JP6870480B2 - Polyethylene spunbonded non-woven fabric - Google Patents

Polyethylene spunbonded non-woven fabric Download PDF

Info

Publication number
JP6870480B2
JP6870480B2 JP2017106244A JP2017106244A JP6870480B2 JP 6870480 B2 JP6870480 B2 JP 6870480B2 JP 2017106244 A JP2017106244 A JP 2017106244A JP 2017106244 A JP2017106244 A JP 2017106244A JP 6870480 B2 JP6870480 B2 JP 6870480B2
Authority
JP
Japan
Prior art keywords
saturated fatty
fatty acid
polyethylene
woven fabric
based additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017106244A
Other languages
Japanese (ja)
Other versions
JP2018199887A (en
Inventor
大士 勝田
大士 勝田
義嗣 船津
義嗣 船津
雅紀 遠藤
雅紀 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017106244A priority Critical patent/JP6870480B2/en
Publication of JP2018199887A publication Critical patent/JP2018199887A/en
Application granted granted Critical
Publication of JP6870480B2 publication Critical patent/JP6870480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は柔軟性に優れ、高強度であり、加工性に優れ、かつ環境負荷が低い原料を用いた場合にもこれら効果を好適に発揮し得るポリエチレンスパンボンド不織布に関する。 The present invention relates to a polyethylene spunbonded non-woven fabric which is excellent in flexibility, high strength, excellent workability, and can suitably exhibit these effects even when a raw material having a low environmental load is used.

ポリオレフィンからなるスパンボンド不織布、特にポリプロピレンスパンボンド不織布は低コストで柔軟性に優れるため、衛生材料用途を中心に幅広く用いられている。 Spun-bonded non-woven fabric made of polyolefin, especially polypropylene spun-bonded non-woven fabric, is widely used mainly for sanitary materials because of its low cost and excellent flexibility.

ポリオレフィンスパンボンド不織布の特徴である柔軟性をより高める技術もこれまでに多くの検討がなされており、その中で弾性率がポリプロピレンよりも低い、ポリエチレンを用いる検討がなされている。 Many studies have been conducted on techniques for further enhancing the flexibility, which is a characteristic of polyolefin spunbonded non-woven fabrics, and among them, polyethylene, which has a lower elastic modulus than polypropylene, has been studied.

ポリエチレンスパンボンドは柔軟性に優れるものの、シートの加工性に劣るという課題がある。この原因の一つは、ポリエチレンは製糸性が悪く、糸切れが生じやすいためシート欠点が多く、加工時にこの欠点を起点としてゴム製のニップローラー等に巻き付いてしまうためであり、また繊維強度が低いためシート強度も低く、シート加工時に破れ等が生じやすいためである。この課題のため実用性能を満足するポリエチレンスパンボンドは工業的には未だ得られていない。 Although polyethylene spunbond has excellent flexibility, it has a problem that the workability of the sheet is inferior. One of the reasons for this is that polyethylene has poor silk-reeling properties and is prone to thread breakage, so there are many sheet defects, and this defect is the starting point for wrapping around rubber nip rollers, etc., and the fiber strength is high. This is because the sheet strength is low because it is low, and tearing or the like is likely to occur during sheet processing. Due to this problem, polyethylene spunbonds that satisfy practical performance have not yet been obtained industrially.

さらに柔軟性向上、風合い向上のために単糸繊度を小さくしようとすると、ポリエチレンでは製糸性がより悪化する傾向にあるため、欠点がさらに増え、加工性がより悪化する課題もある。 Further, if an attempt is made to reduce the single yarn fineness in order to improve the flexibility and texture, the yarn-forming property of polyethylene tends to be further deteriorated, so that there is a problem that the defects are further increased and the workability is further deteriorated.

別の観点の課題として、ポリエチレンは一般的に化石資源から製造されるが、化石資源である石油は、化学工業の重要な原料であるが将来的には枯渇の懸念があり、さらに、製造工程および焼却廃棄時に大量の二酸化炭素を排出することから、地球規模での温暖化など一連の課題を招いている。このような状況の中、使い捨て製品である紙おむつや生理用ナプキン等の衛生材料用不織布について、日本国内における衛生材料用不織布の使用量は、年間20万トンを超える規模と非常に多く、かつ使用後は100%廃棄処分されることから、再生原材料や環境負荷の低い原料の利用に大きな注目が集まっている。 Another issue is that polyethylene is generally produced from fossil resources, but petroleum, which is a fossil resource, is an important raw material for the chemical industry, but there is a concern that it will be depleted in the future. In addition, since a large amount of carbon dioxide is emitted when incinerated, it causes a series of problems such as global warming. Under these circumstances, with regard to non-woven fabrics for sanitary materials such as disposable diapers and sanitary napkins, the amount of non-woven fabrics for sanitary materials used in Japan is extremely large, exceeding 200,000 tons per year, and is used. After that, 100% of the waste is disposed of, so much attention is being paid to the use of recycled raw materials and raw materials with low environmental impact.

衛生材料用不織布に対しては、柔軟性向上、風合いの向上の要望があり、これを達成するため細繊度化の手法が望まれているが、従来のバイオマス資源由来のポリエチレンを用いた場合は、紡糸安定性が低く、細繊度の不織布が得られないのが現状である。さらに、衛生材料用不織布には、使い捨て用品であるが故に、低コストであることが求められるが、紡糸性悪化の観点から吐出量を低くしないと生産できない状況であり、生産性が低く、低コスト化が達成できていない。また、衛生材料用途には清潔感としての白さが要求されるため、耐熱性が低く、熱分解により黄変化するポリマーの適用は好ましくない。これらの理由から従来の環境負荷の低い原料を用いた不織布は、衛生材料用不織布に適用できないのである。 For non-woven fabrics for sanitary materials, there are demands for improved flexibility and texture, and in order to achieve this, a method of fineness is desired. However, when conventional polyethylene derived from biomass resources is used, At present, the spinning stability is low and a non-woven fabric having a fine fineness cannot be obtained. Further, the non-woven fabric for sanitary materials is required to be low cost because it is a disposable product, but it cannot be produced unless the discharge amount is lowered from the viewpoint of deterioration of spinnability, and the productivity is low and low. Cost reduction has not been achieved. Further, since whiteness as a feeling of cleanliness is required for sanitary material applications, it is not preferable to apply a polymer having low heat resistance and turning yellow due to thermal decomposition. For these reasons, conventional non-woven fabrics using raw materials having a low environmental load cannot be applied to non-woven fabrics for sanitary materials.

このような背景から、ポリエチレンに関し、重合触媒残渣等の影響をなくし、紡糸時の糸切れという問題を解消する目的で、ポリエチレン中に炭素数が12〜22個の脂肪族カルボン酸の金属塩を800ppm以下200ppm以上含有させることが提案されている(特許文献1参照)。本技術はポリエチレンの熱分解を抑制する技術であり、製糸性向上にも効果があると考えられるが、単糸繊度は最小でも4.8dtexであり、単糸繊度を小さくした際のカルボン酸金属塩の複数種添加の効果については言及がない。 Against this background, in order to eliminate the influence of polymerization catalyst residues and the like and to solve the problem of thread breakage during spinning, a metal salt of an aliphatic carboxylic acid having 12 to 22 carbon atoms is added to polyethylene. It has been proposed to contain 800 ppm or less and 200 ppm or more (see Patent Document 1). This technology is a technology that suppresses the thermal decomposition of polyethylene and is considered to be effective in improving the yarn-making property. However, the single yarn fineness is at least 4.8 dtex, and the metal carboxylate when the single yarn fineness is reduced. There is no mention of the effect of adding multiple salts.

また、紡糸時の糸切れやエアサッカー牽引時の摩擦や、開繊不良の対策として、複合繊維(芯鞘構造を有する繊維)において、鞘成分としてエチレン−酢酸ビニル共重合体と低密度ポリエチレンの混合樹脂を用い、そこに直鎖状高級脂肪酸または、その金属塩を混合したものを用いることが提案されている(特許文献2参照)。本技術は繊維の表面特性を変化させることで繊維間の融着を抑制する技術であり、製糸性向上にも効果があり、かつ摩擦係数低下によりシート加工性向上にも効果があると考えられるが、単糸繊度を小さくした際のカルボン酸金属塩の複数種添加の効果については記載がなされていない。 In addition, as a countermeasure against yarn breakage during spinning, friction during air soccer towing, and poor fiber opening, in composite fibers (fibers having a core-sheath structure), ethylene-vinyl acetate copolymer and low-density polyethylene are used as sheath components. It has been proposed to use a mixed resin and a mixture of a linear higher fatty acid or a metal salt thereof (see Patent Document 2). This technology is a technology that suppresses fusion between fibers by changing the surface characteristics of the fibers, and is considered to be effective in improving yarn-making property and also in improving sheet workability by lowering the coefficient of friction. However, there is no description about the effect of adding multiple kinds of carboxylic acid metal salts when the single yarn fineness is reduced.

特開平1−221514号公報Japanese Unexamined Patent Publication No. 1-221514 特開平10−1687294号公報Japanese Unexamined Patent Publication No. 10-1687294

本発明の課題は、柔軟性に優れ、高強度であり、加工性に優れたポリエチレンスパンボンド不織布を提供することにある。 An object of the present invention is to provide a polyethylene spunbonded non-woven fabric having excellent flexibility, high strength, and excellent workability.

前記した本発明の課題は以下の手段により達成される。 The above-mentioned problem of the present invention is achieved by the following means.

密度が0.915〜0.965g/cmのポリエチレンからなり、
単糸繊度が2.0dtex以下であり、ポリエチレンに対して以下の条件A〜Cを満たすように飽和脂肪酸系添加剤が添加されてなることを特徴とするポリエチレンスパンボンド不織布である。
A.飽和脂肪酸系添加剤が、炭素数が12〜30の飽和脂肪酸もしくは飽和脂肪酸金属塩であり、その中の炭素数が異なる2種以上の飽和脂肪酸もしくは飽和脂肪酸金属塩からなる。
B.飽和脂肪酸系添加剤中に含まれる飽和脂肪酸もしくは飽和脂肪酸金属塩の炭素数の、最大のものと最小のもの差が4以上である。
C.ポリエチレンに対する飽和脂肪酸系添加剤全体の添加量が0.1〜10.0wt%である。
Consists of polyethylene with a density of 0.915 to 0.965 g / cm 3
A polyethylene spunbonded non-woven fabric having a single yarn fineness of 2.0 dtex or less and having a saturated fatty acid-based additive added to polyethylene so as to satisfy the following conditions A to C.
A. The saturated fatty acid-based additive is a saturated fatty acid or a saturated fatty acid metal salt having 12 to 30 carbon atoms, and comprises two or more kinds of saturated fatty acids or saturated fatty acid metal salts having different carbon atoms.
B. The difference between the maximum and minimum carbon numbers of the saturated fatty acid or the saturated fatty acid metal salt contained in the saturated fatty acid-based additive is 4 or more.
C. The total amount of the saturated fatty acid-based additive added to polyethylene is 0.1 to 10.0 wt%.

本発明の不織布の好ましい態様によれば、前記ポリエチレンが植物系ポリエチレンを50wt%以上含んでいる。 According to a preferred embodiment of the non-woven fabric of the present invention, the polyethylene contains 50 wt% or more of plant-based polyethylene.

また、本発明の不織布の好ましい様態によれば、飽和脂肪酸系添加剤の成分としてステアリン酸カルシウムを含んでいる。 Further, according to a preferable mode of the nonwoven fabric of the present invention, calcium stearate is contained as a component of the saturated fatty acid-based additive.

本発明のポリエチレンスパンボンド不織布により、柔軟性をより向上させることができ、かつ単糸繊度が細いため触感も向上し、繊維の強度も高まるためシート加工時の破れ等もなく、さらにシート欠点が少ないため加工性をより向上させることができる。特に環境負荷が低い原料を用いた場合にも、これらの効果を好適に発揮することができる。 The polyethylene spunbonded non-woven fabric of the present invention can further improve the flexibility, the fineness of the single yarn is thin, the tactile sensation is improved, and the strength of the fiber is also increased, so that there is no tearing during sheet processing, and there are further sheet defects. Since the amount is small, the workability can be further improved. In particular, these effects can be suitably exhibited even when a raw material having a low environmental load is used.

以下、本発明のポリエチレンスパンボンド不織布について詳細に説明する。 Hereinafter, the polyethylene spunbonded nonwoven fabric of the present invention will be described in detail.

本発明のポリエチレン(以下、PEとも言う)スパンボンド不織布はポリエチレン樹脂の繊維からなる。ポリエチレン樹脂とは繰り返し単位としてエチレン単位を有するポリマーを意味する。ポリエチレン樹脂を用いることで柔軟性に優れた不織布とすることができる。 The polyethylene (hereinafter, also referred to as PE) spunbonded nonwoven fabric of the present invention is made of polyethylene resin fibers. The polyethylene resin means a polymer having an ethylene unit as a repeating unit. By using a polyethylene resin, a non-woven fabric having excellent flexibility can be obtained.

本発明で用いるPE樹脂は、(1)ナフサの高温熱分解によって得られるエチレンから合成される石油系PE、もしくは、(2)サトウキビ等から得られる植物性エタノールを比較的低温で脱水して得られるエチレンを重合して得られる植物系PEが挙げられる。これらの中では植物系PEを用いることが、環境負荷を低減させる観点で好ましい。 The PE resin used in the present invention is obtained by dehydrating (1) petroleum-based PE synthesized from ethylene obtained by high-temperature thermal decomposition of naphtha, or (2) vegetable ethanol obtained from sugar cane or the like at a relatively low temperature. Examples thereof include plant-based PE obtained by polymerizing the ethylene produced. Among these, it is preferable to use plant-based PE from the viewpoint of reducing the environmental load.

本発明で用いるPE樹脂の密度は0.915〜0.965g/cmである。密度が0.915g/cm以上であることで適度な結晶性を有し、製糸性、糸強度に優れるためシート強度および加工性に優れる。また密度が0.965g/cm以下であることで、紡糸での結晶化による急速な固化を抑制でき、製糸性に優れるため糸切れによるシート欠点が少なく加工性に優れる。 The density of the PE resin used in the present invention is 0.915 to 0.965 g / cm 3 . When the density is 0.915 g / cm 3 or more, it has appropriate crystallinity, and since it is excellent in yarn-making property and thread strength, it is excellent in sheet strength and processability. Further, when the density is 0.965 g / cm 3 or less, rapid solidification due to crystallization in spinning can be suppressed, and since the yarn-making property is excellent, there are few sheet defects due to thread breakage and the workability is excellent.

本発明で用いるPE樹脂には、本発明の目的を満足する限度で他のオレフィン類モノマー、スチレン類モノマーが共重合されていても良い。共重合成分としてはヘプテン、オクテンがシート欠点低減、細繊度の観点から好ましく、オクテンがより好ましい。また共重合比率は高強度化の観点から3.0mol%以下とすることが好ましく、1.0mol%以下とすることがより好ましい。なお植物系PEは、原材料の不純物により炭素数4以下の枝分かれするモノマー成分が多く含まれているが、これらを全て合わせた量を共重合成分とし、3.0mol%以下とすることが好ましい。 The PE resin used in the present invention may be copolymerized with other olefin monomers and styrene monomers as long as the object of the present invention is satisfied. As the copolymerization component, heptene and octene are preferable from the viewpoint of reducing sheet defects and fineness, and octene is more preferable. The copolymerization ratio is preferably 3.0 mol% or less, more preferably 1.0 mol% or less, from the viewpoint of increasing the strength. The plant-based PE contains a large amount of branched monomer components having 4 or less carbon atoms due to impurities in the raw material, and the total amount of these components is preferably 3.0 mol% or less as a copolymerization component.

PE樹脂の好適な例とし、石油系PEにおいては、(1)中密度ポリエチレン、高密度ポリエチレン、および(2)エチレン主鎖に、エチレンとは異なる分岐成分、例えば、ブテン或いは、ヘキセン、4−メチルペンテン、ヘプテン、オクテン等を共重合させたものが、糸強度を高くできる点から好ましい。 As a suitable example of PE resin, in petroleum-based PE, (1) medium-density polyethylene, high-density polyethylene, and (2) ethylene main chain have branching components different from ethylene, such as butene or hexene, 4-. A copolymer of methylpentene, heptene, octene, etc. is preferable because the thread strength can be increased.

植物系PEにおいては、(1)ポリ(エチレン−RAN−ブチレン) モノ−OL、あるいは、(2)エチレン・1ヘキセンコポリマ−あるいは、(3)ブテン−エチレン−ヘキセン−ポリマー、あるいは、(4)ポリエチレンのいずれかが、糸強度を高くできる点から好ましい。 In plant-based PE, (1) poly (ethylene-RAN-butylene) mono-OL, (2) ethylene / 1-hexenkopolymer, (3) butene-ethylene-hexene-polymer, or (4) Any of polyethylene is preferable from the viewpoint that the thread strength can be increased.

スパンボンド不織布を構成するPE繊維はPE単成分の繊維であることが好ましい。PEの繊維化においては他ポリマーとの複合(芯鞘、海島、サイドバイサイド)も可能であるが、本発明ではPEの特性を十分に発現させ、かつ複合紡糸では到達しがたい細繊度化を達成するためPE単成分が好ましい。 The PE fiber constituting the spunbonded non-woven fabric is preferably a PE single component fiber. In the fiberization of PE, it is possible to combine it with other polymers (core sheath, sea island, side-by-side), but in the present invention, the characteristics of PE are fully expressed and fineness that is difficult to reach by composite spinning is achieved. Therefore, a single PE component is preferable.

PE単成分糸を得るためには前記したPE樹脂を原料として溶融紡糸を行うことが好ましいが、原料として複数種のPE樹脂をブレンドすることも可能である。その場合、本願発明の目的の一つである低環境負荷を達成するためには植物系PEが50wt%以上含まれることが好ましい。 In order to obtain a PE single component yarn, it is preferable to perform melt spinning using the above-mentioned PE resin as a raw material, but it is also possible to blend a plurality of types of PE resins as a raw material. In that case, in order to achieve the low environmental load, which is one of the objects of the present invention, it is preferable that the plant-based PE is contained in an amount of 50 wt% or more.

なおPE樹脂には少量の他成分ポリマーがブレンドされていても良い。他成分ポリマーとしては融点がPEに近いポリプロピレン、ポリ4メチル1ペンテンなどのポリオレフィン系ポリマーの他、低融点ポリエステル、低融点ポリアミドが挙げられる。ただしポリエチレンの特性を十分発現させるため、ブレンド物の重量比率は5wt%以下が好ましく、2wt%以下がより好ましい。またPE樹脂には着色のための顔料、酸化防止剤、ポリエチレンワックス等の滑剤、耐熱安定剤等が添加されていても良い。 The PE resin may be blended with a small amount of other component polymers. Examples of the other component polymer include polyolefin-based polymers such as polypropylene and poly4-methylpentene having a melting point close to PE, as well as low-melting point polyester and low-melting point polyamide. However, in order to fully express the characteristics of polyethylene, the weight ratio of the blend is preferably 5 wt% or less, more preferably 2 wt% or less. Further, a pigment for coloring, an antioxidant, a lubricant such as polyethylene wax, a heat-resistant stabilizer and the like may be added to the PE resin.

本発明ではPEに対して以下の条件A〜Cを満たすように飽和脂肪酸系添加剤が添加されている。
A.飽和脂肪酸系添加剤が、炭素数が12〜30の飽和脂肪酸もしくは飽和脂肪酸金属塩であり、その中の炭素数が異なる2種以上の飽和脂肪酸もしくは飽和脂肪酸金属塩からなる。
B.飽和脂肪酸系添加剤中に含まれる飽和脂肪酸もしくは飽和脂肪酸金属塩の炭素数の、最大のものと最小のもの差が4以上である。
C.ポリエチレンに対する飽和脂肪酸系添加剤全体の添加量が0.1〜10.0wt%である。
In the present invention, a saturated fatty acid-based additive is added to PE so as to satisfy the following conditions A to C.
A. The saturated fatty acid-based additive is a saturated fatty acid or a saturated fatty acid metal salt having 12 to 30 carbon atoms, and comprises two or more kinds of saturated fatty acids or saturated fatty acid metal salts having different carbon atoms.
B. The difference between the maximum and minimum carbon numbers of the saturated fatty acid or the saturated fatty acid metal salt contained in the saturated fatty acid-based additive is 4 or more.
C. The total amount of the saturated fatty acid-based additive added to polyethylene is 0.1 to 10.0 wt%.

炭素数が12〜30の飽和脂肪酸とはC12のドデカン酸からC30のメリシン酸までのことを指す。またその金属塩について、金属種としてはLi、Na、Kから選ばれるアルカリ金属、Be、Mg、Ca、Baから選ばれるアルカリ土金属元素およびAl、Znが好ましい。本発明においては2種以上の飽和脂肪酸もしくは飽和脂肪酸金属塩を用いるため、相互作用により混合状態を適切とできることから、金属種としては2価以上のBe、Mg、Ca、Ba、Al、Znがより好ましく、入手性の観点からCaが最も好ましい。なお、本発明においては2種以上の飽和脂肪酸もしくは飽和脂肪酸金属塩が相互作用性を持つことが重要であるため、2価以上である飽和脂肪酸金属塩を用いることが好ましく、特にステアリン酸Caを添加することが入手性の点から最も好ましい。 Saturated fatty acids having 12 to 30 carbon atoms refer to C12 dodecanoic acid to C30 melissic acid. As for the metal salt, the metal species are preferably an alkali metal selected from Li, Na and K, an alkaline earth metal element selected from Be, Mg, Ca and Ba, and Al and Zn. Since two or more kinds of saturated fatty acids or saturated fatty acid metal salts are used in the present invention, the mixed state can be made appropriate by interaction. Therefore, as the metal species, Be, Mg, Ca, Ba, Al, Zn having a divalent value or more can be used. More preferably, Ca is most preferable from the viewpoint of availability. In the present invention, it is important that two or more kinds of saturated fatty acids or saturated fatty acid metal salts have an interaction with each other. Therefore, it is preferable to use a saturated fatty acid metal salt having a valence of two or more, and Ca stearate is particularly used. It is most preferable to add it from the viewpoint of availability.

本発明では炭素数が12〜30の飽和脂肪酸もしくは飽和脂肪酸金属塩の中から炭素数が異なる2種以上のものが用いられ、かつ炭素数が最大のものと最小のものの炭素数の差が4以上である。炭素数の差が4以上であることで適度な相互作用を示し製糸性に優れ、シート欠点が少なく、シート加工性にも優れる。炭素数の差は過度に大きいと相互作用が低下するため15以下であることが好ましい。 In the present invention, two or more kinds of saturated fatty acids or saturated fatty acid metal salts having 12 to 30 carbon atoms having different carbon atoms are used, and the difference in carbon number between the one having the maximum carbon number and the one having the minimum carbon number is 4 That is all. When the difference in carbon number is 4 or more, an appropriate interaction is exhibited, the yarn-making property is excellent, there are few sheet defects, and the sheet processability is also excellent. If the difference in carbon number is excessively large, the interaction will decrease, so it is preferably 15 or less.

本発明においては炭素数の差が4以上である飽和脂肪酸系添加剤を2種以上併用することにより目的を達成しており、その効果を以下に記す。 In the present invention, the object is achieved by using two or more kinds of saturated fatty acid-based additives having a difference in carbon number of 4 or more in combination, and the effects thereof are described below.

PEスパンボンドの加工性の課題は、(1)製糸性に劣るため紡糸時に糸切れが生じ、糸端を起点とした毛羽によりロール巻付き等が発生することが一因であるが、加工状態を良く見ると、(2)ロールに対してのPE繊維の離型性が悪いために、糸切れしていない部分でも毛羽が生じ、巻き付きが発生することがわかった。ローラーとの離型性を向上させるには油剤等を付与する手法もあるが、油剤に起因する触感の悪さ、加工工程での熱融着への悪影響もあり好ましい手法ではない。このため比較的低炭素数(C12〜C16)の飽和脂肪酸系添加剤をPE樹脂に添加することにより(2)の課題である離型性向上、すなわちシート加工性を向上させる手段を見出した。しかし低炭素数(C12〜C16)の飽和脂肪酸系添加剤は繊維表面にブリードしやすいため触感が悪くなること(べたつき)、離型性向上効果が失われやすいことが欠点であった。 One of the problems with the workability of PE spunbond is that (1) yarn breakage occurs during spinning due to inferior yarn-making performance, and roll winding occurs due to fluff starting from the yarn end. It was found that (2) due to the poor releasability of the PE fiber with respect to the roll, fluffing occurs even in the portion where the yarn is not broken, and wrapping occurs. There is also a method of applying an oil agent or the like to improve the releasability with the roller, but it is not a preferable method because of the poor tactile sensation caused by the oil agent and the adverse effect on heat fusion in the processing process. Therefore, by adding a saturated fatty acid-based additive having a relatively low carbon number (C12 to C16) to the PE resin, we have found a means for improving the releasability, that is, the sheet processability, which is the problem of (2). However, the low-carbon (C12 to C16) saturated fatty acid-based additives have the disadvantages that they tend to bleed on the fiber surface, resulting in poor tactile sensation (stickiness) and the effect of improving releasability.

このため、比較的高炭素数(C18〜C30)の飽和脂肪酸系添加剤をさらに加えることを着想した。高炭素数の飽和脂肪酸系添加剤はブリードし難く、繊維内部にとどまり、さらに高炭素数の飽和脂肪酸系添加剤が低炭素数の飽和脂肪酸系添加剤と相互作用を起こすことで、低炭素数(C12〜C16)の飽和脂肪酸系添加剤のブリードを適切な範囲とすることができるのである。 Therefore, it was conceived to further add a saturated fatty acid-based additive having a relatively high carbon number (C18 to C30). High-carbon saturated fatty acid-based additives are difficult to bleed and stay inside the fiber, and high-carbon saturated fatty acid-based additives interact with low-carbon saturated fatty acid-based additives, resulting in low carbon number. The bleeding of the saturated fatty acid-based additives (C12 to C16) can be set in an appropriate range.

加えて、高炭素数と低炭素数の飽和脂肪酸系添加剤の併用は新たな相乗効果も発現した。すなわち前記した(1)の課題である紡糸時の糸切れに関し、飽和脂肪酸系添加剤の可塑化効果のためか、糸切れが低減できることを見出したのである。この効果に対しても高炭素数と低炭素数の併用により可塑化効果が高まり、流動性が高まったためと考える。 In addition, the combined use of high-carbon and low-carbon saturated fatty acid-based additives also produced a new synergistic effect. That is, it was found that the yarn breakage at the time of spinning, which is the problem of the above-mentioned (1), can be reduced probably because of the plasticizing effect of the saturated fatty acid-based additive. It is considered that this effect is also due to the fact that the plasticization effect is enhanced and the fluidity is enhanced by the combined use of high carbon number and low carbon number.

なお糸表面に存在する低炭素数の飽和脂肪酸系添加剤は、繊維の摩擦を低減し、離型性を向上させ加工性を改良するだけでなく、透湿性/保湿性のバランスを改良するとともに、水分を拡散する効果を有し、水分が拡がり、衛生材料に用いたときに、吸水性ポリマーに均一に吸収させることができることもわかった。従って、吸水限界になるまで、常にすべすべした心地よい肌触り感を与えることができる。 The low-carbon saturated fatty acid-based additive present on the yarn surface not only reduces the friction of the fiber, improves the releasability and improves the workability, but also improves the balance of moisture permeability / moisture retention. It was also found that it has an effect of diffusing water, spreads water, and can be uniformly absorbed by a water-absorbent polymer when used as a sanitary material. Therefore, it is possible to always give a smooth and comfortable touch until the water absorption limit is reached.

本発明においてPEに対する飽和脂肪酸系添加剤全体の添加量は0.1〜10.0wt%である。添加量が0.1wt%以上であることで前記した効果が発現し、製糸性に優れ、シート欠点が少なく、シート加工性にも優れる。添加量が多いほどこの効果は高まるため0.3wt%以上が好ましく、0.6wt%以上がより好ましい。また10.0wt%以下とすることで繊維表面への低炭素数の飽和脂肪酸系添加剤のブリードを抑制でき、触感の低下(べたつき)、熱融着性の悪化を抑制できる。この観点から添加量は2.0wt%以下が好ましく、1.0wt%以下がより好ましい。 In the present invention, the total amount of the saturated fatty acid-based additive added to PE is 0.1 to 10.0 wt%. When the addition amount is 0.1 wt% or more, the above-mentioned effect is exhibited, the silk-reeling property is excellent, the sheet defects are few, and the sheet processability is also excellent. Since this effect increases as the amount added increases, 0.3 wt% or more is preferable, and 0.6 wt% or more is more preferable. Further, when the content is 10.0 wt% or less, bleeding of a saturated fatty acid-based additive having a low carbon number on the fiber surface can be suppressed, and deterioration of tactile sensation (stickiness) and deterioration of heat-sealing property can be suppressed. From this viewpoint, the addition amount is preferably 2.0 wt% or less, more preferably 1.0 wt% or less.

なお高炭素数の飽和脂肪酸系添加剤と低炭素数の飽和脂肪酸系添加剤のバランスについては(低炭素数):(高炭素数)=(1〜55):(99〜45)の重量比であることが望ましい。高炭素数の飽和脂肪酸系添加剤が添加剤全体の45wt%以上であることで繊維内にしっかりととどまり、低炭素数の飽和脂肪酸系添加剤のブリードを抑制できる。低炭素数の飽和脂肪酸系添加剤は表面特性に作用するため、比率としては添加剤全体の1wt%以上であれば効果を発現できる。 Regarding the balance between the high carbon number saturated fatty acid type additive and the low carbon number saturated fatty acid type additive, the weight ratio of (low carbon number) :( high carbon number) = (1-55) :( 99-45) Is desirable. When the high carbon number saturated fatty acid type additive is 45 wt% or more of the total amount of the additive, it stays firmly in the fiber, and the bleeding of the low carbon number saturated fatty acid type additive can be suppressed. Since a low-carbon saturated fatty acid-based additive acts on the surface properties, the effect can be exhibited if the ratio is 1 wt% or more of the total additive.

本発明のポリエチレンスパンボンド不織布の目付けは5〜50g/mとすることが好ましい。目付が前記範囲であることで不織布の柔軟性を好適に発現することができる。この観点から目付けは10〜30g/mとすることがより好ましい。 The basis weight of the polyethylene spunbonded non-woven fabric of the present invention is preferably 5 to 50 g / m 2. When the basis weight is within the above range, the flexibility of the non-woven fabric can be suitably exhibited. From this point of view, the basis weight is more preferably 10 to 30 g / m 2.

本発明のポリエチレンスパンボンド不織布を構成する繊維の断面形状は丸が好ましい。扁平や異形断面では曲げる方向によっては同一断面積の丸断面に対し断面2次モーメントが大きくなることから繊維が固くなり、ポリエチレンの持つ柔軟性を損なう可能性があるため、丸断面が好ましい。 The cross-sectional shape of the fibers constituting the polyethylene spunbonded nonwoven fabric of the present invention is preferably round. In a flat or irregular cross section, the geometrical moment of inertia is larger than that of a round cross section having the same cross-sectional area depending on the bending direction, so that the fibers may become hard and the flexibility of polyethylene may be impaired. Therefore, a round cross section is preferable.

本発明のポリエチレンスパンボンド不織布を構成する繊維の単糸繊度は2.0dtex以下である。本発明でいう単糸繊度とは実施例記載の方法により測定された値を指す。単糸繊度を2.0dtex以下とすることで、ポリエチレンが持つ柔軟性に加え、単糸繊度が小さいことによる断面2次モーメントの低下も発現することで柔軟性がさらに向上し、かつ触感も向上する。この観点から単糸繊度は1.8dtex以下が好ましく、1.5dtex以下がより好ましい。なお単糸繊度の下限は0.5dtex程度である。 The single yarn fineness of the fibers constituting the polyethylene spunbonded non-woven fabric of the present invention is 2.0 dtex or less. The single yarn fineness referred to in the present invention refers to a value measured by the method described in Examples. By setting the single yarn fineness to 2.0 dtex or less, in addition to the flexibility of polyethylene, the decrease in the moment of inertia of area due to the small single yarn fineness is also exhibited, further improving the flexibility and improving the tactile sensation. To do. From this viewpoint, the single yarn fineness is preferably 1.8 dtex or less, more preferably 1.5 dtex or less. The lower limit of the single yarn fineness is about 0.5 dtex.

同様の理由でポリエチレンスパンボンド不織布を構成する繊維の繊維直径は17.0μm以下が好ましく、16.0μm以下がより好ましく、15.0μm以下がさらに好ましい。本発明でいう繊維直径とは実施例記載の方法により測定された値を指す。繊維直径の下限は8.0μm程度である。 For the same reason, the fiber diameter of the fibers constituting the polyethylene spunbonded non-woven fabric is preferably 17.0 μm or less, more preferably 16.0 μm or less, still more preferably 15.0 μm or less. The fiber diameter referred to in the present invention refers to a value measured by the method described in Examples. The lower limit of the fiber diameter is about 8.0 μm.

本発明のポリエチレンスパンボンド不織布を構成する単糸の複屈折率(Δn)は0.035以上であることが好ましい。本発明でいうΔnとは実施例記載の方法により測定された値を指す。Δnが0.035以上であることで分子配向が高くでき繊維の強度が高まる。この観点からΔnは0.037以上がより好ましい。 The birefringence (Δn) of the single yarn constituting the polyethylene spunbonded nonwoven fabric of the present invention is preferably 0.035 or more. Δn in the present invention refers to a value measured by the method described in Examples. When Δn is 0.035 or more, the molecular orientation can be increased and the strength of the fiber can be increased. From this viewpoint, Δn is more preferably 0.037 or more.

本発明のポリエチレンスパンボンド不織布を構成する単糸強度は120MPaが好ましい。本発明でいう単糸強度とは実施例記載の方法により測定された値を指す。単糸強度が120MPa以上であることで加工時の糸切れが抑制でき加工性が優れる。この観点から単糸強度は130MPa以上がより好ましい。 The single yarn strength constituting the polyethylene spunbonded nonwoven fabric of the present invention is preferably 120 MPa. The single yarn strength referred to in the present invention refers to a value measured by the method described in Examples. When the single yarn strength is 120 MPa or more, yarn breakage during processing can be suppressed and the workability is excellent. From this viewpoint, the single yarn strength is more preferably 130 MPa or more.

本発明のポリエチレンスパンボンド不織布の融点は120℃〜131℃であることが好ましい。本発明でいう融点とは実施例記載の方法により測定された値を指す。PE樹脂の融点は一般的には130〜135℃程度であり、分岐、他種モノマーの共重合により結晶性が低下し、融点も低下する。融点が120℃〜131℃であることで適切な結晶化度を持ち、繊維強度が向上する。 The melting point of the polyethylene spunbonded non-woven fabric of the present invention is preferably 120 ° C to 131 ° C. The melting point referred to in the present invention refers to a value measured by the method described in Examples. The melting point of the PE resin is generally about 130 to 135 ° C., and the crystallinity is lowered by branching and copolymerization of other kinds of monomers, and the melting point is also lowered. When the melting point is 120 ° C. to 131 ° C., the crystallinity is appropriate and the fiber strength is improved.

本発明のポリエチレンスパンボンド不織布の結晶融解熱量は100〜175J/gが好ましく、150〜175J/gがより好ましい。本発明でいう結晶融解熱量とは実施例記載の方法により測定された値を指す。結晶融解熱量も融点と同様、分岐、他種モノマーの共重合により結晶性が低下し、結晶融解熱量も低下する。結晶融解熱量が100〜175J/gであることで適切な結晶化度を持ち、繊維強度が向上する。 The heat of crystal melting of the polyethylene spunbonded nonwoven fabric of the present invention is preferably 100 to 175 J / g, more preferably 150 to 175 J / g. The amount of heat of crystal melting referred to in the present invention refers to a value measured by the method described in Examples. Similar to the melting point, the amount of heat of crystal melting also decreases due to branching and copolymerization of other types of monomers, and the amount of heat of crystal melting also decreases. When the amount of heat for melting the crystal is 100 to 175 J / g, the crystallinity is appropriate and the fiber strength is improved.

本発明のポリエチレンスパンボンド不織布は医療衛生材料、生活資材、工業資材等に幅広く用いることができるが、柔軟性に優れ、触感も良好であり、強度も高く、製品欠点も少ないため加工性が良好であり、さらに環境負荷も低減できることから、特に衛生材料に好適に用いることができる。具体的には使い捨ておむつ、生理用品、湿布材の基布等である。 The polyethylene spunbonded non-woven fabric of the present invention can be widely used for medical hygiene materials, daily life materials, industrial materials, etc., but it has excellent flexibility, good tactile sensation, high strength, and few product defects, so that it has good workability. Moreover, since the environmental load can be reduced, it can be particularly preferably used as a sanitary material. Specifically, they are disposable diapers, sanitary napkins, base cloths for poultices, and the like.

次に、本発明のポリエチレンスパンボンド不織布の製造方法の具体例を説明する。 Next, a specific example of the method for producing the polyethylene spunbonded nonwoven fabric of the present invention will be described.

用いる原料はPE樹脂であり、その密度、飽和脂肪酸系添加剤、その他共重合種等は前記したとおりである。 The raw material used is PE resin, and its density, saturated fatty acid-based additives, other copolymers, etc. are as described above.

PE樹脂の融点も不織布の融点とほぼ同一であり、125℃〜131℃であることが好ましい。またPE樹脂はメルトインデックス(MI)が10〜200g/10分であることが好ましく、20〜100g/10分であることがより好ましい。なお、ここでいうメルトインデックスとはASTM D1238に準拠して、190℃、荷重2.16kgで測定した値を指す。このような範囲のPE樹脂を用いることで、高速で牽引しても曳糸性に優れるためシート欠点が少なく、かつ細繊度化が可能であり、高速牽引により分子配向を高めて繊維の強度を高めることができる。 The melting point of the PE resin is also substantially the same as the melting point of the non-woven fabric, preferably 125 ° C to 131 ° C. The PE resin preferably has a melt index (MI) of 10 to 200 g / 10 minutes, and more preferably 20 to 100 g / 10 minutes. The melt index referred to here refers to a value measured at 190 ° C. and a load of 2.16 kg in accordance with ASTM D1238. By using PE resin in such a range, even if it is towed at high speed, it has excellent spinnability, so there are few sheet defects and fineness can be achieved. Can be enhanced.

PE樹脂は特に乾燥等を行うことなく、溶融紡糸に供する。溶融紡糸では単軸・2軸エクストルーダー型などの押出機を用いた公知の溶融紡糸手法を適用することができる。押し出されたポリマーは配管を経由しギアーポンプなど公知の計量装置により計量され、異物除去のフィルターを通過した後、口金へと導かれる。このときポリマー配管から口金までの温度(紡糸温度)は流動性を高めるため160〜250℃程度とする。 The PE resin is subjected to melt spinning without being particularly dried. For melt spinning, a known melt spinning method using an extruder such as a single-screw or twin-screw extruder can be applied. The extruded polymer is weighed by a known weighing device such as a gear pump via a pipe, passed through a foreign matter removing filter, and then guided to a mouthpiece. At this time, the temperature from the polymer pipe to the base (spinning temperature) is set to about 160 to 250 ° C. in order to improve the fluidity.

吐出において使用する口金は、口金孔の孔径Dを0.10mm以上、0.60mm以下とすることが好ましく、口金孔のランド長L(口金孔の孔径と同一の直管部の長さ)を孔径で除した商で定義されるL/Dは、1.0以上、10.0以下が好ましい。 The mouthpiece used for discharge preferably has a hole diameter D of the mouthpiece hole of 0.10 mm or more and 0.60 mm or less, and has a land length L of the mouthpiece hole (the length of a straight pipe portion same as the hole diameter of the mouthpiece hole). The L / D defined by the quotient divided by the pore size is preferably 1.0 or more and 10.0 or less.

口金孔から吐出した糸条は、空気により冷却固化させる。冷却風の温度は、冷却効率の観点から冷却風速とのバランスで決定すればよいが、繊度均一性の点から50℃以下であることが好ましい。また、冷却気体は糸条にほぼ垂直方向に流すことにより、糸条を冷却させる。その際、冷却風の速度は冷却効率および繊度均一性の点から5m/分以上が好ましく、製糸安定性の点から100m/分以下が好ましい。また、口金から20mm以上、500mm以内で冷却を開始し、冷却固化することが好ましい。20mm未満の距離で冷却を開始すると、口金表面温度が低下し吐出が不安定となることがあり、500mm以内で冷却を開始しない場合には、細化挙動の安定性が維持できず、安定した紡糸ができないことがある。 The yarn discharged from the mouthpiece hole is cooled and solidified by air. The temperature of the cooling air may be determined in balance with the cooling air speed from the viewpoint of cooling efficiency, but is preferably 50 ° C. or less from the viewpoint of fineness uniformity. In addition, the cooling gas cools the yarn by flowing it in a direction substantially perpendicular to the yarn. At that time, the speed of the cooling air is preferably 5 m / min or more from the viewpoint of cooling efficiency and fineness uniformity, and preferably 100 m / min or less from the viewpoint of silk reeling stability. Further, it is preferable to start cooling within 20 mm or more and 500 mm or less from the base to cool and solidify. If cooling is started at a distance of less than 20 mm, the surface temperature of the base may drop and the discharge may become unstable. If cooling is not started within 500 mm, the stability of the thinning behavior cannot be maintained and it becomes stable. You may not be able to spin.

口金孔から吐出した糸条は、口金から400mm以上、7,000mm以内の位置で加速した空気流により牽引される。加速空気流は冷却風を吹かせる領域を密閉とし、紡糸線下流に向かうにしたがって、徐々に密閉領域の断面積を小さくすることにより空気流速を加速させるようにしても良いが、より高い空気流速を得るためにはエジェクターを用いることが好ましい。この空気流速によって糸条は加速され、繊維の走行速度である紡糸速度も空気流速と近い速度に到達する。なお紡糸速度は以下の式により算出する値を指す。 The yarn discharged from the mouthpiece hole is towed by an accelerated air flow at a position of 400 mm or more and 7,000 mm or less from the mouthpiece. The accelerating air flow may be made to seal the region where the cooling air is blown, and the air flow velocity may be accelerated by gradually reducing the cross-sectional area of the sealed region toward the downstream of the spinning line, but the air flow velocity may be higher. It is preferable to use an ejector in order to obtain. The yarn is accelerated by this air flow velocity, and the spinning speed, which is the running speed of the fiber, reaches a speed close to the air flow velocity. The spinning speed refers to the value calculated by the following formula.

紡糸速度(km/分)=Q・10/D
Q:単孔吐出量(g/分)、D:単糸繊度(dtex)
紡糸速度は3.0km/分以上が細繊度、高強度化のためには好ましく、4.0km/分がより好ましい。なお空気流速も同様に3.0km/分以上が好ましい。また紡糸速度の上限は10.0km/分程度である。
Spinning speed (km / min) = Q ・ 10 / D
Q: Single hole discharge amount (g / min), D: Single yarn fineness (dtex)
The spinning speed is preferably 3.0 km / min or more for fineness and high strength, and more preferably 4.0 km / min. Similarly, the air flow velocity is preferably 3.0 km / min or more. The upper limit of the spinning speed is about 10.0 km / min.

空気牽引された糸条は、周囲の空気流速を減じるような開繊部を通過することにより開繊し、その後裏面から空気吸引されるネットコンベアーに着地し、捕集される。捕集されたウェブは10〜1200m/分でコンベアー搬送され、その後エンボス、カレンダー加工を行うことでスパンボンド不織布が得られる。 The air-towed yarn is opened by passing through an opening portion that reduces the flow velocity of the surrounding air, and then lands on a net conveyor that is air-sucked from the back surface and is collected. The collected web is conveyed on a conveyor at 10 to 1200 m / min, and then embossed and calendered to obtain a spunbonded non-woven fabric.

本発明のPEスパンボンド不織布についてプロセスの面から重要な点は3km/分以上の紡糸速度での高速紡糸である。スパンボンドは高速紡糸プロセスであるが、固化した後に繊維を引き伸ばすことはないため、繊維の強度は固化するまでに形成される繊維構造に支配される。このため高強度化には細化完了から固化するまでの間に繊維に高い応力を与え、分子鎖を高配向状態で固定することが重要となる。糸条に高い応力を与える手段としてはスパンボンドにおいては高速紡糸が有効であるが、ポリマー種によっては紡糸線上流(口金に近い場所)での細化が進みやすくなり場合によっては糸切れとなる。本発明では特定範囲の密度のPEを用い、かつ特定の飽和脂肪酸系添加剤を添加することで流動性を向上させ、細化を緩やかとし、紡糸線上流での糸切れを防ぐとともに、結晶化に起因する固化までの間で十分な応力を付与して分子鎖を配向させ、かつ十分結晶化することで構造を固定できるため高強度化できると推測している。 The important point in terms of the process of the PE spunbonded non-woven fabric of the present invention is high-speed spinning at a spinning speed of 3 km / min or more. Although spunbonding is a high-speed spinning process, it does not stretch the fibers after solidification, so the strength of the fibers is dominated by the fiber structure formed before solidification. Therefore, in order to increase the strength, it is important to apply high stress to the fibers from the completion of thinning to the solidification and to fix the molecular chains in a highly oriented state. High-speed spinning is effective in spunbonding as a means of applying high stress to the yarn, but depending on the polymer type, thinning tends to proceed upstream of the spinning line (a place near the base), and in some cases, yarn breakage occurs. .. In the present invention, PE having a specific range of densities is used, and by adding a specific saturated fatty acid-based additive, fluidity is improved, thinning is slowed down, yarn breakage is prevented upstream of the spinning line, and crystallization occurs. It is presumed that the structure can be fixed by applying sufficient stress until solidification due to the above, aligning the molecular chains, and sufficiently crystallizing, so that the strength can be increased.

以下、実施例により本発明をより具体的に説明する。なお実施例中の各特性値は次の方法で求めた。 Hereinafter, the present invention will be described in more detail with reference to Examples. Each characteristic value in the examples was obtained by the following method.

A.繊維直径、単糸繊度
繊維の側面の顕微鏡観察から繊維の直径を求め、1水準につき10回測定を行い、平均値を繊維直径とした。次に繊維を丸断面として扱い、繊維直径から以下の式を用いて単糸繊度を求めた。
A. Fiber diameter and single yarn fineness The fiber diameter was determined from the microscopic observation of the side surface of the fiber, measured 10 times per level, and the average value was taken as the fiber diameter. Next, the fiber was treated as a round cross section, and the single yarn fineness was determined from the fiber diameter using the following formula.

単糸繊度(dtex)=π・ρ・d/400
ρ:樹脂密度(g/cm)、d:繊維直径(μm)
B.単糸の複屈折率(Δn)
不織布から抜き出した単糸を用い、偏光顕微鏡(OLYMPUS社製BH−2)を用いコンペンセーター法により試料1水準につき3回の測定を行い、平均値として求めた。
Single yarn fineness (dtex) = π · ρ · d 2/400
ρ: Resin density (g / cm 3 ), d: Fiber diameter (μm)
B. Birefringence of single yarn (Δn)
Using a single yarn extracted from the non-woven fabric, measurement was performed three times per sample level by the compensator method using a polarizing microscope (BH-2 manufactured by OLYMPUS), and the average value was obtained.

C.熱特性
示差走査熱量計(TA Instruments社製DSCQ1000)で窒素下、昇温速度16℃/分の条件で示差走査熱量測定を行い、吸熱ピークの温度を融点(Tm)とし、Tmでの融解熱量をΔHm(J/g)とした。
C. Thermal characteristics Differential scanning calorimetry (DSCQ1000 manufactured by TA Instruments) is used to measure differential scanning calorimetry under nitrogen and at a heating rate of 16 ° C./min. Was ΔHm (J / g).

D.単糸強度
カレンダー加工を行う前のウェッブを採取し、ここから単糸を約50mm引き出し、JIS L1013:2010記載の方法に準じて、試料長20mm、引張速度20mm/分の条件で、(株)オリエンテック社製テンシロンUCT−100を用い1水準当たり10回の測定を行い、平均値を強力(cN)とした。またA.で求めた繊維直径を丸断面と仮定して繊維断面積を求め、強力を繊維断面積で除して単糸強度(MPa)とした。
D. Single yarn strength A web before calendar processing is collected, a single yarn is pulled out from this by about 50 mm, and according to the method described in JIS L1013: 2010, the sample length is 20 mm and the tensile speed is 20 mm / min. Tencilon UCT-100 manufactured by Orientec Co., Ltd. was used to measure 10 times per level, and the average value was set to strong (cN). In addition, A. The fiber cross-section was obtained by assuming that the fiber diameter obtained in (1) was a round cross section, and the strength was divided by the fiber cross-section to obtain the single yarn strength (MPa).

E.シート欠点
スパンボンド不織布の幅(CD)方向の中心で10cm角の領域をルーペで目視観察し、糸切れに起因して繊維径が平均の繊維直径よりも3倍以上太くなっているもの、また繊維の切れ端が丸くなって平均の繊維直径よりも3倍以上太く見えるものを欠点として扱い、その個数を数えた。この観察を不織布の長手(MD)方向に5回繰り返し、合計の個数をシート欠点数とした。
E. Sheet defects A 10 cm square area at the center of the spunbonded non-woven fabric in the width (CD) direction is visually observed with a loupe, and the fiber diameter is three times or more larger than the average fiber diameter due to thread breakage. Those with rounded pieces of fibers that appeared to be three times or more thicker than the average fiber diameter were treated as defects, and the number was counted. This observation was repeated 5 times in the longitudinal direction (MD) of the non-woven fabric, and the total number was taken as the number of sheet defects.

F.シート柔軟性
シート触感の官能評価を行い、柔軟性に優れるものを5点、劣るものを1点として絶対評価で点数をつけた。これを10名で行い平均点を柔軟性(点)とした。
F. Sheet flexibility A sensory evaluation of the sheet tactile sensation was performed, and a score was given by absolute evaluation, with 5 points being excellent in flexibility and 1 point being inferior. This was done by 10 people and the average score was defined as flexibility (points).

G.シート加工性
シートをゴム製のニップローラーを用いて20m/分で5分間走行させた。このときのロール付着物、シートの状態を観察し、以下の基準で点数付けを行い加工性(点)とした。
G. Sheet workability The sheet was run at 20 m / min for 5 minutes using a rubber nip roller. The state of the roll deposits and the sheet at this time was observed, and points were given according to the following criteria to determine workability (points).

5点:ロールに繊維付着物がなく、シートの毛羽、破れも見られない。 5 points: No fiber deposits on the roll, no fluffing or tearing of the sheet.

4点:ロールに繊維付着物があるが、シートの毛羽、破れは見られない。 4 points: There are fiber deposits on the roll, but no fluff or tear of the sheet is seen.

3点:ロールに繊維付着物があり、シートの毛羽もあるが、破れは見られない。 3 points: There are fiber deposits on the roll and there is fluff on the sheet, but no tearing is seen.

2点:ロールに繊維付着物があり、シートの毛羽もあり、破れがある。 2 points: There are fiber deposits on the roll, there is fluff on the sheet, and there is tearing.

1点:シートの破れによりロールにシートが巻きつく。 1 point: The sheet wraps around the roll due to the tearing of the sheet.

実施例1
検討に用いたポリエチレン(PE)種を表1に示す。また飽和脂肪酸系添加剤種を表2に示す。PE種、MIが表1に記載された値を持つPE樹脂に、表2に記載された飽和脂肪酸系添加剤を添加し、単軸エクストルーダーにて溶融押出しし、ギアーポンプで計量しつつ紡糸口金に樹脂を供給した。紡糸温度(口金温度)は230℃とし、孔径Dが0.30mm、ランド長Lが0.70mmの口金孔をCD方向に600個/m有する口金より、単孔吐出量0.6g/分の条件でポリマーを吐出した。なお、口金孔の直上に位置する導入孔はストレート孔とし、導入孔と口金孔の接続部分はテーパーとしたものを用いた。吐出したポリマーは50mmの保温領域を通過させた後、25℃、40m/分の空気流により糸条の外側から冷却し固化させた。その後、口金から550mmの位置に設置したエジェクターにて加速した空気流で牽引した。エジェクターを通過した糸条はネットコンベアー上に捕集され、20m/分の速度で搬送した。その後、カレンダー加工を行い18g/mのポリエチレンスパンボンド不織布を得た。
Example 1
Table 1 shows the polyethylene (PE) species used in the study. Table 2 shows the types of saturated fatty acid-based additives. The saturated fatty acid-based additives listed in Table 2 are added to the PE resin having the values of PE type and MI shown in Table 1, melt-extruded with a uniaxial extruder, and spun cap while measuring with a gear pump. The resin was supplied to. The spinning temperature (base temperature) is 230 ° C., and the single hole discharge rate is 0.6 g / min from a mouthpiece having 600 mouthpiece holes with a hole diameter D of 0.30 mm and a land length L of 0.70 mm in the CD direction. The polymer was discharged under the conditions. The introduction hole located directly above the mouthpiece hole was a straight hole, and the connection portion between the introduction hole and the mouthpiece hole was tapered. The discharged polymer was passed through a heat insulating region of 50 mm, and then cooled and solidified from the outside of the yarn by an air flow at 25 ° C. and 40 m / min. After that, it was towed by an accelerated air flow with an ejector installed at a position 550 mm from the base. The threads that passed through the ejector were collected on a net conveyor and transported at a speed of 20 m / min. Then, calendering was performed to obtain a polyethylene spunbonded non-woven fabric of 18 g / m 2.

単糸繊度と単孔吐出量から計算した紡糸速度を表3に示す。紡糸速度は4.0km/分となったが、約10分のテスト中、目立った糸切れは見られず曳糸性は良好であった。 Table 3 shows the spinning speed calculated from the single yarn fineness and the single hole discharge amount. The spinning speed was 4.0 km / min, but during the test for about 10 minutes, no noticeable yarn breakage was observed and the spinnability was good.

得られたシート特性を表3に示す。表3から分かるようにシート欠点が少なく、単糸繊度が2.0dtex以下と細いため柔軟性に優れ、加工性にも優れることが分かる。 The obtained sheet characteristics are shown in Table 3. As can be seen from Table 3, there are few sheet defects, and since the single yarn fineness is as thin as 2.0 dtex or less, it is excellent in flexibility and workability.

Figure 0006870480
Figure 0006870480

Figure 0006870480
Figure 0006870480

Figure 0006870480
Figure 0006870480

実施例2、3、比較例1
表3に示すようにPE種を変更し、またエジェクターでの牽引速度を変更し紡糸速度を変化させた以外は実施例1と同様の条件でテストを行い、ポリエチレンスパンボンド不織布を得た。
Examples 2, 3 and Comparative Example 1
As shown in Table 3, the test was carried out under the same conditions as in Example 1 except that the PE type was changed and the traction speed at the ejector was changed to change the spinning speed to obtain a polyethylene spunbonded non-woven fabric.

単糸繊度と単孔吐出量から計算した紡糸速度を表3に示す。実施例2は紡糸速度が5.0km/分となったが10分のテスト中、目立った糸切れは見られず曳糸性は良好であった。また比較例1は曳糸性に劣り、計算した紡糸速度は2km/分であった。 Table 3 shows the spinning speed calculated from the single yarn fineness and the single hole discharge amount. In Example 2, the spinning speed was 5.0 km / min, but during the 10-minute test, no noticeable yarn breakage was observed and the spinnability was good. Further, Comparative Example 1 was inferior in spinnability, and the calculated spinning speed was 2 km / min.

得られたシート特性を表3に示す。比較例1では単糸繊度が4.0dtexのため柔軟性に劣り、かつΔnが小さいため単糸強度が低く、加工性にも劣る。実施例2、3では単糸繊度が小さいため柔軟性に優れ、シート欠点が少なく、加工性にも優れることが分かる。 The obtained sheet characteristics are shown in Table 3. In Comparative Example 1, since the single yarn fineness is 4.0 dtex, the flexibility is inferior, and since Δn is small, the single yarn strength is low and the workability is also inferior. It can be seen that in Examples 2 and 3, since the single yarn fineness is small, the flexibility is excellent, the sheet defects are few, and the workability is also excellent.

実施例4〜7、比較例2
表3に示すようにPE種を変更し、また飽和脂肪酸系添加剤種および量を変更し、エジェクターでの牽引速度を変更し紡糸速度を変化させた以外は実施例1と同様の条件でテストを行い、ポリエチレンスパンボンド不織布を得た。
Examples 4 to 7, Comparative Example 2
Tested under the same conditions as in Example 1 except that the PE species were changed, the saturated fatty acid additive species and amount were changed, the traction speed at the ejector was changed, and the spinning speed was changed as shown in Table 3. Was carried out to obtain a polyethylene spunbonded non-woven fabric.

単糸繊度と単孔吐出量から計算した紡糸速度を表3に示す。また得られたシート特性を表3に示す。比較例2では飽和脂肪酸系添加剤種の炭素数が小さいために表面にブリードするためか、触感にべたつきがあり、シート欠点が見られ柔軟性にも劣る結果となった。実施例4〜7では柔軟性に優れ、シート欠点が少なく、加工性にも優れることが分かる。 Table 3 shows the spinning speed calculated from the single yarn fineness and the single hole discharge amount. Table 3 shows the obtained sheet characteristics. In Comparative Example 2, the saturated fatty acid-based additive species had a small number of carbon atoms and therefore bleeded on the surface, resulting in a sticky texture, sheet defects, and inferior flexibility. It can be seen that Examples 4 to 7 have excellent flexibility, few sheet defects, and excellent workability.

Claims (3)

密度が0.915〜0.965g/cmのポリエチレンからなり、単糸繊度が2.0dtex以下であり、ポリエチレンに対して以下の条件A〜Cを満たすように飽和脂肪酸系添加剤が添加されてなることを特徴とするポリエチレンスパンボンド不織布。
A.飽和脂肪酸系添加剤が、炭素数が12〜30の飽和脂肪酸もしくは飽和脂肪酸金属塩であり、その中の炭素数が異なる2種以上の飽和脂肪酸もしくは飽和脂肪酸金属塩からなる。
B.飽和脂肪酸系添加剤中に含まれる飽和脂肪酸もしくは飽和脂肪酸金属塩の炭素数の、最大のものと最小のもの差が4以上である。
C.ポリエチレンに対する飽和脂肪酸系添加剤全体の添加量が0.1〜10.0wt%である。
It is composed of polyethylene having a density of 0.915 to 0.965 g / cm 3 , a single yarn fineness of 2.0 dtex or less, and a saturated fatty acid-based additive is added to polyethylene so as to satisfy the following conditions A to C. Polyethylene spunbonded non-woven fabric characterized by being made of
A. The saturated fatty acid-based additive is a saturated fatty acid or a saturated fatty acid metal salt having 12 to 30 carbon atoms, and comprises two or more kinds of saturated fatty acids or saturated fatty acid metal salts having different carbon atoms.
B. The difference between the maximum and minimum carbon numbers of the saturated fatty acid or the saturated fatty acid metal salt contained in the saturated fatty acid-based additive is 4 or more.
C. The total amount of the saturated fatty acid-based additive added to polyethylene is 0.1 to 10.0 wt%.
ポリエチレンが植物系ポリエチレンを50wt%以上含んでいることを特徴とする請求項1記載のポリエチレンスパンボンド不織布。 The polyethylene spunbonded non-woven fabric according to claim 1, wherein the polyethylene contains 50 wt% or more of plant-based polyethylene. 飽和脂肪酸系添加剤の成分としてステアリン酸カルシウムを含んでいることを特徴とする請求項1または2に記載のポリエチレンスパンボンド不織布。 The polyethylene spunbonded non-woven fabric according to claim 1 or 2, which contains calcium stearate as a component of a saturated fatty acid-based additive.
JP2017106244A 2017-05-30 2017-05-30 Polyethylene spunbonded non-woven fabric Active JP6870480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017106244A JP6870480B2 (en) 2017-05-30 2017-05-30 Polyethylene spunbonded non-woven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017106244A JP6870480B2 (en) 2017-05-30 2017-05-30 Polyethylene spunbonded non-woven fabric

Publications (2)

Publication Number Publication Date
JP2018199887A JP2018199887A (en) 2018-12-20
JP6870480B2 true JP6870480B2 (en) 2021-05-12

Family

ID=64668069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017106244A Active JP6870480B2 (en) 2017-05-30 2017-05-30 Polyethylene spunbonded non-woven fabric

Country Status (1)

Country Link
JP (1) JP6870480B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533289B2 (en) * 1994-01-10 1996-09-11 ユニチカ株式会社 Fiber made of a blended structure of polyethylene and polypropylene
JP3389927B2 (en) * 2000-05-29 2003-03-24 チッソ株式会社 Polyethylene composite fiber and nonwoven fabric using the same
JP2004353129A (en) * 2003-05-29 2004-12-16 Chisso Corp Member for hygiene
BRPI0507126A (en) * 2004-01-26 2007-06-19 Procter & Gamble fibers and nonwovens comprising blends and mixtures of polyethylenes
US20070055015A1 (en) * 2005-09-02 2007-03-08 Kraton Polymers U.S. Llc Elastomeric fibers comprising controlled distribution block copolymers
DE102006044496A1 (en) * 2006-09-21 2008-04-17 Fiberweb Corovin Gmbh Lightweight spunbonded fabric with special mechanical properties
EP3456301B1 (en) * 2011-04-27 2020-02-26 Mitsui Chemicals, Inc. Fiber, nonwoven fabric and uses thereof
KR101231985B1 (en) * 2011-04-27 2013-02-08 도레이첨단소재 주식회사 Composite non-woven fabric comprising a composition derived from a plant and manufacturing method thereof
US10844205B2 (en) * 2014-07-03 2020-11-24 Idemitsu Kosan Co., Ltd. Spunbonded non-woven fabric and method for manufacturing same

Also Published As

Publication number Publication date
JP2018199887A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
US7491770B2 (en) Fibers and nonwovens comprising polypropylene blends and mixtures
CA2554101C (en) Fibers and nonwovens comprising polyethylene blends and mixtures
CA2697552C (en) Elastic spunbonded nonwoven and elastic nonwoven fabric comprising the same
US20050203232A1 (en) Ethylene copolymer modified oriented polypropylene
US20120108714A1 (en) Nonwoven and yarn polypropylene with additivation
WO2007091444A1 (en) Spun-bonded nonwoven fabric
JP7110795B2 (en) spunbond nonwoven fabric
US20040229988A1 (en) Alkyl acrylate copolymer modified oriented polypropylene films, tapes, fibers and nonwoven textiles
TWI776814B (en) Heat-fusible composite fibers and nonwoven fabrics and products using the same
JP6870480B2 (en) Polyethylene spunbonded non-woven fabric
JP6753254B2 (en) Polyethylene spunbonded non-woven fabric
JP6897326B2 (en) Non-woven
US20040224591A1 (en) Alkyl acrylate copolymer modified oriented polypropylene films, tapes, fibers and woven and nonwoven textiles
JP7035359B2 (en) Polyethylene spunbonded non-woven fabric
EP1651709B1 (en) Alkyl acrylate copolymer modified oriented polypropylene films, tapes, fibers and woven and nonwoven textiles
US7470748B2 (en) Polymeric fibers and fabrics
JP7211070B2 (en) spunbond nonwoven fabric
JP2022168838A (en) Spun-bonded nonwoven fabric and manufacturing method thereof, and sanitary material
KR20070016109A (en) Fibers and nonwovens comprising polypropylene blends and mixtures
KR20070016110A (en) Fibers and nonwovens comprising polyethylene blends and mixtures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R151 Written notification of patent or utility model registration

Ref document number: 6870480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151