5分間入れて熱処理し、5分間常温で放置後、熱処理前
に計った場所をもう一度計り、この平均値をBとした。
下記計算式を用いウェブ収縮率を求めた。 (式) ウェブ収縮率=(A−B)×100/A
(%)
For the measurement of web shrinkage, a high-speed sample roller card was used to make a web by passing 100 g of raw cotton. This web was cut into 25 × 25 cm, cut out in the MD direction, and 1 cm center (up and down) from the center and sides of the sample were measured at a total of three places. next,
The cut sample was placed in an oven heated to 120 ° C. for 5 minutes and heat-treated. After standing at room temperature for 5 minutes, the place measured before the heat treatment was measured again.
The web shrinkage was determined using the following formula. (Formula) Web shrinkage = (A−B) × 100 / A
(%)

【0022】不織布の風合いは、10人のパネラーによ
り評価した結果、9人以上が柔軟である感じた場合を
◎、5人以上が柔軟であると感じた場合を○、柔軟であ
ると感じた人が4人以下の場合を△、柔軟であると感じ
た人が2人以下の場合を×とし、◎および○は実用範
囲、△、×は実用範囲外とした。また、不織布加工(ス
ルーエアーおよびエンボス加工)において得られた不織
布にひきつり等の収縮がみられた場合も実用範囲外とし
た。
The texture of the nonwoven fabric was evaluated by 10 panelists. As a result, 9 or more felt soft, ◎ when 5 or more felt soft, and soft. The case where the number of people was 4 or less was evaluated as △, the case where the number of people who felt flexibility was 2 or less was evaluated as X, ◎ and と し た were determined to be within the practical range, and Δ and × were determined outside the practical range. Further, the case where shrinkage such as twitching was observed in the nonwoven fabric obtained in the nonwoven fabric processing (through air and embossing) was also out of the practical range.

【0023】実施例1、3、4は、第二成分に使用して
いるメタロセンポリエチレン樹脂の密度を本発明内で変
更したものである。何れもカード通過性は良好であり、
ウェブ収縮も10%以下であった。
In Examples 1, 3, and 4, the density of the metallocene polyethylene resin used for the second component was changed within the present invention. Both have good card passing properties,
Web shrinkage was also less than 10%.

【0024】実施例2は、第一成分と第二成分共に高い
MFR樹脂を使用したものである。カード通過性は良好
であり、且つウェブ収縮が低減している。
Example 2 uses a high MFR resin for both the first and second components. The card passability is good and the web shrinkage is reduced.

【0025】実施例5は実施例2の樹脂構成で、第一成
分と第二成分の比を70/30から50/50へ変更し
たものである。カード通過性は良好であり、ウェブ収縮
も10%以下であった。
Example 5 has the same resin composition as in Example 2, except that the ratio of the first component to the second component is changed from 70/30 to 50/50. The card passability was good, and the web shrinkage was 10% or less.

【0026】実施例6は鞘に使用しているメタロセンポ
リエチレン樹脂にチーグラーナッタポリエチレン樹脂を
40%ブレンドしたものである。カード通過性は良好
で、ウェブ収縮も10%以下であった。
In Example 6, the metallocene polyethylene resin used for the sheath is blended with a Ziegler-Natta polyethylene resin at 40%. The card passing property was good, and the web shrinkage was 10% or less.

【0027】比較例1はチーグラーナッタポリエチレン
樹脂からなる実施例1と同様の密度とMFRの樹脂であ
り、また、比較例2、3、4は第二成分の密度を上げた
ものである。比較例1はカード通過性が非常に悪く、多
量のネップが発生したため、ウェブサンプルは採取不可
能であった。また、比較例2、3、4は高密度になる
程、カード性は改善される傾向ではあったが、何れもウ
ェブ収縮が高かった。
Comparative Example 1 is a resin having the same density and MFR as in Example 1 made of Ziegler-Natta polyethylene resin, and Comparative Examples 2, 3, and 4 increase the density of the second component. In Comparative Example 1, the card passing property was very poor, and a large amount of NEP occurred, so that a web sample could not be collected. In Comparative Examples 2, 3, and 4, the higher the density, the higher the cardability, but the higher the web shrinkage.

【0028】比較例5はMFRの高いチーグラーナッタ
ポリエチレン樹脂の組み合わせによるものである。カー
ド工程にて少量のネップが見られ、またウェブ収縮は1
5%以上と高いものであった。
Comparative Example 5 is based on a combination of a Ziegler-Natta polyethylene resin having a high MFR. A small amount of NEP is seen in the carding process, and the web shrinkage is 1
It was as high as 5% or more.

【0029】比較例6は比較例2の第一成分と第二成分
の比を70/30から50/50へ変更したものである
が、カード通過性が悪く多量のネップが発生したことか
ら、ウェブサンプルは採取不可能であった。
In Comparative Example 6, the ratio of the first component to the second component in Comparative Example 2 was changed from 70/30 to 50/50. However, since the card passing property was poor and a large amount of NEP was generated, Web samples were not available.

【0030】実施例1、2、3、4、5、6の繊維をス
ルーエアー不織布加工し、その不織布物性を測定した結
果が表2の実施例7、8、9、10、11、12であ
る。何れも加工温度巾が大きいことから、不織布加工が
容易であり、低温加工性が向上する。また、不織布は柔
軟で風合が良好であり、比容積、強力が高いことが分か
った。
The fibers of Examples 1, 2, 3, 4, 5, and 6 were processed by through-air nonwoven fabric, and the physical properties of the nonwoven fabric were measured. The results of Examples 7, 8, 9, 10, 11, and 12 in Table 2 are shown in Table 2. is there. In any case, since the processing temperature width is large, nonwoven fabric processing is easy, and low-temperature processability is improved. In addition, it was found that the nonwoven fabric was flexible and had a good feel, and had a high specific volume and high strength.

【0031】比較例2、3、5の繊維をスルーエアー不
織布加工し、その不織布物性を測定した結果が表2の比
較例7、8、10である。何れも加工温度巾が狭いため
不織布加工が困難であり、低温加工性が低下する。ま
た、比容積が低く、不織布は硬く風合を損なう。本発明
で得られる繊維を用いたスルーエアー不織布と比較する
と各加工温度における強力が低く、特に低温加工時にそ
の強力の差が最も大きくなる。
The fibers of Comparative Examples 2, 3, and 5 were processed through-air nonwoven fabrics, and the physical properties of the nonwoven fabrics were measured. The results are Comparative Examples 7, 8, and 10 in Table 2. In any case, since the processing temperature range is narrow, it is difficult to process the nonwoven fabric, and the low-temperature processability is reduced. Further, the specific volume is low, and the nonwoven fabric is hard and impairs the feeling. Compared with the through-air nonwoven fabric using the fiber obtained in the present invention, the strength at each processing temperature is low, and the difference in strength at the time of low-temperature processing is the largest.

【0032】比較例4の繊維をスルーエアー加工し、不
織布を製造することを試みたが、表面にひきつりが見ら
れ、著しく地合が悪く、表2の比較例9に示すように物
性データを測定できるような不織布は得られなかった。
これは、第一成分と第二成分の融点差がきわめて狭いた
めである。
An attempt was made to produce a nonwoven fabric by subjecting the fiber of Comparative Example 4 to through-air processing. However, the surface was tight and the formation was extremely poor. As shown in Comparative Example 9 in Table 2, the physical property data were obtained. No nonwoven fabric that could be measured was obtained.
This is because the difference in melting point between the first component and the second component is extremely narrow.

【0033】実施例1、2、3、4、5、6の繊維をエ
ンボス不織布加工し、その不織布物性を測定した結果
が、表3の実施例13、14、15、16、17、18
である。何れも、加工温度巾がとれることから不織布加
工が容易であり、低温加工性が向上する。また、得られ
た不織布の強力は高く、非常に柔軟で風合が良好であっ
た。
The fibers of Examples 1, 2, 3, 4, 5, and 6 were processed into an embossed nonwoven fabric, and the physical properties of the nonwoven fabric were measured. The results of Examples 13, 14, 15, 16, 17, and 18 in Table 3 are shown.
It is. In any case, the nonwoven fabric processing is easy because the processing temperature width can be taken, and the low-temperature workability is improved. Further, the obtained nonwoven fabric had high strength, was very soft and had a good feel.

【0034】比較例2、3、4、5の繊維をエンボス不
織布加工し、その不織布物性を測定した結果が、表3の
比較例11、12、13、14である。何れも、加工温
度巾が狭いため不織布加工が困難であり、低温加工性が
低下する。また、得られた不織布は硬く風合が低下し
た。本発明で得られる繊維を用いたエンボス不織布と比
較すると各加工温度における強力が低く、特に低温加工
時にその強力の差が最も大きくなる。
The fibers of Comparative Examples 2, 3, 4, and 5 were processed into an embossed nonwoven fabric, and the physical properties of the nonwoven fabric were measured. The results of Comparative Examples 11, 12, 13, and 14 in Table 3 are shown in Table 3. In any case, the non-woven fabric processing is difficult because the processing temperature width is narrow, and the low-temperature workability is reduced. Moreover, the obtained nonwoven fabric was hard and the hand was reduced. Compared with the embossed nonwoven fabric using the fiber obtained in the present invention, the strength at each processing temperature is low, and the difference in strength at the time of low-temperature processing is the largest.

【0035】本発明で得られる繊維を用いたスルーエア
ー不織布を市販されている大人用使い捨ておむつの表面
材を切り取り、表2の実施例7と比較例7の不織布を固
定した、実施例19、比較例15の着用試験を行ったと
ころ、実施例19の大人用使い捨ておむつは非常に肌触
りが良く、使用時に耐える強力を持ち、比較例15の大
人用使い捨ておむつは、べたつき感があるため肌触りが
悪く、着用感が悪いことが確認された。
The through-air nonwoven fabric using the fiber obtained in the present invention was cut off from the surface material of a commercially available disposable diaper for adults, and the nonwoven fabrics of Example 7 and Comparative Example 7 in Table 2 were fixed. When the wearing test of Comparative Example 15 was carried out, the adult disposable diaper of Example 19 had a very good feel and had the strength to withstand use, and the adult disposable diaper of Comparative Example 15 had a sticky feeling, and thus had a soft touch. It was confirmed that it was bad and the wearing feeling was bad.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】[0039]

【発明の効果】本発明のポリエチレン系複合繊維は、第
一成分と第二成分の融点差が充分にとれることから、不
織布加工が容易であり、低温加工性が向上する。また、
得られた不織布は嵩高で柔軟であり、更に高い接着強力
を示す。特に従来、使用が困難であったスルーエアー用
原綿として好適に用いることが出来、医療用途のみなら
ず衛材用途に適した性能を有している。
The polyethylene-based conjugate fiber of the present invention has a sufficient melting point difference between the first component and the second component, so that nonwoven fabric processing is easy and low-temperature processability is improved. Also,
The obtained non-woven fabric is bulky and flexible, and shows higher adhesive strength. In particular, it can be suitably used as through-air raw cotton, which has been conventionally difficult to use, and has performance suitable not only for medical use but also for sanitary use.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) D04H 1/54 D04H 3/14 A 3/00 3/16 3/14 A61F 13/18 310Z 3/16 Fターム(参考) 4C003 AA16 4C081 AA01 BB04 BB07 BB08 BC03 CA021 DA05 4L041 AA07 AA20 BA02 BA05 BA21 BA49 BD03 BD07 BD11 CA36 CA37 CA62 DD01 DD04 DD05 DD18 4L047 AA14 AA27 AB03 AB10 BA09 BA23 BB01 CC03 EA10 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) D04H 1/54 D04H 3/14 A 3/00 3/16 3/14 A61F 13/18 310Z 3/16 F Terms (reference) 4C003 AA16 4C081 AA01 BB04 BB07 BB08 BC03 CA021 DA05 4L041 AA07 AA20 BA02 BA05 BA21 BA49 BD03 BD07 BD11 CA36 CA37 CA62 DD01 DD04 DD05 DD18 4L047 AA14 AA27 AB03 AB10 BA09 BA23 BB01 CC03 EA

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】ポリエチレン系樹脂からなる鞘芯型複合繊
維であって、第一成分(芯成分)が密度0.940g/
cm3以上のポリエチレン樹脂からなり、第二成分(鞘
成分)がメタロセン触媒により重合されたQ値(重量平
均分子量Mw/数平均分子量Mn)3.0以下のポリエ
チレン樹脂を含むことを特徴とするポリエチレン系複合
繊維。
1. A sheath-core composite fiber comprising a polyethylene resin, wherein the first component (core component) has a density of 0.940 g / core.
It consists cm 3 or more polyethylene resin, characterized in that it comprises a second component Q value (sheath component) is polymerized with a metallocene catalyst (weight average molecular weight Mw / number average molecular weight Mn) 3.0 The following polyethylene resin Polyethylene composite fiber.
【請求項2】第一成分が密度0.945〜0.965g/
cm3、融点125〜135℃の高密度ポリエチレンで
ある請求項1に記載のポリエチレン系複合繊維。
2. The composition according to claim 1, wherein the first component has a density of 0.945 to 0.965 g /.
cm 3, a polyethylene-based composite fiber according to claim 1 which is a high density polyethylene having a melting point of 125-135 ° C..
【請求項3】第一成分がメルトフローレート5〜45g/
10min(190℃、2160g、B法)を有する高密度
ポリエチレンである、請求項1または2に記載のポリエ
チレン系複合繊維。
3. The method according to claim 1, wherein the first component has a melt flow rate of 5 to 45 g /.
The polyethylene-based composite fiber according to claim 1 or 2, which is a high-density polyethylene having 10 minutes (190 ° C, 2160 g, method B).
【請求項4】第二成分に含まれるポリエチレン樹脂が、
メタロセン触媒により重合された密度0.850〜0.9
30g/cm3、Q値2.5以下のポリエチレン樹脂であ
る請求項1に記載のポリエチレン系複合繊維。
4. The polyethylene resin contained in the second component,
Density 0.850-0.9 polymerized by metallocene catalyst
30 g / cm 3, a polyethylene-based composite fiber according to claim 1 is a Q value of 2.5 or less polyethylene resin.
【請求項5】第二成分に含まれるポリエチレン樹脂が、
メタロセン触媒により重合されたメルトフローレート5
〜45g/10min(190℃、2160g、B法)を有す
るポリエチレンである請求項1〜4のいずれか1項に記
載のポリエチレン系複合繊維。
5. The polyethylene resin contained in the second component,
Melt flow rate 5 polymerized by metallocene catalyst
The polyethylene-based composite fiber according to any one of claims 1 to 4, wherein the polyethylene-based composite fiber is polyethylene having a weight of 45 g / 10 min (190 ° C, 2160 g, method B).
【請求項6】第一成分と第二成分の融点差が、5℃以上
であることを特徴とする請求項1、4および5のいずれ
か1項に記載のポリエチレン系複合繊維。
6. The polyethylene-based composite fiber according to claim 1, wherein a difference in melting point between the first component and the second component is 5 ° C. or more.
【請求項7】請求項1〜6のいずれか1項に記載のポリ
エチレン系複合繊維を用いた不織布。
7. A nonwoven fabric using the polyethylene-based composite fiber according to any one of claims 1 to 6.
【請求項8】スルーエアー加工により繊維同士を熱融着
させた請求項7に記載の不織布。
8. The nonwoven fabric according to claim 7, wherein the fibers are thermally fused by through-air processing.
【請求項9】ポイントボンド加工により繊維同士を点接
着させた請求項7に記載の不織布。
9. The nonwoven fabric according to claim 7, wherein the fibers are point-bonded to each other by a point bonding process.
【請求項10】請求項1〜6のいずれか1項に記載のポ
リエチレン系複合繊維と、該繊維が熱接着する温度では
実質的に非接着性である繊維を混綿した不織布。
10. A nonwoven fabric obtained by mixing the polyethylene-based composite fiber according to any one of claims 1 to 6 and a fiber which is substantially non-adhesive at a temperature at which the fiber is thermally bonded.
【請求項11】繊維同士を水流交絡させた請求項7〜1
0のいずれか1項に記載の不織布。
11. A fiber according to claim 7, wherein the fibers are hydroentangled.
0 The nonwoven fabric according to any one of 0.
【請求項12】スパンボンド法により得られる請求項7
〜9のいずれか1項に記載の不織布。
12. The method according to claim 7, which is obtained by a spunbond method.
10. The nonwoven fabric according to any one of claims 9 to 9.
【請求項13】120℃加工におけるウェブ収縮率が1
5%以下である請求項7〜12のいずれか1項に記載の
不織布。
13. A web shrinkage ratio at processing at 120 ° C. of 1
The nonwoven fabric according to any one of claims 7 to 12, which is 5% or less.
【請求項14】請求項7〜13のいずれか1項に記載の
不織布を用いた医療用物品。
14. A medical article using the nonwoven fabric according to any one of claims 7 to 13.
【請求項15】請求項7〜13のいずれか1項に記載の
不織布を用いた衛生材料用物品。
15. An article for a sanitary material using the nonwoven fabric according to any one of claims 7 to 13.
JP2000158451A 2000-05-29 2000-05-29 Polyethylene composite fiber and non-woven fabric using the same Expired - Fee Related JP4441987B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2000158451A JP4441987B2 (en) 2000-05-29 2000-05-29 Polyethylene composite fiber and non-woven fabric using the same
DE10126126.8A DE10126126B4 (en) 2000-05-29 2001-05-29 Fleece made of polyethylene composite fiber and its use
US09/866,469 US6391443B1 (en) 2000-05-29 2001-05-29 Polyethylene composite fiber and a non-woven fabric using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158451A JP4441987B2 (en) 2000-05-29 2000-05-29 Polyethylene composite fiber and non-woven fabric using the same

Publications (2)

Publication Number Publication Date
JP2001336033A true JP2001336033A (en) 2001-12-07
JP4441987B2 JP4441987B2 (en) 2010-03-31

Family

ID=18662920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158451A Expired - Fee Related JP4441987B2 (en) 2000-05-29 2000-05-29 Polyethylene composite fiber and non-woven fabric using the same

Country Status (1)

Country Link
JP (1) JP4441987B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088582A (en) * 2000-05-29 2002-03-27 Chisso Corp Polyethylene conjugated fiber and nonwoven fabric by using the same
JP2005015990A (en) * 2003-06-06 2005-01-20 Chisso Corp Heat adhesive bicomponent fiber and nonwoven fabric using the same
JP2007321311A (en) * 2006-06-02 2007-12-13 Unitika Ltd Heat-sealing nonwoven fabric
JP2012167404A (en) * 2011-02-14 2012-09-06 Jnc Corp Polyolefin-based antistatic fiber and nonwoven fabric comprising the same
CN103031615A (en) * 2012-12-27 2013-04-10 中国纺织科学研究院 High-strength polyethylene monofilament and preparation method thereof
EP2826898A1 (en) * 2013-07-15 2015-01-21 Ewald Dörken Ag Bicomponent fibre for producing spun nonwoven fabrics
US20190062952A1 (en) * 2016-03-11 2019-02-28 Es Fibervisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
JP2020536179A (en) * 2017-10-03 2020-12-10 フィテサ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング Nonwoven fabric and its forming method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002088582A (en) * 2000-05-29 2002-03-27 Chisso Corp Polyethylene conjugated fiber and nonwoven fabric by using the same
JP2005015990A (en) * 2003-06-06 2005-01-20 Chisso Corp Heat adhesive bicomponent fiber and nonwoven fabric using the same
JP2007321311A (en) * 2006-06-02 2007-12-13 Unitika Ltd Heat-sealing nonwoven fabric
JP2012167404A (en) * 2011-02-14 2012-09-06 Jnc Corp Polyolefin-based antistatic fiber and nonwoven fabric comprising the same
CN103031615A (en) * 2012-12-27 2013-04-10 中国纺织科学研究院 High-strength polyethylene monofilament and preparation method thereof
EP2826898A1 (en) * 2013-07-15 2015-01-21 Ewald Dörken Ag Bicomponent fibre for producing spun nonwoven fabrics
US20190062952A1 (en) * 2016-03-11 2019-02-28 Es Fibervisions Co., Ltd. Low-elution polyethylene-based fibers and nonwoven fabric using same
JP2019508601A (en) * 2016-03-11 2019-03-28 Esファイバービジョンズ株式会社 Low elution polyethylene fiber and non-woven fabric using the same
JP2020536179A (en) * 2017-10-03 2020-12-10 フィテサ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング Nonwoven fabric and its forming method
JP7258866B2 (en) 2017-10-03 2023-04-17 フィテサ ジャーマニー ゲゼルシャフト ミット ベシュレンクテル ハフツング Nonwoven fabric and method of forming the same

Also Published As

Publication number Publication date
JP4441987B2 (en) 2010-03-31

Similar Documents

Publication Publication Date Title
JP4305983B2 (en) Polyethylene fiber and non-woven fabric using the same
KR101551554B1 (en) Nonwoven laminate
JP6714982B2 (en) Bulky composite long fiber non-woven fabric
PL179692B1 (en) Non-woven fabrics made of coupled fibres
WO1999049120A1 (en) Flexible nonwoven fabric laminate
CN110637117B (en) Non-woven fabric
JP4251380B2 (en) Elastic elastic nonwoven fabric
US6391443B1 (en) Polyethylene composite fiber and a non-woven fabric using the same
WO2000036200A1 (en) Composite-fiber nonwoven fabric
JP3736014B2 (en) Laminated nonwoven fabric
JP2000328420A (en) Flexible laminate of nonwoven fabric
JP5139669B2 (en) Crimped composite fiber and method for producing the same
JP2001336033A (en) Polyester-based conjugate yarn and nonwoven fabric using the same
JP3844390B2 (en) Non-woven fabric laminate
JP5276305B2 (en) Mixed fiber non-woven fabric
JP2000160463A (en) Soft non-woven fabric
JP3389927B2 (en) Polyethylene composite fiber and nonwoven fabric using the same
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP7282211B2 (en) NONWOVEN FABRIC, MANUFACTURING METHOD THEREFOR, ARTICLES CONTAINING THE NONWOVEN FABRIC, AND SANITARY PRODUCTS USING THE NONWOVEN FABRIC
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
JP4352575B2 (en) Thermoplastic composite nonwoven fabric and fiber product using the same
JP4013346B2 (en) Nonwoven fabric and absorbent article using the same
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
JP4581185B2 (en) Non-woven fabric and fiber product using the same
JP2013155476A (en) Blended filament nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100104

R150 Certificate of patent or registration of utility model

Ref document number: 4441987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees