JP2016507012A - A bat made of crimped bicomponent or multicomponent fibers - Google Patents

A bat made of crimped bicomponent or multicomponent fibers Download PDF

Info

Publication number
JP2016507012A
JP2016507012A JP2015551983A JP2015551983A JP2016507012A JP 2016507012 A JP2016507012 A JP 2016507012A JP 2015551983 A JP2015551983 A JP 2015551983A JP 2015551983 A JP2015551983 A JP 2015551983A JP 2016507012 A JP2016507012 A JP 2016507012A
Authority
JP
Japan
Prior art keywords
fiber
fibers
polymer
mpa
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015551983A
Other languages
Japanese (ja)
Other versions
JP6508654B2 (en
JP2016507012A5 (en
Inventor
コフト,ヤロスラフ
メクル,ズデネク
クラスカ,フランチシェク
カスパルコヴァ,パヴリナ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pegas Nonwovens sro
Original Assignee
Pegas Nonwovens sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pegas Nonwovens sro filed Critical Pegas Nonwovens sro
Publication of JP2016507012A publication Critical patent/JP2016507012A/en
Publication of JP2016507012A5 publication Critical patent/JP2016507012A5/ja
Application granted granted Critical
Publication of JP6508654B2 publication Critical patent/JP6508654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material

Abstract

主要成分としてポリマー又はポリマー混合物から成り,設定プロセス中に繊維の捲縮を促進する為に繊維の断面を横断するように配置され,主要成分らは結晶化熱(dHc)に差異がある,少なくとも2つの領域で構成された捲縮した2成分又は多成分繊維から成るバットを提供する。結晶化熱(dHc)の差異は30J/g〜5J/gの範囲であり,その主要成分はメルトフローインデックス,多分散度及び曲げ弾性率の群より選択される他のパラメータの少なくとも1つに差異があり,主要成分の相対的な差異は:メルトフローインデックスでは,100g/10分〜5g/10分の範囲であり,及び/又は,分散度では,1未満であるが0.3以上であり,及び/又は,曲げ弾性率では,300MPa〜50MPaの範囲であり;メルトフローインデックスの相対的差異は100g/10分以下であり,分散度の相対的差異は1未満であり,曲げ弾性率の相対的差異は300MPa以下である。繊維の捲縮率は,繊維20mm当り少なくとも5個である。It consists of a polymer or polymer blend as the main component and is arranged across the fiber cross-section to promote fiber crimping during the setting process, and the main component has a difference in heat of crystallization (dHc), at least Provided is a vat composed of two regions of crimped bicomponent or multicomponent fibers. The difference in heat of crystallization (dHc) ranges from 30 J / g to 5 J / g, the main component of which is at least one of the other parameters selected from the group of melt flow index, polydispersity and flexural modulus. There are differences, the relative differences of the main components are: in the range of 100 g / 10 min to 5 g / 10 min for the melt flow index and / or less than 1 but greater than 0.3 for the degree of dispersion Yes, and / or the flexural modulus ranges from 300 MPa to 50 MPa; the relative difference in melt flow index is 100 g / 10 min or less, the relative difference in dispersity is less than 1, and the flexural modulus The relative difference is 300 MPa or less. The crimp rate of the fiber is at least 5 per 20 mm of fiber.

Description

本発明は少なくとも2種の材料で構成される捲縮した2成分又は多成分繊維から成るバットに関するものであり,これは主要成分としてポリマーを含み,設定プロセスにおいて繊維捲縮の促進に適した方法で繊維の断面を横断するように配置され,その主要ポリマー成分らには結晶化熱(dHc)に差異がある。特に,本明細書で述べるバットのタイプは,主に衛生産業での応用に使用する不織布の製造を目的としている。   The present invention relates to a bat made of crimped bicomponent or multicomponent fibers composed of at least two materials, which comprises a polymer as a main component and is suitable for promoting fiber crimp in the setting process. The main polymer components have a difference in heat of crystallization (dHc). In particular, the type of bat described herein is primarily intended for the manufacture of nonwoven fabrics for use in the hygiene industry.

いくつかの理由から,不織布のかさ高は重要であると考えられる。不織布は衛生製品の一部として使用することが多く,機能性(例えば面ファスナーで構成される締結システムのループ部の一部として,又は例えば吸収製品の芯部で液体の分布を改善する目的で)の理由,更に,知覚的な理由―とりわけ材料のかさ高により柔軟性が得られ,快適に皮膚と接触できるようになる―の両方の理由からその材料のかさ高を利用する場合もある。特定の場合では,不織布は例えば布巾及びダスターのような掃除用品の一部として使用可能である。このような不織布のかさ高を向上させれば,清掃要素としてその効果も高まる。   For several reasons, the bulkiness of nonwovens is considered important. Nonwoven fabrics are often used as part of sanitary products and have the functionality (eg as part of a loop part of a fastening system composed of hook-and-loop fasteners or for the purpose of improving the liquid distribution in the core of an absorbent product, for example). ) And perceptual reasons—particularly because of the bulkiness of the material, which gives it more flexibility and makes it possible to comfortably contact the skin. In certain cases, non-woven fabrics can be used as part of cleaning articles such as cloths and dusters. If the bulkiness of such a non-woven fabric is improved, the effect is enhanced as a cleaning element.

いくつかの場合で,不織布材料の改良を目的として,該不織布材料の特定の性質を創出又は改良する為に意図的に取り組みが拡充された。これらの取り組みは,繊維の多様な化学組成の選択及び/又は改良,坪量,繊維の積層法,繊維密度,多様なパターンの押出成形,多様な接着タイプの使用等で構成されていた。   In some cases, efforts have been deliberately expanded to create or improve specific properties of nonwoven materials with the goal of improving the nonwoven materials. These efforts consisted of selection and / or improvement of various chemical compositions of fibers, basis weight, fiber lamination method, fiber density, various patterns of extrusion, use of various adhesive types, and the like.

不織布のかさ高はそれを形成する繊維の特性に直接関連している。均質で連続的な繊維はスパンメルト不織布に典型的なものである。かさ高はその後に接着法を利用して増加させることが可能である。1つの方法はこのような熱接着法の使用で構成され,この方法は,最終材料の望ましい強度を得る為に使用される個々の接着点の間で緩い繊維断片の割合を最大限に保持するものである。別の方法は,繊維を毛羽立たせてその特定の厚みを増加させる為に,カレンダ接着の後,不織布をジェット水流(水力増大又は水流交絡)に供す工程で構成される。   The bulkiness of a nonwoven fabric is directly related to the properties of the fibers that form it. Homogeneous and continuous fibers are typical of spunmelt nonwovens. The bulk height can then be increased using an adhesion method. One method consists of the use of such a thermal bonding method, which maximizes the proportion of loose fiber fragments between the individual bonding points used to obtain the desired strength of the final material. Is. Another method consists of subjecting the nonwoven fabric to jet water flow (hydraulic increase or hydroentanglement) after calendering in order to fluff the fiber and increase its specific thickness.

別の方法は「2成分」ポリマー繊維から不織布を製造する工程で構成され,この工程には,これらの繊維をスピナレット下で形成し,バットを形成するように積層し,次いで特定の類型化された効果を得る目的で選択されたエンボシングカレンダを使用して接着する工程が含まれる。このような2成分繊維は2つの隣接領域を備えたスピナレットを使用して製造可能であり,ここでは第1ポリマーを第1領域に導入し,第2ポリマーを第2領域に導入し,第1ポリマーにより形成された断面の1つの領域と,第2ポリマーにより形成された断面の第2の領域とを有する繊維が形成される(すなわち用語「2成分」)。異なる特性を有するように各ポリマーを選択し,それによりサイドバイサイド又は非対称コア/シース配置複合体中で,紡糸プロセスにおいて,それらを冷却し,スピナレット下から引き出しながら2成分繊維をカール形成することが可能となる。繊維のカール形成を可能にするために個々に異なる用途を扱う様々な文献が存在することが知られている。例えばKimberly Clark社による欧州特許第EP0685579号には,ポリプロピレン及びポリエチレンの複合体が記載されている。同社による別の欧州特許第EP1129247号には,異なるポリプロピレンの複合体が記載されている。ここでの重要事項は,記載された各特性の差異の程度にある。   Another method consists of the production of nonwovens from “two-component” polymer fibers, in which these fibers are formed under a spinneret, laminated to form a bat, and then typified. Bonding using an embossing calendar selected to achieve the desired effect. Such bicomponent fibers can be manufactured using a spinneret with two adjacent regions, where the first polymer is introduced into the first region, the second polymer is introduced into the second region, A fiber is formed having one region of the cross section formed by the polymer and a second region of the cross section formed by the second polymer (ie, the term “two component”). Each polymer can be selected to have different properties, thereby allowing the bicomponent fibers to curl in the side-by-side or asymmetric core / sheath arrangement composites during the spinning process as they are cooled and pulled from under the spinneret It becomes. It is known that there are various documents dealing with different applications individually to enable fiber curl formation. For example, European Patent EP 0 658 579 by Kimberly Clark describes a composite of polypropylene and polyethylene. Another European patent EP 1129247 by the company describes different polypropylene composites. The important point here is the degree of difference between the characteristics described.

