JPH04316608A - Thermo-splittable conjugated fiber - Google Patents

Thermo-splittable conjugated fiber

Info

Publication number
JPH04316608A
JPH04316608A JP19898591A JP19898591A JPH04316608A JP H04316608 A JPH04316608 A JP H04316608A JP 19898591 A JP19898591 A JP 19898591A JP 19898591 A JP19898591 A JP 19898591A JP H04316608 A JPH04316608 A JP H04316608A
Authority
JP
Japan
Prior art keywords
melting point
point polymer
low melting
web
nonwoven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19898591A
Other languages
Japanese (ja)
Other versions
JP2904966B2 (en
Inventor
Akihiro Iwai
章浩 岩井
Yoshio Iida
飯田 祥夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16400199&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04316608(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP19898591A priority Critical patent/JP2904966B2/en
Publication of JPH04316608A publication Critical patent/JPH04316608A/en
Application granted granted Critical
Publication of JP2904966B2 publication Critical patent/JP2904966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)

Abstract

PURPOSE:To provide the subject conjugated fiber having a crosssectional shape composed of a high-melting polymer and a low-melting polymer mutually bonded, having a difference in thermal shrinkage factor between both the polymers within a prescribed range, excellent in touch and useful for a nonwoven fabric, etc. CONSTITUTION:An objective conjugated fiber having a crosssectional shape composed of a high-melting polymer segment such as polyethylene terephthalate and a low-melting polymer segment such as an ethylene-propylene random copolymer mutually bonded and showing 50-75% difference in thermal shrinkage factor between the high-melting polymer and the low-melting polymer at a temperature 10 deg.C lower than the melting point of the low-melting polymer.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は熱処理により分割して極
細繊維を形成する熱分割性複合繊維およびこれを用いる
不織布の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermally splittable conjugate fiber which is split by heat treatment to form ultrafine fibers, and a method for producing a nonwoven fabric using the same.

【0002】0002

【従来の技術】熱接着性複合繊維からなる不織布は、そ
の製造過程でバインダーを使用する必要がなく、紙オム
ツやナプキン等の衛生材料の表面材として使用されてき
た。これらの不織布を製造するには融点の異なる2種類
の重合体を鞘芯型やサイドバイサイド型の複合繊維とし
て紡糸し、次いで延伸、捲縮、カットしてカード機に供
給し均一なウェッブとした後、このウェッブを低融点成
分の軟化点以上の温度で熱風融着或は熱ロール融着して
不織布としている。このようなサーマルボンドタイプの
不織布の風合いや触感を向上させるために多数の提案が
なされている。しかしながら、最も効果の上がる繊維自
体の細デニール化(極細化)は、カード機の通過性のた
め単糸で1deまでしか対応が出来なかった。
BACKGROUND OF THE INVENTION Nonwoven fabrics made of thermoadhesive conjugate fibers do not require the use of binders during their manufacturing process, and have been used as surface materials for sanitary materials such as disposable diapers and napkins. To manufacture these nonwoven fabrics, two types of polymers with different melting points are spun into sheath-core type or side-by-side type composite fibers, which are then stretched, crimped, and cut and fed to a carding machine to form a uniform web. This web is hot air fused or hot roll fused at a temperature above the softening point of the low melting point component to form a nonwoven fabric. Many proposals have been made to improve the texture and feel of such thermal bond type nonwoven fabrics. However, making the fiber itself finer (ultra-fine), which is most effective, can only be done with single yarns up to 1 de because of the passability of the card machine.

【0003】0003

【発明の目的】本発明の第1の目的は、風合いや触感に
すぐれた不織布を製造するのに好適な熱分割性複合繊維
を提供することにある。本発明の第2の目的は、前記熱
分割性繊維から風合いや触感にすぐれた不織布を製造す
る方法を提供することにある。
OBJECTS OF THE INVENTION The first object of the present invention is to provide a thermally splittable conjugate fiber suitable for producing a nonwoven fabric with excellent texture and feel. A second object of the present invention is to provide a method for producing a nonwoven fabric with excellent texture and feel from the heat-dividable fibers.

【0004】0004

【発明の構成】上記第1の目的を達成する本発明の熱分
割性繊維は、高融点ポリマーセグメントと低融点ポリマ
ーセグメントが相互に接合した断面形状を有し、低融点
ポリマーの融点よりも10℃低い温度における高融点ポ
リマーと低融点ポリマーの熱収縮率の差が50〜75%
であることを特徴とする。また上記第2の目的を達成す
る不織布の製造方法は、前記の熱分割性複合繊維をカー
ド機によりウェッブに形成した後、該ウェッブを、高融
点ポリマーと低融点ポリマーの熱収縮率の差が50%以
上となる温度域で熱処理を施すことにより上記熱分割性
複合繊維を分割細繊化し極細繊維のウェッブとした後、
熱的或は機械的絡合手段で不織布を得ることを特徴とす
る。
SUMMARY OF THE INVENTION The thermally splittable fiber of the present invention, which achieves the above first object, has a cross-sectional shape in which a high melting point polymer segment and a low melting point polymer segment are bonded to each other. ℃The difference in thermal shrinkage between high melting point polymer and low melting point polymer at low temperature is 50-75%
It is characterized by In addition, a method for producing a nonwoven fabric that achieves the second object is to form the heat splittable conjugate fibers into a web using a carding machine, and then convert the web into a material that has a difference in heat shrinkage rate between a high melting point polymer and a low melting point polymer. After dividing and finely dividing the heat-dividable composite fiber into a web of ultra-fine fibers by heat treatment in a temperature range of 50% or more,
It is characterized in that the nonwoven fabric is obtained by thermal or mechanical entanglement means.

【0005】先ず本発明の熱分割性複合繊維について説
明する。本発明の熱分割性繊維は、高融点ポリマーセグ
メントと低融点ポリマーセグメントが相互に接合した断
面形状を有する。このような断面形状としては、図1(
a)〜(g)に示すように高融点ポリマーセグメントA
と低融点ポリマーセグメントBとが相互に接合しており
、高融点ポリマーセグメントAの少なくとも1部および
低融点ポリマーセグメントBの少なくとも1部が露出し
ているものが好ましい。また高融点ポリマーセグメント
と低融点ポリマーセグメントはこれらの合計で4つ以上
接合しているのが好ましい。高融点ポリマーセグメント
を構成するポリマーとしては、ポリエチレンテレフタレ
ート(以下PETという)、ポリアミド(以下PAとい
う)などが用いられ、一方低融点ポリマーセグメントを
構成するポリマーとしては、エチレン・プロピレンラン
ダムコポリマー(以下EPランダムコポリマーという)
、エチレン・プロピレン・プテン−1ランダムターポリ
マー(以下EPBランダムターポリマーという)などが
用いられる。
First, the thermally splittable composite fiber of the present invention will be explained. The thermally splittable fiber of the present invention has a cross-sectional shape in which a high melting point polymer segment and a low melting point polymer segment are bonded to each other. Such a cross-sectional shape is shown in Figure 1 (
High melting point polymer segment A as shown in a) to (g)
and low melting point polymer segment B are bonded to each other, and at least one part of high melting point polymer segment A and at least one part of low melting point polymer segment B are preferably exposed. Further, it is preferable that a total of four or more high melting point polymer segments and low melting point polymer segments are bonded. Polyethylene terephthalate (hereinafter referred to as PET), polyamide (hereinafter referred to as PA), etc. are used as polymers constituting the high melting point polymer segment, while ethylene propylene random copolymer (hereinafter referred to as EP) is used as the polymer constituting the low melting point polymer segment. (called random copolymer)
, ethylene propylene putene-1 random terpolymer (hereinafter referred to as EPB random terpolymer), etc. are used.

【0006】本発明の熱分割性複合繊維においては、低
融点ポリマーの融点より10℃低い温度における高融点
ポリマーと低融点ポリマーの熱収縮率の差が50〜75
%であることが必須である。両ポリマーの熱収縮率の差
を低融点ポリマーの融点より10℃低い温度で評価する
理由は、この温度が低融点ポリマー繊維の形態を残して
安定に操業できる上限の温度であるからである。
In the thermally splittable conjugate fiber of the present invention, the difference in thermal shrinkage between the high melting point polymer and the low melting point polymer at a temperature 10° C. lower than the melting point of the low melting point polymer is 50 to 75.
% is required. The reason why the difference in thermal shrinkage rate between both polymers is evaluated at a temperature 10° C. lower than the melting point of the low melting point polymer is that this temperature is the upper limit temperature at which stable operation can be performed while leaving the form of the low melting point polymer fiber.

【0007】低融点ポリマーの融点より10℃低い温度
での高融点ポリマーと低融点ポリマーの熱収縮率の差Δ
Sは下式によって求められる。 ΔS(%)=Slmp(%)−Shmp(%)ここにS
lmpおよびShmpは、それぞれ低融点ポリマー(l
mp)および高融点ポリマー(hmp)の低融点ポリマ
ーの融点より10℃低い温度での熱収縮率であり、未収
縮時の繊維長(Llmp1,Lhmp1)と低融点ポリ
マーの融点より10℃低い温度で15分間熱処理したと
きの熱収縮後の繊維長(Llmp2,Lhmp2)から
下式によって求められる。
[0007] Difference Δ in thermal shrinkage between a high melting point polymer and a low melting point polymer at a temperature 10°C lower than the melting point of the low melting point polymer
S is determined by the following formula. ΔS (%) = Slmp (%) - Shmp (%) where S
lmp and Shmp are low melting point polymers (l
mp) and high melting point polymer (hmp) at a temperature 10°C lower than the melting point of the low melting point polymer, and the fiber length when unshrinked (Llmp1, Lhmp1) and the temperature 10°C lower than the melting point of the low melting point polymer. It is determined by the following formula from the fiber length (Llmp2, Lhmp2) after heat shrinkage when heat treated for 15 minutes.

【0008】[0008]

【数1】[Math 1]

【0009】そして本発明においてΔSを50〜75%
に限定した理由は、ΔSが50%未満では、熱分割性複
合繊維の分割率が低く、加熱によって極細繊維が得られ
にくく、ひいては風合いや触感の良い不織布が得られず
、一方繊維がその形態を保持できる上限の温度に近い、
融点より10℃低い温度で75%以上の収縮率差を生じ
る低融点ポリマーは実在しないからである。
[0009] In the present invention, ΔS is 50 to 75%.
The reason for this limitation is that when ΔS is less than 50%, the splitting rate of the thermally splittable conjugate fiber is low, making it difficult to obtain ultrafine fibers by heating, and ultimately making it impossible to obtain a nonwoven fabric with good texture and feel. Close to the upper limit temperature that can maintain
This is because there is no existing low melting point polymer that exhibits a shrinkage rate difference of 75% or more at a temperature 10° C. lower than the melting point.

【0010】上記の如き構成を有する本発明の熱分割性
複合繊維は、複合溶融紡糸装置に高融点ポリマーと低融
点ポリマーとを供給し、図1に示す断面形状に対応する
複合溶融紡糸口金を用いて紡糸し、得られた未延伸糸を
延伸し、捲縮を付与することにより得られる。なお、熱
分割性複合繊維の製造においては、延伸、捲縮等の機械
加工の間に種々の応力が加えられるが、高融点ポリマー
セグメントと低融点ポリマーセグメントは実質的に剥離
分割することなく、単糸デニールが1de以上に保たれ
る必要がある。何故ならば、両ポリマーが防糸、延伸、
捲縮といった機械加工中で剥離を起こすと種々のトラブ
ルが発生するからである。例えば延伸工程では毛羽だち
、ローラーへの巻き付き、捲縮工程ではクリンパー入口
での詰まりなどがある。また熱分割性複合繊維に剥離が
生じると、ウェッブを製造するためのカーディング工程
で剥離した極細繊維がカード機の針の間に入り込み均一
なウェッブの製造を妨げる。このようなトラブルの発生
を抑え、機械加工を円滑に行うために、そして熱分割に
より極細繊維を得、風合いや融感の良い不織布を得るた
めには、■高融点ポリマーと低融点ポリマーの比率や■
低融点ポリマーであるEPランダムコポリマーまたはE
PBランダムターポリマーのプロピレン以外の成分のコ
ンテントおよびMFR(メルトフローレート)を選択す
る必要がある。すなわち上記■については高融点ポリマ
ー/低融点ポリマーの断面積比は3/7〜7/3が好ま
しく、4/6〜6/4がより好ましく、5/5またはそ
の近傍が特に好ましい。また上記■に関して、EPラン
ダムコポリマーまたはEPBランダムターポリマーはプ
ロピレン以外の成分のコンテントが高くなるにつれて、
熱収縮率が大きくなり本発明に適したものとなる。 しかし、MFRが小さくなると、紡糸時や延伸時での歪
みが大きくなり、両ポリマーの界面の剥離強度が低くな
り、前述した機械加工中でのトラブルが多発し好ましく
ない。一方、プロピレン以外の成分のコンテントが低い
場合や、MFRが大きくなると紡糸時や延伸時での両成
分間に生ずる歪みが小さく、延伸、捲縮、カーディング
工程では問題がないが、熱処理によって生ずる収縮率の
差が小さくなり、低融点ポリマーの融点より約10℃低
い温度での熱処理では分割することができず、低融点ポ
リマーの融点以上の温度まで処理温度を上げる必要が生
じる。そうすると繊維の形態が崩れ、風合いが硬くなる
ので好ましくない。このような観点から、EPランダム
コポリマーまたはEPBランダムターポリマーのプロピ
レン以外の成分のコンテントは2.0〜8.0wt%が
好ましく、MFRは5〜30が好ましい。
The thermally splittable composite fiber of the present invention having the above-mentioned configuration is produced by supplying a high melting point polymer and a low melting point polymer to a composite melt spinning device, and spinning a composite melt spinneret having a cross-sectional shape shown in FIG. The obtained undrawn yarn is stretched and crimped. In the production of thermally splittable conjugate fibers, various stresses are applied during mechanical processing such as stretching and crimping, but the high melting point polymer segment and the low melting point polymer segment are virtually not peeled and split. The single yarn denier must be maintained at 1 de or more. This is because both polymers have anti-thread, stretching,
This is because if peeling occurs during machining such as crimp, various troubles will occur. For example, during the stretching process, there may be fuzz and wrapping around rollers, and during the crimping process, there may be clogging at the crimper inlet. Furthermore, if the thermally splittable conjugate fibers are peeled off, the ultrafine fibers peeled off during the carding process for producing the web will get between the needles of the carding machine, interfering with the production of a uniform web. In order to suppress the occurrence of such troubles, to perform machining smoothly, and to obtain ultrafine fibers by thermal splitting and nonwoven fabrics with good texture and feel, the ratio of high melting point polymer and low melting point polymer is Ya■
EP random copolymer or E which is a low melting point polymer
It is necessary to select the content of components other than propylene and the MFR (melt flow rate) of the PB random terpolymer. That is, regarding the above item (2), the cross-sectional area ratio of high melting point polymer/low melting point polymer is preferably 3/7 to 7/3, more preferably 4/6 to 6/4, and particularly preferably 5/5 or its vicinity. Regarding (2) above, the EP random copolymer or EPB random terpolymer increases as the content of components other than propylene increases.
The heat shrinkage rate becomes large, making it suitable for the present invention. However, if the MFR becomes small, distortion during spinning or stretching becomes large, the peel strength at the interface between both polymers becomes low, and the troubles mentioned above during machining occur frequently, which is not preferable. On the other hand, when the content of components other than propylene is low, or when the MFR is large, the distortion that occurs between the two components during spinning and stretching is small, and there is no problem in the stretching, crimping, and carding processes, but distortion occurs due to heat treatment. The difference in shrinkage rate becomes small, and the heat treatment at a temperature approximately 10° C. lower than the melting point of the low melting point polymer cannot divide the polymer, making it necessary to raise the treatment temperature to a temperature higher than the melting point of the low melting point polymer. This is not preferable because the fibers lose their shape and the texture becomes hard. From this viewpoint, the content of components other than propylene in the EP random copolymer or EPB random terpolymer is preferably 2.0 to 8.0 wt%, and the MFR is preferably 5 to 30.

【0011】次に本発明の不織布の製造方法について説
明する。本発明の不織布の製造方法においては、上記熱
分割性複合繊維をカード機によりウェッブに形成する。 このカーディング工程は常法により行なわれるが、熱分
割性複合繊維はこの段階で剥離することがないので、極
細繊維がカード機の針の間に入り込むというトラブルは
ない。次にウェッブを高融点ポリマーと低融点ポリマー
の熱収縮率の差が50%以上となる温度域で熱処理を施
すことにより、両ポリマーの熱収縮率の差を利用して分
割細繊化して極細繊維のウェッブを得る。本発明の熱分
割性複合繊維は、両ポリマーの熱収縮率の差ΔSが50
〜75%と大きいので、上記分割細繊化は極めて円滑に
行なわれる。次にこのウェッブに対して熱的あるいは機
械的絡合手段を用いることにより不織布とする。熱的手
段としては、極細繊維のウェッブを構成する一方の成分
の軟化点以上の温度で熱ロール融着、熱風融着すればサ
ーマルボンドタイプの不織布となり、機械的手段として
は、極細繊維のウェッブをニードルパンチやウォーター
ニードルにより絡合させて不織布とすることもできる。 得られた不織布は、極細繊維によって構成されているの
で、風合い、触感にすぐれ、衛生材料の表面材として好
ましく用いられる。
Next, the method for manufacturing the nonwoven fabric of the present invention will be explained. In the method for producing a nonwoven fabric of the present invention, the heat splittable conjugate fibers are formed into a web using a carding machine. This carding process is carried out in a conventional manner, but since the thermally splittable conjugate fibers do not peel off at this stage, there is no problem of ultrafine fibers getting between the needles of the carding machine. Next, the web is heat-treated in a temperature range where the difference in heat shrinkage rate between the high melting point polymer and the low melting point polymer is 50% or more, and the web is split into fine fibers using the difference in heat shrinkage rate between the two polymers to create ultra-fine fibers. Obtain a web of fibers. The thermally splittable conjugate fiber of the present invention has a thermal shrinkage rate difference ΔS of 50 between the two polymers.
Since it is as large as ~75%, the above-mentioned division and finerization can be carried out extremely smoothly. Next, this web is made into a nonwoven fabric by using thermal or mechanical entangling means. Thermal means include hot roll fusing or hot air fusing at a temperature above the softening point of one of the components constituting the web of ultrafine fibers, resulting in a thermal bond type nonwoven fabric, and mechanical means to form a web of ultrafine fibers. It is also possible to make a nonwoven fabric by entangling them by needle punching or water needles. Since the obtained nonwoven fabric is composed of ultrafine fibers, it has excellent texture and feel, and is preferably used as a surface material for sanitary materials.

【0012】0012

【実施例】次に、本発明を実施例によって具体的に説明
する。なお、実施例にて行った繊維および不織布の評価
方法は下記の通りである。
[Examples] Next, the present invention will be explained in detail with reference to Examples. In addition, the evaluation method of fibers and nonwoven fabrics performed in Examples is as follows.

【0013】(1)熱収縮率の差(ΔS)高融点ポリマ
ーと低融点ポリマーの熱収縮率の差ΔSは、両ポリマー
を別々に同一条件にて紡糸、延伸して得た繊維を低融点
ポリマーの融点より10℃低い温度で15min熱処理
したときの収縮率から求めた。なお計算式は既出の通り
である。 (2)分割率 顕微鏡下で100本程度の糸を測定し単一成分単糸に分
割された本数Xを単一成分単糸数Yで割り、百分率で表
した。 分割率=X÷Y×100% (3)剥離強度 両ポリマーの剥離強度は、試料の一端を約2cm予め剥
離し、その両端をクリップで挟み、引っ張り試験機に取
り付けてクリップを5mm/minの速度で引っ張りり
、その際の荷重:W(g)を測定し、顕微鏡で測定した
繊維の直径:D(μm)で割り剥離強度:P(g/μm
)とした。 P=W/D (4)裂断長:自重で破断する長さを意味し、長さ10
0mm、幅25mmの試料を引張速度100mm/分で
引張り、得られた破断強力から次式により始めた。 (5)触感(官能テスト) 成人女子5名による官能テストにより評価した。すなわ
ち試料を片方の前腕内側にもう一方の手で押し当て、多
方向に摩擦する。その接触感を5名のパネラーが評価し
、それらの平均で接触感が良好のものを○、悪いものを
×、非常に悪いものを××で表示した。
(1) Difference in heat shrinkage rate (ΔS) The difference ΔS in heat shrinkage rate between a high melting point polymer and a low melting point polymer is the difference in heat shrinkage rate between a high melting point polymer and a low melting point polymer. It was determined from the shrinkage rate when heat treated for 15 minutes at a temperature 10° C. lower than the melting point of the polymer. Note that the calculation formula is as described above. (2) Division ratio Approximately 100 yarns were measured under a microscope, and the number X divided into single component yarns was divided by the number Y of single component yarns, and the result was expressed as a percentage. Division ratio = X ÷ Y × 100% (3) Peel strength The peel strength of both polymers is determined by peeling off one end of the sample approximately 2 cm in advance, holding both ends with clips, attaching the ends to a tensile tester, and applying the clip at a rate of 5 mm/min. Pull at a speed, measure the load at that time: W (g), and measure the diameter of the fiber using a microscope: D (μm). Peel strength: P (g/μm)
). P=W/D (4) Rupture length: means the length at which it breaks under its own weight, length 10
A sample with a diameter of 0 mm and a width of 25 mm was pulled at a tensile speed of 100 mm/min, and the breaking strength obtained was calculated using the following formula. (5) Tactile sensation (sensory test) Evaluation was carried out by a sensory test conducted by five adult women. That is, the sample is pressed against the inside of one forearm with the other hand and rubbed in multiple directions. The touch feeling was evaluated by five panelists, and on average, those with good contact feel were marked with ○, those with poor contact feeling were marked with ×, and those with very poor contact feeling were marked with XX.

【0014】実施例1 高融点ポリマーとして相対粘度0.6[フェノールと四
塩化エタンとの等重量混合物を溶媒とし、溶液濃度0.
5g/100ml、温度20℃で測定]のPET(鐘紡
(株)製  K101)、低融点ポリマーとしてエチレ
ンコンテントが4.0wt%、MFRが24、融点13
5℃のランダムEPコポリマー(出光石油化学(株)製
  出光ポリプロ  Y2035G)を高融点ポリマー
と低融点ポリマーの体積比率を1:1の割合で複合溶融
紡糸装置に供給し、紡糸温度280℃、巻取り速度12
00m/minで巻取った。得られた未延伸糸を、90
℃で3.5倍に延伸し、押し込み式クリンパーで14個
/インチの捲縮を付与し、51mmにカットして単糸が
3.0deの図1(a)に示す断面形状の接合型二成分
繊維Iを得た。この繊維の性能を表1に示す。低融点ポ
リマーの融点より10℃低い温度である125℃におけ
る両ポリマーの熱収縮率の差は65.2%であった。こ
の繊維をカード機にかけ20g/m2のウェッブを得た
が、カード機での繊維の剥離はなく通過性は良好で、均
一なウェッブが得られた。このウェッブを130℃に設
定された熱風炉で10秒間熱処理した。その結果、繊維
を構成する高融点ポリマーセグメントと低融点ポリマー
セグメントは熱収縮率の差のために剥離して極細繊維の
ウェッブになっていた。このときの繊維の分割率は10
0%であった。熱処理前、後の熱分割性繊維の顕微鏡写
真を図2(a),(b)に示す。次いで風速2m/se
c、140℃に調整された熱風融着装置に前述のウェッ
ブを供給し5秒間熱処理して熱風融着不織布を得た。得
られた不織布は、表2に示すように風合いがソフトで、
且つ高強力なものであった。
Example 1 A high melting point polymer with a relative viscosity of 0.6 [a mixture of equal weights of phenol and tetrachloroethane was used as the solvent, and the solution concentration was 0.6].
5 g/100 ml, measured at a temperature of 20°C] PET (K101 manufactured by Kanebo Co., Ltd.), ethylene content as a low melting point polymer is 4.0 wt%, MFR is 24, melting point is 13
A random EP copolymer (Idemitsu Polypro Y2035G manufactured by Idemitsu Petrochemical Co., Ltd.) at 5°C was supplied to a composite melt spinning device at a volume ratio of high melting point polymer and low melting point polymer of 1:1, and the spinning temperature was 280°C. Take speed 12
It was wound up at 00 m/min. The obtained undrawn yarn was
℃, stretched 3.5 times, gave 14 crimps/inch with a push-in crimper, cut into 51 mm, and made a bonding mold 2 with the cross-sectional shape shown in Fig. 1(a) having a single yarn of 3.0 de. Component fiber I was obtained. The performance of this fiber is shown in Table 1. The difference in heat shrinkage rate of both polymers at 125° C., which is 10° C. lower than the melting point of the low melting point polymer, was 65.2%. The fibers were applied to a carding machine to obtain a web of 20 g/m2, but the fibers did not peel off in the carding machine, and the passing property was good, and a uniform web was obtained. This web was heat-treated for 10 seconds in a hot air oven set at 130°C. As a result, the high melting point polymer segment and the low melting point polymer segment constituting the fiber were peeled off due to the difference in thermal shrinkage rate, resulting in a web of ultrafine fibers. The fiber splitting ratio at this time is 10
It was 0%. Micrographs of the thermally splittable fibers before and after heat treatment are shown in FIGS. 2(a) and 2(b). Then the wind speed is 2m/se
c. The above-mentioned web was supplied to a hot air fusion device adjusted to 140° C. and heat treated for 5 seconds to obtain a hot air fusion bonded nonwoven fabric. The obtained nonwoven fabric had a soft texture as shown in Table 2.
It was also highly powerful.

【0015】実施例2〜8、比較例1〜2表1に示す原
料の組み合せで実旅例1と同様にして本発明の熱分割性
複合繊維II、III、IV、V、VIおよび比較例の
複合繊維VIIを得た。各繊維の性能は表1に示す通り
である。各繊維からなるウェッブは、何れも実施例1の
場合と同様にして低融点ポリマーの融点より10℃低い
温度で10秒間熱処理をしてから、表2に示す条件で不
織布にして強度及び触感を測定した。表2より明らかな
ように、低融点ポリマーが、エチレンコンテントが3〜
5wt%のEPランダムコポリマーである複合繊維I〜
VIからなるウェッブを用いた実施例1〜8の場合は、
熱風融着法、熱ロール融着法、或はニードルパンチ法で
高強度で触感の良い不織布が唱られた。一方、低融点ポ
リマーがエチレンを含まないプロピレンホモポリマーで
ある複合繊維VIIからなるウェッブを用いた比較例1
では、絡合前で繊維が分割していなかったため普通の不
織布にしかならなった。又、PETとの収縮率の差を大
きくしようとしてポリプロピレンの融点以上の温度であ
る170℃まで熱風の温度を上げた比較例2では、繊維
の形態が崩れ不織布にはならなかった。
Examples 2 to 8, Comparative Examples 1 to 2 Thermal splittable composite fibers II, III, IV, V, VI of the present invention and Comparative Examples were prepared in the same manner as in Example 1 using the combinations of raw materials shown in Table 1. Composite fiber VII was obtained. The performance of each fiber is shown in Table 1. The web made of each fiber was heat treated for 10 seconds at a temperature 10°C lower than the melting point of the low melting point polymer in the same manner as in Example 1, and then made into a nonwoven fabric under the conditions shown in Table 2 to improve its strength and texture. It was measured. As is clear from Table 2, the low melting point polymer has an ethylene content of 3 to 3.
Composite fiber I which is 5wt% EP random copolymer
In the case of Examples 1 to 8 using a web made of VI,
Nonwoven fabrics with high strength and good texture have been produced using hot air fusing, hot roll fusing, or needle punching. On the other hand, Comparative Example 1 using a web made of composite fiber VII in which the low melting point polymer is a propylene homopolymer containing no ethylene
In this case, the fibers were not divided before entanglement, so it became nothing more than an ordinary nonwoven fabric. In Comparative Example 2, in which the temperature of the hot air was raised to 170° C., which is higher than the melting point of polypropylene, in an attempt to increase the difference in shrinkage rate from PET, the fibers lost their shape and did not become a nonwoven fabric.

【0016】実施例9,比較例3 高融点ポリマーとして宇部興産(株)製の相対粘度1.
0[フェノールと四塩化エタンとの等重量混合物を溶媒
とし、溶液濃度0.5g/100ml、温度20℃で測
定]のナイロン66を用い、表1に示す原料の組み合せ
で繊維VIII、繊維IXを得た。繊維VIII及び繊
維IXからなるウェッブは実施例1と同様にして不織布
化した。不織布の性能を表2に示す。表2より実施例9
の不織布は高強度で触感にすぐれていたが、比較例3の
ものは強度、触感ともに劣っていた。
Example 9, Comparative Example 3 The high melting point polymer was manufactured by Ube Industries, Ltd. and had a relative viscosity of 1.
Using nylon 66 of 0 [measured using an equal weight mixture of phenol and tetrachloroethane as a solvent, a solution concentration of 0.5 g/100 ml, and a temperature of 20°C], fiber VIII and fiber IX were made using the raw material combinations shown in Table 1. Obtained. A web consisting of fibers VIII and IX was made into a nonwoven fabric in the same manner as in Example 1. Table 2 shows the performance of the nonwoven fabric. Example 9 from Table 2
The nonwoven fabric of Comparative Example 3 had high strength and excellent feel, but the nonwoven fabric of Comparative Example 3 was inferior in both strength and feel.

【0017】[0017]

【表1】[Table 1]

【0018】[0018]

【表2】[Table 2]

【0009】[0009]

【発明の効果】本発明の熱分割性複合繊維を用いること
により、従来の接着性繊維では得られなかった触感の良
いサーマルボンドタイプの不織布が得られる。この不織
布は、ナプキンや紙オムツ等の衛生材料に用いると、肌
触りがよく付加価値を格段に高めることが出来る。本発
明の繊維を用いれば、ウォーターニードル法のように、
流体に高圧を発生させる高価な装置もいらず、熱風炉の
ような比較的簡単な構造の装置で極細繊維からなる不織
布を製造することができ、省エネルギーも達成できる。
[Effects of the Invention] By using the thermally splittable conjugate fiber of the present invention, a thermal bond type nonwoven fabric with a good feel that cannot be obtained with conventional adhesive fibers can be obtained. When this nonwoven fabric is used for sanitary materials such as napkins and disposable diapers, it has a good feel and can significantly increase added value. If the fiber of the present invention is used, like the water needle method,
There is no need for expensive equipment that generates high pressure in fluids, and nonwoven fabrics made of ultrafine fibers can be produced using equipment with a relatively simple structure, such as a hot air oven, and energy savings can also be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の熱分割性複合繊維の断面形状を示す図
FIG. 1 is a diagram showing the cross-sectional shape of the thermally splittable conjugate fiber of the present invention.

【図2】(a),(b)は実施例1において熱処理前,
後の熱分解性複合繊維の顕微鏡写真である。
[Figure 2] (a) and (b) are before heat treatment in Example 1;
This is a microscopic photograph of the resulting pyrolyzable composite fiber.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  高融点ポリマーセグメントと低融点ポ
リマーセグメントが相互に接合した断面形状を有し、低
融点ポリマーの融点よりも10℃低い温度における高融
点ポリマーと低融点ポリマーの熱収縮率の差が50〜7
5%であることを特徴とする熱分割性複合繊維。
Claim 1: A cross-sectional shape in which a high melting point polymer segment and a low melting point polymer segment are joined to each other, and a difference in thermal shrinkage rate between the high melting point polymer and the low melting point polymer at a temperature 10° C. lower than the melting point of the low melting point polymer. is 50-7
5% thermally splittable composite fiber.
【請求項2】  高融点ポリマーセグメントがポリエチ
レンテレフタレートまたはポリアミドからなり、低融点
ポリマーセグメントがエチレン・プロピレンランダムコ
ポリマーまたはエチレン・プロピレン・ブテン−1ラン
ダムターポリマーからなる請求項1に記載の熱分割性複
合繊維。
2. The thermally splittable composite according to claim 1, wherein the high melting point polymer segment consists of polyethylene terephthalate or polyamide, and the low melting point polymer segment consists of an ethylene propylene random copolymer or an ethylene propylene butene-1 random terpolymer. fiber.
【請求項3】高融点ポリマーセグメントと低融点ポリマ
ーセグメントとがこれらの合計で4個以上接合している
、請求項1に記載の熱分割性複合繊維。
3. The thermally splittable composite fiber according to claim 1, wherein a total of four or more high melting point polymer segments and four or more low melting point polymer segments are bonded together.
【請求項4】請求項1〜3のいずれか一項に記載の熱分
割性複合繊維をカード機によりウェッブに形成した後、
該ウェッブを、高融点ポリマーと低融点ポリマーの熱収
縮率の差が50%以上となる温度域で熱処理を施すこと
により上記熱分割性複合繊維を分割細繊化し極細繊維の
ウェッブとした後、熱的或は機械的絡合手段で不織布を
得ることを特徴とする不織布の製造方法。
4. After forming the thermally splittable composite fiber according to any one of claims 1 to 3 into a web using a carding machine,
The web is heat-treated in a temperature range where the difference in thermal shrinkage rate between the high melting point polymer and the low melting point polymer is 50% or more, thereby splitting the heat splittable conjugate fibers into fine fibers to form a web of ultrafine fibers. 1. A method for producing a nonwoven fabric, characterized by obtaining the nonwoven fabric by thermal or mechanical entanglement means.
JP19898591A 1991-04-16 1991-04-16 Thermally splittable composite fiber Expired - Fee Related JP2904966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19898591A JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19898591A JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Publications (2)

Publication Number Publication Date
JPH04316608A true JPH04316608A (en) 1992-11-09
JP2904966B2 JP2904966B2 (en) 1999-06-14

Family

ID=16400199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19898591A Expired - Fee Related JP2904966B2 (en) 1991-04-16 1991-04-16 Thermally splittable composite fiber

Country Status (1)

Country Link
JP (1) JP2904966B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949166A (en) * 1995-08-01 1997-02-18 Chisso Corp Durable hydrophilic fiber, cloth-like body and formed body
US5789328A (en) * 1996-06-18 1998-08-04 Nippon Petrochemicals Company, Limited Bulky nonwoven fabric and method for producing the same
US5840633A (en) * 1994-11-25 1998-11-24 Polymer Processing Research Inst., Ltd. Nonwoven fabric and method of making the same
JP2006328628A (en) * 2000-01-24 2006-12-07 Daiwabo Co Ltd Thermally splittable conjugate fiber and fiber aggregate thereof
JP2008538978A (en) * 2005-04-29 2008-11-13 キンバリー クラーク ワールドワイド インコーポレイテッド Dual mode absorbent tampon
US20110159235A1 (en) * 2009-12-31 2011-06-30 San Fang Chemical Industry Co., Ltd. Composite fiber having elastomer and method for making the same, and a substrate having the composite fiber and method for making the same
JP2013049943A (en) * 2011-08-01 2013-03-14 Ube Nitto Kasei Co Ltd Splittable concavo-convex composite fiber and nonwoven fabric using the same
CN107841799A (en) * 2017-11-27 2018-03-27 青岛大学 A kind of more component asymmetrical fibres

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840633A (en) * 1994-11-25 1998-11-24 Polymer Processing Research Inst., Ltd. Nonwoven fabric and method of making the same
JPH0949166A (en) * 1995-08-01 1997-02-18 Chisso Corp Durable hydrophilic fiber, cloth-like body and formed body
US5789328A (en) * 1996-06-18 1998-08-04 Nippon Petrochemicals Company, Limited Bulky nonwoven fabric and method for producing the same
JP2006328628A (en) * 2000-01-24 2006-12-07 Daiwabo Co Ltd Thermally splittable conjugate fiber and fiber aggregate thereof
JP2008538978A (en) * 2005-04-29 2008-11-13 キンバリー クラーク ワールドワイド インコーポレイテッド Dual mode absorbent tampon
US20110159235A1 (en) * 2009-12-31 2011-06-30 San Fang Chemical Industry Co., Ltd. Composite fiber having elastomer and method for making the same, and a substrate having the composite fiber and method for making the same
TWI405886B (en) * 2009-12-31 2013-08-21 San Fang Chemical Industry Co Composite fiber having elastomer and method for making the same, and a substrate having the composite fiber and method for making the same
US9303342B2 (en) 2009-12-31 2016-04-05 San Fang Chemical Industry Co., Ltd. Composite fiber having elastomer and method for making the same, and a substrate having the composite fiber and method for making the same
JP2013049943A (en) * 2011-08-01 2013-03-14 Ube Nitto Kasei Co Ltd Splittable concavo-convex composite fiber and nonwoven fabric using the same
CN107841799A (en) * 2017-11-27 2018-03-27 青岛大学 A kind of more component asymmetrical fibres

Also Published As

Publication number Publication date
JP2904966B2 (en) 1999-06-14

Similar Documents

Publication Publication Date Title
KR100436992B1 (en) One-way stretchable nonwoven fabric and its manufacturing method
JP2783602B2 (en) Ultrafine composite fiber for thermal bonding and its woven or nonwoven fabric
US4500384A (en) Process for producing a non-woven fabric of hot-melt-adhered composite fibers
JPH02200868A (en) Ultrafine conjugate fiber and woven or nonwoven fabric thereof
JP3569972B2 (en) Heat-fusible composite fiber and heat-fusible nonwoven fabric
KR20050065601A (en) Nonwoven fabric made of core/sheath type composite fiber and process for producing the same
JP3240819B2 (en) Non-woven fabric and its manufacturing method
JPH04316608A (en) Thermo-splittable conjugated fiber
JPS62299514A (en) Thermally bondable hollow conjugated yarn
JP2872542B2 (en) Thermally bonded nonwoven fabric and method for producing the same
JP3102451B2 (en) Three-layer nonwoven fabric and method for producing the same
JP3113124B2 (en) Method for manufacturing ultrafine fiber web
JP2971919B2 (en) Thermal adhesive fiber
JPH0465562A (en) Polyolefinic stretchable nonwoven fabric and production thereof
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JP2508833B2 (en) Thermal adhesive composite fiber
JPH0949160A (en) Production of nonwoven cloth
JPS6316504B2 (en)
JPS63165564A (en) Heat-adhesive nonwoven sheet
JP2856474B2 (en) High elongation non-woven fabric
JP2948948B2 (en) Thermal adhesive fiber
JPH04327256A (en) Stretchable nonwoven fabric
JPH0849166A (en) Polypropylene fiber
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JP2741113B2 (en) Method for manufacturing stretchable nonwoven fabric

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990302

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees