HUE034578T2 - Batt comprising crimped bi- or multi-component fibres - Google Patents

Batt comprising crimped bi- or multi-component fibres Download PDF

Info

Publication number
HUE034578T2
HUE034578T2 HUE14705962A HUE14705962A HUE034578T2 HU E034578 T2 HUE034578 T2 HU E034578T2 HU E14705962 A HUE14705962 A HU E14705962A HU E14705962 A HUE14705962 A HU E14705962A HU E034578 T2 HUE034578 T2 HU E034578T2
Authority
HU
Hungary
Prior art keywords
fibers
fibres
mpa
fiber
degree
Prior art date
Application number
HUE14705962A
Other languages
Hungarian (hu)
Inventor
Jaroslav Kohut
Zdenek Mecl
Frantisek Klaska
Pavlina Kasparkova
Original Assignee
Pegas Nonwovens Sro
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pegas Nonwovens Sro filed Critical Pegas Nonwovens Sro
Publication of HUE034578T2 publication Critical patent/HUE034578T2/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/018Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the shape
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/007Addition polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/14Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
    • D04H3/147Composite yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene
    • D10B2509/02Bandages, dressings or absorbent pads
    • D10B2509/026Absorbent pads; Tampons; Laundry; Towels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/627Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
    • Y10T442/629Composite strand or fiber material

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

Description Technical Field [0001] The invention relates to a batt comprising crimped bi- or multicomponent fibres consisting of at least two materials, which comprise a polymer as a predominant component and which are arranged across the cross-section of the fiber in a way suitable to promote crimping of the fibre during the setting process and which predominant polymer components differ in the crystallisation heat (dHc). The here-described batt type is intended especially for the production of nonwoven textiles that are to be used primarily for applications in the hygiene industry.
Background art [0002] The bulkiness of nonwoven textiles may be of significance for a number of reasons. Nonwoven textiles are often used as a part of hygiene products, where the bulkiness of the material maybe used both for reasons of functionality (for example as a part of the loop part of the fastening system consisting of hooks and loops or, for example, for the improvement in the distribution of liquids in the core of absorptive products) as well as for sensory reasons-the bulkiness of the material, apart from other things, gives softness and may be positively accepted in contact with the skin. In certain cases, nonwoven textiles may be used as a part of cleaning products such as for example wipes and dusters. The improvement in bulkiness of such nonwoven textiles may also improve their effectiveness as a cleaning element.
[0003] In a number of cases, effort was intentionally expended into creating or modifying certain properties of nonwoven textile materials with the objective of their improvement. These efforts consisted of the selection and/or modification of various chemical compositions of fibres, the basis weight, the fibre layering method, the density of fibres, the extrusion of various patterns, the use of various types of bonding.
[0004] The bulkiness of a nonwoven textile is directly related to the properties of the fibres that form it. Homogenous continuous fibres are typical for spunmelt nonwoven textiles. Bulkiness can subsequently be increased by the use of bonding methods. One method consists of the use of such thermal bonding methods, which retain the maximum share of loose fibre segments between the individual bonding points that are used to achieve the required strength of the final material. Another method consists of exposing the nonwoven textile, after calender bonding, to a jet of water (hydroenhancing or hydroentanglement) in order to fluff up the fibres and increase their specific thickness.
[0005] Another method consists of producing nonwoven textiles from "bicomponent" polymer fibres, includes steps where these fibres are created under the spinneret, laid to create a batt and subsequently bonded using an embossing calender selected for the purpose of achieving a certain patterned effect. Such bicomponent fibres can be produced using spinnerets equipped with two adjacent sections, where the first polymer is delivered through the first one and the second polymer is delivered through the second in order to create a fibre having one part of the cross-section formed by the first polymer and the second part of the cross-section formed by the second polymer (hence the term "bicomponent"). The respective polymers can be selected to have differing characteristic properties, which enable, in the side-by-side or asymmetrical core / sheath geometry combinations, the curling of bicomponent fibres during the spinning process as they are cooled and drawn from under the spinneret. Various documents are known to exist that deal with the application of individual differences for achieving the curling of fibres. For example the European patent EP0685579 from Kimberly Clark describes the combination of polypropylene and polyethylene. Another European patent EP1129247 from the same company describes the combination of different polypropylenes. The key here is the degree of difference of the individual described properties.
[0006] The resulting curled fibres can then be laid to create a batt that is subsequently bonded using various methods to create a bulky nonwoven textile. EP2343406 discloses a nonwoven fabric of crimped fibres as defined in the preamble of claiml.
Summary of the invention [0007] A batt according to the invention comprises crimped bi- or multicomponent fibres consisting of at least two polymeric components, which are mutually arranged across the cross section of the fibers such that they promote crimping of the fibres during the setting process and which differ in the crystallisation heat, where the substance of the invention is that the difference in the crystallisation heat (dHc) is in the range from 30 J/g to 10J/g, preferably 30 J/g to 20 J/g and that the described polymeric components differ in at least one of the other parameters selected from the group of melt flow index, degree of polydispersion and the flexural modulus, while the relative difference of the polymer components is: for the flow index in the range from 100g/10min to 5g/10min and/or for the degree of polydispersion in the range from 1 to 0.3, and/or for the flexural modulus in the in the range from 300 MPa to 50 MPa; wherein the relative difference in the melt flow index is no greater than 100g/1 Omin, the relative difference in the degree of polydispersity is no greater than 1, the relative difference in the flexural modulus is no greater than 300 MPa ; and wherein said fibres have the degree of crimping at least 5 crimps per 20 mm of fibre.
[0008] Preferred and / or specific embodiments of the invention are defined in the dependent claims. In a further aspect, the invention regards a method of production of such batts.
Brief description of the drawings [0009]
Fig. 1A - examples of asymmetrical (crimping promoting) arrangement of the component sections across the cross-section of a multicomponent fibre
Fig. 1B - example of a symmetrical arrangement of the component sections in the cross-section of a multicomponent fibre
Fig. 2 - example of spunmelt production line Definitions [0010] The term "batt" here refers to materials in the form of fibres that are found in the state prior to bonding that is performed during the calendering process described for example in patent application W02012130414. The "batt" consists of individual fibres between which a fixed mutual bond is usually not yet formed even though they may be prebonded in certain ways, where this pre-bonding may occur during or shortly after the laying of fibres in the spunlaying process. This pre-bonding, however, still permits a substantial number of the fibres to be freely moveable such that they can be repositioned. The here-mentioned "batt" may consist of several strata created by the deposition of fibres from several spinning beams in the spunlaying process.
[0011] The terms "fibre" and "filament" are in this case mutually interchangeable.
[0012] The term "monocomponent fibre" refers to a fibre formed of a single polymer or polymer blend, as distinguished from bicomponent or multicomponent fibre.
[0013] "Bicomponent" refers to a fibre having a cross-section comprising two discrete polymer sections, two discrete polymer blend sections, or one discrete polymer section and one discrete polymer blend section. The term "bicomponent fibre" is encompassed within the term "multicomponent fibre". A bicomponent fibre may have an overall cross-section divided into two or more sections consisting of differing sections of any shape or arrangement, including for example, a coaxial arrangement, core-and-sheath arrangement, side-by-side arrangement, radial arrangement.
[0014] The term "multicomponent" refers to a fibre having a cross-section comprising more than one discrete polymer section, or more than one polymer blend section, or at least one discrete polymer component and at least one polymer blend section. The term "multicomponent fibre" thus includes, but is not limited to, "bicomponentfibre". A multicomponent fibre may have an overall cross-section divided into parts consisting of differing sections of any shape or arrangement, including, for example, a coaxial arrangement, core-and-sheath arrangement, side-by-side arrangement, radial arrangement, islands-in-the-sea arrangement.
[0015] As used herein, the term "nonwoven textile" means a structure in the form of a fleece or webbing formed from directed or randomly oriented fibres, from which initially a batt is formed and which is subsequently consolidated and fibres are mutually bonded by friction, effects of cohesive forces, gluing or by similar methods creating a single or multiple bonding patterns consisting of bonding imprints formed by a bounded compression and/or the effect of pressure, heat, ultrasound or heat energy, ora combination of these effects if necessary. The term does not refer to fabrics formed by weaving or knitting or fabrics using yarn or fibres to form bonding stitches. The fibres may be of natural or synthetic origin and may be staple fibres, continuous fibres or fibres produced directly at the processing location. Commonly available fibres have diameters in the range from approximately 0.0001 mm to approximately 0.2 mm and are supplied in several forms: short fibres (known also as staple or chopped fibres), continuous individual fibres (filaments or monofilaments), untwisted bundles of continuous fibres (known also as tow) and twisted bundles of continuous fibres (yarn). A nonwoven textile can be produced using many methods, including technologies such as meltblown, spunbond, spun-melt, spinning from solvents, electrostatic spinning (electrospinning), carding, film fibrillation, melt-film fibrillation, airlaying, dry-laying, wetlaying with staple fibres and various combinations of these processes as known in the art. The basis weight of nonwoven textiles is usually expressed in grams per square metre (gsm).
[0016] The term "asymmetry" when used with respect to the perpendicular plane of the fibre cross-section means that the arrangement of the fibre sections is not symmetrical, particularly respective to the central symmetry, where the centre is considered to be the centre of the fibre cross-section. The term may also relate to axial symmetry, where it is necessary to assess at least as many axes passing through the centre of the cross-section of the fibre as there are polymer sections present.
[0017] The term "heat" is understood to mean "melting heat" or "crystallisation heat" and is always understood to mean "latent heat".
Description of preferred embodiments [0018] According to this invention a batt may consist of continuous multicomponent fibres produced for example from spunmelt process. Fibres are extruded under a spinneret and subsequently attenuated, cooled and laid down on a belt so as to form a batt of fibres. During the course of the process these fibres will curl automatically. The batt may be converted to the nonwoven fabric.
[0019] The individual fibres consist of at least two polymer components A and B, where the polymer components are delivered to the spinneret separately and in the resulting fibre there is a section with a predominance of the A polymer component and a section with a predominance of the B polymer component and wherein the sections in the cross-section of the fibre are arranged in a manner that supports the crimping of the fibres already during the course of the setting process of the fibre. These areas can, for example, be found on the opposite sides of the fibre cross-section and so form an arrangement known in bicomponent fibres under the name side-by-side or, for example, one section may surround the second section and so form an arrangement know as core-sheath, where for the purpose of ensuring the crimping of the fibre, the overall arrangement of both sections with predominant polymeric components A,B is asymmetrical in cross-section. In another arrangement, the fibre may contain three polymer sections with predominant polymer components A, B, C arranged, for example in the arrangement known as "segmented pie" or "islands-in-the-sea", where for the purpose of ensuring the crimping of the fibre, the overall arrangement of both sections with predominant material components A,B is asymmetrical in the cross-section.
[0020] Without intent to be bound by theory, it is believed that the mutual arrangement of the sections with predominant polymer components in the cross-section of the fibre modified to support crimping of fibres is already, during the course of the fibre setting, expressed, for example by the degree of asymmetry of the polymer components, which significantly afFect the final crimping result, while it is not possible to simply assume that a greater asymmetry of fibre arrangement will result in more pronounced crimping. On the contrary, it is necessary to also take into consideration the properties of the individual components, where arrangement synergies may arise and a fibre with a less pronounced asymmetrical arrangement may foster greater crimping than a fibre with a more pronounced degree of asymmetry. A person skilled in the field will appreciate that the optimal arrangement of sections with predominant polymer compoment in the fibre can be determined in a laboratory test, for example, using a small laboratory spinneret. Examples of the individual asymmetrical arrangements and examples of arrangements supporting fibre crimping, not limited to those presented here, are shown in fig. 1A. The arrangements that - based on the above provided definition - are not asymmetrical or generally do not support fibre crimping are shown in fig. 1B.
[0021] The formation of crimped fibres resulting from a significant difference in the properties of the individual polymer components, commonly expressed using the so-called contractibility of individual components is well known in the industry. Fibres produced in this way are known under the name of chemically formed fibres. A person skilled in the art will appreciate that the term component contractibility describes primarily the volume change during the transition from the liquid to the solid state, which is affected by the various properties of the polymers. For example, for a bicomponent fibre it is possible to use the combination of two polymers. For example one polymer together with another polymer (polypropylene + polyethylene), copolymers (polypropylene + polypropylene copolymer) or a blend (polypropylene + polypropylene blend and a polypropylene copolymer). When using two polymers it is always necessary to very carefully consider the used materials and their mutual miscibility. The more they differ from each another, the more probable is a lower level of cohesion of both sections with predominant polymer component in the fibre and splitting of the fibre may occur. Especially in hygiene applications even a small degree of fibre splitting is very undesirable as it may manifest itself as "fuzz balls" on the surface of the textile and so appear on the surface of the product, which the end customers see as a sign of an inferior quality product. It is also known that the same polymer with differing properties (for example a difference in the melt flow index, polydispersion, degree of crystallinity of the material or its elasticity) may be used, where for success it is essential to have a significant difference in at least one of the parameters.
[0022] For example, based on the European patent EP1129247 from Kimberly Clark, in the case of polydispersion a difference of at least 0.5 is necessary in the precisely determined area - the document indicates that predominant component of one has a polydispersion of <2.5 and the second >3, for crystallinity it is necessary that predominant component of one section is amorphous and the other is crystalline, while the difference in the melting heat must be at least 40 J/g; while the melt flow index suitable for spunmelt applications is in the range from single digits to thousands of g/10min and for elasticity a combination of elastic and non-elastic material is required.
[0023] The subject of this invention is crimped multicomponent fibre where the used polymers predominant in sections are very similar to each other. Preferably the polymers can be chemically the same, just a bit differ in physical properties, e.g. polypropylene-polypropylene combination. A person skilled in the art will appreciate, that for example polypropylene (polymer made from propylene monomer units) have basic characteristics, but for example tacticity of single units, or length of polymer chains or distribution of different polymer chains in polymer can bring variability in physical properties, that is significant for fiber and nonwoven production. A person skilled in the field will appreciate the wide range of commercial types of polymers available on the market and will also appreciate the various amounts and availability of the individual types. Due to the distribution in demand, the offer is also concentrated particularly at polymers in a relatively narrow area of properties. A considerable advantage arising from the use of significantly similar polymers is also that they are relatively readily available on the market.
[0024] It is necessary to stress that the mentioned polymer sections may be formed using one polymer or may be formed using a blend of various compounds. It is known in the industry that there also exist fibres consisting of multi-component fibres based on the same polymer, the components differing only in the addition of an admixture. For example US file 6,203,905 from Kimberly Clark describes the addition of a nucléation additive into one section of the bicomponent fibre.
[0025] The principle of our invention may consists of predominant polymeric components only or of predominant components and added additives.
The principle of our invention may also contain the addition of additives (for example dyes), but the addition of such an additive does not affect the crimping of fibres to a significant degree. The additive may, for example, be added to both sections symmetrically.
As is known in the industry, some functional additives may induce a chemical reaction directly in the polymer melt immediately before spinning and their effectiveness may be affected, for example by the temperature of the melt (for example IRGATEC CR76 from BASF). In this way, by effect of the various temperatures of the melt of both polymer component for sections, a significant difference in the resulting properties (for example melt flow index, polydispersion) may arise even when identical mixtures of polymers and additives are used in both sections. The principle of the invention may contain the addition of functional additives, but this addition does not affect the crimping of fibres to a significant degree.
[0026] As is evident from the preceding text, it is known in the industry that if the contractibility of the predominant components of sections is sufficiently different then tension arises in the fibre under the spinneret causing crimping. The crimping of fibres based on the invention results from the combination of small differences in at least two, preferably three parameters of the polymer.
[0027] The key variable is the latent heat of crystallisation (dHc), which is an indicator of the amount of energy that it is necessary to take from the system in order for the crystallisation of the polymer components to occur. A well-known theory states that if the temperature difference is sufficient then predominant component in one section will start setting first, and as such created tension has no opposing force in the form of still liquid predominant component in the second section, the fibre will curl. It is always necessary to have a sufficient difference between both polymer components otherwise the effect will not take place.
[0028] A known document Kimberly-Clark EP0685579 determines the minimum difference in the melting heat, which equates approximately to a crystallisation heat of 40 J/g. In contrast, according to the invention, the crimping of the fibres occurs at smaller differences, when a surprisingly significant synergistic effect of other differences between the predominant component in sections is taken advantage of. The curling or crimping of fibres based on the invention results from the combination of small differences in the crystallisation heat (dhlc) and in at least one, preferably two more parameters of the polymer.
[0029] The individual predominant components differ in the heat of crystallisation (dHc), where the difference in the values is in the range of 30 J/g to 10 J/g, and preferably 30 J/g to 20 J/g. For lower degree of crimping the heat of crystallisation difference (dHc) can be in the range of 24 J/g to 10 J/g, and preferably 24 J/g to 20 J/g.Furthermore, the individual predominant components may differ in the melt flow index (MFI) level, where the difference between the values is in the range of approximately 100g/10min to 5g/10min, better yet 80g/10min; preferably 60g/10min to 10g/10min.
[0030] The individual predominant components may, furthermore, differ in the degree of the material’s polydispersion, where the difference in the values is in the range 1 to 0.3, better yet 1 to 0.5 and preferably 1 to 0.75.
[0031] The individual predominant components may, furthermore, differ in the flexural modulus of the material, where the difference in the values is in the range 300 MPa to 50 MPa, better yet 250 MPa to 80 MPa and preferably 200 MPa to 80 MPa.
[0032] Without need to be bound by theory we assume that the curling of the fibre is caused by the tension in the fibre, when one section is already crystalline, while the other remains in the liquid state or that its degree of crystallisation is lower at that given point in time. In general, during the course of crystallisation the volume of the given section becomes smaller and if at that given time the other section is still malleable, it does not present a very large level of resistance and the fibre curls. From the above mentioned it may appear that apart from the value of the latent heat of crystallisation (dHc) itself, also the temperature at which crystallisation commences and the speed of the crystallisation may also have an effect on the degree of curling. Respecting the fact that the subject of the invention is the combination of two significantly similar polymers, they will probably also have similar crystallisation temperatures. Examples of various commercial types of homopolymers of polypropylene are shown in the table.
[0033] Without need to be bound by theory we assume that the differences in the crystallisation time in the order of several minutes do not have significant force in themselves to cause curling in the fibres, but also contribute to the degree of curling caused by the above mentioned differences, namely in the latent heat of crystallisation (dHc).
[0034] The individual predominant components of sections may differ in the crystallisation temperature, where the difference in the values is in the range of approximately 5-30°C, better yet 5-25°C and preferably 8-25°C.
[0035] The individual predominant components of sections may differ in crystallisation speed, where the difference in the values is at least 20 seconds, better yet 50 seconds, better yet 120 seconds and preferably 150 seconds.
[0036] The polymer components are dosed (1) into separate extrusion systems (2), where they are melted, heated to a suitable operating temperature and still separated brought to the spinnerets (4) where the multicomponent fibre is formed. A person skilled in the art will understand that the process for preparing polymers for spinning in the form of a multicomponent fibre may, depending on the type of technology encompass further specific steps, as well as the fact that various additives designed for this purpose may be added to the polymer components for the purpose of for example changing the colour of the fibres (dyes) or to change the properties of the fibres (for example hydrophilicity, hydrophobicity, inflammability), where according to the invention it is significant for the material that these additive do not affect the crimping of fibres and/or they are dispersed symmetrically in the resulting fibre. The fibre (5) formed under the spinneret (8) is exposed to a stream of cooling and attenuating air (6,7), so crimps form on the fibres before they fall (8) on to the collecting mat (10). Both cooling and attenuating air (6,7) has approximately the room temperature, preferably 10-30°C, more preferably 15-25°C. The collecting mat (10) may, for example, be a moving belt that carries away the forming fibre batt (11). During the way on collecting mat (10) there is no extra heat or mechanical energy entrance to support the crimping.
[0037] In this way, several spinning beams can be arranged in sequence, where they all may produce crimped fibres or may lay different layers (e.g. simple spunmelt fibres - e.g. spunbond or meltblown, nanofibres, a film). For the design according to the invention, it is advantageous if the layer/layers of crimped fibres are laid down on other layers so that undesirable compression of the crimped fibres does not occur. For other applications it might be advantageous to perform combinations where crimped fibres are released from the first and last spinning beams so that the resulting material has the outer surfaces consisting of crimped fibres and the inner layer can have different properties (for example mechanical strength of the resulting nonwoven textile).
[0038] The layer or layers of fibres are subsequently strengthened (12), where several known methods may be used (for example thermal bonding, thermal calender bonding, needle punching, hydroentanglement). The individual bonding methods have a significant effect on the resulting properties of the materials and a person skilled in the field will easily determine which method is suitable for their material. Likewise, this skilled person will also understand that the selection of a bonding method with a higher intensity or bonding point density may result even in negating the differences in the overall bulkiness of the resulting nonwoven textile containing fibres based on the invention and standard materials containing non-crimped fibres.
[0039] Final nonwoven web, can be used at various applications as for non limited list of following examples: both dusting and hygiene wipes including wet wipes; parts of furniture; parts of household equipment including for example tablecloth, counterplead, covering material; parts of hygiene absorbent articles for all babies, femcare and adult inco as for example it can create or be part of nonwoven landing zone, ADL (Acquisition Distribution Layer), backsheet, topsheet, side panels, core wrap, leg cuffs.
Examples
Example 1 : design based on the invention [0040] A batt consist of continuous bicomponent fibres, where one component consists of polypropylene MR 2002 from Total Petrochemicals and the second component consists of polypropylene Mosten NB425 from Unipetrol. Both polypropylene homopolymer materials are readily available on the market, both are inelastic and crystalline.
[0041] The fibres were produced on a Reicofil 3 production line for spunmelt nonwoven textiles and removed from the lied batt prior to the bonding of the material.
Example 1A: [0042] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 40:60. First section consists of polypropylene MR 2002 and second section consist of polypropylene Mosten NB425.
[0043] The average degree of crimping achieved was 13.4 crimps / 20 mm.
Example 1B: [0044] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 30:70. First section consists of polypropylene MR 2002 and second section consist of polypropylene Mosten NB425.
[0045] The average degree of crimping achieved was 15.8 crimps/20 mm.
Example 1C: [0046] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 65: 35. First section consists of polypropylene MR 2002 and second section consist of polypropylene Mosten NB425.
[0047] The average degree of crimping achieved was 8.2 crimps / 20 mm.
Example 1D: [0048] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 50: 50. First section consists of polypropylene MR 2002 and second section consist of polypropylene Mosten NB425.
[0049] The average degree of crimping achieved was 11.7 crimps / 20 mm.
Example 2: design based on the invention [0050] A batt consist of continuous bicomponent fibres, where one component consists of polypropylene MR 2002 from Total Petrochemicals and the second component consists of polypropylene Tatren HT2511 from Slovnaft. Both polypropylene homopolymer materials are readily available on the market, both are inelastic and crystalline.
[0051] The fibres were produced on a Reicofil 3 production line forspunmelt nonwoven textiles and removed from the lied batt prior to the bonding of the material.
Example 2A: [0052] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 30: 70. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511.
[0053] The average degree of crimping achieved was 15.9 crimps / 20 mm.
Example 2B: [0054] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 40:60. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511.
[0055] The average degree of crimping achieved was 12.8 crimps / 20 mm.
Example 2C: [0056] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 50:50. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511.
[0057] The average degree of crimping achieved was 12.0 crimps / 20 mm.
Example 2D: [0058] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 70: 30. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511.
[0059] The average degree of crimping achieved was 7.3 crimps / 20 mm.
Example 3: design based on the invention - lab line [0060] A batt consists of continuous bicomponentfibres, fibers produced on a laboratory spinning line with compressed air filament attenuating up to 0,9 MPa, spinning die with 12 holes, hole diameter 0,5 mm, hole length 0,8 mm. Extrusion system with two independent extruders (diameter 16 mm). Line throughput 0,5 gram per minute per hole. Line is available for example at Research Institute for Man-Made Fibres "VUCHV a.s. Svit", Slovak Republik.
Example 3A
[0061] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 40: 60. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511. Attenuating air pressure was 0,85 MPa.
Example 3B
[0062] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 40: 60. First section consists of polypropylene MR 2002 and second section consist of polypropylene Mosten NB425. Attenuating air pressure was 0,85 MPa.
Example 4: design based on the invention - including calendering [0063] Continuous bicomponent fibre was of the side-by-side type and the individual sections were formed in the weight ratio 40: 60. First section consists of polypropylene MR 2002 and second section consist of polypropylene Tatren HT2511. Both polypropylene homopolymer materials are readily available on the market, both are inelastic and crystalline.
[0064] The fibres were produced on a Reicofil 4 SSS production line for spunmelt nonwoven textiles.
Attenuating air temperature 15-25°C °C, cabine pressure in the area 2800-3200 Pa. The batt was thermobonded using pair of smooth-gravure rolls with Ungricht design U2888M (standard oval). Smooth roll temperature 170-180°C, gravure roll temperature 160-170°C, nip 120-125 daN/cm.
[0065] The fibers removed from the lied batt prior to the bonding of the material had the average degree of crimping 15.7 crimps / 20 mm.
[0066] Final material properties:
Testing methodology [0067] "Degree of crimping" of the fibre is measured using the method described in the norm CsN 80 0202 from 1969. Measurement is performed on individual fibres under standard conditions (an individual fibre is loosely placed on a mat for 24 hours at a temperature of 20°C and at a relative humidity of 65%). The fibre is subsequently hung vertically and subject to a strain of 0.0076g (for a fibre with a fineness of 1-5 den, i.e. 0.111 - 0.555 tex). The number of crimps is counted on a length of 20 mm.
[0068] "Polydispersion" of a polymer or also the "coefficient of polydispersion (PDI)" expresses the heterogeneity of a material. It is identified by a calculation of the numerical (Mn) and the weight (Mw) average molar weight of the polymer, where PDI = Mw/Mn, as described for example at Modern Physical Organic Chemistry from Eric V. Anslyn and Dennis A. Dougherty.
[0069] "Melt flow index (MFI)" of a polymer is measured using a testing methodology according to the German norm ASTM D1238-95; the specific test conditions (e.g. temperature) vary for the individual polymers - for example the test conditions for polypropylene are 230/2.16 and for polyethylene they are 190/2.16.
[0070] "Flexural modulus" of a polymer is measured using the testing methodology described in ISO 178:2010.
[0071] "Crystallinity", "latent heat of crystallisation", "temperature of crystallisation" and the "melting temperature" are measured using the testing methodology describe in ASTM D3417 using DSC, where the speed in the temperature is 2°C/min in the measured range of 200 - 80°C and the sample volume is 7-7.4g.
[0072] "Speed of crystallisation" of a polymer is measured using the ISO 11357-7-Determination of crystallization kinetics - isothermal crystallisation method, where a sample is first kept at the melt temperature of 210°C for 8 minutes and subsequently cooled to 120°C.
Industrial applicability of the invention [0073] The batt produced according to the invention are applicable namely for the production of nonwoven textiles, where they can form a production step on an online production line. The nonwoven textile produced from the batt made according to the invention is widely applicable in various fields, namely in hygiene products such a baby diapers, feminine absorptive products or incontinence products. Crimped fibres create a fluffiness in the textile meaning that the material can be advantageously used both in applications requiring softness and silkiness (for example parts of absorptive products, which are in direct contact with the user’s skin) and in applications requiring bulkiness (wipes, loop side in the "hook and loop" system .).
Claims 1. A batt comprising crimped bi-or multicomponent fibres consisting of at least two sections, which comprise a polymer or polymer blend as a predominant component and which are arranged across the cross-section of the fiber in a way suitable to promote crimping of the fibre during the setting process and which predominant components differ in the crystallisation heat (dHc), characterised in that the difference in the crystallisation heat dHc is in the range from 30 J/g to 10J/g, preferably 30 J/g to 20 J/g and that the predominant components differ in at least one of the other parameters selected from the group of melt flow index, degree of polydispersion and flexural modulus, while the relative difference of the predominant components is: for the flow index in the range from 100g/10min to 5g/10min and/or for the degree of polydispersion less than 1, but above 0.3, and/or for the flexural modulus in the range from 300 MPa to 50 MPa; where the relative difference in the melt flow index is not greater than 100g/10min, in the degree of polydispersity is less than 1, in flexural modulus is not greater than 300 MPa; and where said fibres have the degree of crimping at least 5 crimps per 20 mm of fibre. 2. A batt comprising crimped fibres according to claim 1, wherein the relative differentiation of the predominant components in the melt flow index is in the range of 80g/10min to 5g/10min, preferably 60g/10min to 10g/10min. 3. A batt comprising crimped fibres according to claim 1 or 2, wherein the relative differentiation of the predominant components in the degree of polydispersion is in the range of 1 to 0.5, preferably 1 to 0.7. 4. A batt comprising crimped fibres according to any of the preceding claims, wherein the relative differentiation of the predominant components in theflexural modulus is in the range of250 MPa to 80 MPa, preferably 200 MPa to 80 MPa. 5. A batt comprising crimped fibres according to any of the preceding claims, wherein the fibres are bicomponent fibres of the side-by-side type. 6. A batt comprising crimped fibres according to claim 5, wherein both predominant components of the bicomponent fibres are a propylene homopolymer. 7. A batt comprising crimped fibres according to any of the preceding claims, wherein said predominant components are arranged across the cross-section of the fibres, centrally asymmetrically and/or axially asymmetrically relative to a number of axes passing through the centre of the fibre’s cross-section, which evens the number of the polymer sections in the fibre. 8. A batt according to any of the preceding claims, wherein the fibers comprise an additive, wherein the additive is present in the components such that it does not affect the crimping of the fiber to a significant degree. 9. A nonwoven textile characterised in that it comprises the batt according to any of the preceding claims. 10. The nonwoven textile according to claim 9 wherein the nonwoven textile is of a spunmelt type. 11. A method of producing a batt comprising multicomponent fibres, wherein the method comprises the following steps: i. preparing at least two materials comprising a polymer or polymer blend as a predominant component the materials being suitable for the formation of fibres; ii. then forming multicomponent fibres from the prepared materials under a spinneret, namely multicomponent fibres comprising said materials arranged in sections, which are arranged across the cross-section of the fiber in a way suitable to promote crimping of the fibre during the setting process, and cooling and attenuating the fibres by cooling and attenuating air; and iii. forming a batt from said multicomponent fibres; characterised in that: said predominant components in sections are selected such that they differ in the heat of crystallisation dHc in the range from 30 J/g to 10J/g, preferably 30 J/g to 20 J/g and that they differ in at least one other parameter selected from the group of melt flow index, degree of polydispersion and flexural modulus, where the relative differentiation of the polymer components is: for the flow index in the range from 100g/10min to 5g/10min and/or for the degree of polydispersion in the range from 1 to 0.3, and/or for the flexural modulus in the in the range from 300 MPa to 50 MPa; wherein the relative difference in the melt flow index is no greater than 100g/10min, in the degree of polydispersity is no greater than 1, in the flexural modulus is no greater than 300 MPa; and wherein said fibres have the degree of crimping at least 5 crimps per 20 mm of fibre. 12. The method according to claim 11, wherein said sections with predominant components are arranged across the cross-section of the fibre centrally asymmetricaly and/or axially asymmetricaly relative to a number of axes passing through the centre of the cross-section of a fibre, which evens the number of present sections in the fibre. 13. The method according to claim 11, wherein said multicomponent fibres are bicomponent fibres of the side-by-side type. 14. The method according to claim 11, wherein said polymer sections contain as their predominant component a polypropylene homopolymer.
Patentansprüche 1. Faservlies, umfassend Zwei- oder Mehrkomponentenfasern, die aus mindestens zwei Abschnitten bestehen, die ein Polymer oder ein Polymergemisch als Hauptbestandteil umfassen und die derart innerhalb des Querschnitts der Faser angeordnet sind, um die Kräuselung der Faser während des Aushärtungsvorgangs zweckmäßigerweise zu unterstützen, wobei die einzelnen Hauptbestandteile unterschiedliche Werte der Kristallisationswärme (dHc) aufweisen, dadurch gekennzeichnet, dass der Unterschied zwischen den einzelnen Werten der Kristallisationswärme dHc im Bereich von 30 J/g bis 10 J/g, vorzugsweise im Bereich von 30 J/g bis 20 J/g liegt und dass die Hauptbestandteile sich in Bezug auf mindestens einen der anderen Parameter unterscheiden, welche Parameter aus der Gruppe ausgewählt werden, die den Schmelzflüssigkeitsindex, das Maß an Polydispersion und den Biegemodul umfasst, wobei der relative Unterschied zwischen den Hauptbestandteilen: für den Schmelzflüssigkeitsindex im Bereich von 100 g /10 min bis 5 g /10 min liegt, und/oder für das Maß an Polydispersion weniger als 1 aber mehr als 0,3 beträgt, und/oder für den Biegemodul im Bereich von 300 MPa bis 50 MPa liegt, wobei der sich auf den Schmelzflüssigkeitsindex beziehende relative Unterschied nicht grösser als 100 g /10 min ist, der sich auf das Maß an Polydispersion beziehende relative Unterschied nicht grösser als 1 ist und der sich auf den Biegemodul beziehende relative Unterschied nicht grösser als 300 MPa ist und wobei die besagten Fasern eine Kräuselungsstufe aufweisen, die mindestens 5 Kräuseln per 20 mm der Faserlänge entsprechen. 2. Gekräuselte Fasern umfassendes Faservlies nach Anspruch 1, wobei der sich auf den Schmelzflüssigkeitsindex der Hauptbestandteile beziehende relative Unterschied im Bereich von 80 g/10 min bis 5g /10 min, vorzugsweise im Bereich von 60 g /10 min bis 10 g /10 min liegt. 3. Gekräuselte Fasern umfassendes Faservlies nach Anspruch 1 oder2, wobei dersich auf das Maß an Polydispersion der Hauptbestandteile beziehende relative Unterschied im Bereich von 1 bis 0,5, vorzugsweise im Bereich von 1 bis 0,7 liegt. 4. Gekräuselte Fasern umfassendes Faservlies nach einem der vorhergehenden Ansprüche, wobei dersich auf den Biegemodul der Hauptbestandteile beziehende relative Unterschied im Bereich von 250 MPa bis 80 MPa, vorzugsweise im Bereich von 200 MPa bis 80 MPa liegt. 5. Gekräuselte Fasern umfassendes Faservlies nach einem der vorhergehenden Ansprüche, wobei die Fasern als Side-by-Side Zweikomponentenfasern ausgebildet sind. 6. Gekräuselte Fasern umfassendes Faservlies nach Anspruch 5, wobei beide Hauptbestandteile der Zweikomponentenfasern aus einem Polypropylen-Homopolymer bestehen. 7. Gekräuselte Fasern umfassendes Faservlies nach einem der vorhergehenden Ansprüche, wobei die besagten Hauptbestandteile innerhalb des Querschnitts der Fasern derart angeordnet sind, dass sie sich nicht mittensymmetrisch und/oder nicht axialsymmetrisch zu einer Anzahl von die Mitte des Querschnitts der Faser überschneidenden Achsen erstrecken, die der Anzahl der von Polymeren gebildeten Abschnitten in der Faser gleicht. 8. Gekräuselte Fasern umfassendes Faservlies nach einem der vorhergehenden Ansprüche, wobei die Fasern einen Zusatzstoff enthalten, der in den Bestandteilen derart verteilt ist, dass er in keinem bedeutenden Maß die Kräuselung der Fasern beeinträchtigt. 9. Ungewebter Textilstoff, dadurch gekennzeichnet, dass er das Faservlies nach einem der vorhergehenden Ansprüche umfasst. 10. Ungewebter Textilstoff nach Anspruch 9, wobei der ungewebte Textilstoff ein im Spunmelt-Verfahren hergestellter Textilstoff ist. 11. Verfahren zum Fierstellen eines Faservlieses, das Mehrkomponentenfasern umfasst, wobei das Verfahren die folgenden Verfahrensschritte umfasst: i. Bereitstellung von mindestens zwei Werkstoffen, die ein Polymer oder ein Polymergemisch als Hauptbestandteil umfassen, wobei die Werkstoffe für die Bildung von Fasern geeignet sind; ii. anschließende Bildung von Mehrkomponentenfasern ausden bereitgestellten Werkstoffen in einerSpinndüse, nämlich von Mehrkomponentenfasern, die di besagten Werkstoffe abschnittsweise umfassen, wobei die einzelnen Abschnitte derart innerhalb des Querschnitts der Faser angeordnet sind, um die Kräuselung der Faser während des Aushärtungsvorgangs zweckmäßigerweise zu unterstützen sowie um die Abkühlung und Beruhigung der Fasern mit Kühl- bzw. Beruhigungsluft zu ermöglichen; und iii. abschließende Bildung eines Faservlieses aus den besagten Mehrkomponentenfasern; dadurch gekennzeichnet, dass: die besagten, abschnittweise verteilten Hauptbestandteile derart ausgewählt werden, dass sie unterschiedliche Werte der Kristallisationswärme dHc aufweisen, die im Bereich von 30 J/g bis 10 J/g, vorzugsweise im Bereich von 30 J/g bis 20 J/g liegen, und dass die besagten Hauptbestandteile sich in Bezug auf mindestens einen der anderen Parameter unterscheiden, welche Parameter aus der Gruppe ausgewählt werden, die den Schmelzflüssigkeitsindex, das Maß an Polydispersion und den Biegemodul umfasst, wobei der relative Unterschied zwischen den Hauptbestandteilen: für den Schmelzflüssigkeitsindex im Bereich von 100 g /10 min bis 5 g /10 min liegt, und/oder für das Maß an Polydispersion im Bereich von 1 bis 0,3 liegt, und/oder für den Biegemodul im Bereich von 300 MPa bis 50 MPa liegt, wobei der sich auf den Schmelzflüssigkeitsindex beziehende relative Unterschied nicht grösser als 100 g /10 min ist, der sich auf das Maß an Polydispersion beziehende relative Unterschied nicht grösser als 1 ist und der sich auf den Biegemodul beziehende relative Unterschied nicht grösser als 300 MPa ist und wobei die besagten Fasern eine Kräuselungsstufe aufweisen, die mindestens 5 Kräuseln per 20 mm der Faserlänge entsprechen. 12. Verfahren nach Anspruch 11, wobei die besagten Abschnitte mit verteilten Hauptbestandteilen innerhalb des Querschnitts der Fasern derart angeordnet sind, dass sie sich nicht mittensymmetrisch und/oder nicht axialsymmetrisch zu einer Anzahl von die Mitte des Querschnitts der Faser überschneidenden Achsen erstrecken, die der Anzahl der von Polymeren gebildeten Abschnitten in der Faser gleicht. 13. Verfahren nach Anspruch 11, wobei die besagten Mehrkomponentenfasern als Side-by-Side Zweikomponentenfasern ausgebildet sind. 14. Verfahren nach Anspruch 11, wobei die besagten, von Polymeren gebildeten Abschnitte als ihren Hauptbestandteil ein Polypropylen-Homopolymer enthalten.
Revendications 1. Une couche des fibres comprenant des fibres crêpées à deux composantes ou à composantes multiples et constituée par au moins deux sections, qui comprennent un polymère ou un mélange de polymères en tant qu’une composante prédominante et qui sont disposées à travers la coupe de section transversale de la fibre d’une manière appropriée pour favoriser le crêpage de la fibre pendant le processus de solidification et dont les composantes prédominantes différent quant à la cristallisation thermique (dHc), caractérisée en ce que la différence de la chaleur de cristallisation dHcestdans l’intervalle allant de 30 J/g à 10 J/g, de préférence 30 J/g à 20 J/g et dont les composantes prédominantes différent au moins par l’un des autres paramètres choisis dans le groupe d’indice de fluidité à chaud, le degré de polydispersité et le module de flexion, tandis que la différence relative des composantes prédominantes est la suivante : pour l’indice de fluidité à chaud dans l’intervalle de 100 g/10 min à 5 g/10 min et/ou pour le degré de polydispersité inférieur à 1, mais au-dessus de 0,3, et / ou pour le module de flexion dans l’intervalle de 300 MPa à 50 MPa ; où la différence relative de l’indice de fluidité à chaud ne dépasse pas 100 g/ 10 min, du degré de polydispersité est inférieur à 1, du module de flexion n’est pas plus de 300 MPa, et où lesdites fibres ont le degré de crêpage d’au moins 5 frisures par 20 mm de la fibre. 2. Une couche des fibres comprenant des fibres crêpées selon la revendication 1, dans laquelle la différenciation relative des composantes prédominantes dans l’indice de fluidité à chaud est dans l’intervalle de 80 g/10 min à 5 g/10 min, de préférence de 60 g/10 min à 10 g/10 min. 3. Une couche des fibres comprenant des fibres crêpées selon la revendication 1 ou 2, dans laquelle la différenciation relative des composantes prédominantes du degré de polydispersion est dans l’intervalle de 1 à 0,5, de préférence de 1 à 0,7. 4. Une couche des fibres comprenant des fibres crêpées selon l’une quelconque des revendications précédentes, dans laquelle la différenciation relative des composantes prédominantes dans le module de flexion est dans l’intervalle de 250 MPa à 80 MPa, de préférence de 200 MPa à 80 MPa. 5. Une couche des fibres crêpées selon l’une quelconque des revendications précédentes, dans laquelle les fibres sont des fibres bicomposantes du type côte à côte. 6. Une couche des fibres comprenant des fibres crêpées selon la revendication 5, dans laquelle toutes les deux composantes prédominantes des fibres à bicomposantes sont un homopolymère de propylène. 7. Une couche des fibres comprenant des fibres crêpées selon l’une quelconque des revendications précédentes, dans laquelle lesdites composantes prédominantes sont disposées à travers la coupe de section transversale des fibres, centralement asymétriquement et / ou axialement asymétriquement par rapport à un certain nombre d’axes passant par le centre de la coupe de section transversale de la fibre, ce qui égalise le nombre de sections de polymère dans la fibre. 8. Une couche des fibres selon l’une quelconque des revendications précédentes, dans laquelle les fibres comprennent un additif, et dans laquelle l’additif est présent dans les composantes de telle sorte qu’il ne modifie pas le crêpage de la fibre à un degré significatif. 9. Le textile non-tissé, caractérisé en ce qu’il comprend une couche des fibres selon l’une quelconque des revendications précédentes. 10. Le textile non-tissé selon la revendication 9, dans lequel le textile non tissé est de type spunmelt. 11. Procédé de fabrication d’une couche des fibres comprenant des fibres à multicomposantes, dans lequel le procédé comprend les étapes suivantes : i. la préparation d’au moins deux matériaux comprenant un polymère ou un mélange de polymères en tant qu’une composante prédominante, des matériaux étant convenables pour la formation de fibres; ii. puis la formation des fibres multicomposantes à partir des matériaux préparés au desous de la buse, à savoir des fibres multicomposantes comprenant les matériaux disposés dans les sections, qui sont disposées à travers la coupe de section transversale de la fibre d’une manière appropriée pour favoriser le crêpage de la fibre pendant le processus de solidification, puis les fibres sont refroidies et étirées par l’air refroidissant et étirant, et iii. la formation d’une couche des fibres à partir desdites fibres multicomposantes ; caractérisée en ce que : lesdites composantes prédominantes dans les sections sont choisies de telle sorte qu’elles diffèrent par la chaleur de cristallisation dHc dans l’intervalle de 30 J / g à 10 J / g, de préférence de 30 J / g à 20 J / g, et qu’elles diffèrent dans au moins un autre paramètre sélectionné parmi le groupe d’indice de fluidité à chaud, de degré de polydispersion et de module de flexion, où la différenciation relative des composantes polymères est la suivante : pour l’indice de fluidité à chaud dans l’intervalle de 100 g /10 min à 5 g /10 min et / ou pour le degré de polydispersité dans l’intervalle de 1 à 0,3, et / ou pour le module de flexion dans l’intervalle de 300 MPa à 50 MPa ; où la différence relative de l’indice de fluidité à chaud ne dépasse pas 100 g /10 min, le degré de polydispersité n’est pas supérieur à 1, le module de flexion n’est pas supérieur à 300 MPa, et où lesdites fibres ont le degré de crêpage d’au moins 5 frisures par 20 mm de fibre. 12. Procédé selon la revendication 11, dans lequel lesdites sections avec des composantes prédominantes sont disposées à travers la coupe de section transversale de la fibre centralement asymétriquement et / ou axialement asymétriquement par rapport au nombre d’axes passant par le centre de la coupe de section transversale de la fibre, qui égalise le nombre de sections présentes dans la fibre. 13. Procédé selon la revendication 11, dans lequel lesdites fibres à multicomposantes sont les fibres à deux composantes du type côte à côte. 14. Procédé selon la revendication 11, dans lequel lesdites sections de polymère contiennent un homopolymère de polypropylène en tant que leur composante prédominante.
REFERENCES CITED IN THE DESCRIPTION
This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.
Patent documents cited in the description WO 2012130414 A [0010] US 6203905 B [0024] • EP 0685579 A [0005] [0028] • EP 1129247 A [0005] [0022] • EP 2343406 A [0006]

Claims (10)

Szabadalmi igénypontok:Claims: 1. Két- vagy többkomponensű fodrosított szálakat tartalmazó száíbunda, mely szálak legalább két szelvényrészből (sections) állnak, melyek tartalmaznak egy polimert vagy polimer keveréket domináns komponensként, és amelyek oly módon vannak elrendezve a szál keresztmetszetén belül, hogy alkalmas a szál fodrosodásának elősegítésére a kíkeményedési folyamat során, és amely domináns komponensek a krisztailizációs hőben (dHc) különböznek, azzal jellemezve, hogy a különbség a dHc krisztailizációs hőben 30 J/g -10 J/g, előnyösen 30 J/g - 20 J/g tartományban van, és hogy a domináns komponensek legalább egy másik paraméterben különböznek, amely paraméter olvadék folyási index, poiidiszperzitás foka és hajlító modulus csoportból van kiválasztva, míg a domináns komponensek relatív különbsége: a folyási indexre 100 g/10 perc - § g/10 perc tartományban van és/vagy a poiidiszperzitás fokára kisebb, mint 1, de 0,3 feletti, és/vagy a hajlító modulusra 300 Mpa - 50 Mpa tartományban van: ahol a relatív különbség az olvadék folyási indexben nem nagyobbá mint 1Ö0g/10 perc, a poiidiszperzitás fokában kisebb, mint 1, a hajlító modulusban nem nagyobb, mint 300 Mpa; és ahol a szálak fodrosodási foka legalább 5 fodor egy szálnak a 20 mfn-ére.1. A mouthpiece comprising two- or multi-component haircut fibers, comprising at least two sections comprising a polymer or polymer mixture as a dominant component and arranged in a cross-section of the fiber that is suitable for facilitating the ripening of the fiber by the curing agent. characterized in that the difference in the crystallization heat of dHc is 30 J / g to -10 J / g, preferably 30 J / g to 20 J / g, and that the dominant components differ in at least one other parameter selected from the melt flow index, the degree of polydispersity, and the bending modulus, while the relative difference between the dominant components is in the range of 100 g / 10 min to § g / 10 min and / or a degree of polydispersity of less than 1 but greater than 0.3, and / or the bending modulus in the range of 300 MPa to 50 MPa: wherein the relative difference in the melt flow index is not greater than 1 µg / 10 min, the degree of polydispersity is less than 1, the flexural modulus is not greater than 300 MPa; and wherein the degree of ripening of the fibers is at least 5 frills to 20 mfn of a fiber. 2. Az 1, igénypont szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a domináns komponensek relatív különbsége az olvadék folyási Indexben 8ög/10 perc - 5 g/10 perc, előnyösen 60 g/lö perc -»10 g/10 perc tartományban van.The fibrous web comprising the fibrous fibers according to claim 1, wherein the relative difference of the dominant components in the melt flow index is in the range of 8 µg / 10 min to 5 g / 10 min, preferably 60 g / min to - 10 g / 10 min. 3„ Az 1. vagy 2. igénypont szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a domináns komponensek relatív különbsége a poiidiszperzitás fokában 1 - 0,5, előnyösen 1 - 0,7 tartományban van.3 A fibrous strand having a fibrous strand according to claim 1 or 2, wherein the relative difference in the dominant components in the degree of polydispersity is in the range of from 1 to 0.5, preferably from 1 to 0.7. 4, Az előző igénypontok bármelyike szerinti, fodrosított szálakat tartalmazó száíbunda, ahol a domináns komponensek relativ különbsége a hajlító modulusban 250 Mpa - 60 Mpa, előnyösen 200 Mpa - 80 Mpa tartományban van.4, a fibrous strand having a fibrous fiber according to any one of the preceding claims, wherein the relative difference of the dominant components in the bending modulus is in the range of 250 MPa to 60 MPa, preferably 200 MPa to 80 MPa. 5. Az előző igénypontok bármelyike szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a szálak side-by-side típusú kétkomponensű szálak*A fibrous web comprising the stranded fibers according to any one of the preceding claims, wherein the fibers are side-by-side type two-component fibers * 6* Az 5, igénypont szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a kétkomponensű szálak mindkét domináns komponense egy propilén homopolimer.6) A fibrous web comprising the fibrous fibers according to claim 5, wherein both dominant components of the two-component fibers are a propylene homopolymer. 7* Az előző Igénypontok bármelyike szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a domináns komponensek a szálak keresztmetszetén belül vannak elrendezve, centrálisán aszimmetrikusan és/vagy axiáüsan aszimmetrikusan a szál keresztmetszetének a közepén áthaladó tengelyeknek a számának megfelelően, ami egyenlő a szálban levő polimer szeivényrészek számával,7 * A fibrous strand comprising a stranded fiber according to any of the preceding claims, wherein the dominant components are arranged within the cross-section of the fibers, centrally asymmetrically and / or axially asymmetrically to the number of axes passing through the center of the cross-section of the fiber, equal to the number of polymeric parts of the fiber in the fiber. . 8, Az előző igénypontok bármelyike szerinti, fodrosított szálakat tartalmazó szálbunda, ahol a szálak adalékanyagot tartalmaznak, ahol az adalékanyag a komponensekben úgy van jelen, hogy az nincs jelentős mértékben hatással a szálnak a fodrosodására.The fibrous web comprising the fibrous fibers according to any one of the preceding claims, wherein the fibers comprise an additive, wherein the additive is present in the components so that it does not significantly affect the hair ripening. 9, Nemszőtt textília azzal jellemezve, hogy az előző igénypontok bármelyike szerinti száíbundát tartalmazza.9, nonwoven fabric comprising a mouthpiece according to any one of the preceding claims. 10, A 9. igénypont szerinti nemszőtt textília, ahol a nemszött textília spunmelt típusú. 11v Eljárás többkomponensű szálakat tartalmazó szálbunda előállítására, ahol az eljárás a következő lépéseket tartalmazza: i. legalább két anyag rendelkezésre állítása, amelyek tartalmaznak egy polimert vagy polimer keveréket domináns komponensként, az anyagok alkalmasak szálak kialakítására; íi. azután többkomponensű szálaknak a kialakítása a rendelkezésre állított anyagokból egy fonófejjeJ, azaz olyan többkomponensű szálaké, melyek tartalmazzák az említett anyagokat szelvényrészekben elrendezve, amelyek a szál keresztmetszetén belül olyan módon vannak elrendezve, miáltal alkalmasak a szál fodrosodásának elősegítésére a kikeményedésí folyamat során, és a szálak hűtésére és csillapítására a levegő hűtése és csillapítása révén; és íii. a többkomponensű szálakból egy száíbunda kialakítása; azzal jellemezve, hogy: a domináns komponensek a szelvényrészekben úgy vannak kiválasztva, hogy azok a dHc krísztallizásiós hőben 30 J/g -10 j/g, előnyösen 30 J/g - 20 d/g tartományban különböznek, és hogy azok különböznek legalább egy másik paraméterben, amely a következő csoportból van kiválasztva: olvadék folyási index, polidiszperzítás foka és hajlító modulus, ahol a polimer komponenseknek a relatív különbsége: a folyási indexre 100 g/10 perc ~ 5 g/1G perc tartományban van és/vagy a polidiszperzítás fokára 1 - 0,3 tartományban van, és/vagy a hajlító modulusra 300 Mpa ~ 50 Mpa tartományban van; ahol a relatív különbség az olvadék folyási indexben nem nagyobb, mint 1ÖÖg/1Ö perc, a polidiszperzítás fokában nem nagyobb, mint 1, a hajlító modulusban nem nagyobb, mint 300 Mpa; és ahol a szálak fodrosodásí foka legalább 5 fodor egy szálnak a 20 mm-ére. 12, A 11. igénypont szerinti eljárás, ahol az említett szeivényrészek a domináns komponensekkel a szál keresztmetszetén belül vannak elrendezve centrálisán aszimmetrikusan és/vagy axíálisan aszimmetrikusan egy szál keresztmetszetének a közepén áthaladó tengelyek számának megfelelően, ami egyenlő a szálban jelen levő szeivényrészeknek a számával. 13, A 11. igénypont szerinti eljárás, ahol a többkomponensű szálak side-by~síde típusú kétkomponensű szálak. 14, A 11. igénypont szerinti eljárás, ahol a polimer szeivényrészek domináns komponensként tartalmaznak egy polipropilén homopotímert.The nonwoven fabric of claim 9, wherein the nonwoven fabric is of the spunmelt type. 11v. A method for producing a multi-component fiber web comprising the steps of: i. providing at least two materials containing a polymer or polymer mixture as a dominant component, the materials being suitable for forming fibers; ss. then forming multicomponent fibers from the available materials into a spinning head, i.e., multi-component fibers comprising said materials arranged in sections, arranged within the cross-section of the fiber in such a way as to facilitate the ripple of the fiber during the curing process and to cool the fibers and damping by cooling and damping air; and iiii. forming a plurality of multicomponent fibers; characterized in that: the dominant components in the sections are selected so that they differ in dHc crystal leaching heat from 30 J / g to 10 / g, preferably from 30 J / g to 20 d / g, and that they differ in at least one other selected from the group consisting of: melt flow index, degree of polydispersion and bending modulus, where the relative difference of the polymeric components: 100 g / 10 min to the flow index and / or the degree of polydispersion 1 - is in the range of 0.3 and / or 300 Mpa ~ 50 Mpa for the bending modulus; where the relative difference in the melt flow index is not greater than 1 µg / 1 µ min, the degree of polydispersion is not greater than 1, the bending modulus is not more than 300 MPa; and wherein the degree of ripeness of the fibers is at least 5 frills to 20 mm of a fiber. The method of claim 11, wherein said wedge portions with the dominant components are arranged within the cross-section of the fiber centrally asymmetrically and / or axially asymmetrically to the number of axes passing through the center of the cross-section of the fiber equal to the number of wool portions present in the fiber. The method of claim 11, wherein the multi-component fibers are side-by-side type two-component fibers. The method according to claim 11, wherein the polymeric beverage parts contain a polypropylene homopoter as a dominant component.
HUE14705962A 2013-01-14 2014-01-14 Batt comprising crimped bi- or multi-component fibres HUE034578T2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CZ2013-24A CZ201324A3 (en) 2013-01-14 2013-01-14 Fiber layer comprising crimped bi- or multicomponent fibers and process for producing thereof

Publications (1)

Publication Number Publication Date
HUE034578T2 true HUE034578T2 (en) 2018-02-28

Family

ID=50156517

Family Applications (1)

Application Number Title Priority Date Filing Date
HUE14705962A HUE034578T2 (en) 2013-01-14 2014-01-14 Batt comprising crimped bi- or multi-component fibres

Country Status (15)

Country Link
US (1) US20150354112A1 (en)
EP (1) EP2943607B1 (en)
JP (1) JP6508654B2 (en)
CN (1) CN105051280A (en)
BR (1) BR112015016685A2 (en)
CZ (1) CZ201324A3 (en)
DK (1) DK2943607T3 (en)
ES (1) ES2628416T3 (en)
HU (1) HUE034578T2 (en)
MY (1) MY171876A (en)
PL (1) PL2943607T3 (en)
RU (1) RU2649264C2 (en)
SA (1) SA515360784B1 (en)
WO (1) WO2014108106A1 (en)
ZA (1) ZA201504970B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3215094A1 (en) 2014-11-06 2017-09-13 The Procter and Gamble Company Absorbent articles comprising garment-facing laminates
US20160167334A1 (en) 2014-11-06 2016-06-16 The Procter & Gamble Company Crimped Fiber Spunbond Nonwoven Webs/Laminates
TW201739603A (en) * 2016-01-27 2017-11-16 歐拓管理股份公司 Sound absorbing liner for the engine bay of a vehicle and sound absorbing trim part having the same
EP3246444B1 (en) * 2016-05-18 2020-04-08 Fibertex Personal Care A/S Method for making a high loft nonwoven web
WO2018152272A1 (en) 2017-02-16 2018-08-23 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
JP6865063B2 (en) * 2017-03-02 2021-04-28 旭化成株式会社 Bulky composite long fiber non-woven fabric with excellent barrier properties
ES2802468T3 (en) * 2018-01-31 2021-01-19 Reifenhaeuser Masch Spunbonded Nonwoven Laminate and Procedure for Generating a Spunbonded Nonwoven Laminate
JP7251362B2 (en) * 2019-07-01 2023-04-04 王子ホールディングス株式会社 Nonwoven fabric manufacturing method
CN115247319A (en) * 2021-12-22 2022-10-28 青岛大学 Parallel two-component melt-blown fiber filtering material and preparation method thereof

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2136575A1 (en) 1994-06-03 1995-12-04 Ty J. Stokes Highly crimpable conjugate fibers and nonwoven webs made therefrom
US6417121B1 (en) * 1994-11-23 2002-07-09 Bba Nonwovens Simpsonville, Inc. Multicomponent fibers and fabrics made using the same
JPH09209216A (en) * 1996-01-26 1997-08-12 Shimadzu Corp Self-crimping conjugate fiber
JPH10266056A (en) * 1997-03-27 1998-10-06 Oji Paper Co Ltd Conjugate polyolefin filament nonwoven fabric and its production
WO1999049120A1 (en) * 1998-03-24 1999-09-30 Mitsui Chemicals, Inc. Flexible nonwoven fabric laminate
US6454989B1 (en) * 1998-11-12 2002-09-24 Kimberly-Clark Worldwide, Inc. Process of making a crimped multicomponent fiber web
US20040067709A1 (en) * 2001-01-29 2004-04-08 Masahiro Kishine Non-woven fabrics of wind-shrink fiber and laminate thereof
JP3567892B2 (en) * 2001-02-08 2004-09-22 チッソ株式会社 Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
US20030171054A1 (en) * 2002-03-07 2003-09-11 Vishal Bansal Multiple component spunbond web and laminates thereof
CN100352991C (en) * 2002-06-26 2007-12-05 纳幕尔杜邦公司 Polycomponent spunbonded non-woven fabric net and laminating material thereof
US7101623B2 (en) * 2004-03-19 2006-09-05 Dow Global Technologies Inc. Extensible and elastic conjugate fibers and webs having a nontacky feel
JP2010150721A (en) * 2008-12-26 2010-07-08 Toray Ind Inc Polymer alloy fiber and fiber structure
EP2343406B1 (en) * 2008-10-29 2013-12-18 Mitsui Chemicals, Inc. Crimped composite fiber, and non-woven fabric comprising the fiber
JP5484564B2 (en) * 2010-04-16 2014-05-07 三井化学株式会社 Crimped composite fiber and nonwoven fabric made of the fiber
CZ2010312A3 (en) * 2010-04-23 2012-01-18 Pegas Nonwovens S.R.O. Process for producing non-woven fabric with barrier and antistatic finish
CZ2011163A3 (en) 2011-03-25 2012-10-03 Pegas Nonwovens S.R.O. Method of making bonded web fabric and bonded web fabric per se

Also Published As

Publication number Publication date
EP2943607B1 (en) 2017-03-15
WO2014108106A8 (en) 2015-07-09
EP2943607A1 (en) 2015-11-18
JP2016507012A (en) 2016-03-07
US20150354112A1 (en) 2015-12-10
SA515360784B1 (en) 2017-11-07
CZ201324A3 (en) 2014-07-23
RU2015132469A (en) 2017-02-21
JP6508654B2 (en) 2019-05-08
MY171876A (en) 2019-11-05
ES2628416T3 (en) 2017-08-02
ZA201504970B (en) 2016-07-27
WO2014108106A1 (en) 2014-07-17
BR112015016685A2 (en) 2017-07-11
RU2649264C2 (en) 2018-03-30
DK2943607T3 (en) 2017-06-26
PL2943607T3 (en) 2017-09-29
CN105051280A (en) 2015-11-11

Similar Documents

Publication Publication Date Title
EP2943607B1 (en) Batt comprising crimped bi- or multi-component fibres
MX2007001210A (en) Stretched elastic nonwovens.
MXPA06008389A (en) Soft extensible nonwoven webs containing fibers with high melt flow rates.
EP1198631B1 (en) Bonded-fibre fabric for producing clean-room protective clothing
DK3108051T3 (en) Microfiber COMPOSITE NONWOVENS
WO1998003710A1 (en) Meltspun multicomponent thermoplastic continuous filaments, products made therefrom, and methods therefor
CA2940019C (en) Cleaning cloth
US6274237B1 (en) Potentially crimpable composite fiber and a non-woven fabric using the same
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
US20190240955A1 (en) Lofty nonwoven fabrics
JPH05195406A (en) Stretchable filament nonwoven fabric and its production
US20220388271A1 (en) Nonwoven Fabrics Suitable for Medical Applications
DE19962356A1 (en) Sanitary linen