得られたカールされた繊維はその後,バットを形成するように積層し,次いで多様な方法を利用して接着し,かさ高い不織布を形成することができる。   The resulting curled fibers can then be laminated to form a bat and then bonded using a variety of methods to form a bulky nonwoven.

本発明によるバットは,少なくとも2種のポリマー成分から成り,設定プロセス中に繊維の捲縮を促進するために前記繊維の断面を互いに横断するように配置され,結晶化熱(dHc)に差異を有するバットであって,本発明の内容は,結晶化熱(dHc)の差異は30J/g〜5J/gの範囲であり,前記ポリマー成分はメルトフローインデックス,多分散度及び曲げ弾性率の群より選択される他のパラメータの少なくとも1つに差異があり,前記ポリマー成分の相対的な差異は:
メルトフローインデックスでは,100g/10分〜5g/10分の範囲であり,及び/又は,
多分散度では,1〜0.3の範囲であり,及び/又は,
曲げ弾性率では,300MPa〜50MPaの範囲であり;
メルトフローインデックスの相対的差異は100g/10分以下であり,多分散度の相対的差異は1未満であり,曲げ弾性率の相対的差異は300MPa以下であり;及び
前記繊維の捲縮率は,繊維20mm当り少なくとも5個である。
The vat according to the present invention is composed of at least two polymer components and is arranged to cross the cross sections of the fibers to promote the crimping of the fibers during the setting process, with a difference in heat of crystallization (dHc). The content of the present invention is that the difference in heat of crystallization (dHc) is in the range of 30 J / g to 5 J / g, and the polymer component is a group of melt flow index, polydispersity and flexural modulus. There is a difference in at least one of the other parameters more selected, and the relative differences in the polymer components are:
Melt flow index ranges from 100 g / 10 min to 5 g / 10 min and / or
In polydispersity, it ranges from 1 to 0.3 and / or
The flexural modulus is in the range of 300 MPa to 50 MPa;
The relative difference in melt flow index is 100 g / 10 min or less, the relative difference in polydispersity is less than 1, the relative difference in flexural modulus is 300 MPa or less; and the crimp rate of the fiber is , At least 5 per 20 mm of fiber.

本発明の好適な,及び/又は具体的な実施態様を従属請求項に定義する。更なる態様では,本発明はこのようなバットの製造方法に関連している。   Preferred and / or specific embodiments of the invention are defined in the dependent claims. In a further aspect, the present invention relates to a method for manufacturing such a bat.

多成分繊維の断面を横断する成分領域の非対称(捲縮の促進)な配置の例。An example of an asymmetrical arrangement (promoting crimping) of component regions across the cross-section of a multicomponent fiber. 多成分繊維の断面における成分領域の対称な配置の例。The example of symmetrical arrangement | positioning of the component area | region in the cross section of a multicomponent fiber. スパンメルト製造ラインの例。An example of a spun melt production line.

定義
本明細書の用語「バット」は,例えば特許出願WO2012130414に記述したカレンダプロセス中に行う接着前の状態で見られる繊維形態での材料を意味する。「バット」は,たとえ繊維が特定の方法で事前に接着されているとしても,通常まだ相互の接着が固定されていない個々の繊維で構成されており,ここで言う事前の接着はスパンレイプロセスにおける繊維の積層中,又はその直後に行うことが可能である。しかし,この事前接着によっても,まだ相当な数の繊維が自由に移動可能であり,よって繊維の再配置が可能である。本明細書に記載の「バット」はスパンレイプロセスにおけるいくつかの紡糸ビームから繊維が沈殿することにより形成されるいくつかの層で構成され得る。
Definitions The term “bat” as used herein refers to a material in the form of fibers found in the pre-bonding state, for example, performed during the calendar process described in patent application WO201203414. “Batts” are usually made up of individual fibers that are not yet fixed together, even if the fibers are pre-bonded in a specific way. Can be carried out during or immediately after the lamination of the fibers. However, even with this pre-bonding, a considerable number of fibers can still move freely, thus allowing the fibers to be rearranged. The “bat” described herein can be composed of several layers formed by the precipitation of fibers from several spinning beams in a spunlay process.

用語「繊維」と「フィラメント」とはこの場合,交換可能である。 The terms “fiber” and “filament” are interchangeable in this case.

用語「単一成分(monocomponent)繊維」とは単一ポリマー又はポリマー混合物から形成された繊維を意味し,2成分又は多成分繊維と区別される。   The term “monocomponent fiber” means a fiber formed from a single polymer or polymer blend and is distinguished from bicomponent or multicomponent fibers.

「2成分」とは,2つの別個のポリマー領域,2つの別個のポリマー混合物領域,又は1つの別個のポリマー領域及び1つの別個のポリマー混合物領域から成る断面を有する繊維を意味する。用語「2成分繊維」は用語「多成分繊維」に包含される。2成分繊維の断面全体は,例えば同軸配置,コア/シース配置,サイドバイサイド配置,放射状配置等の任意の形状又は配置をとる異なる領域で構成される2つ以上の領域に分割することも可能である。   “Bicomponent” means a fiber having a cross-section comprised of two distinct polymer regions, two distinct polymer blend regions, or one distinct polymer region and one distinct polymer blend region. The term “bicomponent fiber” is encompassed by the term “multicomponent fiber”. The entire cross section of the bicomponent fiber can also be divided into two or more regions composed of different regions taking any shape or arrangement, such as coaxial arrangement, core / sheath arrangement, side-by-side arrangement, radial arrangement, etc. .

用語「多成分」とは複数の別個のポリマー領域,複数のポリマー混合物領域,又は少なくとも1つの別個のポリマー成分及び少なくとも1つのポリマー混合物領域から成る断面を有する繊維を意味する。よって用語「多成分繊維」は「2成分繊維」を包含するが,これに限定されるものではない。多成分繊維の断面全体は,例えば同軸配置,コア/シース配置,サイドバイサイド配置,放射配置,海島配置等の任意の形状又は配置を取る異なる領域で構成される部位に分けることも可能である。   The term “multicomponent” means a fiber having a cross-section comprised of a plurality of distinct polymer regions, a plurality of polymer blend regions, or at least one distinct polymer component and at least one polymer blend region. Thus, the term “multicomponent fiber” includes “bicomponent fiber”, but is not limited thereto. The entire cross section of the multicomponent fiber can also be divided into parts composed of different regions having any shape or arrangement such as coaxial arrangement, core / sheath arrangement, side-by-side arrangement, radial arrangement, sea-island arrangement, and the like.

本明細書で使用する用語「不織布」とは,所定方向に又は無作為に配向された繊維から形成されたフリース又はウェビングの形態の構造を意味し,この繊維から最初にバットが形成され,その後に一体化し,繊維は,摩擦,凝集力効果,接着によって,或いは圧着及び/又は圧力,熱,超音波もしくは熱エネルギーの効果,又は必要に応じてこれらの効果の組み合わせにより形成された,接着部圧痕で構成された単一又は複数の結合パターンを形成する類似の方法によって,互いに接着する。この用語は製織又は編物で形成された生地,或いはヤーン又は繊維を使用してステッチボンディングを形成する生地を意味するものではない。繊維は天然又は合成由来であってもよく,またステープル繊維,連続的繊維又は加工現場で直接形成された繊維であってもよい。一般的に入手可能な繊維の直径は約0.0001mm〜約0.2mmの範囲にあり,いくつかの形態:短繊維(ステープル又はチョップドファイバーとしても公知),連続単繊維(フィラメント又はモノフィラメント),無撚糸束状の連続繊維(トウとしても公知)及び撚糸束状の連続繊維(ヤーン)の形で提供される。不織布は,当該技術分野において公知のメルトブロー,スパンボンド,スパンメルト,溶剤紡糸,静電紡糸(電界紡糸),カーディング,フィルムフィブリル化,溶融フィルムフィブリル化,エアレイ,ドライレイ,ステープル繊維を用いたウェットレイ及びこれらプロセスの多様な組み合わせなどの技術を含む多くの方法を利用して製造することが可能である。不織布の坪量は一般に1平方メートル当たりのグラム(gsm)で表される。   As used herein, the term “nonwoven” means a structure in the form of a fleece or webbing formed from fibers oriented in a given direction or randomly, from which the bat is first formed and then And the fiber is formed by friction, cohesive effect, adhesion, or by crimping and / or effect of pressure, heat, ultrasonic or thermal energy, or a combination of these effects as required. Adhere to each other by a similar method of forming single or multiple bond patterns composed of indentations. The term does not mean a fabric formed from weaving or knitting, or a fabric that uses yarns or fibers to form a stitch bond. The fibers can be of natural or synthetic origin and can be staple fibers, continuous fibers or fibers formed directly at the processing site. Commonly available fiber diameters range from about 0.0001 mm to about 0.2 mm in several forms: short fibers (also known as staples or chopped fibers), continuous monofilaments (filaments or monofilaments), It is provided in the form of untwisted yarn continuous fibers (also known as tows) and twisted fiber bundles (yarns). Non-woven fabrics are known in the art such as melt blow, spun bond, spun melt, solvent spinning, electrospinning (electrospinning), carding, film fibrillation, melt film fibrillation, air lay, dry lay, wet lay using staple fibers. And many methods including techniques such as various combinations of these processes. The basis weight of a nonwoven fabric is generally expressed in grams per square meter (gsm).

繊維断面の垂直面に関して使用する用語「非対称」は,中心がその繊維断面の中心と考える場合,特に中心対称について繊維断面が対称的ではないことを意味する。当該用語は軸対称にも関連しており,ここでの評価は,存在するポリマー断面と少なくとも同数の繊維断面中心通過軸で行う必要がある。   The term “asymmetric” as used with respect to the vertical plane of the fiber cross section means that the fiber cross section is not symmetrical, especially with respect to central symmetry, when the center is considered the center of the fiber cross section. The term is also related to axial symmetry, and the evaluation here must be performed with at least as many fiber cross-section center pass axes as the existing polymer cross-sections.

用語「熱」とは「融解熱」又は「結晶化熱」を意味し,「潜熱」を意味すると理解されている。   The term “heat” means “heat of fusion” or “heat of crystallization” and is understood to mean “latent heat”.

本発明に従えば,バットは例えばスパンメルトプロセスから製造した連続的多成分繊維で構成され得る。繊維はスピナレット下に押出し,次いで繊細化し,冷却し,ベルト上に積層し,繊維のバットを形成する。プロセスの過程で,これらの繊維は自動的にカールされる。バットは不織布に変換し得る。   In accordance with the present invention, the bat can be composed of continuous multicomponent fibers made, for example, from a spunmelt process. The fiber is extruded under a spinneret, then refined, cooled, and laminated onto a belt to form a fiber vat. During the process, these fibers are automatically curled. The vat can be converted to a non-woven fabric.

個々の繊維は少なくとも2種のポリマー成分A及びBで構成され,そのポリマー成分は別々にスピナレットに導入し,その得られた繊維にはAポリマー成分が多い領域及びBポリマー成分の多い領域があり,繊維の断面にある領域は,繊維の設定プロセスの過程で事前に繊維の捲縮を補助するような様式で配置する。これらの領域は例えば,繊維断面の反対側に見られ,よってサイドバイサイドという名称の2成分繊維で知られる配置を形成するか,或いは例えば1つの領域が第2領域を包囲し,よってコア‐シースとして知られる配置を形成する。ここでは,繊維の捲縮を確実にする為に,主要ポリマー成分A,Bの両領域の全体的な配置の断面は非対称である。別の配置では,繊維には,例えば「セグメントパイ」又は「海島」として知られる配置で配置された主要ポリマー成分A,B,Cを有する3つのポリマー領域が含まれており,ここでは繊維の捲縮を確実にする目的で,主要材料成分A,Bを有する2つの領域の全配置は断面で非対称である。   Each fiber is composed of at least two polymer components A and B, the polymer components are separately introduced into the spinneret, and the resulting fiber has a region rich in A polymer component and a region rich in B polymer component. , Areas in the cross section of the fiber are arranged in a manner that assists in crimping the fiber in advance during the fiber setting process. These regions are found, for example, on the opposite side of the fiber cross-section and thus form the arrangement known for bicomponent fibers named side-by-side, or for example one region surrounds the second region and thus as a core-sheath Form a known arrangement. Here, the cross-section of the overall arrangement of both regions of the main polymer components A and B is asymmetric to ensure fiber crimp. In another arrangement, the fiber includes three polymer regions having major polymer components A, B, C arranged in an arrangement known as, for example, “segment pie” or “sea island”, where In order to ensure crimping, the overall arrangement of the two regions with the main material components A and B is asymmetric in cross section.

理論上接着する意図はなく,繊維の設定の間に,繊維の捲縮を支持する為に改良された繊維の断面における主要ポリマー成分の領域の相互配置は,例えば最終的な捲縮の結果に大きく影響を及ぼすポリマー成分の対称率によってすでに報告されているが,繊維配置の顕著な非対称性により捲縮が更に強くなることは簡単には推測できないと考えられる。これに対して,配置の相乗効果が生じて,あまり顕著でない非対称配置の繊維が顕著な非対称率の繊維より強く捲縮させるという個々の成分の特性を考慮することも必要である。繊維中の主要ポリマー成分を有する領域の最適な配置が,例えば小型の実験スピナレットを使用した実験的試験で決定できるということは当業者であれば十分理解している。個々の非対称配置及び繊維捲縮を支持する配置の例を図1Aに示すが,本明細書で示す配置に限定するものではない。上記で提供された定義に基づき,非対称でなく或いは一般的に繊維捲縮を支持しない配置を図1Bに示す。   There is no theoretical intent to adhere, and the interposition of the major polymer component regions in the fiber cross-section modified to support fiber crimping during fiber setting is, for example, the result of final crimping. Although it has already been reported by the symmetry rate of the polymer component that has a great influence, it cannot be easily estimated that the crimp is further strengthened due to the remarkable asymmetry of the fiber arrangement. On the other hand, it is also necessary to take into account the characteristics of the individual components that the synergistic effect of the arrangement arises and that the fibers with less asymmetric arrangement crimp more strongly than the fibers with a significant asymmetry rate. Those skilled in the art are well aware that the optimal placement of the region with the major polymer component in the fiber can be determined, for example, by experimental testing using a small experimental spinneret. An example of an arrangement that supports individual asymmetric arrangements and fiber crimps is shown in FIG. 1A, but is not limited to the arrangements shown herein. Based on the definitions provided above, an arrangement that is not asymmetric or generally does not support fiber crimp is shown in FIG. 1B.

一般的に個々の成分のいわゆる収縮性を利用して表される個々のポリマー成分の特性の有意差に起因する捲縮繊維の形成は当産業分野で周知である。このように製造された繊維は化学的に形成された繊維の名称で知られている。用語「成分の収縮性」は主に,ポリマーの多様な特性に影響されて液状から固体状に移行している間の体積変化を意味することは当業者であればよく理解している。例えば,2成分繊維では2種のポリマーの組み合わせ,例えば,1種のポリマーと別のポリマーとの併用(ポリプロピレン+ポリエチレン),コポリマー(ポリプロピレン+ポリプロピレンコポリマー)又は混合物(ポリプロピレン+ポリプロピレン混合物及びポリプロピレンコポリマー)を使用することも可能である。2種のポリマーを使用する場合,常に使用材料及びそれらの相互混和性を非常に入念に考慮する必要がある。それら材料の違いが互いに大きい程,繊維中の主要ポリマー成分を含む両領域の密着レベルが低くなり,繊維の切断が起こる可能性がある。特に衛生用途では,繊維切断が低度であっても,生地表面の「毛玉織り込み」として明確に発生し,製品表面に現れ,低品質製品の印として最終顧客が見る為,非常に不都合である。異なる特性(例えば,メルトフローインデックス,多分散,材料の結晶度又はその弾性)を有する同種のポリマーを使用してもよく,ここで成功するにはパラメータの少なくとも1つに有意差があることが必須であることも公知である。   The formation of crimped fibers due to significant differences in the properties of individual polymer components, generally expressed using the so-called shrinkage of the individual components, is well known in the industry. The fibers thus produced are known by the name of chemically formed fibers. It is well understood by those skilled in the art that the term “component shrinkage” mainly refers to a change in volume during the transition from liquid to solid, influenced by various properties of the polymer. For example, for bicomponent fibers, a combination of two polymers, for example, a combination of one polymer with another polymer (polypropylene + polyethylene), a copolymer (polypropylene + polypropylene copolymer) or a mixture (polypropylene + polypropylene blend and polypropylene copolymer) Can also be used. When using two types of polymers, the materials used and their mutual miscibility must always be considered very carefully. The greater the difference between these materials, the lower the adhesion level between the two regions including the main polymer component in the fiber, and the possibility of fiber breakage. Especially in hygiene applications, even if the fiber cutting is low, it appears clearly as “flood weaving” on the surface of the fabric, appears on the surface of the product, and is viewed by the end customer as a mark of low quality product, which is very inconvenient. is there. The same type of polymer with different properties (eg, melt flow index, polydispersity, material crystallinity or its elasticity) may be used, and there is a significant difference in at least one of the parameters for success here. It is also known that it is essential.

例えば,Kimberly Clark社による欧州特許第EP0685579号に基づき,多分散度の場合,正確に測定した領域では少なくとも0.5の差異が必要であり―この文献では,1つの主要成分の多分散度は<2.5,第2の主要成分では>3であることが示されており,結晶度については,1つの領域の主要成分が非結晶性で他方が結晶性であることが必要であり,融解熱の差異は少なくとも40J/gが必要であり,スパンメルト用途に適したメルトフローインデックスは数g/10分〜数千g/10分の範囲であり,弾性については,弾性及び非弾性材料を組み合わせる必要がある。   For example, according to European Patent EP 0 655 579 by Kimberly Clark, in the case of polydispersity, a difference of at least 0.5 is necessary in the accurately measured region-in this document the polydispersity of one main component is <2.5, the second major component is> 3, and for crystallinity, the major component in one region must be non-crystalline and the other crystalline. The difference in heat of fusion should be at least 40 J / g, and the melt flow index suitable for spun melt applications is in the range of several g / 10 minutes to several thousand g / 10 minutes. Need to be combined.

本発明の対象は,領域内で大部分において使用するポリマーらが互いによく類似している捲縮多成分繊維である。好ましくはポリマーは,化学的に同種で物理的特性が多少異なる,例えばポリプロピレン‐ポリプロピレン複合体とすることも可能である。例えばポリプロピレン(プロピレンモノマー単位で形成されるポリマー)は基本的な特徴は有するが,例えば単一ユニットの立体規則性,或いはポリマー中の異なるポリマー鎖のポリマー鎖長又は分散性により,繊維及び不織布製造にとって重要な物理的特性が多様になることは当業者であれば十分に理解している。当業者は,市場で入手可能な広範囲の市販タイプのポリマーがあることや,様々な量で個別の形で入手可能であることも十分に分かっている。分散性に需要がある為,特に比較的狭い範囲の特性のポリマーにも申し込みが集中している。非常に類似したポリマーを使用することによって得られる多数の利点はまた,市場で比較的容易に入手可能であることにある。   The subject of the present invention is a crimped multicomponent fiber in which the polymers used for the most part in the region are very similar to each other. Preferably the polymer can be a chemically similar and slightly different physical property, for example a polypropylene-polypropylene composite. For example, polypropylene (a polymer formed with propylene monomer units) has basic characteristics, but it can be used to produce fibers and non-woven fabrics, for example due to the stereoregularity of a single unit or the polymer chain length or dispersibility of different polymer chains in the polymer. Those skilled in the art are well aware that the physical properties that are important to varieties vary. The person skilled in the art is also well aware that there are a wide range of commercially available polymers available on the market and that they are available in various quantities in individual forms. Due to the demand for dispersibility, applications are concentrated especially on polymers with a relatively narrow range of properties. A number of advantages obtained by using very similar polymers are also that they are relatively readily available on the market.

上述のポリマー領域は1種のポリマーを使用して形成しても,多様な成分の混合物を使用して形成してもよいことは重視すべき点である。同種のポリマーに基づく多成分繊維で構成され,その成分間で混合物の添加のみが異なる繊維も存在することは当産業分野で公知である。例えば,Kimberly Clark社による米国の出願第6,203,905号には,2成分繊維の1つの領域に核形成添加剤を添加することが記載されている。   It is important to note that the polymer region described above may be formed using a single polymer or a mixture of various components. It is well known in the industry that some fibers are composed of multicomponent fibers based on the same type of polymer and differ only in the addition of the mixture between the components. For example, US Application No. 6,203,905 by Kimberly Clark describes the addition of a nucleation additive to one region of a bicomponent fiber.

本発明の原理は主要ポリマー成分のみで,或いは主要成分及び添加剤で構成してもよい。   The principle of the present invention may consist of the main polymer component alone or of the main component and additives.

本発明の原理は添加剤(例えば染料)の添加を含んでもよいが,このような添加剤の添加は繊維の捲縮に左程影響を与えるものではない。添加剤は例えば両領域に対称的に添加してもよい。   While the principles of the present invention may include the addition of additives (eg, dyes), the addition of such additives does not affect the crimp of the fiber to the left. For example, the additive may be added symmetrically to both regions.

本産業分野で公知のとおり,紡糸の直前に,いくつかの機能的添加剤が直接,ポリマー融解物中で化学反応を誘導し,例えば融解物(例えばBASF社のIRGATEC CR76)の温度にその有効性が影響を受ける可能性もある。このように,領域ごとの両ポリマー成分の融解物の多様な温度の効果により,ポリマー及び添加剤の同一混合物が両領域で使用されている場合でさえ,得られた特性(例えばメルトフローインデックス,多分散等)に有意差が現れる。本発明の原理は機能的添加剤の添加を含むが,この添加は繊維の捲縮に左程影響を与えるものではない。   As is known in the industry, just prior to spinning, several functional additives directly induce chemical reactions in the polymer melt and are effective for example at the temperature of the melt (eg, BASF IRGATEC CR76). Sex can also be affected. Thus, due to the effect of the various temperatures of the melts of both polymer components per region, the properties obtained (eg, melt flow index, A significant difference appears in polydispersity. The principle of the present invention includes the addition of a functional additive, but this addition does not affect the crimp of the fiber to the left.

前記述から明らかなように,各領域の主要成分の収縮性に十分な差異があれば,張力によりスピナレット下で繊維に捲縮が生じることは当産業分野で公知である。本発明に基づく繊維の捲縮は,ポリマーの少なくとも2つ,好ましくは3つのパラメータのわずかな差を組み合わせることによって生じる。   As is clear from the above description, it is well known in the industry that if there is a sufficient difference in the shrinkability of the major components in each region, the fibers will crimp under the spinneret due to tension. The crimping of the fibers according to the invention occurs by combining slight differences in at least two, preferably three, parameters of the polymer.

重要な変数は結晶化の潜熱(dHc)であり,これはポリマー成分の結晶化を起こすためにシステムから取り入れる必要があるエネルギー量の指標である。よく知られている理論では,温度差が十分であれば,初めに1つの領域の主要成分が硬化し始め,第2領域においてはまだ液体である主要成分の形態において,このように形成された張力は反力を持たない為,繊維がカールされると考えられている。両ポリマー成分間に十分な差異があることが常に必要であり,そうでなければ効果はない。   An important variable is the latent heat of crystallization (dHc), which is a measure of the amount of energy that must be taken from the system to cause crystallization of the polymer component. A well-known theory is that if the temperature difference is sufficient, the main component of one region begins to harden first, and is thus formed in the form of the main component that is still liquid in the second region. It is thought that the fiber is curled because the tension has no reaction force. It is always necessary that there is a sufficient difference between the two polymer components, otherwise there is no effect.

Kimberly Clark社の公知の文書EP0685579は融解熱の最小限の差を記述しており,これは40J/gの結晶化熱にほぼ等しい。対照的に,本発明に従えば,領域の主要成分間の他の差異が驚く程に大きな相乗効果の利点を得る場合,融解熱の差異が小さめでも繊維の捲縮は起こる。本発明に基づく繊維のカール形成又は捲縮は,結晶化熱(dHc)及び,少なくとも1つ,好ましくは複数のポリマーのパラメータのわずかな差異を組み合わせて得られる。   Kimberly Clark's known document EP 0 655 579 describes the minimum difference in heat of fusion, which is approximately equal to the heat of crystallization of 40 J / g. In contrast, according to the present invention, fiber crimping occurs even if the difference in heat of fusion is small, if other differences between the major components of the region obtain a surprisingly large synergistic advantage. The curling or crimping of the fibers according to the present invention is obtained by combining a slight difference in the heat of crystallization (dHc) and at least one, preferably a plurality of polymer parameters.

個々の主要成分には結晶化熱(dHc)に差異があり,値の差は30J/g〜5J/g,より望ましくは30J/g〜10J/g,好ましくは30J/g〜20J/gの範囲である。捲縮度を低くする場合は,結晶化熱(dHc)の差を24J/g〜5J/g,より望ましくは24J/g〜10J/g,好ましくは24J/g〜20J/gの範囲とする。更に,個々の主要成分にはメルトフローインデックス(MFI)レベルに差を付けてもよく,値間の差は約100g/10分〜5g/10分,より望ましくは80g/10分;好ましくは60g/10分〜10g/10分の範囲である。   Each main component has a difference in heat of crystallization (dHc), and the difference in value is 30 J / g to 5 J / g, more desirably 30 J / g to 10 J / g, preferably 30 J / g to 20 J / g. It is a range. In the case of reducing the degree of crimping, the difference in heat of crystallization (dHc) is 24 J / g to 5 J / g, more desirably 24 J / g to 10 J / g, preferably 24 J / g to 20 J / g. . In addition, individual major components may differ in melt flow index (MFI) levels, the difference between values being about 100 g / 10 min to 5 g / 10 min, more desirably 80 g / 10 min; preferably 60 g. / 10 minutes to 10 g / 10 minutes.

更に,個々の主要成分には材料の多分散度に差を付けてもよく,値の差は1〜0.3,より望ましくは1〜0.5,好ましくは1〜0.75の範囲である。   In addition, the individual main components may have a difference in the polydispersity of the material, the value difference being in the range of 1 to 0.3, more desirably 1 to 0.5, preferably 1 to 0.75. is there.

更に,個々の主要成分には材料の曲げ弾性率に差を付けてもよく,値の差は300MPa〜50MPa,より望ましくは250MPa〜80MPa,好ましくは200MPa〜80MPaの範囲である。   Furthermore, the individual principal components may have a difference in the flexural modulus of the material, and the difference in values is in the range of 300 MPa to 50 MPa, more desirably 250 MPa to 80 MPa, preferably 200 MPa to 80 MPa.

1つの領域がすでに結晶性であり,他方が液状のままである場合,又は,ある時点でその結晶化度が相対的に低い場合,繊維の張力により繊維のカールが生じることは,理論的に考えなくとも本発明者らの予測するところである。概して,結晶化の過程中,所与の領域の体積が減少するが,ある時点で他の領域が依然として可鍛性であれば,耐性及び繊維カールのレベルが高くなり過ぎることはない。上記から,結晶化自体の潜熱(dHc)の値以外では,結晶化が開始される温度及び結晶化速度もカール形成の程度に影響を与えることは明らかである。発明の対象が2種のよく類似したポリマーの組み合わせであることを考えると,それらは結晶化温度も近似している可能性がある。多様な市販タイプのポリプロピレンのホモポリマーの例を表に示す。

Figure 2016507012
Theoretically, if one region is already crystalline and the other remains liquid, or if its crystallinity is relatively low at some point, the fiber tension causes the fiber to curl. The present inventors have predicted without thinking. In general, during the crystallization process, the volume of a given area decreases, but if other areas are still malleable at some point, the level of resistance and fiber curl will not become too high. From the above, it is clear that the temperature at which crystallization is initiated and the crystallization rate also affect the degree of curl formation, except for the value of latent heat (dHc) of crystallization itself. Given that the subject of the invention is a combination of two very similar polymers, they may also approximate the crystallization temperature. Examples of various commercially available polypropylene homopolymers are shown in the table.
Figure 2016507012

約数分以内の結晶化時間の差は,それらに繊維のカールを生じさせるに十分な力は無いが,上記の差異,すなわち結晶化の潜熱(dHc)の差異に起因するカール形成の程度には貢献していることは,理論的に考えなくとも本発明者らの予測するところである。   Differences in crystallization time within about a few minutes are not enough force to cause them to curl fibers, but to the extent of curl formation due to the above differences, ie, differences in latent heat of crystallization (dHc). The present inventors have predicted that they have contributed without thinking theoretically.

領域の個々の主要成分は結晶化温度が異なっていてもよく,値の差は約5〜30℃,より望ましくは5〜25℃,好ましくは8〜25℃の範囲である。   The individual main components of the region may have different crystallization temperatures, with the difference in values ranging from about 5 to 30 ° C, more desirably 5 to 25 ° C, preferably 8 to 25 ° C.

領域の個々の主要成分は結晶化速度が異なっていてもよく,値の差は少なくとも20秒,より望ましくは50秒,より望ましくは120秒,好ましくは150秒である。   The individual main components of the region may have different crystallization rates, the difference in values being at least 20 seconds, more preferably 50 seconds, more preferably 120 seconds, preferably 150 seconds.

ポリマー成分を適量に分け(1),分離押出システム(2)に入れ,それらを融解し,好適な操作温度まで加熱し,更に分離してスピナレット(4)に導入し,ここで多成分繊維を形成する。多成分繊維の形態で紡糸する為のポリマーを調整するプロセスには,技術のタイプによって更なる特定の工程が包含されること,また,この目的の為に設計された様々な添加剤を,例えば繊維の色(染料)の変化,又は繊維の特性(例えば親水性,疎水性,可燃性)の変化の目的でポリマー成分に添加すること,ここで本発明に従えば,これらの添加剤が繊維の捲縮に影響を及ぼさず,及び/又は,得られた繊維中に対称に分散されることが材料にとって重要であることは当業者により理解されている。スピナレット(8)下で形成した繊維(5)を冷却流及び繊細化気流(6,7)に供し,それにより,回収マット(10)上にそれらが落ちる(8)前に,捲縮が繊維上に形成される。冷却気流及び繊細化気流(6,7)はほぼ室温であり,好ましくは10〜30℃,より好ましくは15〜25℃である。回収マット(10)は,例えば形成繊維バット(11)を運ぶ移動ベルトであってもよい。工程中,回収マット(10)上には,捲縮を促進する過剰な熱又は機械的エネルギーの流入は無い。   Divide the polymer components into appropriate amounts (1), place them in a separate extrusion system (2), melt them, heat them to a suitable operating temperature, separate them and introduce them into the spinneret (4), where the multicomponent fibers are Form. The process of preparing polymers for spinning in the form of multicomponent fibers includes additional specific steps depending on the type of technology, and various additives designed for this purpose can be used, for example Added to the polymer component for the purpose of changing the color (dye) of the fiber or the properties of the fiber (eg hydrophilic, hydrophobic, flammable), and according to the invention, these additives may be added to the fiber It is understood by those skilled in the art that it is important for the material that it does not affect the crimps of and / or is symmetrically distributed in the resulting fiber. The fibers (5) formed under the spinneret (8) are subjected to a cooling flow and a finer air flow (6, 7), so that they crimp the fibers before they fall (8) onto the recovery mat (10). Formed on top. The cooling air flow and the fine air flow (6, 7) are at about room temperature, preferably 10 to 30 ° C, more preferably 15 to 25 ° C. The recovery mat (10) may be, for example, a moving belt that carries the formed fiber bat (11). During the process, there is no excess heat or mechanical energy inflow on the recovery mat (10) to promote crimping.

このように,数本の紡糸ビームは整列しており,それらは全て捲縮した繊維を形成するか,或いは異なる層(例えば簡単なスパンメルト繊維―例えば,スパンボンド又はメルトブロー,ナノ繊維,フィルム等)を積層し得る。本発明に従った構成では,捲縮した繊維の層(単数/複数)が他の層に積層されれば,それにより捲縮した繊維に不要な圧縮は生じないことは有利である。他の用途では,捲縮した繊維を最初と最後の紡糸ビームから放出させ,それにより得られた材料は捲縮した繊維で構成された外表面を有し,内表面は異なる特性(例えば,得られる不織布の機械的強度)を有するという組み合わせを行うことは有利である。   In this way, several spinning beams are aligned, either all forming crimped fibers or different layers (eg simple spunmelt fibers—eg spunbond or meltblown, nanofibers, films, etc.) Can be laminated. In a configuration according to the present invention, it is advantageous that the crimped fiber layer (s) is laminated to other layers, thereby preventing unnecessary compression of the crimped fibers. In other applications, the crimped fibers are ejected from the first and last spinning beams so that the resulting material has an outer surface composed of crimped fibers, and the inner surface has different properties (eg, obtained It is advantageous to have the combination of having the mechanical strength of the nonwoven fabric to be produced.

その後,繊維の層(単数/複数)を強化し(12),ここでは数種の公知の方法を使用してもよい(例えば熱接着,熱カレンダ接着,ニードルパンチ,水流交絡等)。個々の接着法は得られた材料の特性に対して顕著な効果を与え,当業者はどの方法がその材料に適しているかを容易に決定する。同様に,強度又は接着点の密度が高い接着法を選択すると,本発明に基づいた繊維を含む不織布と,捲縮していない繊維を含む標準的材料との全体的なかさ高の差異が結果として無効にさえなるということも当業者は理解している。   The fiber layer (s) is then reinforced (12), where several known methods may be used (eg, thermal bonding, thermal calendar bonding, needle punch, hydroentanglement, etc.). Individual bonding methods have a significant effect on the properties of the resulting material, and those skilled in the art can easily determine which method is appropriate for the material. Similarly, choosing an adhesion method with high strength or density of adhesion points will result in an overall bulk difference between the non-woven fabric containing fibers according to the present invention and a standard material containing uncrimped fibers. Those skilled in the art also understand that it will even be invalid.

最終的な不織ウェブは以下の例の非限定的なリストにある多様な用途で使用できる:ウェットタイプのものを含む清掃用布巾及び衛生用布巾;家具の一部;例えばテーブルクロス,ベッドカバー等の家庭用品の一部;カバー材料;例えば不織ランディングゾーン,ADL(取り込み分配層),背面シート,上面シート,側部パネル,コアラップ,レッグカフ等を形成するか,或いはこれらの一部であるような全ての乳児,女性ケア及び成人用尿失禁の為の衛生吸収用品の一部。   The final nonwoven web can be used in a variety of applications on the non-limiting list of the following examples: cleaning cloths and sanitary cloths, including wet types; furniture pieces; eg tablecloths, bedspreads, etc. Part of household goods; cover material; eg forming or part of a non-woven landing zone, ADL (uptake distribution layer), back sheet, top sheet, side panel, core wrap, leg cuff, etc. A part of hygiene absorbent products for all infants, women's care and adult urinary incontinence.

実施例
実施例1:本発明に基づく構成
バットは,1つの成分がTotal Petrochemicals社のポリプロピレンMR2002で構成され,第2成分がUnipetrol社のポリプロピレンMosten NB425で構成されている連続的な2成分繊維で構成されている。両ポリプロピレンホモポリマー材料は市場で簡単に入手可能であり,非弾性であり,結晶性である。

Figure 2016507012
繊維をスパンメルト不織布用のReicofil3の製造ラインで製造し,材料の接着に先立って,積層するバットから外した。 Examples Example 1: Construction according to the invention The vat is a continuous bicomponent fiber in which one component is composed of Total Petrochemicals polypropylene MR2002 and the second component is Unipetrol polypropylene Mosten NB425. It is configured. Both polypropylene homopolymer materials are readily available on the market, are inelastic and crystalline.
Figure 2016507012
The fiber was produced on a production line for Reicofil3 for spunmelt nonwoven and removed from the vat for lamination prior to material bonding.

例1A:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比40:60で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンMosten NB425で構成されている。
得られた平均捲縮率は13.4個/20mmであった。
Example 1A:
The continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 40:60. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Mosten NB425.
The average crimp rate obtained was 13.4 pieces / 20 mm.

例1B:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比30:70で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンMosten NB425で構成されている。
得られた平均捲縮率は15.8個/20mmであった。
Example 1B:
Continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 30:70. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Mosten NB425.
The average crimp rate obtained was 15.8 pieces / 20 mm.

例1C:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比65:35で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンMosten NB425で構成されている。
得られた平均捲縮率は8.2個/20mmであった。
Example 1C:
Continuous bicomponent fibers were side-by-side, with individual regions formed at a weight ratio of 65:35. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Mosten NB425.
The average crimp rate obtained was 8.2 pieces / 20 mm.

例1D:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比50:50で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンMosten NB425で構成されている。
得られた平均捲縮率は11.7個/20mmであった。
Example 1D:
The continuous bicomponent fibers were side-by-side and the individual regions were formed with a weight ratio of 50:50. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Mosten NB425.
The average crimp rate obtained was 11.7 pieces / 20 mm.

実施例2:発明に基づく構成
バットは,1つの成分がTotal Petrochemicals社のポリプロピレンMR2002で構成され,第2成分がSlovnaft社のポリプロピレンTatren HT2511で構成されている連続的な2成分繊維で構成されている。両ポリプロピレンホモポリマー材料は市場で簡単に入手可能であり,非弾性であり,結晶性である。

Figure 2016507012
繊維をスパンメルト不織布用のReicofil3の製造ラインで製造し,材料の接着に先立って,積層するバットから外した。 Example 2: Construction Based on the Invention The vat is composed of continuous bicomponent fibers in which one component is composed of Total Petrochemicals polypropylene MR2002 and the second component is composed of Slovnaft polypropylene Tatren HT2511. Yes. Both polypropylene homopolymer materials are readily available on the market, are inelastic and crystalline.
Figure 2016507012
The fiber was produced on a production line for Reicofil3 for spunmelt nonwoven and removed from the vat for lamination prior to material bonding.

例2A:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比30:70で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。
得られた平均捲縮率は15.9個/20mmであった。
Example 2A:
Continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 30:70. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511.
The average crimp rate obtained was 15.9 pieces / 20 mm.

例2B:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比40:60で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。
得られた平均捲縮率は12.8個/20mmであった。
Example 2B:
The continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 40:60. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511.
The average crimp rate obtained was 12.8 pieces / 20 mm.

例2C:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比50:50で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。
得られた平均捲縮率は12.0個/20mmであった。
Example 2C:
The continuous bicomponent fibers were side-by-side and the individual regions were formed with a weight ratio of 50:50. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511.
The average crimp rate obtained was 12.0 pieces / 20 mm.

例2D:
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比70:30で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。
得られた平均捲縮率は7.3個/20mmであった。
Example 2D:
Continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 70:30. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511.
The average crimp rate obtained was 7.3 pieces / 20 mm.

実施例3:発明に基づく構成―実験ライン
バットは連続的な2成分繊維で構成され,繊維は,最大0.9MPaの圧縮空気のフィラメント繊細化による,0.5mm直径及び0.8mm長の12穴を有する紡糸ダイを用いた実験紡糸ラインで製造したものである。2つの独立した押出機(直径16mm)を備える押出システム。1穴当り,1分間に0.5グラムのライン処理量。ラインは例えば人工繊維の研究機関「VUCHV a.s. Svit」(スロバキア共和国)で入手可能である。
Example 3: Construction Based on Invention—Experimental Line The bat is composed of continuous bicomponent fibers, which are 12 mm in diameter 0.5 mm and 0.8 mm in length by filament finening of compressed air up to 0.9 MPa. It was manufactured on an experimental spinning line using a spinning die having holes. Extrusion system with two independent extruders (16 mm diameter). A line throughput of 0.5 grams per hole per minute. The line is available, for example, at the research institute "VUCHV as Svit" (Republic of Slovakia) for artificial fibers.

例3A
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比40:60で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。繊細化する空気圧は0.85MPaであった。
Example 3A
The continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 40:60. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511. The air pressure to be reduced was 0.85 MPa.

例3B
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比40:60で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンMosten NB425で構成されている。繊細化する空気圧は0.85MPaであった。

Figure 2016507012
Example 3B
The continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 40:60. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Mosten NB425. The air pressure to be reduced was 0.85 MPa.
Figure 2016507012

例4:発明に基づく構成―カレンダ加工など
連続的な2成分繊維はサイドバイサイド型であり,個々の領域は重量比40:60で形成された。第1領域はポリプロピレンMR2002で構成され,第2領域はポリプロピレンTatren HT2511で構成されている。両ポリプロピレンホモポリマー材料は市場で簡単に入手可能であり,非弾性であり,結晶性である。

Figure 2016507012
繊維をスパンメルト不織布用のReicofil4SSS製造ラインで製造した。
繊細化する空気の温度は15〜25℃,領域内のキャビン圧力は2800〜3200Paであった。1対の滑面グラビアロールを使用し,Ungricht社の様式U2888M(標準的な楕円形)によりバットを熱接着した。滑面ロール温度は170〜180℃,グラビアロール温度は160〜170℃,ニップは120〜125daN/cmであった。
材料の接着に先立って,積層したバットから外した繊維の平均捲縮率は
15.7個/20mmであった。
Figure 2016507012
Example 4: Construction Based on Invention—Calendaring etc. Continuous bicomponent fibers were side-by-side and individual regions were formed at a weight ratio of 40:60. The first region is composed of polypropylene MR2002, and the second region is composed of polypropylene Tatren HT2511. Both polypropylene homopolymer materials are readily available on the market, are inelastic and crystalline.
Figure 2016507012
Fibers were produced on the Reicofil 4SSS production line for spunmelt nonwovens.
The temperature of the air to be refined was 15 to 25 ° C., and the cabin pressure in the region was 2800 to 3200 Pa. A pair of smooth gravure rolls was used and the bats were thermally bonded by Ungricht style U2888M (standard oval). The smooth surface roll temperature was 170 to 180 ° C, the gravure roll temperature was 160 to 170 ° C, and the nip was 120 to 125 daN / cm.
Prior to material bonding, the average crimp rate of the fibers removed from the laminated bat was 15.7 pieces / 20 mm.
Figure 2016507012

試験方法
繊維の「捲縮率」は1969年からCSN 80 0202基準に記載された方法により測定する。測定は基準条件(個々の繊維を温度20℃,相対湿度65%で24時間,マット上に緩んだ状態で置く)下,個々の繊維で行う。その後,繊維を垂直に吊るし,(1〜5denの繊度の繊維1本に対して)0.0076gの重圧をかける。長さ20mm当りの捲縮の数を計数する。
Test Method The “crimp rate” of the fiber is measured by the method described in CSN 80 0202 standard from 1969. Measurements are made on individual fibers under standard conditions (individual fibers placed loose on the mat for 24 hours at a temperature of 20 ° C. and a relative humidity of 65%). Thereafter, the fibers are hung vertically and a heavy pressure of 0.0076 g is applied (for one fiber having a fineness of 1 to 5 den). Count the number of crimps per 20 mm length.

ポリマーの「多分散」又は「多分散係数(PDI)」は材料の不均一度を表している。それはポリマーの数平均分子量(Mn)及び重量平均分子量(Mw)の計算により特定し,ここでは,例えばEric V.Anslyn及びDennis A.DoughertyによるModern Physical Organic Chemistryに記載されているとおり,PDI=Mw/Mnである。   The “polydispersity” or “polydispersity coefficient (PDI)” of a polymer represents the non-uniformity of the material. It is identified by calculation of the number average molecular weight (Mn) and the weight average molecular weight (Mw) of the polymer, where PDI = Mw as described, for example, in Modern Physical Organic Chemistry by Eric V. Anslyn and Dennis A. Dougherty. / Mn.

ポリマーの「メルトフローインデックス(MFI)」はドイツのASTM D1238‐95基準に従った試験方法により測定する;特定の試験条件(例えば温度)は個々のポリマーによって変更する―例えばポリプロピレンの試験条件は230/2.16であり,ポリエチレンの条件は190/2.16である。   The “melt flow index (MFI)” of a polymer is measured by a test method according to the German ASTM D1238-95 standard; the specific test conditions (eg temperature) vary with the individual polymer—for example the test conditions for polypropylene are 230 /2.16, and the polyethylene condition is 190 / 2.16.

「ポリマーの曲げ弾性率」はISO178:2010に記載の試験方法により測定する。   “Polymer's flexural modulus” is measured by the test method described in ISO178: 2010.

「結晶度」,「結晶化の潜熱」,「結晶化の温度」及び「融点」はDSCを用いたASTM D3417に記載の試験方法により測定し,200〜80℃の測定範囲で温度上昇速度は2℃/分であり,試料の量は7〜7.4gである。   “Crystallinity”, “Latent heat of crystallization”, “Temperature of crystallization” and “Melting point” were measured by the test method described in ASTM D3417 using DSC. It is 2 ° C./min and the amount of the sample is 7 to 7.4 g.

ポリマーの「結晶化の速度」は結晶化動力学に関するISO11357‐7‐測定―等温結晶化法により測定し,ここでは初めに試料を融点210℃で8分間保持し,その後120℃まで冷却した。   The “crystallization rate” of the polymer was measured by ISO11357-7-measurement-isothermal crystallization method for crystallization kinetics, where the sample was first held at a melting point of 210 ° C. for 8 minutes and then cooled to 120 ° C.

発明の産業上の利用可能性
本発明に従って製造したバットは,簡単に言うと不織布の製造に利用可能であり,オンラインの製造ラインで製造工程を形成することが可能である。本発明に従って作成したバットから製造した不織布は多様な分野,すなわち乳児用おむつ,女性用吸収製品又は失禁用製品などの衛生用品に広く利用可能である。捲縮した繊維は生地にふんわりとした感触を作り出し,このことは柔軟性と絹のような滑らかさを必要とする用途(例えば使用者の皮膚に直接接触する吸収製品の一部)及びかさ高が必要な用途(布巾,「面ファスナー」システムのループ側等)の両方に材料が有利に使用できることを意味している。

INDUSTRIAL APPLICABILITY OF THE INVENTION The vat manufactured according to the present invention can be simply used for the production of non-woven fabrics and can form a manufacturing process on an online manufacturing line. Nonwoven fabrics made from bats made in accordance with the present invention can be widely used in various fields, such as baby diapers, female absorbent products or incontinence products. Crimped fibers create a soft feel to the fabric, which can be soft and silky smooth (for example, some absorbent products that are in direct contact with the user's skin) and bulky Means that the material can be used advantageously in both applications where fabrics are needed (cloth width, loop side of "loop fastener" system, etc.).

Claims (15)

主要成分としてポリマー又はポリマー混合物から成り,設定プロセス中に繊維の捲縮の促進に適した方法で前記繊維の断面を横断するように配置され,主要成分らは結晶化熱(dHc)に差異がある,少なくとも2つの領域で構成された捲縮した2成分又は多成分繊維から成るバットであって,結晶化熱(dHc)の差異は30J/g〜5J/gの範囲であり,前記主要成分はメルトフローインデックス,多分散度及び曲げ弾性率の群より選択される他のパラメータの少なくとも1つに差異があり,前記主要成分の相対的な差異は:
メルトフローインデックスでは,100g/10分〜5g/10分の範囲であり,及び/又は,
多分散度では,1未満であるが0.3超であり,及び/又は,
曲げ弾性率では,300MPa〜50MPaの範囲であり;
メルトフローインデックスの相対的差異は100g/10分以下であり,多分散度の相対的差異は1未満であり,曲げ弾性率の相対的差異は300MPa以下であり;前記繊維の捲縮率は,繊維20mm当り少なくとも5個であることを特徴とするバット。
It consists of a polymer or polymer blend as the main component and is arranged to cross the cross section of the fiber in a manner suitable for promoting fiber crimping during the setting process, and the main component has a difference in heat of crystallization (dHc). A vat made of crimped bicomponent or multicomponent fibers composed of at least two regions, the difference in heat of crystallization (dHc) being in the range of 30 J / g to 5 J / g, Has a difference in at least one of the other parameters selected from the group of melt flow index, polydispersity and flexural modulus, the relative differences of the main components are:
Melt flow index ranges from 100 g / 10 min to 5 g / 10 min and / or
In polydispersity, it is less than 1 but greater than 0.3 and / or
The flexural modulus is in the range of 300 MPa to 50 MPa;
The relative difference in melt flow index is 100 g / 10 min or less, the relative difference in polydispersity is less than 1, the relative difference in flexural modulus is 300 MPa or less; A bat characterized in that there are at least five per 20 mm of fiber.
メルトフローインデックスについての前記主要成分間の相対的な差異は80g/10分〜5g/10分,好ましくは60g/10分〜10g/10分の範囲内であることを特徴とする請求項1記載の捲縮した繊維から成るバット。   2. The relative difference between the main components with respect to the melt flow index is in the range of 80 g / 10 min to 5 g / 10 min, preferably 60 g / 10 min to 10 g / 10 min. Bat made of crimped fiber. 多分散度についての前記主要成分間の相対的な差異は1〜0.5,好ましくは1〜0.7の範囲内であることを特徴とする請求項1又は2記載の捲縮した繊維から成るバット。   From crimped fibers according to claim 1 or 2, characterized in that the relative difference between the main components in terms of polydispersity is in the range of 1 to 0.5, preferably 1 to 0.7. The bat that consists. 結晶化熱(dHc)についての前記主要成分間の相対的な差異は30J/g〜10J/g,好ましくは30J/g〜20J/gの範囲内であることを特徴とする請求項1〜3いずれか1項記載の捲縮した繊維から成るバット。   4. The relative difference between the main components with respect to heat of crystallization (dHc) is in the range of 30 J / g to 10 J / g, preferably 30 J / g to 20 J / g. A vat comprising crimped fibers according to any one of the preceding claims. 曲げ弾性率についての前記主要成分間の相対的な差異は250MPa〜80MPa,好ましくは200MPa〜80MPaの範囲内であることを特徴とする請求項1〜4いずれか1項記載の捲縮した繊維から成るバット。   A crimped fiber according to any one of claims 1 to 4, characterized in that the relative difference between the main components in terms of flexural modulus is in the range of 250 MPa to 80 MPa, preferably 200 MPa to 80 MPa. The bat that consists. 前記繊維がサイドバイサイド型の2成分繊維であることを特徴とする請求項1〜5いずれか1項記載の捲縮した繊維から成るバット。   The vat comprising crimped fibers according to any one of claims 1 to 5, wherein the fibers are side-by-side bicomponent fibers. 前記2成分繊維の両主成分がプロピレンホモポリマーであることを特徴とする請求項6記載の捲縮した繊維から成るバット。   7. A vat comprising crimped fibers according to claim 6, wherein both main components of the bicomponent fibers are propylene homopolymers. 前記繊維中のポリマー領域の数と同数の繊維断面の中心を通る数本の軸に対して中心非対称及び/又は軸非対称に,前記繊維の断面を横断するように前記主要成分が配置されていることを特徴とする請求項1〜7いずれか1項記載の捲縮した繊維から成るバット。   The main component is arranged to cross the cross section of the fiber in a central and / or axial asymmetry with respect to several axes passing through the same number of fiber cross-sectional centers as the number of polymer regions in the fiber. A vat comprising crimped fibers according to any one of claims 1 to 7. 前記繊維が添加剤を含み,前記繊維の捲縮に左程影響を及ぼさないように前記添加剤が成分中に存在することを特徴とする請求項1〜8いずれか1項記載のバット。   The vat according to any one of claims 1 to 8, wherein the fiber contains an additive, and the additive is present in the component so as not to affect the crimping of the fiber to the left. 請求項1〜9いずれか1項記載のバットから成ることを特徴とする不織布。   A non-woven fabric comprising the bat according to any one of claims 1 to 9. 前記不織布がスパンメルトタイプであることを特徴とする請求項10記載の不織布。   The nonwoven fabric according to claim 10, wherein the nonwoven fabric is a spun melt type. 多成分繊維から成るバットの製造方法であって,以下の工程:
i. 主要成分としてポリマー又はポリマー混合物を含み,繊維の形成に適している少なくとも2種の材料を調製する工程;
ii. スピナレット下で調製された材料から多成分繊維を形成し,すなわち領域内に配置された前記材料を含む多成分繊維を形成し,これを設定プロセス中,繊維の捲縮の促進に適した方法で繊維の断面を横断するように配置し,冷却気流及び繊細化気流により繊維を冷却し,繊細化する工程;並びに
iii. 前記多成分繊維からバットを形成する工程;
を含み,
結晶化熱(dHc)の差異は30J/g〜5J/gの範囲であり,メルトフローインデックス,多分散度及び曲げ弾性率の群より選択される他のパラメータの少なくとも1つに差異があり,ポリマー成分の相対的な差異は:
メルトフローインデックスでは,100g/10分〜5g/10分の範囲であり,及び/又は,
多分散度では,1〜0.3の範囲であり,及び/又は,
曲げ弾性率では,300MPa〜50MPaの範囲であり;
メルトフローインデックスの相対的差異は100g/10分以下であり,多分散度の相対的差異は1以下であり,曲げ弾性率の相対的差異は300MPa以下であり;
前記繊維の捲縮率は,繊維20mm当り少なくとも5個であることを特徴とする製造方法。
A method for producing a vat comprising multicomponent fibers, comprising the following steps:
i. preparing at least two materials suitable for the formation of fibers comprising a polymer or polymer mixture as major components;
ii. forming a multicomponent fiber from the material prepared under the spinneret, ie forming a multicomponent fiber containing said material arranged in the region, which is suitable for promoting fiber crimping during the setting process Placing the fiber across the fiber cross-section in a method, cooling the fiber with a cooling air flow and a fine air flow, and defibrating; and
iii. forming a vat from the multicomponent fiber;
Including
The difference in heat of crystallization (dHc) is in the range of 30 J / g to 5 J / g, and there is a difference in at least one of the other parameters selected from the group of melt flow index, polydispersity and flexural modulus, The relative differences in polymer components are:
Melt flow index ranges from 100 g / 10 min to 5 g / 10 min and / or
In polydispersity, it ranges from 1 to 0.3 and / or
The flexural modulus is in the range of 300 MPa to 50 MPa;
The relative difference in melt flow index is 100 g / 10 min or less, the relative difference in polydispersity is 1 or less, and the relative difference in flexural modulus is 300 MPa or less;
The production method according to claim 1, wherein the crimp rate of the fibers is at least 5 per 20 mm of fibers.
前記繊維中にある領域の数と同数の繊維断面の中心を通る数本の軸に対して中心非対称及び/又は軸非対称に,前記繊維の断面を横断するように主要成分の前記領域が配置されていることを特徴とする請求項12記載の方法。   The regions of the main component are arranged to traverse the cross section of the fiber in a centrally and / or axially asymmetric manner with respect to several axes passing through the same number of fiber cross-sectional centers as there are regions in the fiber. 13. The method of claim 12, wherein: 前記多成分繊維がサイドバイサイド型の2成分繊維であることを特徴とする請求項12記載の方法。   The method according to claim 12, wherein the multicomponent fiber is a side-by-side type bicomponent fiber. 前記ポリマー領域が主要成分としてポリプロピレンホモポリマーを含むことを特徴とする請求項12記載の方法。

The method of claim 12, wherein the polymer region comprises a polypropylene homopolymer as a major component.

JP2015551983A 2013-01-14 2014-01-14 Bat made of crimped bicomponent or multicomponent fibers Active JP6508654B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CZ2013-24A CZ201324A3 (en) 2013-01-14 2013-01-14 Fiber layer comprising crimped bi- or multicomponent fibers and process for producing thereof
CZPV2013-24 2013-01-14
PCT/CZ2014/000005 WO2014108106A1 (en) 2013-01-14 2014-01-14 Batt comprising crimped bi- or multi-component fibres

Publications (3)

Publication Number Publication Date
JP2016507012A true JP2016507012A (en) 2016-03-07
JP2016507012A5 JP2016507012A5 (en) 2018-07-05
JP6508654B2 JP6508654B2 (en) 2019-05-08

Family

ID=50156517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015551983A Active JP6508654B2 (en) 2013-01-14 2014-01-14 Bat made of crimped bicomponent or multicomponent fibers

Country Status (15)

Country Link
US (1) US20150354112A1 (en)
EP (1) EP2943607B1 (en)
JP (1) JP6508654B2 (en)
CN (1) CN105051280A (en)
BR (1) BR112015016685A2 (en)
CZ (1) CZ201324A3 (en)
DK (1) DK2943607T3 (en)
ES (1) ES2628416T3 (en)
HU (1) HUE034578T2 (en)
MY (1) MY171876A (en)
PL (1) PL2943607T3 (en)
RU (1) RU2649264C2 (en)
SA (1) SA515360784B1 (en)
WO (1) WO2014108106A1 (en)
ZA (1) ZA201504970B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145544A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Bulky combined filament nonwoven fabric excellent in barrier property
JP2019131945A (en) * 2018-01-31 2019-08-08 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク Spun-bonded nonwoven fabric laminate and method for manufacturing spun bonded nonwoven fabric laminate
JP2021008692A (en) * 2019-07-01 2021-01-28 王子ホールディングス株式会社 Method of producing nonwoven fabric

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3215089B1 (en) 2014-11-06 2018-08-22 The Procter and Gamble Company Methods for making patterned apertured webs
WO2016073724A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Crimped fiber spunbond nonwoven webs / laminates
TW201739603A (en) 2016-01-27 2017-11-16 歐拓管理股份公司 Sound absorbing liner for the engine bay of a vehicle and sound absorbing trim part having the same
ES2794010T3 (en) * 2016-05-18 2020-11-17 Fibertex Personal Care As Method of making a high curvature nonwoven web
EP4335420A2 (en) 2017-02-16 2024-03-13 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
CN115247319A (en) * 2021-12-22 2022-10-28 青岛大学 Parallel two-component melt-blown fiber filtering material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209216A (en) * 1996-01-26 1997-08-12 Shimadzu Corp Self-crimping conjugate fiber
JP2002235244A (en) * 2001-02-08 2002-08-23 Chisso Corp Heat bonding conjugate fiber, nonwoven fabric using the same, and molding
JP2002529617A (en) * 1998-11-12 2002-09-10 キンバリー クラーク ワールドワイド インコーポレイテッド Crimped multicomponent fiber and method for producing the same
JP2007529646A (en) * 2004-03-19 2007-10-25 ダウ グローバル テクノロジーズ インコーポレイティド Stretchable and elastic conjugate fibers and webs with a non-tacky feel
WO2010050407A1 (en) * 2008-10-29 2010-05-06 三井化学株式会社 Crimped composite fiber, and non-woven fabric comprising the fiber
JP2010150721A (en) * 2008-12-26 2010-07-08 Toray Ind Inc Polymer alloy fiber and fiber structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2136575A1 (en) * 1994-06-03 1995-12-04 Ty J. Stokes Highly crimpable conjugate fibers and nonwoven webs made therefrom
US6417121B1 (en) * 1994-11-23 2002-07-09 Bba Nonwovens Simpsonville, Inc. Multicomponent fibers and fabrics made using the same
JPH10266056A (en) * 1997-03-27 1998-10-06 Oji Paper Co Ltd Conjugate polyolefin filament nonwoven fabric and its production
CN1143910C (en) * 1998-03-24 2004-03-31 三井化学株式会社 Flexible nonwoven fabric laminate
BR0207071B1 (en) * 2001-01-29 2012-02-07 nonwoven web of a matched and laminated nonwoven web.
US20030171054A1 (en) * 2002-03-07 2003-09-11 Vishal Bansal Multiple component spunbond web and laminates thereof
DE60233443D1 (en) * 2002-06-26 2009-10-01 Du Pont MULTICOMPONENT FIBER SPINNINGS AND LAMINATES THEREOF
JP5484564B2 (en) * 2010-04-16 2014-05-07 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
CZ302915B6 (en) * 2010-04-23 2012-01-18 Pegas Nonwovens S.R.O. Process for producing non-woven fabric with barrier and antistatic finish
CZ2011163A3 (en) 2011-03-25 2012-10-03 Pegas Nonwovens S.R.O. Method of making bonded web fabric and bonded web fabric per se

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09209216A (en) * 1996-01-26 1997-08-12 Shimadzu Corp Self-crimping conjugate fiber
JP2002529617A (en) * 1998-11-12 2002-09-10 キンバリー クラーク ワールドワイド インコーポレイテッド Crimped multicomponent fiber and method for producing the same
JP2002235244A (en) * 2001-02-08 2002-08-23 Chisso Corp Heat bonding conjugate fiber, nonwoven fabric using the same, and molding
JP2007529646A (en) * 2004-03-19 2007-10-25 ダウ グローバル テクノロジーズ インコーポレイティド Stretchable and elastic conjugate fibers and webs with a non-tacky feel
WO2010050407A1 (en) * 2008-10-29 2010-05-06 三井化学株式会社 Crimped composite fiber, and non-woven fabric comprising the fiber
JP2010150721A (en) * 2008-12-26 2010-07-08 Toray Ind Inc Polymer alloy fiber and fiber structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145544A (en) * 2017-03-02 2018-09-20 旭化成株式会社 Bulky combined filament nonwoven fabric excellent in barrier property
JP2019131945A (en) * 2018-01-31 2019-08-08 ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク Spun-bonded nonwoven fabric laminate and method for manufacturing spun bonded nonwoven fabric laminate
JP2021008692A (en) * 2019-07-01 2021-01-28 王子ホールディングス株式会社 Method of producing nonwoven fabric
JP7251362B2 (en) 2019-07-01 2023-04-04 王子ホールディングス株式会社 Nonwoven fabric manufacturing method

Also Published As

Publication number Publication date
US20150354112A1 (en) 2015-12-10
ZA201504970B (en) 2016-07-27
MY171876A (en) 2019-11-05
WO2014108106A8 (en) 2015-07-09
CN105051280A (en) 2015-11-11
EP2943607A1 (en) 2015-11-18
JP6508654B2 (en) 2019-05-08
RU2015132469A (en) 2017-02-21
BR112015016685A2 (en) 2017-07-11
PL2943607T3 (en) 2017-09-29
EP2943607B1 (en) 2017-03-15
RU2649264C2 (en) 2018-03-30
WO2014108106A1 (en) 2014-07-17
DK2943607T3 (en) 2017-06-26
HUE034578T2 (en) 2018-02-28
SA515360784B1 (en) 2017-11-07
ES2628416T3 (en) 2017-08-02
CZ201324A3 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
JP6508654B2 (en) Bat made of crimped bicomponent or multicomponent fibers
JP6633783B2 (en) Extensible nonwoven fabric
EP2094891B1 (en) Elastic spunbonded nonwoven and elastic nonwoven fabric comprising the same
JP2011058157A (en) Spun-bonded nonwoven fabric excellent in softness and method for producing the same
JP2004532939A (en) Stretchable fibers and nonwovens made from large denier splittable fibers
US11891736B2 (en) Fibers for non-woven fabrics having blends of polymers with high and low melt flow rates
KR101837204B1 (en) Polypropylene spunbond nonwoven fabric having an excellent bulky property and manufacturing method thereof
JP6667550B2 (en) Nonwoven fabric and method of forming the same
JP6505493B2 (en) Composite staple fiber for absorbent article, method for producing the same, and heat-bonded nonwoven fabric for absorbent article containing the same, and absorbent article
CA3088003C (en) Lofty nonwoven fabrics
CN112789374B (en) Self-crimping multicomponent fibers and methods of making same
JP7282211B2 (en) NONWOVEN FABRIC, MANUFACTURING METHOD THEREFOR, ARTICLES CONTAINING THE NONWOVEN FABRIC, AND SANITARY PRODUCTS USING THE NONWOVEN FABRIC
JPH06128859A (en) Nonwoven fabric having three-layered structure and its production
KR20110001715A (en) High strength polypropylene staple fibers by high drawing and methods of the same, nonwoven made of them
CN107532353B (en) Nonwoven fabric and method for forming a nonwoven fabric
JP2024518171A (en) Strength-enhancing nonwoven fabric
JP2019007112A (en) Stretchable nonwoven fabric and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171227

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180316

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20180525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6508654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250