JP3389927B2 - Polyethylene composite fiber and nonwoven fabric using the same - Google Patents

Polyethylene composite fiber and nonwoven fabric using the same

Info

Publication number
JP3389927B2
JP3389927B2 JP2001161242A JP2001161242A JP3389927B2 JP 3389927 B2 JP3389927 B2 JP 3389927B2 JP 2001161242 A JP2001161242 A JP 2001161242A JP 2001161242 A JP2001161242 A JP 2001161242A JP 3389927 B2 JP3389927 B2 JP 3389927B2
Authority
JP
Japan
Prior art keywords
melting point
polyethylene resin
polyethylene
composite fiber
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001161242A
Other languages
Japanese (ja)
Other versions
JP2002088582A (en
Inventor
博和 寺田
之典 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2001161242A priority Critical patent/JP3389927B2/en
Publication of JP2002088582A publication Critical patent/JP2002088582A/en
Application granted granted Critical
Publication of JP3389927B2 publication Critical patent/JP3389927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Professional, Industrial, Or Sporting Protective Garments (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエチレン系複
合繊維および該繊維を用いた不織布に関する。さらに詳
しくは、不織布加工時に加工温度巾を大きくとる事がで
き、かつ得られた不織布の風合いが良く、高い不織布強
力を示すことを特徴とするポリエチレン系複合繊維に関
し、さらにはこれを用いた不織布、該不織布を用いた医
療用物品、衛生用物品に関する。
TECHNICAL FIELD The present invention relates to a polyethylene-based composite fiber and a non-woven fabric using the fiber. More specifically, the present invention relates to a polyethylene-based composite fiber characterized in that the processing temperature range can be widened during processing of the nonwoven fabric, the texture of the resulting nonwoven fabric is good, and the nonwoven fabric strength is high, and further, a nonwoven fabric using the same. The present invention relates to medical articles and hygiene articles using the nonwoven fabric.

【0002】[0002]

【従来の技術】現在医療分野では、不織布から作られる
使い捨ての手術帽、シーツ、手術用覆布、手術用ガウン
等が急速に普及しつつある。これは、MRSA(メチシ
リン耐性ブドウ球菌)、肝炎、HIV(後天性免疫不全
症候群)等による院内感染を防ごうとする動きに対応す
るためである。また、クリーニングの必要のない使い捨
ての不織布製品を使用することは、看護の質を落とさず
に看護業務を簡略でき、現在深刻な社会問題となってい
る人手不足解消の一助ともなる。医療分野で使用される
不織布には、バクテリアバリア性、耐浸透性、撥水性、
リントフリー性等が要求されるが、人体に直接接するも
のであること、1回切りの使い捨てであることから、着
用感、強度、コストも重要な要素となる。
2. Description of the Related Art In the medical field, disposable surgical caps, sheets, surgical coverings, surgical gowns and the like made of non-woven fabrics are rapidly becoming popular. This is to cope with the movement to prevent nosocomial infections due to MRSA (methicillin-resistant staphylococcus aureus), hepatitis, HIV (acquired immunodeficiency syndrome) and the like. In addition, the use of disposable non-woven products that do not require cleaning can simplify nursing work without deteriorating the quality of nursing, and also help to solve the labor shortage, which is currently a serious social problem. Nonwoven fabrics used in the medical field include bacterial barrier properties, penetration resistance, water repellency,
Although it is required to be lint-free, since it is in direct contact with the human body and is a single-use disposable item, the feeling of wearing, strength, and cost are also important factors.

【0003】不織布用途の繊維の原料樹脂としては、ポ
リエチレン系樹脂、ポリプロピレン系樹脂およびポリエ
ステル系樹脂が一般的であるが、医療分野で使用される
不織布についてもこの例外ではない。このような医療分
野で使用される不織布は、しばしば放射線より滅菌され
ることがあるが、ポリプロピレン系樹脂は放射線を照射
された際、高分子鎖が3級炭素原子の結合部位で切断さ
れ、不織布の強度が著しく低下してしまうために、この
ように放射線で滅菌されるような用途に対し、使用が制
限されるという問題がある。また、ポリエステル系の樹
脂は放射線による強力の低下はないが、原料樹脂がポリ
オレフィン系樹脂よりもコスト高となること、体の動き
に追従して破れない程度の強度を与えたり、透けないよ
うにするため不織布を高目付とした場合には、不織布が
硬くなってしまい着用感が悪い、原料樹脂の特性から軽
量感に欠ける、といった難点があるため使用者側から敬
遠されがちで普及の妨げとなっている。
Polyethylene-based resins, polypropylene-based resins and polyester-based resins are generally used as raw material resins for fibers for non-woven fabrics, but non-woven fabrics used in the medical field are not exceptions. Nonwoven fabrics used in such a medical field are often sterilized by radiation. However, when a polypropylene resin is irradiated with radiation, the polymer chain is cut at the bonding site of the tertiary carbon atom, and the nonwoven fabric is Therefore, there is a problem in that the use is limited for applications such as radiation sterilization because the strength of the product is significantly reduced. Also, the strength of the polyester resin does not decrease due to radiation, but the cost of the raw material resin is higher than that of the polyolefin resin, and the strength of the resin does not break so that it follows the movement of the body, or it is not transparent. Therefore, when the non-woven fabric has a high basis weight, the non-woven fabric is hard to wear and has a poor feeling of wearing. Has become.

【0004】これに対してポリエチレン系樹脂は、原料
樹脂が柔らかいことから柔軟な不織布が得られる。3級
炭素原子を持たないことから、放射線照射による不織布
強度低下がない、といった長所があるため、医療用不織
布材料として優れている。しかしながら、単一の成分で
構成された従来のポリエチレン繊維は、不織布加工の
際、加圧ロールによるエンボス加工およびカレンダー加
工での不織布化は比較的容易であるものの熱風によるス
ルーエアー加工には適さず、得られた不織布は柔軟性に
欠ける。また、上記欠点を解消すべく、例えば特表平6
−508892によるような、高密度ポリエチレンを第
一成分に、エチレンとα−オレフィンの共重合体(以下
直鎖状低密度ポリエチレン(L−LDPE)と略記す
る)を第二成分としたポリエチレン系複合繊維が開示さ
れているが、第二成分に通常のL−LDPEを用いた場
合、鞘と芯の融点差が小さくスルーエアー加工等に充分
適しているとは言えない。また、第一成分と第二成分の
融点差をとるために、第二成分に比較的密度の低い直鎖
状低密度ポリエチレン樹脂、very low den
sity polyethylene(VLDPE)お
よびultra low density polye
thylene(ULDPE)を使用した場合、不織布
加工は比較的容易となるが、得られる不織布の強力が大
幅に低下する。
On the other hand, the polyethylene resin is a soft raw material resin, so that a flexible nonwoven fabric can be obtained. Since it does not have a tertiary carbon atom, it has the advantage that the strength of the non-woven fabric does not decrease due to radiation irradiation, and is therefore excellent as a non-woven fabric material for medical use. However, conventional polyethylene fibers composed of a single component are relatively unsuitable for hot air through-air processing, although it is relatively easy to emboss them with pressure rolls and calender them into non-woven fabrics when processing non-woven fabrics. The obtained nonwoven fabric lacks flexibility. In addition, in order to eliminate the above-mentioned drawbacks, for example, Table 6
A polyethylene-based composite having a high-density polyethylene as a first component and a copolymer of ethylene and an α-olefin (hereinafter abbreviated as linear low-density polyethylene (L-LDPE)) as a second component, such as 508892. Although fibers have been disclosed, when ordinary L-LDPE is used as the second component, the difference in melting point between the sheath and the core is small and it cannot be said that it is sufficiently suitable for through-air processing and the like. In addition, in order to obtain a difference in melting point between the first component and the second component, the second component is a linear low-density polyethylene resin having a relatively low density, such as very low den.
site polyethylene (VLDPE) and ultra low density polye
When polyethylene (ULDPE) is used, non-woven fabric processing is relatively easy, but the strength of the resulting non-woven fabric is significantly reduced.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、上記
従来技術の欠点を解消し、加圧接着加工法およびスルー
エアー接着加工法に好適に用いられ、風合いに優れ、高
強力を示す不織布を得ることを可能とするポリエチレン
系複合繊維および、それを用いた不織布を提供すること
にある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art and to be suitably used for a pressure bonding method and a through-air bonding method, and which has a good texture and high strength. The object is to provide a polyethylene-based composite fiber that makes it possible to obtain, and a nonwoven fabric using the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは上記従来の
ポリエチレン系繊維の課題を解決すべく鋭意検討を重ね
た結果、低融点成分が密度0.850〜0.930g/c
m3、Q値(重量平均分子量Mw/数平均分子量Mn)
3.0以下のメタロセン触媒を用いて重合されたポリエ
チレン樹脂(A)と、高融点成分が、密度0.940g/c
m3以上のポリエチレン樹脂(B)からなるポリエチレン
系複合繊維であって、該繊維は、後述するDSC曲線を
示す繊維において所期の目的を達成できることを知り、
本発明を完成するに至った。本発明は以下の構成を有す
る。
Means for Solving the Problems As a result of intensive investigations by the present inventors in order to solve the problems of the conventional polyethylene fibers, the low melting point component has a density of 0.850 to 0.930 g / c.
m 3 , Q value (weight average molecular weight Mw / number average molecular weight Mn)
The polyethylene resin (A) polymerized using a metallocene catalyst of 3.0 or less and the high melting point component have a density of 0.940 g / c.
It is a polyethylene-based composite fiber composed of a polyethylene resin (B) of m 3 or more, and it is known that the fiber can achieve the intended purpose in a fiber showing a DSC curve described later,
The present invention has been completed. The present invention has the following configurations.

【0007】(1)融点の異なる2種のポリエチレン樹
脂成分からなる複合繊維であって、低融点ポリエチレン
樹脂成分(A)がメタロセン触媒を用いて重合された密
度0.850〜0.930g/cm3、Q値(重量平均分子量
Mw/数平均分子量Mn)3.0以下のポリエチレン樹
脂を含む成分であり、高融点ポリエチレン樹脂成分
(B)が密度0.940g/cm3以上のポリエチレン樹脂で
あり、該繊維は、示差走査熱分析装置(DSC)を用い
た測定で得られるDSC曲線(但し、昇温速度を10℃
/分とし、該DSCチャートの縦軸(熱流量、単位:W
/g)の2W/g分の長さが横軸(温度、単位:℃)の
50℃分の長さと等しくなるように目盛をとった場合)
において、2つのポリエチレン樹脂成分(A)および
(B)がそれぞれ別の吸熱ピークP1、P2を持った吸熱
曲線を示し、該DSC曲線のベースラインから低融点ポ
リエチレン樹脂成分(A)の吸熱ピークP1へ垂直に伸
びる線分の長さをL1とし、ベースラインに平行でかつ
ベースラインとP1の中間点を通る直線が低融点ポリエ
チレン樹脂成分(A)の吸熱曲線と交わって作る線分の
長さをWとしたとき、L1とWとの関係がL1>3Wであ
ることを特徴とするポリエチレン系複合繊維。 (2)上記(1)項に記載のポリエチレン系複合繊維の
DSC曲線において、2つのポリエチレン樹脂成分の吸
熱ピークP1、P2の間に形成されるベースラインに最も
近い点をP3とし、ベースラインからP3まで垂直に伸び
る線分の長さをL2としたとき、L1とL2の関係がL1
3L2であることを特徴とするポリエチレン系複合繊
維。 (3)上記(1)または(2)項に記載のポリエチレン
系複合繊維を用いた不織布。 (4)スパンボンド法により得られることを特徴とする
上記(1)または(2)項に記載のポリエチレン系複合
繊維を用いた不織布。 (5)スルーエアー加工法により繊維同士を熱融着させ
た上記(3)または(4)項に記載の不織布。 (6)ポインドボンド加工法により繊維同士を熱融着さ
せた上記(3)または(4)項に記載の不織布。 (7) 上記(3)〜(6)項のいずれか1項に記載の
不織布を一部に用いた医療用物品。 (8) 上記(3)〜(6)項のいずれか1項に記載の
不織布を一部に用いた衛生用物品。
(1) A composite fiber composed of two kinds of polyethylene resin components having different melting points, wherein the low melting point polyethylene resin component (A) is polymerized by using a metallocene catalyst and has a density of 0.850 to 0.930 g / cm 3. 3 , a component containing a polyethylene resin having a Q value (weight average molecular weight Mw / number average molecular weight Mn) of 3.0 or less, and the high melting point polyethylene resin component (B) is a polyethylene resin having a density of 0.940 g / cm 3 or more. The fiber has a DSC curve obtained by a measurement using a differential scanning calorimeter (DSC) (however, the temperature rising rate is 10 ° C.).
/ Min, and the vertical axis of the DSC chart (heat flow rate, unit: W
/ G) and the length of 2W / g is the same as the length of 50 ° C on the horizontal axis (temperature, unit: ° C))
In, the two polyethylene resin components (A) and (B) show endothermic curves having different endothermic peaks P 1 and P 2 , respectively, and the endothermic of the low melting point polyethylene resin component (A) from the baseline of the DSC curve. The length of a line segment extending vertically to the peak P 1 is L 1, and a straight line parallel to the base line and passing through the midpoint between the base line and P 1 intersects with the endothermic curve of the low melting point polyethylene resin component (A). When the length of the line segment is W, the relationship between L 1 and W is L 1 > 3W, which is a polyethylene-based composite fiber. (2) In the DSC curve of the polyethylene-based composite fiber according to the above item (1), the point closest to the baseline formed between the endothermic peaks P 1 and P 2 of the two polyethylene resin components is P 3, and when the length of a line extending perpendicularly from baseline to P 3 was set to L 2, L 1 and L 2 of the relationship L 1>
A polyethylene-based composite fiber characterized by being 3 L 2 . (3) A non-woven fabric using the polyethylene-based composite fiber according to the above (1) or (2). (4) A nonwoven fabric using the polyethylene-based composite fiber according to the above (1) or (2), which is obtained by a spunbond method. (5) The non-woven fabric according to item (3) or (4), wherein the fibers are heat-sealed by the through air processing method. (6) The non-woven fabric according to the above (3) or (4), wherein the fibers are heat-sealed by the poin bond processing method. (7) A medical article in which the nonwoven fabric according to any one of (3) to (6) is partially used. (8) A sanitary article partially using the nonwoven fabric according to any one of (3) to (6).

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
一般にポリオレフィン樹脂の融点は、その樹脂の密度に
関係し、密度が低い樹脂ほど低融点となり、ポリエチレ
ン樹脂の場合も例外ではない。また、複合繊維において
は、低融点成分と高融点成分の融点の差が大きいものほ
ど、加工温度巾が広く、スルーエアー加工法及び熱圧着
加工法等の加工が容易となり、特に低融点成分の融点を
下げることは加工時に溶融する熱量が小さくてすむこと
から、経済的である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
Generally, the melting point of the polyolefin resin is related to the density of the resin, and the lower the density of the resin, the lower the melting point, and the polyethylene resin is no exception. In the composite fiber, the larger the difference in melting point between the low-melting point component and the high-melting point component, the wider the processing temperature range and the easier the processing such as the through-air processing method and the thermocompression bonding method. Lowering the melting point is economical because the amount of heat that melts during processing is small.

【0009】しかしながら、密度の低いポリエチレン樹
脂は一般にQ値が大きく(分子量分布が広く)なり、低
分子量成分が増すことから、溶融開始温度は低下するも
のの、繊維表面のべたつき、不織布強力の低下が問題と
なる。樹脂の融点、溶融開始温度、構成比率等を分析す
るのにもっとも一般的な測定方法として、示差走査熱分
析装置を用いるDSC測定(JIS K7122)が知
られており、得られる吸熱曲線のピークの温度が樹脂の
融点に対応している。通常、チーグラーナッタ触媒によ
り重合された融点が低く密度も低いポリエチレン樹脂を
低融点成分に、高密度のポリエチレン樹脂を高融点成分
に用いて複合繊維とした繊維のDSC曲線は、図3に示
すように低融点成分を現す吸熱曲線が極めてブロードと
なる。低融点成分の密度を上昇させると樹脂の融点も上
昇し、結果として低融点成分と高融点成分の融点差が小
さくなり、そのDSC曲線は、低融点成分の吸熱ピーク
と高融点成分の吸熱ピークが重なった一つのピークとし
て現れる。
However, a polyethylene resin having a low density generally has a large Q value (wide molecular weight distribution) and an increased amount of low molecular weight components, so that the melting start temperature is lowered, but the stickiness of the fiber surface and the strength of the nonwoven fabric are lowered. It becomes a problem. DSC measurement (JIS K7122) using a differential scanning calorimeter is known as the most general measurement method for analyzing the melting point, melting start temperature, composition ratio, etc. of a resin, and the peak of the endothermic curve obtained is known. The temperature corresponds to the melting point of the resin. Generally, a DSC curve of a fiber obtained by polymerizing with a Ziegler-Natta catalyst using a polyethylene resin having a low melting point and a low density as a low melting point component and a high density polyethylene resin as a high melting point component to form a composite fiber is as shown in FIG. The endothermic curve showing the low melting point component is extremely broad. When the density of the low melting point component is increased, the melting point of the resin is also increased, and as a result, the melting point difference between the low melting point component and the high melting point component becomes small, and the DSC curve shows the endothermic peaks of the low melting point component and the high melting point component. Appear as one overlapping peak.

【0010】本発明のポリエチレン系複合繊維は、その
DSC曲線において、低融点成分の吸熱ピークが70℃
〜125℃に現れ、かつ、図1に示すように、低融点ポ
リエチレン樹脂成分(A)と高融点ポリエチレン樹脂成
分(B)がそれぞれ別の吸熱ピークP1、P2を持った吸
熱曲線を示し、ベースラインからP1へ垂直に伸びる線
分の長さをL1とし、ベースラインに平行でかつベース
ラインとP1の中間点を通る直線が低融点ポリエチレン
樹脂成分(A)の吸熱曲線と交わって作る線分の長さを
Wとしたとき、L1とWとの関係がL1>3Wであること
を特徴としている。また、2つのポリエチレン樹脂成分
の吸熱ピークP1、P2の間に形成されるベースラインに
最も近い点をP3とし、ベースラインからP3まで垂直に
伸びる線分の長さをL2としたとき、L1とL2の関係が
1>3L2であることを特徴としている。これは、低融
点ポリエチレン樹脂成分(A)の融点がブロードではな
くシャープに現れることを定量的に表したもので、不織
布加工後の繊維表面のべたつきや強力の低下を抑えるた
めに大きな意味を持つものである。
The polyethylene-based conjugate fiber of the present invention has an endothermic peak of a low melting point component of 70 ° C. in its DSC curve.
Appearing at ˜125 ° C., and as shown in FIG. 1, the low melting point polyethylene resin component (A) and the high melting point polyethylene resin component (B) show endothermic curves with different endothermic peaks P 1 and P 2 , respectively. , L 1 is the length of a line segment extending vertically from the baseline to P 1 , and a straight line parallel to the baseline and passing through the midpoint between the baseline and P 1 is the endothermic curve of the low melting point polyethylene resin component (A). When the length of the line segment that intersects is W, the relationship between L 1 and W is L 1 > 3W. The point closest to the baseline formed between the endothermic peaks P 1 and P 2 of the two polyethylene resin components is P 3, and the length of a line segment extending vertically from the baseline to P 3 is L 2 . Then, the relationship between L 1 and L 2 is L 1 > 3L 2 . This is a quantitative expression that the melting point of the low melting point polyethylene resin component (A) appears sharply rather than broadly, and has a great meaning to suppress stickiness and deterioration of strength of the fiber surface after processing the nonwoven fabric. It is a thing.

【0011】さらに、複合繊維においては、低融点ポリ
エチレン樹脂成分(A)と高融点ポリエチレン樹脂成分
(B)との融点差が大きいものほど、不織布にするとき
の加工温度巾を広くすることができるので、スルーエア
ー加工法及び熱圧着加工法等による加工が容易となる。
特に、低融点ポリエチレン樹脂成分(A)の融点を下げ
ることは不織布加工時に、複合繊維同士を熱接着させる
ための溶融熱量が小さくてすむので経済的である。
Further, in the composite fiber, the larger the melting point difference between the low melting point polyethylene resin component (A) and the high melting point polyethylene resin component (B), the wider the processing temperature range for forming the nonwoven fabric. Therefore, the processing by the through air processing method, the thermocompression bonding method, or the like becomes easy.
In particular, lowering the melting point of the low melting point polyethylene resin component (A) is economical because the amount of heat of fusion for thermally bonding the composite fibers to each other during processing of the nonwoven fabric is small.

【0012】本発明のポリエチレン系複合繊維では、低
融点ポリエチレン樹脂成分(A)と高融点ポリエチレン
樹脂成分(B)との融点差が5℃以上であることが好ま
しい(本発明で用いる融点差とは、複合繊維を示差走査
熱分析装置(DSC)を用いて測定した時に示されるD
SC曲線において、高融点側の吸熱ピークPから低融
点側の吸熱ピークPを引いたものである。)。
In the polyethylene-based composite fiber of the present invention, it is preferable that the melting point difference between the low-melting point polyethylene resin component (A) and the high-melting point polyethylene resin component (B) is 5 ° C. or more. Is the D shown when the conjugate fiber is measured by using a differential scanning calorimeter (DSC).
In the SC curve, the endothermic peak P 1 on the low melting point side is subtracted from the endothermic peak P 2 on the high melting point side. ).

【0013】また、一般に樹脂の融点は、その樹脂の密
度に関係し、密度が低い樹脂ほど低融点となる。しかし
ながら、密度の低い樹脂は一般にQ値が広くなり、低分
子量成分を増すことから、溶融開始温度は低下するもの
の、繊維表面のべたつき、不織布強力の低下が問題とな
る。
Generally, the melting point of the resin is related to the density of the resin, and the lower the density, the lower the melting point of the resin. However, a resin having a low density generally has a wide Q value and an increased amount of low molecular weight components, so that the melting start temperature is lowered, but the tackiness of the fiber surface and the reduction of the strength of the nonwoven fabric become a problem.

【0014】このような点からも、本発明のポリエチレ
ン系複合繊維の低融点ポリエチレン樹脂成分(A)に
は、Q値を小さくするのに好適なメタロセン触媒を用い
て重合されたポリエチレンを主成分とすることが有効で
ある。
From this point of view also, the low melting point polyethylene resin component (A) of the polyethylene-based composite fiber of the present invention is mainly composed of polyethylene polymerized using a metallocene catalyst suitable for reducing the Q value. Is effective.

【0015】通常、一般的に使用されているチーグラー
ナッタ触媒を用いて重合されたポリエチレンを低融点ポ
リエチレン樹脂成分(A)の主成分とすると、得られる
複合繊維のDSC曲線は、図3に示すように低融点ポリ
エチレン樹脂成分(A)の吸熱ピークPが極めてブロ
ードとなる。低融点ポリエチレン樹脂成分(A)の密度
を上昇させ、吸熱ピークPをシャープにしようとする
と、それに伴って融点も上昇し、低融点ポリエチレン樹
脂成分(A)と高融点ポリエチレン樹脂成分(B)との
融点差が小さくなってしまい、そのDSC曲線は、低融
点ポリエチレン樹脂成分(A)の融点を示す吸熱ピーク
が高融点ポリエチレン樹脂成分(B)の融点を示す
吸熱ピークP2に吸収され一つのピークとなってしま
う。
When polyethylene polymerized with a generally used Ziegler-Natta catalyst is used as the main component of the low melting point polyethylene resin component (A), the DSC curve of the obtained conjugate fiber is shown in FIG. Thus, the endothermic peak P 1 of the low melting point polyethylene resin component (A) becomes extremely broad. When the density of the low melting point polyethylene resin component (A) is increased and the endothermic peak P 1 is sharpened, the melting point is also increased accordingly, and the low melting point polyethylene resin component (A) and the high melting point polyethylene resin component (B) And the DSC curve shows that the endothermic peak P 1 indicating the melting point of the low melting point polyethylene resin component (A) is absorbed by the endothermic peak P 2 indicating the melting point of the high melting point polyethylene resin component (B). It becomes one peak.

【0016】これに対し、本発明のポリエチレン系複合
繊維は、メタロセン触媒を用いて重合されたQ値が3.
0以下のポリエチレンを主成分とする低融点ポリエチレ
ン樹脂成分(A)を用いており、これと密度0.940
g/cm3以上のポリエチレンを主成分とする高融点ポ
リエチレン樹脂成分(B)とを組み合わせることによ
り、該複合繊維のDSC曲線は、図2に示すように低融
点ポリエチレン樹脂成分(A)の吸熱ピークP1がシャ
ープに、かつ吸熱ピークP1および吸熱ピークPが適
度な間隔をおいて明確に現れる。このことは、不織布加
工の際に繊維同士の接着成分となる低融点ポリエチレン
樹脂成分(A)を構成するポリエチレンの分子量が高分
子量領域に多く、かつ、分子量分布が狭いことを現して
おり、高融点ポリエチレン樹脂成分(B)と低融点ポリ
エチレン樹脂成分(A)との溶融特性が明確に異なって
いることを現す。その結果として、べたつきが少なく高
い接着強力を有する複合繊維が得られることが解る。
On the other hand, the polyethylene composite fiber of the present invention has a Q value of 3. when polymerized using a metallocene catalyst.
A low melting point polyethylene resin component (A) containing 0 or less polyethylene as a main component is used, and the density and the density are 0.940.
By combining with a high melting point polyethylene resin component (B) containing polyethylene of g / cm 3 or more as a main component, the DSC curve of the composite fiber shows that the endothermic endotherm of the low melting point polyethylene resin component (A) as shown in FIG. The peak P 1 appears sharply, and the endothermic peak P 1 and the endothermic peak P 2 clearly appear at appropriate intervals. This means that the polyethylene constituting the low-melting point polyethylene resin component (A), which serves as an adhesive component between the fibers during the processing of the nonwoven fabric, has a large molecular weight in the high molecular weight region and has a narrow molecular weight distribution. It shows that the melting point polyethylene resin component (B) and the low melting point polyethylene resin component (A) have distinctly different melting characteristics. As a result, it is understood that the composite fiber having less stickiness and high adhesive strength can be obtained.

【0017】図2は、本発明のポリエチレン系複合繊維
の実際のDSC曲線の一例である。図2からも分かるよ
うに本発明のDSC曲線は低融点成分の吸熱ピークが比
較的シャープに現れる。
FIG. 2 is an example of an actual DSC curve of the polyethylene-based composite fiber of the present invention. As can be seen from FIG. 2, in the DSC curve of the present invention, the endothermic peak of the low melting point component appears relatively sharply.

【0018】本発明でいう低融点ポリエチレン樹脂成分
(A)とは、メタロセン触媒を用いて重合された、実質
的な長分岐鎖を持たない、通常15重量%以下の割合の
3〜C12のアルケンをコモノマーとして含むエチレン
共重合体を指しており、一般に0.850〜0.930g
/cm3の密度および125℃未満の融点、3.0以下の
Q値を有し、5〜45g/10min好ましくは25〜
40g/10minのメルトフローレート(MFR:J
IS K7210(190℃、2160g、B法))を
有する直鎖状低密度ポリエチレン樹脂を含む成分であ
る。
The low melting point polyethylene resin component (A) referred to in the present invention is a polymer which is polymerized using a metallocene catalyst and which does not have substantially long branched chains, and usually has a proportion of C 3 to C 12 of not more than 15% by weight. Refers to an ethylene copolymer containing the alkene as a comonomer, generally 0.850 to 0.930 g
/ Cm 3 and a melting point of less than 125 ° C., a Q value of 3.0 or less, 5 to 45 g / 10 min, preferably 25 to
Melt flow rate of 40g / 10min (MFR: J
It is a component containing a linear low-density polyethylene resin having IS K7210 (190 ° C., 2160 g, method B)).

【0019】上記のポリエチレン樹脂は、メタロセン触
媒を用いることで容易に得られる。このようなメタロセ
ン触媒として代表的な化合物は、ビス(シクロペンタジ
エニル)ジルコニウムジクロライド、ビス(シクロペン
タジエニル)ハフニウムジクロライド、エチレンビス
(インデニル)ジルコニウムジクロライド、エチレンビ
ス(インデニル)ハフニウムジクロライド、イソプロピ
リデン(シクロペンタジエニル−9−フルオレニル)ジ
ルコニウムジクロライド、イソプロピリデン(シクロペ
ンタジエニル−9−フルオレニル)ハフニウムジクロラ
イド、イソプロピリデン(シクロペンタジエニル−2,
7−ジメチル−9−フルオレニル)ジルコニウムジクロ
ライド、イソプロピリデン(シクロペンタジエニル−
2,7−ジメチル−9−フルオレニル)ハフニウムジク
ロライド、ジメチルシランジイルビス(2,4,5−ト
リメチルシクロペンタジエニル)ジルコニウムジクロラ
イド、ジメチルシランジイルビス(2,4−ジメチルシ
クロペンタジエニル)ジルコニウムジクロライド、ジメ
チルシランジイルビス(2,4,5−トリメチルシクロ
ペンタジエニル)ハフニウムジクロライド、ジメチルシ
ランジイルビス(2,4−ジメチルシクロペンタジエニ
ル)ハフニウムジクロライドなどである。
The above polyethylene resin can be easily obtained by using a metallocene catalyst. Typical examples of such metallocene catalysts are bis (cyclopentadienyl) zirconium dichloride, bis (cyclopentadienyl) hafnium dichloride, ethylenebis (indenyl) zirconium dichloride, ethylenebis (indenyl) hafnium dichloride, isopropylidene. (Cyclopentadienyl-9-fluorenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-9-fluorenyl) hafnium dichloride, isopropylidene (cyclopentadienyl-2,
7-dimethyl-9-fluorenyl) zirconium dichloride, isopropylidene (cyclopentadienyl-
2,7-Dimethyl-9-fluorenyl) hafnium dichloride, dimethylsilanediylbis (2,4,5-trimethylcyclopentadienyl) zirconium dichloride, dimethylsilanediylbis (2,4-dimethylcyclopentadienyl) zirconium dichloride , Dimethylsilanediylbis (2,4,5-trimethylcyclopentadienyl) hafnium dichloride, dimethylsilanediylbis (2,4-dimethylcyclopentadienyl) hafnium dichloride and the like.

【0020】これらの触媒を用いて製造されたメタロセ
ンポリエチレン系樹脂は、商業的に販売されているもの
も多く、それらの中から上記に規定した範囲の密度、融
点、Q値、メルトフローレートを持つポリエチレン系樹
脂を適宜選んで使用することも可能である。低融点ポリ
エチレン樹脂成分(A)には、上記のメタロセン触媒を
用いて重合されたポリエチレン以外に、本発明の効果を
損なわない程度であれば、LDPE、L−LDPE、V
LDPE、ULDPE、HDPEをブレンドし用いても
よい。
Many of the metallocene polyethylene resins produced by using these catalysts are commercially sold, and among them, the density, melting point, Q value and melt flow rate within the ranges specified above can be selected. It is also possible to appropriately select and use the polyethylene resin to be possessed. In the low melting point polyethylene resin component (A), in addition to polyethylene polymerized using the above metallocene catalyst, LDPE, L-LDPE, V may be used as long as the effects of the present invention are not impaired.
LDPE, ULDPE and HDPE may be blended and used.

【0021】本発明でいう高融点成分とは、公知のチー
グラーナッタ触媒を用いて低圧法で重合された、エチレ
ン単独の重合体もしくは最大2重量%までの割合のC3
〜C1 2のアルケンとエチレンの共重合体であり、一般に
0.940〜0.960g/cm3の密度、および125
〜135℃の融点を有し、5〜45g/10min好ま
しくは20〜40g/10minのメルトフローレート
を有する高密度ポリエチレン樹脂である。
In the present invention, the high-melting point component means a polymer of ethylene homopolymerized by a low pressure method using a known Ziegler-Natta catalyst or C 3 in a proportion of up to 2% by weight.
Is -C 1 2 alkene and copolymers of ethylene, the density of generally 0.940~0.960g / cm 3 and 125,
It is a high-density polyethylene resin having a melting point of -135 ° C and a melt flow rate of 5-45 g / 10 min, preferably 20-40 g / 10 min.

【0022】本発明で構成されるポリエチレン系複合繊
維を製造する手段としては、公知の溶融紡糸法およびス
パンボンド法にて得ることができる。また、並列型、鞘
芯型、偏心鞘芯型等の複合繊維とすることができる。複
合繊維を製造する場合の高融点成分(B)と低融点成分
(A)の複合比は、重量比で80/20〜20/80の
範囲が好ましく、さらに好ましくは50/50〜70/
30である。高融点成分(B)を上記範囲より少なくす
る場合は、繊維の剛性が低下する傾向を示すので、カー
ド通過性が低下したり、不織布とした際に嵩が低下し風
合いを損なうことのないよう注意が必要である。逆に、
上記範囲より高融点成分(B)を多くし、低融点成分
(A)を少なくする場合は、得られる不織布の接着強力
が低下する傾向があるので注意しなければならない。こ
のため、複合比は上記範囲内が最も良好となる。
As the means for producing the polyethylene-based composite fiber constituted by the present invention, the known melt spinning method and spun bond method can be used. In addition, a composite fiber such as a side-by-side type, a sheath-core type, and an eccentric sheath-core type can be used. The composite ratio of the high melting point component (B) and the low melting point component (A) in the case of producing the conjugate fiber is preferably in the range of 80/20 to 20/80 by weight ratio, and more preferably 50/50 to 70 /.
Thirty. When the content of the high-melting point component (B) is less than the above range, the rigidity of the fiber tends to decrease, so that the card passability does not decrease, and the bulk of the nonwoven fabric does not decrease and the texture is not impaired. Caution must be taken. vice versa,
When the amount of the high-melting point component (B) is increased and the amount of the low-melting point component (A) is lower than the above range, the adhesive strength of the resulting nonwoven fabric tends to be lowered, so care must be taken. Therefore, the composite ratio is best within the above range.

【0023】本発明のポリエチレン系複合繊維を構成す
る高融点成分と低融点成分は、5℃以上の融点差を持つ
ことが好ましく、この融点差が大きいほど、不織布加工
する際の加工温度範囲が広くなり、不織布作製が容易に
なる。本発明でいう融点差とは、繊維を示差走査熱分析
装置(DSC)にて分析したDSC曲線状で観察される
高融点側のピークと低融点側のピークの温度差を示す。
本発明の繊維に用いる原料樹脂には、従来公知の酸化防
止剤、耐光剤、難燃剤、顔料などを本発明の目的を損な
わない範囲で含有させることができる。
The high melting point component and the low melting point component which compose the polyethylene-based composite fiber of the present invention preferably have a melting point difference of 5 ° C. or more. It becomes wider, making it easier to make nonwoven fabrics. The melting point difference in the present invention refers to the temperature difference between the peak on the high melting point side and the peak on the low melting point side observed in the DSC curve shape of the fiber analyzed by a differential scanning calorimeter (DSC).
The raw material resin used for the fiber of the present invention may contain conventionally known antioxidants, light stabilizers, flame retardants, pigments and the like within a range that does not impair the object of the present invention.

【0024】本発明で構成されるポリエチレン系複合繊
維を延伸する方法としては、公知の熱ロール延伸、温水
延伸などを用いることができ、一段延伸方式、2段延伸
方式、多段延伸方式を用いることができる。カード通過
性が良好でより嵩高な不織布を得るためには、繊維の結
晶配向度を促進させ繊維の剛性を高めることが有効であ
る。繊維の結晶配向度を上げる手法としては、繊維の溶
融紡糸時に、高速で引き取り、配向させる方法と、高延
伸倍率で延伸する方法が考えられる。後者の方法を用る
場合には、少なくとも5〜8倍以上の延伸倍率で延伸さ
れることが好ましく、より好ましくは10倍以上の高延
伸倍率で延伸することで剛性を有するポリエチレン系複
合繊維が得られる。また、繊維の捲縮保持力も重要であ
り、公知のスタッファボックスによる機械捲縮を付与す
る場合は、スタッファボックスに入る寸前の繊維に十分
熱を加えることで、繊維の捲縮保持力が向上する。
As a method for drawing the polyethylene-based composite fiber constituted by the present invention, known hot roll drawing, hot water drawing and the like can be used, and a one-step drawing method, a two-step drawing method and a multi-step drawing method are used. You can In order to obtain a non-woven fabric having good card-passing properties and being bulky, it is effective to promote the crystal orientation of the fibers and increase the rigidity of the fibers. As a method of increasing the crystal orientation of the fiber, a method of drawing and orienting at a high speed during melt spinning of the fiber and a method of stretching at a high draw ratio are considered. In the case of using the latter method, it is preferable to draw at a draw ratio of at least 5 to 8 times or more, more preferably a polyethylene-based composite fiber having rigidity by being drawn at a high draw ratio of 10 times or more. can get. Further, the crimp holding power of the fiber is also important, and when mechanical crimping by a known stuffer box is applied, sufficient heat is applied to the fiber just before entering the stuffer box so that the crimp holding power of the fiber is improved. improves.

【0025】本発明のポリエチレン系複合繊維には、該
繊維が熱接着する温度では実質的に非熱接着性である他
の繊維、例えばポリプロピレン繊維、ポリエステル繊
維、ポリアミド繊維、ポリアクリル系ビニロンなどの合
成繊維、レーヨン、キュプラ、アセテート、木綿、羊
毛、絹、麻、パルプ繊維などの再生繊維、動物繊維を本
発明の効果を妨げない範囲において混繊、混綿すること
ができる。
The polyethylene-based conjugate fiber of the present invention includes other fibers which are substantially non-heat-adhesive at the temperature at which the fibers are heat-bonded, such as polypropylene fiber, polyester fiber, polyamide fiber, polyacrylic vinylon and the like. Synthetic fibers, regenerated fibers such as rayon, cupra, acetate, cotton, wool, silk, hemp, pulp fibers, and animal fibers can be mixed and mixed as long as the effects of the present invention are not impaired.

【0026】本発明のポリエチレン系複合繊維は、不織
布の原料として好適に使用できる。例えば、公知のエン
ボス法、スルーエアー法、ニードルパンチ法、水流絡合
法等により不織布とすることができ、特に本発明で得ら
れるポリエチレン系複合繊維は、鞘芯に融点差があるこ
とから加熱処理によって不織布とする際の加工温度巾が
広くとれ、エンボス法、スルーエアー法を用いた熱融着
結合法に好適に用いることができる。スルーエアー法に
て不織布を得る場合、繊維のウェブ収縮率は、10%以
下(120℃ オーブン加熱)に抑える必要がある。繊
維の熱収縮率が大きいと加工時の熱により繊維が収縮
し、得られる不織布の寸法安定性不良、地合不良、ひき
つり等の問題が生じる。ウェブ収縮を抑制させるには、
ノズルから溶融される樹脂の流動性を上げる必要があ
る。その方法として、紡糸時の溶融温度を上げる、また
はメルトインデックスの比較的高い樹脂を使用する等が
考えられる。ポリエチレン樹脂は高い温度で溶融させる
とゲル(熱架橋劣化物)が発生し、紡糸時の糸切れの要
因となるため、ウェブ収縮を抑制するには、後者がより
有効な手段となる。本発明のポリエチレン系複合繊維
は、特に放射線照射による劣化が少ないので、得られる
不織布は放射線照射着用衣をはじめとして、手術帽、シ
ーツ、手術用被服布、手術用ガウン、診察衣等の医療用
途として広く利用することができる。
The polyethylene-based conjugate fiber of the present invention can be preferably used as a raw material for a nonwoven fabric. For example, a known embossing method, a through air method, a needle punching method, a hydroentangling method or the like can be used to form a nonwoven fabric, and in particular, the polyethylene-based composite fiber obtained in the present invention has a sheath core having a melting point difference, and thus a heat treatment. With this, a wide processing temperature range can be obtained when forming a nonwoven fabric, and the nonwoven fabric can be suitably used for a heat fusion bonding method using an embossing method or a through air method. When a nonwoven fabric is obtained by the through air method, the web shrinkage rate of the fibers needs to be suppressed to 10% or less (120 ° C. oven heating). If the heat shrinkage rate of the fiber is large, the fiber shrinks due to heat during processing, and problems such as poor dimensional stability, poor formation, and tight pull of the resulting nonwoven fabric occur. To reduce web shrinkage,
It is necessary to improve the fluidity of the resin melted from the nozzle. As a method therefor, it is conceivable to raise the melting temperature during spinning, or to use a resin having a relatively high melt index. When the polyethylene resin is melted at a high temperature, a gel (degradation product due to thermal crosslinking) is generated, which causes yarn breakage during spinning. Therefore, the latter is a more effective means for suppressing web shrinkage. Since the polyethylene-based conjugate fiber of the present invention is less likely to be deteriorated by irradiation with radiation, the resulting nonwoven fabric is used for medical applications such as radiation irradiation clothing, surgical caps, sheets, surgical clothing, surgical gowns, medical examination clothing, etc. Can be widely used as

【0027】[0027]

【実施例】以下、実施例および比較例を示し本発明をよ
り具体的に説明するが、本発明はこれらの実施例に限定
されるものではない。なお、本発明中における原綿作製
条件、実施例および比較例の各物性の評価法、測定値は
以下に示す通りである。
EXAMPLES The present invention will be described in more detail below by showing Examples and Comparative Examples, but the present invention is not limited to these Examples. The raw cotton production conditions, the evaluation methods of the physical properties of Examples and Comparative Examples, and the measured values in the present invention are as shown below.

【0028】本発明で使用した原綿作製条件としては、
表1に示す高融点成分と低融点成分のポリエチレン樹脂
の組み合わせにて、高融点成分を240℃、低融点成分
を200℃で、孔径0.8mmの紡糸口金から押し出
し、紡糸速度376m/minで引き取り18.7dt
exのポリエチレン複合繊維を得た。この未延伸糸を9
0℃の温水で満たした温水延伸装置を用いて、10倍で
延伸したのち、押し込み型クリンパーでジグザグ状の捲
縮を付与し、80℃の熱風サクションドライヤーにて乾
燥後、51mm長にカットした。得られた繊維の繊度は
2.2dtexとなった。
The raw cotton production conditions used in the present invention are as follows:
With the combination of the high melting point component and the low melting point component polyethylene resin shown in Table 1, the high melting point component was extruded from the spinneret having a pore diameter of 0.8 mm at 240 ° C. and the low melting point component was 200 ° C. at a spinning speed of 376 m / min. Pick up 18.7 dt
A polyethylene composite fiber of ex was obtained. This undrawn yarn is
Using a warm water stretching device filled with warm water of 0 ° C., after stretching 10 times, a zigzag crimp was applied by a push-in type crimper, dried with a hot air suction dryer at 80 ° C., and cut into 51 mm length. . The fineness of the obtained fiber was 2.2 dtex.

【0029】DSC測定は、デュポン社製 熱分析装置
DSC10を用い、JIS7122に準じて行った。D
SCの測定結果は、チャートの縦軸(熱流量)2W/g
分と横軸の50℃分がそれぞれ42mmとなるようにし
て出力し、L1、L2およびWの長さ(単位mm)を測定
した。
The DSC measurement was performed according to JIS7122 using a thermal analyzer DSC10 manufactured by DuPont. D
SC measurement result is the vertical axis of the chart (heat flow rate) 2 W / g
Minutes and 50 ° C. on the abscissa were output so as to be 42 mm, and the lengths (unit: mm) of L 1 , L 2 and W were measured.

【0030】不織布作製は、大和機工製 高速型サンプ
ルローラーカードを用い、目付20g/m2のウェブを
作製し、スルーエアー加工および、エンボス加工を行い
不織布とした。不織布加工条件を以下に示す。 スルーエアー加工:熱風循環式サクションバンドドライ
ヤーを用い、1.0m/sの風速、8.5m/minの加
工速度にて熱融着を行った。加工温度は110、11
5、120、125℃とした。 エンボス加工 :エンボス面積率25%のエンボスロ
ールとフラットロールの上下一対からなるエンボス加工
機を用い、1.96Mpaの線圧、6.0m/minの加
工速度で熱圧着を行った。加工温度は105、110、
115、120、125℃とした。
The non-woven fabric was produced by using a high speed type sample roller card manufactured by Daiwa Kiko Co., Ltd. to fabricate a web having a basis weight of 20 g / m 2 and through-air processing and embossing to obtain a non-woven fabric. The non-woven fabric processing conditions are shown below. Through air processing: Using a hot air circulation type suction band dryer, heat fusion was performed at a wind speed of 1.0 m / s and a processing speed of 8.5 m / min. Processing temperature is 110, 11
The temperature was 5, 120, and 125 ° C. Embossing: An embossing machine consisting of an upper and lower pair of an embossing roll having an embossing area ratio of 25% and a flat roll was used to perform thermocompression bonding at a linear pressure of 1.96 MPa and a processing speed of 6.0 m / min. Processing temperature is 105, 110,
It was 115, 120 and 125 ° C.

【0031】不織布強度測定は、得られたスルーエアー
不織布とエンボス不織布を15cm×5cm(MD×C
D:MD強度測定サンプル)、5cm×15cm(MD
×CD:CD強度測定サンプル)に切断し、島津製作所
製オートグラフAG―500Dを用い、引張り速度20
0m/minにてサンプルの破断強度を求めた。
The strength of the non-woven fabric is measured by measuring the obtained through-air non-woven fabric and the embossed non-woven fabric by 15 cm × 5 cm (MD × C).
D: MD strength measurement sample), 5 cm × 15 cm (MD
X CD: CD strength measurement sample) and cut using a Shimadzu autograph AG-500D with a pulling speed of 20
The breaking strength of the sample was determined at 0 m / min.

【0032】不織布の風合いは、10人のパネラーによ
り評価した結果、9人以上が柔軟であると感じた場合を
◎、5人以上が柔軟であると感じた場合を○、柔軟であ
ると感じた人が4人以下の場合を△、柔軟であると感じ
た人が2人以下の場合を×とし、◎および○は実用範
囲、△、×は実用範囲外とした。
The texture of the non-woven fabric was evaluated by 10 panelists, and when 9 or more felt soft, ◎ when 5 or more felt soft, felt soft. The case where there were 4 or less people was Δ, the case where there were 2 people or less who felt to be flexible was marked with X, ◎ and ◯ were in the practical range, and Δ and × were outside the practical range.

【0033】表1に示す実施例1、3、4は鞘/芯比が
30/70で、鞘の密度が異なる本発明の繊維であり、
前記実施例とほぼ同等の鞘密度で構成される本発明外の
繊維を比較例1、2、3とし、その繊維を用いて不織布
加工を行い、不織布強力及び風合いを比較した結果を表
2(スルーエアー不織布)の実施例6、8、9、比較例
6、7及び、表3(エンボス不織布)の実施例11、1
3、14、比較例8、9、10に示した。本発明の繊維
を用いた不織布は、風合いが良好でかつ、強力が高い不
織布となったが、本発明外の繊維を用いた不織布におい
ては、風合いを損ないかつ、強力が低いものとなった。
特に比較例1で構成される繊維は、繊維のべたつきか
ら、カード行程においてネップが多量に発生し、ウェブ
採取ができず、不織布加工ができなかった。
Examples 1, 3 and 4 shown in Table 1 are fibers of the present invention having a sheath / core ratio of 30/70 and different sheath densities.
Fibers other than the present invention having a sheath density almost the same as that of the above-mentioned Examples were used as Comparative Examples 1, 2, and 3, and the fibers were subjected to nonwoven fabric processing, and the results of comparing the nonwoven fabric strength and texture are shown in Table 2 ( Examples 6, 8 and 9 of (through air nonwoven fabric), Comparative Examples 6 and 7 and Examples 11 and 1 of Table 3 (embossed nonwoven fabric)
3, 14 and Comparative Examples 8, 9, and 10. The non-woven fabric using the fiber of the present invention has a good texture and high strength, but the non-woven fabric using the fiber other than the present invention impairs the texture and has low tenacity.
In particular, with the fibers formed in Comparative Example 1, a large amount of nep was generated in the card process due to the stickiness of the fibers, the web could not be collected, and the nonwoven fabric could not be processed.

【0034】表1の実施例2は実施例1で構成される樹
脂の鞘/芯比を30/70から50/50へ変更した本
発明の繊維であり、実施例5は、鞘樹脂に、本発明を阻
害しない程度にチーグラーナッタ触媒より得られるL−
LDPEをブレンドした繊維である。この繊維を用い、
不織布加工を行い、風合い強力を測定した結果を表2
(スルーエアー不織布)実施例7及び実施例10、表3
(エンボス不織布)実施例12及び実施例15に示し
た。共に、風合いが良好で、高い強力を示す。
Example 2 in Table 1 is the fiber of the present invention in which the sheath / core ratio of the resin constructed in Example 1 is changed from 30/70 to 50/50, and Example 5 is a sheath resin, L-obtained from Ziegler-Natta catalyst to the extent that it does not hinder the present invention
It is a fiber blended with LDPE. With this fiber,
Table 2 shows the results obtained by processing the nonwoven fabric and measuring the texture strength.
(Through Air Nonwoven Fabric) Examples 7 and 10, Table 3
(Embossed non-woven fabric) Examples 12 and 15 are shown. Both have good texture and high strength.

【0035】表1に示す比較例4は、チーグラーナッタ
触媒から得られるL−LDPEを鞘側に用いた鞘/芯比
50/50の本発明外の繊維であり、この繊維を用いた
スルーエアー不織布は、鞘芯の融点差が小さいことか
ら、不織布化ができず、エンボス不織布は、表3、比較
例10に示すように120℃のみで不織布化が可能であ
ったが、その不織布は非常に硬く、著しく風合いが悪い
ものとなった。また、比較例5は、メタロセン触媒から
得られるL-LDPEを鞘側に用いた鞘/芯比50/5
0でL<3L、L<3Wと本発明外の繊維である
が、繊維のベタツキが高くカード工程でネップが発生
し、地合いが著しく悪いものとなり、不織布加工が行な
えないものとなった。
Comparative Example 4 shown in Table 1 is a non-invention fiber having a sheath / core ratio of 50/50 in which L-LDPE obtained from a Ziegler-Natta catalyst is used on the sheath side. The non-woven fabric could not be made into a non-woven fabric because the difference in melting point of the sheath core was small, and the embossed non-woven fabric could be made into a non-woven fabric only at 120 ° C. as shown in Table 3 and Comparative Example 10. It was extremely hard and had a very bad texture. In Comparative Example 5, L / LDPE obtained from a metallocene catalyst was used on the sheath side, and the sheath / core ratio was 50/5.
When L is 0, L 1 <3L 2 and L 1 <3W, and the fibers are outside the scope of the present invention, but the fibers are highly sticky and nep occurs in the carding process, resulting in a markedly poor texture and non-woven fabric processing. It was

【0036】本発明で得られる繊維を用いたスルーエア
ー不織布を市販されている大人用使い捨て紙おむつの表
面材を切り取り、表2の実施例6と比較例5の不織布を
固定した実施例16と比較例11の着用試験を行ったと
ころ、実施例16は非常に肌触りが良く、使用に耐えう
る強力を持ち、比較例11は、肌触りが悪く着用感を損
なうことが確認された。
A through-air nonwoven fabric using the fiber obtained in the present invention was cut off from the surface material of a commercially available disposable disposable diaper for adults and compared with Example 16 in which the nonwoven fabrics of Example 6 and Comparative Example 5 were fixed. When the wearing test of Example 11 was conducted, it was confirmed that Example 16 had very good touch and had a strength enough to withstand use, and Comparative Example 11 had poor touch and impaired wearing comfort.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】スルーエアー不織布 [Table 2] Through-air non-woven fabric

【0039】[0039]

【表3】エンボス不織布 [Table 3] Embossed non-woven fabric

【0040】[0040]

【発明の効果】本発明のポリエチレン系複合繊維は、繊
維の加工温度巾が大きいことから不織布加工が容易であ
り、得られた不織布は柔軟で高い不織布強力を示す。特
に使用が困難であったスルーエアー用原綿として好適に
用いることが出来、医療用途のみならず衛材用途に適し
た性能を有している。
INDUSTRIAL APPLICABILITY The polyethylene-based conjugate fiber of the present invention is easy to process into a non-woven fabric because the fiber has a wide processing temperature range, and the obtained non-woven fabric is flexible and exhibits high non-woven fabric strength. In particular, it can be suitably used as through-air raw cotton that has been difficult to use, and has performance suitable not only for medical applications but also for sanitary materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明のポリエチレン系複合繊維のDSC曲
線の熱挙動を説明する図。
FIG. 1 is a diagram illustrating a thermal behavior of a DSC curve of a polyethylene-based composite fiber of the present invention.

【図2】 本発明のポリエチレン系複合繊維のDSC曲
線の一例。
FIG. 2 is an example of a DSC curve of the polyethylene-based conjugate fiber of the present invention.

【図3】 低融点成分にチーグラーナッタ触媒を用いて
得られたポリエチレンを使用した従来のポリエチレン系
複合繊維のDSC曲線図の一例。
FIG. 3 is an example of a DSC curve diagram of a conventional polyethylene-based composite fiber using polyethylene obtained by using a Ziegler-Natta catalyst for the low melting point component.

【符号の説明】[Explanation of symbols]

1:ポリエチレン樹脂(A)の吸熱ピーク P2:ポリエチレン樹脂(B)の吸熱ピーク P3:吸熱ピークP1とP2の間に形成されるベースライ
ンに最も近い点 L1:ベースラインからP1へ垂直に伸びる線分の長さ L2:ベースラインからP3まで垂直に伸びる線分の長さ W :ベースラインに平行でかつベースラインとP1
中間点を通る直線がポリエチレン樹脂成分(A)の吸熱
曲線と交わって作る線分の長さ
P 1: endothermic peak P 2 of a polyethylene resin (A): endothermic peak P 3 of the polyethylene resin (B): the closest point to the base line formed between the endothermic peak P 1 and P 2 L 1: from baseline Length of line segment extending vertically to P 1 L 2 : Length of line segment extending vertically from the baseline to P 3 W: Straight line parallel to the baseline and passing through the midpoint between the baseline and P 1 Length of line segment that intersects with endothermic curve of component (A)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D01F 8/06 ─────────────────────────────────────────────────── ─── Continuation of front page (58) Fields surveyed (Int.Cl. 7 , DB name) D01F 8/06

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 融点の異なる2種のポリエチレン樹脂成
分からなる複合繊維であって、低融点ポリエチレン樹脂
成分(A)がメタロセン触媒を用いて重合された密度
0.850〜0.930g/cm3、Q値(重量平均分子量M
w/数平均分子量Mn)3.0以下のポリエチレン樹脂
を含む成分であり、高融点ポリエチレン樹脂成分(B)
が密度0.940g/cm3以上のポリエチレン樹脂であり、
該繊維は、示差走査熱分析装置(DSC)を用いた測定
で得られるDSC曲線(但し、昇温速度を10℃/分と
し、該DSCチャートの縦軸(熱流量、単位:W/g)
の2W/g分の長さが横軸(温度、単位:℃)の50℃
分の長さと等しくなるように目盛をとった場合)におい
て、2つのポリエチレン樹脂成分(A)および(B)が
それぞれ別の吸熱ピークP1、P2を持った吸熱曲線を示
し、該DSC曲線のベースラインから低融点ポリエチレ
ン樹脂成分(A)の吸熱ピークP1へ垂直に伸びる線分
の長さをL1とし、ベースラインに平行でかつベースラ
インとP1の中間点を通る直線が低融点ポリエチレン樹
脂成分(A)の吸熱曲線と交わって作る線分の長さをW
としたとき、L1とWとの関係がL1>3Wであることを
特徴とするポリエチレン系複合繊維。
1. A composite fiber comprising two kinds of polyethylene resin components having different melting points, wherein a low melting point polyethylene resin component (A) is polymerized by using a metallocene catalyst and has a density of 0.850 to 0.930 g / cm 3. , Q value (weight average molecular weight M
w / number average molecular weight Mn) A component containing a polyethylene resin having a molecular weight of 3.0 or less, and a high melting point polyethylene resin component (B)
Is a polyethylene resin having a density of 0.940 g / cm 3 or more,
The fiber is a DSC curve obtained by measurement using a differential scanning calorimeter (DSC) (however, the temperature rising rate is 10 ° C./min, the vertical axis of the DSC chart (heat flow rate, unit: W / g)).
2W / g length is 50 ° C on the horizontal axis (temperature, unit: ° C)
(When the scale is made equal to the length of the minute), the two polyethylene resin components (A) and (B) show endothermic curves having different endothermic peaks P 1 and P 2 , respectively, and the DSC curve Let L 1 be the length of a line segment that extends perpendicularly from the baseline to the endothermic peak P 1 of the low melting point polyethylene resin component (A), and a straight line parallel to the baseline and passing through the midpoint between the baseline and P 1 is low. Melting point Polyethylene resin component (A)
And the relationship between L 1 and W is L 1 > 3W.
【請求項2】 請求項1に記載のポリエチレン系複合繊
維のDSC曲線において、2つのポリエチレン樹脂成分
の吸熱ピークP1、P2の間に形成されるベースラインに
最も近い点をP3とし、ベースラインからP3まで垂直に
伸びる線分の長さをL2としたとき、L1とL2の関係が
1>3L2であることを特徴とするポリエチレン系複合
繊維。
2. In the DSC curve of the polyethylene-based composite fiber according to claim 1, the point closest to the baseline formed between the endothermic peaks P 1 and P 2 of the two polyethylene resin components is P 3 . when the length of a line extending perpendicularly from baseline to P 3 was set to L 2, polyethylene composite fiber relation of L 1 and L 2 is characterized in that the L 1> 3L 2.
【請求項3】 請求項1または2に記載のポリエチレン
系複合繊維を用いた不織布。
3. A non-woven fabric using the polyethylene-based composite fiber according to claim 1.
【請求項4】 スパンボンド法により得られることを特
徴とする請求項1または2に記載のポリエチレン系複合
繊維を用いた不織布。
4. A nonwoven fabric using the polyethylene-based composite fiber according to claim 1 or 2, which is obtained by a spunbond method.
【請求項5】 スルーエアー加工法により繊維同士を熱
融着させた請求項3または4に記載の不織布。
5. The non-woven fabric according to claim 3, wherein the fibers are heat-sealed by a through air processing method.
【請求項6】 ポインドボンド加工法により繊維同士を
熱融着させた請求項3または4に記載の不織布。
6. The non-woven fabric according to claim 3, wherein the fibers are heat-sealed together by a poin bond processing method.
【請求項7】 請求項3〜6のいずれか1項に記載の不
織布を一部に用いた医療用物品。
7. A medical article in which the nonwoven fabric according to any one of claims 3 to 6 is partially used.
【請求項8】 請求項3〜6のいずれか1項に記載の不
織布を一部に用いた衛生用物品。
8. A sanitary article using a part of the nonwoven fabric according to any one of claims 3 to 6.
JP2001161242A 2000-05-29 2001-05-29 Polyethylene composite fiber and nonwoven fabric using the same Expired - Fee Related JP3389927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001161242A JP3389927B2 (en) 2000-05-29 2001-05-29 Polyethylene composite fiber and nonwoven fabric using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-158452 2000-05-29
JP2000158452 2000-05-29
JP2001161242A JP3389927B2 (en) 2000-05-29 2001-05-29 Polyethylene composite fiber and nonwoven fabric using the same

Publications (2)

Publication Number Publication Date
JP2002088582A JP2002088582A (en) 2002-03-27
JP3389927B2 true JP3389927B2 (en) 2003-03-24

Family

ID=26592816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001161242A Expired - Fee Related JP3389927B2 (en) 2000-05-29 2001-05-29 Polyethylene composite fiber and nonwoven fabric using the same

Country Status (1)

Country Link
JP (1) JP3389927B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015990A (en) * 2003-06-06 2005-01-20 Chisso Corp Heat adhesive bicomponent fiber and nonwoven fabric using the same
CN101230501B (en) * 2008-02-26 2010-06-02 山东爱地高分子材料有限公司 Method for preparing high-strength polyethylene fibre by employing blended melting of super high molecular weight polyethylene and low density polyethylene
JP6870480B2 (en) * 2017-05-30 2021-05-12 東レ株式会社 Polyethylene spunbonded non-woven fabric
WO2022181591A1 (en) * 2021-02-26 2022-09-01 東レ株式会社 Spun-bonded nonwoven fabric and sheath-core type composite fiber
WO2022181590A1 (en) * 2021-02-26 2022-09-01 東レ株式会社 Spunbond nonwoven fabric and conjugated fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK132191D0 (en) * 1991-07-05 1991-07-05 Danaklon As FIBERS AND MANUFACTURING THEREOF
JPH09157992A (en) * 1995-12-12 1997-06-17 Hagiwara Kogyo Kk Sheet for agriculture
TW352364B (en) * 1996-08-26 1999-02-11 Chisso Corp A composite sheet comprising a non-woven fabric and a film
JP3677365B2 (en) * 1997-01-13 2005-07-27 萩原工業株式会社 Reversible thermochromic polyolefin fiber
JP3025220B2 (en) * 1997-04-22 2000-03-27 三菱レイヨン株式会社 Heat-adhesive composite multifilament for woven or knitted fabric
JP4441987B2 (en) * 2000-05-29 2010-03-31 チッソ株式会社 Polyethylene composite fiber and non-woven fabric using the same

Also Published As

Publication number Publication date
JP2002088582A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP4305983B2 (en) Polyethylene fiber and non-woven fabric using the same
KR100701553B1 (en) Non-Woven Fabrics of Wind-Shrink Fiber and Laminates Thereof
KR100453609B1 (en) Heat-fusible conjugate fiber and a nonwoven fabric made therefrom
EP0691427B1 (en) Hot-melt-adhesive conjugate fibers and a non-woven fabric using the fibers
KR101551554B1 (en) Nonwoven laminate
KR101720439B1 (en) Nonwoven fabric laminate
JPH09316765A (en) Unidirectionally stretchable nonwoven fabric and its production
JP2000502411A (en) Meltblown polyethylene cloth and method for producing the same
US6391443B1 (en) Polyethylene composite fiber and a non-woven fabric using the same
CN110637117B (en) Non-woven fabric
JP4251380B2 (en) Elastic elastic nonwoven fabric
JP4505987B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the same
JP2016507012A (en) A bat made of crimped bicomponent or multicomponent fibers
JP2004515664A (en) Thermal bonding cloth and manufacturing method thereof
WO2000036200A1 (en) Composite-fiber nonwoven fabric
JP2009022747A (en) Sanitary commodity
JP3736014B2 (en) Laminated nonwoven fabric
JP4441987B2 (en) Polyethylene composite fiber and non-woven fabric using the same
JP3389927B2 (en) Polyethylene composite fiber and nonwoven fabric using the same
JP4433567B2 (en) Latent crimpable conjugate fiber and nonwoven fabric using the same
JP2002146631A (en) Polyolefin fiber and nonwoven fabric and absorbent article using the same
JP2001040564A (en) Flexible nonwoven fabric and its nonwoven fabric laminate
JP3712511B2 (en) Flexible nonwoven fabric
JP2002088630A (en) Weather-resistant filament nonwoven fabric
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3389927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees