JP2904966B2 - Thermally splittable composite fiber - Google Patents

Thermally splittable composite fiber

Info

Publication number
JP2904966B2
JP2904966B2 JP19898591A JP19898591A JP2904966B2 JP 2904966 B2 JP2904966 B2 JP 2904966B2 JP 19898591 A JP19898591 A JP 19898591A JP 19898591 A JP19898591 A JP 19898591A JP 2904966 B2 JP2904966 B2 JP 2904966B2
Authority
JP
Japan
Prior art keywords
heat
melting
low
polymer
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19898591A
Other languages
Japanese (ja)
Other versions
JPH04316608A (en
Inventor
章浩 岩井
祥夫 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UBE NITSUTO KASEI KK
Original Assignee
UBE NITSUTO KASEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16400199&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2904966(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by UBE NITSUTO KASEI KK filed Critical UBE NITSUTO KASEI KK
Priority to JP19898591A priority Critical patent/JP2904966B2/en
Publication of JPH04316608A publication Critical patent/JPH04316608A/en
Application granted granted Critical
Publication of JP2904966B2 publication Critical patent/JP2904966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は熱処理により分割して極
細繊維を形成する熱分割性複合繊維およびこれを用いる
不織布の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-division conjugate fiber which is divided by heat treatment to form ultrafine fibers, and a method for producing a nonwoven fabric using the same.

【0002】[0002]

【従来の技術】熱接着性複合繊維からなる不織布は、そ
の製造過程でバインダーを使用する必要がなく、紙オム
ツやナプキン等の衛生材料の表面材として使用されてき
た。これらの不織布を製造するには融点の異なる2種類
の重合体を鞘芯型やサイドバイサイド型の複合繊維とし
て紡糸し、次いで延伸、捲縮、カットしてカード機に供
給し均一なウェッブとした後、このウェッブを低融点成
分の軟化点以上の温度で熱風融着或は熱ロール融着して
不織布としている。このようなサーマルボンドタイプの
不織布の風合いや触感を向上させるために多数の提案が
なされている。しかしながら、最も効果の上がる繊維自
体の細デニール化(極細化)は、カード機の通過性のた
め単糸で1deまでしか対応が出来なかった。
2. Description of the Related Art Nonwoven fabrics made of heat-adhesive conjugate fibers do not require the use of a binder in the production process, and have been used as surface materials for sanitary materials such as paper diapers and napkins. In order to produce these nonwoven fabrics, two kinds of polymers having different melting points are spun as a sheath-core type or side-by-side type composite fiber, and then drawn, crimped, cut and supplied to a card machine to form a uniform web. The web is fused with hot air or hot rolls at a temperature equal to or higher than the softening point of the low melting point component to form a nonwoven fabric. Many proposals have been made to improve the feel and feel of such a thermal bond type nonwoven fabric. However, the most effective denier (extremely fine) of the fiber itself, which is most effective, could only be dealt with up to 1 de with a single yarn due to the passability of a carding machine.

【0003】[0003]

【発明の目的】本発明の第1の目的は、風合いや触感に
すぐれた不織布を製造するのに好適な熱分割性複合繊維
を提供することにある。本発明の第2の目的は、前記熱
分割性繊維から風合いや触感にすぐれた不織布を製造す
る方法を提供することにある。
SUMMARY OF THE INVENTION It is a first object of the present invention to provide a heat-dividing conjugate fiber suitable for producing a nonwoven fabric having an excellent texture and touch. A second object of the present invention is to provide a method for producing a nonwoven fabric having excellent texture and touch from the heat-dividing fibers.

【0004】[0004]

【発明の構成】上記第1の目的を達成する本発明の熱分
割性複合繊維は、ポリエチレンテレフタレートまたはポ
リアミドからなる高融点ポリマーセグメントとエチレン
・プロピレンランダムコポリマーまたはエチレン・プロ
ピレン・ブテン−1ランダムターポリマーからなる低融
点ポリマーセグメントが相互に接合した断面形状を有
し、低融点ポリマーの融点より10℃低い温度における
高融点ポリマーと低融点ポリマーの熱収縮率の差が50
〜75%であることを特徴とする。また上記第2の目的
を達成する本発明の不織布の製造方法は、前記の熱分割
性複合繊維をカード機によりウェッブに形成した後、
ウェッブを高融点ポリマーと低融点ポリマーの熱収縮率
の差が50%以上となる温度域で熱処理することにより
上記熱分割性複合繊維を分割細繊化し極細繊維のウェッ
ブとした後、熱的或いは機械的絡合手段で不織布を得る
ことを特徴とする。
The heat-splitting conjugate fiber of the present invention, which achieves the first object, is made of polyethylene terephthalate or polyethylene terephthalate.
High melting polymer segment composed of lamide and ethylene
・ Propylene random copolymer or ethylene pro
The low-melting polymer segments composed of pyrene-butene-1 random terpolymer have a cross-sectional shape joined to each other, and the difference in heat shrinkage between the high-melting polymer and the low-melting polymer at a temperature 10 ° C. lower than the melting point of the low-melting polymer is as follows. 50
~ 75%. The manufacturing method of the nonwoven fabric of the present invention to achieve the above second object, after forming a web by carding machine the heat dividable composite fibers, said
The web is heat-treated in a temperature range in which the difference in thermal shrinkage between the high-melting polymer and the low-melting polymer is 50% or more, so that the heat-dividing composite fiber is divided into fine fibers to form a web of ultrafine fibers. The non-woven fabric is obtained by mechanical entanglement means.

【0005】先ず本発明の熱分割性複合繊維について説
明する。本発明の熱分割性繊維は、高融点ポリマーセグ
メントと低融点ポリマーセグメントが相互に接合した断
面形状を有する。このような断面形状としては、図1
(a)〜(g)に示すように高融点ポリマーセグメント
Aと低融点ポリマーセグメントBとが相互に接合してお
り、高融点ポリマーセグメントAの少なくとも1部およ
び低融点ポリマーセグメントBの少なくとも1部が露出
しているものが好ましい。また高融点ポリマーセグメン
トと低融点ポリマーセグメントはこれらの合計で4つ以
上接合しているのが好ましい。高融点ポリマーセグメン
トを構成するポリマーとしては、ポリエチレンテレフタ
レート(以下PETという)、ポリアミド(以下PAと
いう)などが用いられ、一方低融点ポリマーセグメント
を構成するポリマーとしては、エチレン・プロピレンラ
ンダムコポリマー(以下EPランダムコポリマーとい
う)、エチレン・プロピレン・プテン−1ランダムター
ポリマー(以下EPBランダムターポリマーという)な
どが用いられる。
First, the heat-dividing conjugate fiber of the present invention will be described. The heat-dividing fiber of the present invention has a cross-sectional shape in which a high-melting polymer segment and a low-melting polymer segment are joined to each other. As such a sectional shape, FIG.
As shown in (a) to (g), the high-melting polymer segment A and the low-melting polymer segment B are bonded to each other, and at least one part of the high-melting polymer segment A and at least one part of the low-melting polymer segment B Are preferably exposed. It is preferable that a total of four or more high-melting polymer segments and low-melting polymer segments are joined. As the polymer constituting the high melting point polymer segment, polyethylene terephthalate (hereinafter referred to as PET), polyamide (hereinafter referred to as PA) or the like is used. On the other hand, as the polymer constituting the low melting point polymer segment, an ethylene / propylene random copolymer (hereinafter referred to as EP) is used. Random terpolymer (hereinafter referred to as EPB random terpolymer) and the like.

【0006】本発明の熱分割性複合繊維においては、低
融点ポリマーの融点より10℃低い温度における高融点
ポリマーと低融点ポリマーの熱収縮率の差が50〜75
%であることが必須である。両ポリマーの熱収縮率の差
を低融点ポリマーの融点より10℃低い温度で評価する
理由は、この温度が低融点ポリマー繊維の形態を残して
安定に操業できる上限の温度であるからである。
In the heat-splitting conjugate fiber of the present invention, the difference in heat shrinkage between the high-melting polymer and the low-melting polymer at a temperature 10 ° C. lower than the melting point of the low-melting polymer is 50 to 75.
% Is essential. The difference between the thermal shrinkage rates of the two polymers is evaluated at a temperature lower by 10 ° C. than the melting point of the low-melting polymer, because this temperature is the upper limit temperature at which the low-melting polymer fibers can be stably operated while retaining the form.

【0007】低融点ポリマーの融点より10℃低い温度
での高融点ポリマーと低融点ポリマーの熱収縮率の差Δ
Sは下式によって求められる。 ΔS(%)=Slmp(%)−Shmp(%) ここにSlmpおよびShmpは、それぞれ低融点ポリ
マー(lmp)および高融点ポリマー(hmp)の低融
点ポリマーの融点より10℃低い温度での熱収縮率であ
り、未収縮時の繊維長(Llmp1,Lhmp1)と低
融点ポリマーの融点より10℃低い温度で15分間熱処
理したときの熱収縮後の繊維長(Llmp2,L
hmp2)から下式によって求められる。
[0007] Difference in heat shrinkage of high-melting polymer and low-melting polymer at a temperature 10 ° C. lower than the melting point of low-melting polymer Δ
S is obtained by the following equation. ΔS (%) = S lmp (%) − S hmp (%) Here, S lmp and S hmp are temperatures lower by 10 ° C. than the melting points of the low-melting polymers (lmp) and the high-melting polymer (hmp), respectively. a thermal shrinkage at a fiber length of at unshrunk (L lmp1, L hmp1) and fiber length after heat shrinkage when heat-treated for 15 minutes at from 10 ° C. lower temperature of the low melting polymer melting (L LMP2, L
hmp2 ) by the following equation.

【0008】[0008]

【数1】 (Equation 1)

【0009】そして本発明においてΔSを50〜75%
に限定した理由は、ΔSが50%未満では、熱分割性複
合繊維の分割率が低く、加熱によって極細繊維が得られ
にくく、ひいては風合いや触感の良い不織布が得られ
ず、一方繊維がその形態を保持できる上限の温度に近
い、融点より10℃低い温度で75%以上の収縮率差を
生じる低融点ポリマーは実在しないからである。
In the present invention, ΔS is set to 50 to 75%
The reason is that if ΔS is less than 50%, the heat-dividing conjugate fiber has a low splitting ratio, it is difficult to obtain ultrafine fibers by heating, and thus a nonwoven fabric with good texture and touch is not obtained. This is because there is no low-melting-point polymer that produces a difference in shrinkage of 75% or more at a temperature 10 ° C. lower than the melting point, which is close to the upper limit temperature at which the temperature is maintained.

【0010】上記の如き構成を有する本発明の熱分割性
複合繊維は、複合溶融紡糸装置に高融点ポリマーと低融
点ポリマーとを供給し、図1に示す断面形状に対応する
複合溶融紡糸口金を用いて紡糸し、得られた未延伸糸を
延伸し、捲縮を付与することにより得られる。なお、熱
分割性複合繊維の製造においては、延伸、捲縮等の機械
加工の間に種々の応力が加えられるが、高融点ポリマー
セグメントと低融点ポリマーセグメントは実質的に剥離
分割することなく、単糸デニールが1de以上に保たれ
る必要がある。何故ならば、両ポリマーが防糸、延伸、
捲縮といった機械加工中で剥離を起こすと種々のトラブ
ルが発生するからである。例えば延伸工程では毛羽だ
ち、ローラーへの巻き付き、捲縮工程ではクリンパー入
口での詰まりなどがある。また熱分割性複合繊維に剥離
が生じると、ウェッブを製造するためのカーディング工
程で剥離した極細繊維がカード機の針の間に入り込み均
一なウェッブの製造を妨げる。このようなトラブルの発
生を抑え、機械加工を円滑に行うために、そして熱分割
により極細繊維を得、風合いや融感の良い不織布を得る
ためには、高融点ポリマーと低融点ポリマーの比率や
低融点ポリマーであるEPランダムコポリマーまたは
EPBランダムターポリマーのプロピレン以外の成分の
コンテントおよびMFR(メルトフローレート)を選択
する必要がある。すなわち上記については高融点ポリ
マー/低融点ポリマーの断面積比は3/7〜7/3が好
ましく、4/6〜6/4がより好ましく、5/5または
その近傍が特に好ましい。また上記に関して、EPラ
ンダムコポリマーまたはEPBランダムターポリマーは
プロピレン以外の成分のコンテントが高くなるにつれ
て、熱収縮率が大きくなり本発明に適したものとなる。
しかし、MFRが小さくなると、紡糸時や延伸時での歪
みが大きくなり、両ポリマーの界面の剥離強度が低くな
り、前述した機械加工中でのトラブルが多発し好ましく
ない。一方、プロピレン以外の成分のコンテントが低い
場合や、MFRが大きくなると紡糸時や延伸時での両成
分間に生ずる歪みが小さく、延伸、捲縮、カーディング
工程では問題がないが、熱処理によって生ずる収縮率の
差が小さくなり、低融点ポリマーの融点より約10℃低
い温度での熱処理では分割することができず、低融点ポ
リマーの融点以上の温度まで処理温度を上げる必要が生
じる。そうすると繊維の形態が崩れ、風合いが硬くなる
ので好ましくない。このような観点から、EPランダム
コポリマーまたはEPBランダムターポリマーのプロピ
レン以外の成分のコンテントは2.0〜8.0wt%が
好ましく、MFRは5〜30が好ましい。
The heat-splitting conjugate fiber of the present invention having the above-described structure is obtained by supplying a high-melting polymer and a low-melting polymer to a composite melt-spinning apparatus, and forming a composite melt-spun die having a cross section shown in FIG. It is obtained by drawing and crimping the obtained undrawn yarn. In the production of the heat-dividing conjugate fiber, various stresses are applied during mechanical processing such as drawing and crimping, but the high-melting polymer segment and the low-melting polymer segment are not substantially separated and separated, Single yarn denier must be kept at 1 de or more. Because both polymers are yarn protection, drawing,
This is because various troubles occur when peeling occurs during machining such as crimping. For example, in the stretching step, there are fluffing and winding around a roller, and in the crimping step, clogging at the crimper entrance occurs. Further, when the heat-dividing conjugate fiber is peeled, the ultrafine fiber peeled in the carding step for producing the web enters between the needles of the card machine and hinders the production of a uniform web. In order to suppress the occurrence of such troubles, to smoothly perform machining, and to obtain ultra-fine fibers by heat division, and to obtain a nonwoven fabric with a good feel and a sense of fusion, the ratio of the high-melting polymer to the low-melting polymer is It is necessary to select the content and MFR (melt flow rate) of components other than propylene of the EP random copolymer or EPB random terpolymer which is a low melting point polymer. That is, regarding the above, the cross-sectional area ratio of the high melting point polymer / low melting point polymer is preferably 3/7 to 7/3, more preferably 4/6 to 6/4, and particularly preferably 5/5 or its vicinity. With respect to the above, the EP random copolymer or EPB random terpolymer has a higher heat shrinkage as the content of components other than propylene increases, and is suitable for the present invention.
However, when the MFR is small, the strain during spinning or drawing is large, the peel strength at the interface between the two polymers is low, and the above-mentioned troubles during machining are frequent, which is not preferable. On the other hand, when the content of components other than propylene is low, or when the MFR is large, the distortion generated between the two components during spinning and drawing is small, and there is no problem in the drawing, crimping, and carding steps, but it is caused by heat treatment. The difference in shrinkage decreases, and the heat treatment at a temperature about 10 ° C. lower than the melting point of the low-melting polymer cannot be divided, and the processing temperature must be raised to a temperature equal to or higher than the melting point of the low-melting polymer. Then, the form of the fiber is broken and the texture becomes hard, which is not preferable. From such a viewpoint, the content of components other than propylene of the EP random copolymer or EPB random terpolymer is preferably 2.0 to 8.0 wt%, and the MFR is preferably 5 to 30%.

【0011】次に本発明の不織布の製造方法について説
明する。本発明の不織布の製造方法においては、上記熱
分割性複合繊維をカード機によりウェッブに形成する。
このカーディング工程は常法により行なわれるが、熱分
割性複合繊維はこの段階で剥離することがないので、極
細繊維がカード機の針の間に入り込むというトラブルは
ない。次にウェッブを高融点ポリマーと低融点ポリマー
の熱収縮率の差が50%以上となる温度域で熱処理を施
すことにより、両ポリマーの熱収縮率の差を利用して分
割細繊化して極細繊維のウェッブを得る。本発明の熱分
割性複合繊維は、両ポリマーの熱収縮率の差ΔSが50
〜75%と大きいので、上記分割細繊化は極めて円滑に
行なわれる。次にこのウェッブに対して熱的あるいは機
械的絡合手段を用いることにより不織布とする。熱的手
段としては、極細繊維のウェッブを構成する一方の成分
の軟化点以上の温度で熱ロール融着、熱風融着すればサ
ーマルボンドタイプの不織布となり、機械的手段として
は、極細繊維のウェッブをニードルパンチやウォーター
ニードルにより絡合させて不織布とすることもできる。
得られた不織布は、極細繊維によって構成されているの
で、風合い、触感にすぐれ、衛生材料の表面材として好
ましく用いられる。
Next, a method for producing the nonwoven fabric of the present invention will be described. In the method for producing a nonwoven fabric according to the present invention, the heat-dividing conjugate fiber is formed on a web by a carding machine.
This carding step is performed by a conventional method, but since the heat-dividing conjugate fibers do not peel off at this stage, there is no trouble that the ultrafine fibers enter between the needles of the card machine. Next, the web is subjected to a heat treatment in a temperature range where the difference in thermal shrinkage between the high-melting polymer and the low-melting polymer is 50% or more. Obtain a fiber web. The heat-splitting conjugate fiber of the present invention has a difference ΔS
Since it is as large as ~ 75%, the above-mentioned divisional fineness is extremely smoothly performed. Next, the web is made into a nonwoven fabric by using a thermal or mechanical entanglement means. As thermal means, hot roll fusion at a temperature higher than the softening point of one of the components constituting the microfine fiber web, and hot air fusion to form a thermal bond type nonwoven fabric, and mechanical means as microfine fiber web Can be entangled with a needle punch or a water needle to form a nonwoven fabric.
Since the obtained nonwoven fabric is composed of ultrafine fibers, it has excellent texture and touch and is preferably used as a surface material of a sanitary material.

【0012】[0012]

【実施例】次に、本発明を実施例によって具体的に説明
する。なお、実施例にて行った繊維および不織布の評価
方法は下記の通りである。
Next, the present invention will be described specifically with reference to examples. In addition, the evaluation method of the fiber and nonwoven fabric performed in the Example is as follows.

【0013】(1)熱収縮率の差(ΔS) 高融点ポリマーと低融点ポリマーの熱収縮率の差ΔS
は、両ポリマーを別々に同一条件にて紡糸、延伸して得
た繊維を低融点ポリマーの融点より10℃低い温度で1
5min熱処理したときの収縮率から求めた。なお計算
式は既出の通りである。 (2)分割率 顕微鏡下で100本程度の糸を測定し単一成分単糸に分
割された本数Xを単一成分単糸数Yで割り、百分率で表
した。 分割率=X÷Y×100% (3)剥離強度 両ポリマーの剥離強度は、試料の一端を約2cm予め剥
離し、その両端をクリップで挟み、引っ張り試験機に取
り付けてクリップを5mm/minの速度で引っ張り
り、その際の荷重:W(g)を測定し、顕微鏡で測定し
た繊維の直径:D(μm)で割り剥離強度:P(g/μ
m)とした。 P=W/D (4)裂断長:自重で破断する長さを意味し、長さ10
0mm、幅25mmの試料を引張速度100mm/分で
引張り、得られた破断強力から次式により始めた。 (5)触感(官能テスト) 成人女子5名による官能テストにより評価した。すなわ
ち試料を片方の前腕内側にもう一方の手で押し当て、多
方向に摩擦する。その接触感を5名のパネラーが評価
し、それらの平均で接触感が良好のものを○、悪いもの
を×、非常に悪いものを××で表示した。
(1) Difference in heat shrinkage (ΔS) Difference in heat shrinkage between high-melting polymer and low-melting polymer ΔS
The fiber obtained by spinning and drawing both polymers separately under the same conditions is heated at a temperature 10 ° C. lower than the melting point of the low melting point polymer at 1 ° C.
It was determined from the shrinkage ratio after heat treatment for 5 minutes. The calculation formula is as described above. (2) Division ratio About 100 yarns were measured under a microscope, and the number X divided into single component single yarns was divided by the single component single yarn number Y, and expressed as a percentage. Division ratio = X ÷ Y × 100% (3) Peel strength The peel strength of both polymers was determined by peeling one end of the sample in advance by about 2 cm, sandwiching both ends with clips, attaching the clips to a tensile tester, and setting the clips at 5 mm / min. At that time, the load: W (g) was measured, and the fiber diameter measured by a microscope: divided by D (μm) Peel strength: P (g / μ)
m). P = W / D (4) Breaking length: means the length of breaking by its own weight, length 10
A sample having a width of 0 mm and a width of 25 mm was pulled at a pulling speed of 100 mm / min. (5) Tactile sensation (sensory test) It was evaluated by a sensory test by five adult women. That is, the sample is pressed against the inside of one forearm with the other hand, and rubs in multiple directions. The contact feeling was evaluated by five panelists. On average, those having good contact feeling were indicated by 、, those having bad contact feeling were indicated by x, and those having extremely bad contact feeling were indicated by XX.

【0014】実施例1 高融点ポリマーとして相対粘度0.6[フェノールと四
塩化エタンとの等重量混合物を溶媒とし、溶液濃度0.
5g/100ml、温度20℃で測定]のPET(鐘紡
(株)製 K101)、低融点ポリマーとしてエチレン
コンテントが4.0wt%、MFRが24、融点135℃
のランダムEPコポリマー(出光石油化学(株)製 出
光ポリプロ Y2035G)を高融点ポリマーと低融点
ポリマーの体積比率を1:1の割合で複合溶融紡糸装置
に供給し、紡糸温度280℃、巻取り速度1200m/
min で巻取った。得られた未延伸糸を、90℃で3.5
倍に延伸し、押し込み式クリンパーで14個/インチの
捲縮を付与し、51mmにカットして単糸が3.0deの図
1(a)に示す断面形状の接合型二成分繊維Iを得た。
この繊維の性能を表1に示す。低融点ポリマーの融点よ
り10℃低い温度である125℃における両ポリマーの
熱収縮率の差は65.2%であった。この繊維をカード
機にかけ20g/m2 のウェッブを得たが、カード機で
の繊維の剥離はなく通過性は良好で、均一なウェッブが
得られた。このウェッブを125℃に設定された熱風炉
で10秒間熱処理した。その結果、繊維を構成する高融
点ポリマーセグメントと低融点ポリマーセグメントは熱
収縮率の差のために剥離して極細繊維のウェッブになっ
ていた。このときの繊維の分割率は100%であった。
熱処理前、後の熱分割性繊維の顕微鏡写真を図2
(a),(b)に示す。次いで風速2m/sec 、140
℃に調整された熱風融着装置に前述のウェッブを供給し
5秒間熱処理して熱風融着不織布を得た。得られた不織
布は、表2に示すように風合いがソフトで、且つ高強力
なものであった。
Example 1 A high melting point polymer having a relative viscosity of 0.6 [equivalent weight mixture of phenol and ethane tetrachloride was used as a solvent, and the solution concentration was adjusted to 0.1.
5 g / 100 ml, measured at a temperature of 20 ° C.] (K101 manufactured by Kanebo Co., Ltd.), 4.0 wt% of ethylene content as a low melting point polymer, MFR of 24, melting point of 135 ° C.
Of a random EP copolymer (Idemitsu Polypropylene Y2035G, manufactured by Idemitsu Petrochemical Co., Ltd.) in a composite melt spinning apparatus at a volume ratio of high-melting polymer to low-melting polymer of 1: 1 at a spinning temperature of 280 ° C. and a winding speed 1200m /
Wound with min. The obtained undrawn yarn is subjected to 3.5 at 90 ° C.
It is stretched twice, crimped at 14 pieces / inch by a press-type crimper, and cut into 51 mm to obtain a joint type bicomponent fiber I having a cross section shown in FIG. Was.
The performance of this fiber is shown in Table 1. The difference in thermal shrinkage between the two polymers at 125 ° C., which is 10 ° C. lower than the melting point of the low melting polymer, was 65.2%. This fiber was applied to a carding machine to obtain a web of 20 g / m @ 2. However, the fiber was not peeled off in the carding machine, the permeability was good, and a uniform web was obtained. This web was heat treated for 10 seconds in a hot blast stove set at 125 ° C. As a result, the high-melting-point polymer segment and the low-melting-point polymer segment constituting the fiber were peeled off due to the difference in heat shrinkage, resulting in a web of ultrafine fibers. At this time, the fiber splitting ratio was 100%.
Photomicrographs of the heat-splitting fibers before and after heat treatment are shown in FIG.
(A) and (b) show. Then wind speed 2m / sec, 140
The above-mentioned web was supplied to a hot-air fusion device adjusted to ° C. and heat-treated for 5 seconds to obtain a hot-air fusion nonwoven fabric. As shown in Table 2, the obtained nonwoven fabric had a soft texture and a high strength.

【0015】実施例2〜8、比較例1〜2 表1に示す原料の組み合せで実旅例1と同様にして本発
明の熱分割性複合繊維II、III、IV、V、VIお
よび比較例の複合繊維VIIを得た。各繊維の性能は表
1に示す通りである。各繊維からなるウェッブは、何れ
も実施例1の場合と同様にして低融点ポリマーの融点よ
り10℃低い温度で10秒間熱処理をしてから、表2に
示す条件で不織布にして強度及び触感を測定した。表2
より明らかなように、低融点ポリマーが、エチレンコン
テントが3〜5wt%のEPランダムコポリマーである
複合繊維I〜VIからなるウェッブを用いた実施例1〜
8の場合は、熱風融着法、熱ロール融着法、或はニード
ルパンチ法で高強度で触感の良い不織布が唱られた。一
方、低融点ポリマーがエチレンを含まないプロピレンホ
モポリマーである複合繊維VIIからなるウェッブを用
いた比較例1では、絡合前で繊維が分割していなかった
ため普通の不織布にしかならなった。又、PETとの収
縮率の差を大きくしようとしてポリプロピレンの融点以
上の温度である170℃まで熱風の温度を上げた比較例
2では、繊維の形態が崩れ不織布にはならなかった。
Examples 2 to 8 and Comparative Examples 1 to 2 The heat splittable conjugate fibers II, III, IV, V, VI and Comparative Examples of the present invention were prepared in the same manner as in the actual traveling example 1 using the combinations of raw materials shown in Table 1. Of composite fiber VII was obtained. The performance of each fiber is as shown in Table 1. Each web made of each fiber was heat-treated at a temperature 10 ° C. lower than the melting point of the low-melting polymer for 10 seconds in the same manner as in Example 1, and then made into a nonwoven fabric under the conditions shown in Table 2 to obtain strength and tactile sensation. It was measured. Table 2
As is clear, Examples 1 to 4 in which the low-melting point polymer was a web composed of composite fibers I to VI each of which was an EP random copolymer having an ethylene content of 3 to 5 wt%.
In the case of No. 8, a high-strength nonwoven fabric with a good tactile sensation was proposed by a hot air fusion method, a hot roll fusion method, or a needle punch method. On the other hand, in Comparative Example 1 in which the low-melting-point polymer used a web made of the conjugated fiber VII, which is a propylene homopolymer containing no ethylene, the fiber was not split before being entangled, so that only a normal nonwoven fabric was obtained. Further, in Comparative Example 2 in which the temperature of the hot air was increased to 170 ° C., which is a temperature higher than the melting point of polypropylene, in an attempt to increase the difference in shrinkage from PET, the form of the fibers was broken and a nonwoven fabric was not obtained.

【0016】実施例9,比較例3 高融点ポリマーとして宇部興産(株)製の相対粘度1.
0[フェノールと四塩化エタンとの等重量混合物を溶媒
とし、溶液濃度0.5g/100ml、温度20℃で測
定]のナイロン66を用い、表1に示す原料の組み合せ
で繊維VIII、繊維IXを得た。繊維VIII及び繊
維IXからなるウェッブは実施例1と同様にして不織布
化した。不織布の性能を表2に示す。表2より実施例9
の不織布は高強度で触感にすぐれていたが、比較例3の
ものは強度、触感ともに劣っていた。
Example 9, Comparative Example 3 Relative viscosity of Ube Kosan Co., Ltd.
Fibers VIII and IX were prepared using a combination of the raw materials shown in Table 1 by using nylon 66 of 0 [equivalent weight mixture of phenol and ethane tetrachloride as a solvent, solution concentration of 0.5 g / 100 ml, measured at a temperature of 20 ° C.] Obtained. The web composed of the fibers VIII and IX was formed into a nonwoven fabric in the same manner as in Example 1. Table 2 shows the performance of the nonwoven fabric. From Table 2, Example 9
Although the nonwoven fabric of Example 3 had high strength and excellent tactile sensation, that of Comparative Example 3 was inferior in both strength and tactile sensation.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【発明の効果】本発明の熱分割性複合繊維を用いること
により、従来の接着性繊維では得られなかった触感の良
いサーマルボンドタイプの不織布が得られる。この不織
布は、ナプキンや紙オムツ等の衛生材料に用いると、肌
触りがよく付加価値を格段に高めることが出来る。本発
明の繊維を用いれば、ウォーターニードル法のように、
流体に高圧を発生させる高価な装置もいらず、熱風炉の
ような比較的簡単な構造の装置で極細繊維からなる不織
布を製造することができ、省エネルギーも達成できる。
By using the heat-division conjugate fiber of the present invention, a thermal bond type nonwoven fabric having a good tactile sensation, which cannot be obtained with conventional adhesive fibers, can be obtained. When this nonwoven fabric is used for sanitary materials such as napkins and disposable diapers, it has good touch and can greatly increase added value. If the fiber of the present invention is used, as in the water needle method,
An expensive device for generating a high pressure in the fluid is not required, and a nonwoven fabric made of ultrafine fibers can be manufactured with a device having a relatively simple structure such as a hot blast stove, and energy saving can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の熱分割性複合繊維の断面形状を示す
図。
FIG. 1 is a diagram showing a cross-sectional shape of a heat-dividing conjugate fiber of the present invention.

【図2】(a),(b)は実施例1において熱処理前,
後の熱分解性複合繊維の顕微鏡写真である。
FIGS. 2 (a) and (b) show a state before heat treatment in Example 1. FIG.
It is a microscope picture of a pyrolytic conjugate fiber after that.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) D01D 5/36 D01F 8/06 - 8/14 D04H 1/54 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) D01D 5/36 D01F 8/06-8/14 D04H 1/54

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ポリエチレンテレフタレートまたはポリ
アミドからなる高融点ポリマーセグメントとエチレン・
プロピレンランダムコポリマーまたはエチレン・プロピ
レン・ブテン−1ランダムターポリマーからなる低融点
ポリマーセグメントが相互に接合した断面形状を有し、
低融点ポリマーの融点より10℃低い温度における高融
点ポリマーと低融点ポリマーの熱収縮率の差が50〜7
5%であることを特徴とする熱分割性複合繊維。
(1) Polyethylene terephthalate or poly
High melting point polymer segment composed of amide and ethylene
Propylene random copolymer or ethylene propylene
Low-melting-point polymer segments composed of len-butene-1 random terpolymer have a cross-sectional shape joined to each other,
The difference in heat shrinkage between the high melting point polymer and the low melting point polymer at a temperature 10 ° C. lower than the melting point of the low melting point polymer is 50 to 7
A heat-dividing conjugate fiber, which is 5%.
【請求項2】 高融点ポリマーセグメントと低融点ポリ
マーセグメントとがこれらの合計で4個以上接合してい
る、請求項1に記載の熱分割性複合繊維。
2. A high melting polymer segment and a low melting poly.
Mer segments are joined together in a total of four or more
The thermally splittable conjugate fiber according to claim 1 .
【請求項3】 請求項1または請求項2に記載の熱分割
性複合繊維をカード機によりウェッブに形成した後、
ウェッブを高融点ポリマーと低融点ポリマーの熱収縮率
の差が50%以上となる温度域で熱処理することにより
上記熱分割性複合繊維を分割細繊化し極細繊維のウェッ
ブとした後、熱的或いは機械的絡合手段で不織布を得る
ことを特徴とする不織布の製造方法。
3. After forming the web by a carding machine to heat dividable composite fiber according to claim 1 or claim 2, wherein
The web is heat-treated in a temperature range in which the difference in thermal shrinkage between the high-melting polymer and the low-melting polymer is 50% or more, so that the heat-dividing composite fiber is divided into fine fibers to form a web of ultrafine fibers. A method for producing a nonwoven fabric, wherein the nonwoven fabric is obtained by mechanical entanglement means.
JP19898591A 1991-04-16 1991-04-16 Thermally splittable composite fiber Expired - Fee Related JP2904966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19898591A JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19898591A JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Publications (2)

Publication Number Publication Date
JPH04316608A JPH04316608A (en) 1992-11-09
JP2904966B2 true JP2904966B2 (en) 1999-06-14

Family

ID=16400199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19898591A Expired - Fee Related JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Country Status (1)

Country Link
JP (1) JP2904966B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0757127A4 (en) * 1994-11-25 1999-08-25 Polymer Processing Res Inst Nonwoven cloth of drawn long fiber of different kinds of polymers and method of manufacturing the same
JP3475596B2 (en) * 1995-08-01 2003-12-08 チッソ株式会社 Durable hydrophilic fibers, cloths and moldings
JP3657700B2 (en) * 1996-06-18 2005-06-08 新日本石油化学株式会社 Method for producing high-quality nonwoven fabric
JP4785659B2 (en) * 2000-01-24 2011-10-05 ダイワボウホールディングス株式会社 Thermally divided composite fiber and fiber assembly
US8293968B2 (en) * 2005-04-29 2012-10-23 Kimberly-Clark Worldwide, Inc. Dual mode absorbent tampon
TWI405886B (en) * 2009-12-31 2013-08-21 San Fang Chemical Industry Co Composite fiber having elastomer and method for making the same, and a substrate having the composite fiber and method for making the same
JP6101012B2 (en) * 2011-08-01 2017-03-22 宇部エクシモ株式会社 Divisible uneven composite fiber and non-woven fabric using the same
CN107841799B (en) * 2017-11-27 2021-01-05 青岛大学 Multicomponent asymmetric fiber

Also Published As

Publication number Publication date
JPH04316608A (en) 1992-11-09

Similar Documents

Publication Publication Date Title
JP2783602B2 (en) Ultrafine composite fiber for thermal bonding and its woven or nonwoven fabric
KR100436992B1 (en) One-way stretchable nonwoven fabric and its manufacturing method
US5783503A (en) Meltspun multicomponent thermoplastic continuous filaments, products made therefrom, and methods therefor
JPH0219223B2 (en)
JP3569972B2 (en) Heat-fusible composite fiber and heat-fusible nonwoven fabric
JP2904966B2 (en) Thermally splittable composite fiber
JP3240819B2 (en) Non-woven fabric and its manufacturing method
JP3102451B2 (en) Three-layer nonwoven fabric and method for producing the same
JP3113124B2 (en) Method for manufacturing ultrafine fiber web
JP3101414B2 (en) Stretchable polyester-based elastic nonwoven fabric and method for producing the same
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP4267158B2 (en) Tufted carpet base fabric and manufacturing method thereof
JPH0949160A (en) Production of nonwoven cloth
JP3055288B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
JPH02169723A (en) Thermally splitting type conjugate fiber and nonwoven fabric thereof
JPS6244058B2 (en)
JP2971919B2 (en) Thermal adhesive fiber
JP3102450B2 (en) Three-layer nonwoven fabric and method for producing the same
JPS6316504B2 (en)
JP2948948B2 (en) Thermal adhesive fiber
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JP2741113B2 (en) Method for manufacturing stretchable nonwoven fabric
JP3185902B2 (en) Heat-adhesive conjugate fiber
JP3429566B2 (en) Long-fiber nonwoven fabric and method for producing the same
JPH10195750A (en) Composite nonwoven fabric and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees