JPH02169720A - Thermal splitting type conjugate fiber and nonwoven fabric thereof - Google Patents

Thermal splitting type conjugate fiber and nonwoven fabric thereof

Info

Publication number
JPH02169720A
JPH02169720A JP1172470A JP17247089A JPH02169720A JP H02169720 A JPH02169720 A JP H02169720A JP 1172470 A JP1172470 A JP 1172470A JP 17247089 A JP17247089 A JP 17247089A JP H02169720 A JPH02169720 A JP H02169720A
Authority
JP
Japan
Prior art keywords
component
fiber
melting point
nonwoven fabric
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172470A
Other languages
Japanese (ja)
Inventor
Michiaki Yokozawa
横澤 道明
Nobuaki Takagi
伸明 高木
Yukio Kawakami
幸男 川上
Mitsuharu Shinoki
篠木 光治
Hitoshi Otsubo
大坪 人志
Masatoshi Morita
森田 正敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Publication of JPH02169720A publication Critical patent/JPH02169720A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject conjugate fiber capable of splitting a high- melting component by heat treatment and providing nonwoven fabrics having soft hand by arranging a polyolefin component and incompatible fiber-forming polymer component in a specific state. CONSTITUTION:A thermal splitting type conjugate fiber, obtained by regulating the melting point difference between a polyolefin component (A) and a fiber- forming polymer component (B) (polyester, nylon, etc.) incompatible with the component (A) to >=20 deg.C and arranging both components in a state of both components partially exposed to the fiber surface and the high-melting component in a state of split into plural parts and capable of splitting the high-melting component. The fiber is formed into an ultrafine shape by dividing and splitting the high-melting component. If the fiber is used in nonwoven fabrics, the polyolefin component is uniformly bonded between interstices of the ultrafine fibers in the form of dots.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、極めて風合のソフトな複合繊維及びその不織
布に関するものである。さらに詳しくは。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a composite fiber with an extremely soft texture and a nonwoven fabric thereof. More details.

表面感触が非常に優れ、かつドレープ性に優れた不織布
を製造するためのポリオレフィン成分とポリオレフィン
成分と非相溶性の繊維形成性重合体成分からなる複合繊
維及びその不織布に関するものである。
The present invention relates to a composite fiber composed of a polyolefin component and a fiber-forming polymer component incompatible with the polyolefin component, and to a nonwoven fabric thereof, for producing a nonwoven fabric with very good surface feel and excellent drapability.

(従来の技術) ソフトな風合の不織布を製造するためにできるだけ単糸
繊度の小さい極細繊維を用いることが提案されているが
、極細繊維は、開磯性が悪く、カード通過性も劣るた狛
満足な不織布が得られていない。これを解決するための
方策として今までに複合繊維技術を用いて極細繊維を得
る方法が数多く提案されている。例えば、特公昭45−
6297号公報や特公昭45−9907号公報に開示さ
れているように、多芯シースコア糸を用いて不織布を形
成した後、鞘成分を溶解し、不織布構成MIl維を極細
繊維化する方法あるいは特公昭53−10169号公報
に開示されているように中空環状型複合繊維を不織布又
は織編物形成後に機械的手段にて分割する方法等が知ら
れている。
(Prior art) It has been proposed to use ultrafine fibers with as small a single filament fineness as possible in order to produce nonwoven fabrics with a soft texture. Koma: A satisfactory nonwoven fabric has not been obtained. To solve this problem, many methods have been proposed to date to obtain ultrafine fibers using composite fiber technology. For example,
As disclosed in Japanese Patent Publication No. 6297 and Japanese Patent Publication No. 45-9907, a method in which a nonwoven fabric is formed using a multifilamentary sheath core yarn, and then the sheath component is dissolved to turn the MIL fibers constituting the nonwoven fabric into ultrafine fibers, or As disclosed in Japanese Patent Publication No. 53-10169, a method is known in which a hollow annular composite fiber is divided by mechanical means after forming a nonwoven fabric or a woven or knitted fabric.

(発明が解決しようとする課題) しかしながら、これら従来から知られている方法等によ
り複合繊維を得5 この繊維を用いて極細繊維不織布を
作成する場合、下記に述べる欠点を有するものである。
(Problems to be Solved by the Invention) However, when composite fibers are obtained by these conventionally known methods and used to create an ultrafine fiber nonwoven fabric, there are the following drawbacks.

すなわち、鞘成分を溶解除去する方法は、溶剤を使用し
なければならず、溶剤コストや溶解する重合体成分のコ
ストが高くつくこと、また溶解工程や溶剤を回収する工
程等の設備を設置しなければならない等の欠点を有して
いる。
In other words, the method of dissolving and removing the sheath component requires the use of a solvent, which increases the cost of the solvent and the cost of the polymer component to be dissolved, and also requires the installation of equipment for the dissolution process and the process for recovering the solvent. It has disadvantages such as having to be used.

さらに、不織布ウェブの繊維同士を接着する際、アクリ
ル系やPVC系のバインダー等を必要とするものである
。このことは、特公昭53−10169号公報に開示さ
れている技術においても同様であり、不織布にする際、
やはり前記アクリル系やPVC系のバインダー等を必要
とする。このため得られた不織布は、バインダー付与に
より不織布の柔軟性が乏しくなり、風合が硬くなる等の
極細繊維を使用しているにもかかわらず、その特性を発
揮できないものであった。
Furthermore, when bonding the fibers of the nonwoven web, an acrylic or PVC binder is required. This also applies to the technology disclosed in Japanese Patent Publication No. 53-10169, and when making a nonwoven fabric,
After all, the above-mentioned acrylic or PVC binder is required. For this reason, the obtained nonwoven fabric was unable to exhibit its properties despite the use of ultrafine fibers, such as poor flexibility and hard feel due to the addition of a binder.

(課題を解決するための手段) 本発明者らは、上記問題点を解決すべく鋭意研究を重ね
た結果1本発明に到達したものである。
(Means for Solving the Problems) The present inventors have conducted intensive research to solve the above-mentioned problems, and as a result, they have arrived at the present invention.

すなわち9本発明は、ポリオレフィン成分Aとポリオレ
フィン成分Aとは非相溶性の繊維形成性重合体成分Bか
らなる複合繊維において、A成分とB成分の融点差が2
0℃以上で、かつ高融点成分が2個以上に分割配置され
た断面形状を有し、しかも該複合繊維の画成分とも一部
は繊維表面に露出しており、熱処理にて高融点成分が分
割可能である熱分割型複合繊維及びその不織布を要旨と
するものである。
That is, in the present invention, in a composite fiber consisting of a polyolefin component A and a fiber-forming polymer component B in which the polyolefin component A is incompatible, the melting point difference between the A component and the B component is 2.
0°C or higher, and has a cross-sectional shape in which the high melting point component is divided into two or more parts, and a part of the image component of the composite fiber is exposed on the fiber surface, and the high melting point component is removed by heat treatment. The gist of this invention is a thermally splittable conjugate fiber that can be split and a nonwoven fabric thereof.

第1図は9本発明の熱分割型複合繊維の断面を示す一例
であり、A成分としては9例えばポリエチレン、ポリプ
ロピレン等のポリオレフィン、B成分としでは前記ポリ
オレフィン系成分と相溶性のないポリエステル、ナイロ
ン等が挙げられる。本発明に使用されるA成分のポリオ
レフィンとしては。
FIG. 1 shows an example of a cross section of a thermally splittable composite fiber of the present invention, in which the A component is a polyolefin such as polyethylene or polypropylene, and the B component is a polyester or nylon that is incompatible with the polyolefin component. etc. The polyolefin as component A used in the present invention is as follows.

低密度ポリエチレン(LDPB)、直鎖低密度ポリエチ
レン(LLDPB)、高密度ポリエチレン(HDPB)
、ポリプロピレンあるいはエチレン又はプロピレンにア
クリル酸等の不飽和カルボン酸等を共重合した変性ポリ
エチレン、変性ポリプロピレン等が挙ケラレる。B成分
のポリエステルとしては、ポリエチレンテレフタレート
、ポリブチレンテレフタレートを主成分とするもので、
酸成分としてイソフタル酸、アジピン酸等のカルボン酸
やグリコール成分としてネオペンチルグリコール等を共
重合したポリエステルのいずれもが使用できる。また、
ナイロンとしては、ナイロン6、ナイロン66、ナイロ
ン12等およびそれらの共重合物のいずれもが使用でき
る。なお、A成分、B成分とも画成分の間で非相溶性を
示すものであれば、上記化合物の単体あるいは2種以上
の混合物のいずれであってもよい。
Low density polyethylene (LDPB), linear low density polyethylene (LLDPB), high density polyethylene (HDPB)
Examples include polypropylene, modified polyethylene obtained by copolymerizing ethylene or propylene with an unsaturated carboxylic acid such as acrylic acid, and modified polypropylene. The polyester of component B is mainly composed of polyethylene terephthalate and polybutylene terephthalate.
Any of polyesters copolymerized with carboxylic acids such as isophthalic acid and adipic acid as the acid component and neopentyl glycol as the glycol component can be used. Also,
As the nylon, any of nylon 6, nylon 66, nylon 12, etc. and copolymers thereof can be used. In addition, both the A component and the B component may be either a single substance or a mixture of two or more of the above compounds, as long as they are incompatible among the image components.

次に、ポリオレフィン成分Aとポリオレフィン成分Aと
非相溶性の繊維形成性重合体成分Bの構成比としては重
量比でA成分/B成分=10〜70%/90〜30%が
好ましく、さらに好ましくは、30〜60%/70〜4
0%が望ましい。A成分が10%未満の場合、不織布に
する時の接着性に乏しく不織布強力が低くなる。一方、
70%を超えると、接着力が高くなり、不織布強力が向
上するが、接着面積も増加するため、風合が硬くなるの
で好ましくない。
Next, the composition ratio of the polyolefin component A and the fiber-forming polymer component B that is incompatible with the polyolefin component A is preferably A component/B component = 10 to 70%/90 to 30% by weight, and more preferably. is 30-60%/70-4
0% is desirable. If the amount of component A is less than 10%, the adhesiveness when made into a nonwoven fabric will be poor and the strength of the nonwoven fabric will be low. on the other hand,
If it exceeds 70%, the adhesive strength will be high and the strength of the nonwoven fabric will be improved, but the adhesive area will also increase and the texture will become hard, which is not preferable.

次に、成分Aと成分Bの融点差が20℃以上であること
が必要である。それは、熱処理にて繊維の分割化および
不織布化を行う本発明においては。
Next, it is necessary that the difference in melting point between component A and component B is 20° C. or more. In the present invention, the fibers are divided and made into a non-woven fabric through heat treatment.

高融点成分と低融点成分の融点差が20℃未満になった
場合1画成分の熱変形温度領域が重なり、高融点成分が
変形したり、ひどい場合には溶融し、得られる不織布の
強度や風合が損なわれる等の問題がある。このため、良
好な不織布を得るためには。
If the melting point difference between the high melting point component and the low melting point component is less than 20°C, the heat deformation temperature ranges of one stroke component will overlap, and the high melting point component will be deformed or even melted, resulting in the strength of the resulting nonwoven fabric being reduced. There are problems such as loss of texture. Therefore, in order to obtain a good nonwoven fabric.

画成分の融点差を20℃以上とすることが必要となる。It is necessary that the difference in melting point of the image components be 20° C. or more.

また、成分Aと成分Bのどちらかが他方を取り囲んだい
わゆる海島繊維の場合、熱処理により。
In addition, in the case of so-called sea-island fibers in which either component A or component B surrounds the other, by heat treatment.

分割させるのに長時間かかったり、極端な場合1分割で
きない場合もあり、そのため目的とするソフトな不織布
が得られなかったりするため、成分Aと成分Bのいずれ
も一部は繊維表面に露出していることが必要である。
It may take a long time to divide the fibers, or in extreme cases it may not be possible to divide the fibers into one piece, and therefore the desired soft nonwoven fabric may not be obtained. It is necessary that the

次に、上述した該複合繊維を用いて不織布を製造するに
は、先ずカーデイングにより不織ウェブを作成し1次い
で不織ウェブをニードルパンチやウォーターニードル等
により繊維相互を絡合させる。次に、熱処理にて不織布
化を行うものであるが、熱収縮の大きな繊維9例えば貼
り合わせ型複合熱分割繊維においては、絡合工程を通さ
ずにそのまま熱処理を施して不織布化を行うこともある
Next, in order to manufacture a nonwoven fabric using the composite fibers described above, a nonwoven web is first created by carding, and then the fibers of the nonwoven web are entangled with each other by needle punching, water needling, or the like. Next, it is made into a non-woven fabric by heat treatment, but for fibers with large heat shrinkage9, for example, in the case of bonded composite heat-splitable fibers, it is also possible to heat-treat the fibers as they are without going through the entanglement process to make them into a non-woven fabric. be.

熱処理は、熱風乾燥機やエンボッジンゲロール、カレン
ダーロール等の熱ロールを通して不織布化を行うことが
できる。また、この繊維を100%使用するのではなく
、必要に応じて他の接着繊維や接着剤を併用してもよく
、得ようとする不織布に最適な組み合わせを選択すれば
よい。なお、熱処理温度としては、高融点ポリマーの融
点未満で、かつ低融点ポリマーの融点以上の温度で実施
することができる。以不9図面により本発明を説明する
が1本発明がこれら図示されたものに限定されるもので
ないのはいうまでもないことである。
The heat treatment can be performed by passing through a hot air dryer or a hot roll such as an embossing roll or a calender roll to form a non-woven fabric. Moreover, instead of using 100% of these fibers, other adhesive fibers or adhesives may be used in combination as necessary, and the optimum combination for the nonwoven fabric to be obtained may be selected. The heat treatment temperature can be lower than the melting point of the high melting point polymer and higher than the melting point of the low melting point polymer. The present invention will be described below with reference to nine drawings, but it goes without saying that the present invention is not limited to what is shown in these drawings.

第2図は9本発明に係る複合紡糸口金装置の縦断面図、
第3図及び第4図は、それぞれ第2図のC−C゛線、D
−D’線の切断断面図を示している。
FIG. 2 is a longitudinal sectional view of a composite spinneret device according to the present invention;
Figures 3 and 4 are lines C-C' and D in Figure 2, respectively.
-D' line cut sectional view is shown.

第2〜第4図において、Aは紡糸液A、Bは紡糸液B 
、 (1)は下口金板で、誘導孔(2)の先端に複合流
用異形吐出孔(3)を有している。(4)は上口金板で
、紡糸液A用吐出孔を有するキャピラリー(5)を備え
ており、キャピラ!J−(5)は下口金板(1)の複合
流用の吐出誘導孔の内壁に実質的に密着挿入されている
In Figures 2 to 4, A is spinning solution A and B is spinning solution B.
, (1) is a lower metal plate, which has a composite flow irregularly shaped discharge hole (3) at the tip of the guide hole (2). (4) is an upper metal plate, which is equipped with a capillary (5) having a discharge hole for spinning solution A, and a capillary! J-(5) is inserted substantially tightly into the inner wall of the discharge guide hole for composite flow in the lower metal plate (1).

キャピラ!J−(5)の外周部には第3図に示すように
紡糸液Bを供給する通路となる切欠き(6)が設けられ
ている。紡糸液Aは、キャビラ!J−(5)の上端から
導入され、紡糸液Bは、上口金板(4)の誘導孔(7)
及びそれに連通した間隙(8)を通して導入される。紡
糸液Bは、誘導孔(7)で均一に各紡糸孔に分配され間
隙(8)を通過し、吐出誘導孔の上部で均圧化され。
Capilla! As shown in FIG. 3, a notch (6) serving as a passage for supplying the spinning solution B is provided on the outer circumferential portion of J-(5). Spinning solution A is Cabila! The spinning solution B is introduced from the upper end of J-(5) through the guide hole (7) of the upper metal plate (4).
and a gap (8) communicating therewith. The spinning solution B is uniformly distributed to each spinning hole by the guide hole (7), passes through the gap (8), and is equalized in pressure at the upper part of the discharge guide hole.

さらにキャビラIJ−(5)の切欠き(6)により定量
的かつ均一に供給される。第5図において、Aは成分A
よりなる構成部分で、B+〜B4は成分Bよりなる構成
部分である。そして、第2〜第4図に示す如き構造の紡
糸口金を用いることで、第5図の如き形態を有する十字
型複合繊維の未延伸糸が得られる。得られた未延伸糸を
延伸した後、該複合繊維を不織布化する場合、下記に示
す工程より製造される。
Furthermore, it is supplied quantitatively and uniformly through the notch (6) of the cab IJ-(5). In Figure 5, A is component A
B+ to B4 are component parts consisting of component B. By using a spinneret having a structure as shown in FIGS. 2 to 4, an undrawn cross-shaped composite fiber yarn having a configuration as shown in FIG. 5 can be obtained. After drawing the obtained undrawn yarn, when the composite fiber is made into a nonwoven fabric, it is produced through the steps shown below.

・熱分割型複合繊維からなる不織布製造工程複合綿→カ
ード→不織つェブ→ニードリング→熱処理→製品 得られた不織布は、熱分割型複合繊維からなるもので、
熱処理工程で大部分が剥離し、一部が部分的に接着して
いる極めて風合の良好なものである。
・Manufacturing process for nonwoven fabric made of heat splittable composite fibers Composite cotton → Card → Nonwoven web → Needling → Heat treatment → Product The obtained nonwoven fabric is made of heat splittable composite fibers.
It has an extremely good texture, with most of it peeling off during the heat treatment process and some of it partially adhering.

−古本発明における熱分割型複合繊維は前記短繊維不織
布のみならず長繊維不織布にも用いることができる。長
繊維不織布の製造例として例えば下記に示す工程より製
造される。
- The thermally splittable composite fiber of the second invention can be used not only for the short fiber nonwoven fabric but also for the long fiber nonwoven fabric. As an example of manufacturing a long fiber nonwoven fabric, for example, it is manufactured by the steps shown below.

・熱分割型複合繊維からなる長繊維不織布製造工程 複合繊維→開繊装置→ウェブ→エンボスロール→熱処理
→製品 (作用) 本発明の複合繊維を利用すると1分割前は単糸繊度が2
〜8デニ一ル程度の通常の不織布用繊維と同程度の単糸
繊度を有し、優れた不織ウェブが得られる。ところが、
A成分とB成分とは非相溶性であるため、先ず、一部の
境界面で剥離が生じ。
・Manufacturing process for long-fiber nonwoven fabric made of thermally splittable composite fibers Composite fiber → Spreading device → Web → Embossing roll → Heat treatment → Product (effect) When using the composite fiber of the present invention, the single fiber fineness is 2 before splitting.
It has a single yarn fineness of about 8 deniers, which is comparable to that of ordinary fibers for nonwoven fabrics, and an excellent nonwoven web can be obtained. However,
Since the A component and the B component are incompatible, first, separation occurs at a part of the interface.

さらにA成分の融点以上の温度で熱処理を行うと。Furthermore, when heat treatment is performed at a temperature higher than the melting point of component A.

A成分の熱収縮も大きいため融解ばかりでなく。Component A also has a large thermal contraction, so it not only melts.

その熱収縮によっても複合繊維間の分割もスムーズに行
うことができる。次いで、A成分が熱処理分割後極細繊
維となった後にB成分を部分的に接着するものである。
The heat shrinkage also allows for smooth division of composite fibers. Next, after the A component has been heat-treated and split into microfibers, the B component is partially bonded.

このため、接着が部分接着となり、風合も良好となる。Therefore, adhesion is only partial adhesion, and the texture is also good.

(実施例) 次に1本発明を実施例によって具体的に説明する。なお
、実施例にて行った製品の評価方法は下記の通りである
(Example) Next, one embodiment of the present invention will be specifically explained using an example. In addition, the evaluation method of the product performed in the example is as follows.

(1)不織布引張強力 、JIS L−1096ストリップ法に準じて巾25m
m。
(1) Non-woven fabric tensile strength, width 25m according to JIS L-1096 strip method
m.

長さ100 mmの試験片を用い、最大引張強力を測定
した。
The maximum tensile strength was measured using a test piece with a length of 100 mm.

(2)圧縮剛軟度 50+nm X 100mmの試験片を作成し、この試
験片を高さ50mm、円周10 Q a+mの円筒状と
し平板式ロードセル上に置き、50++un/分の速度
で円筒状試験片を圧縮させてその時の最大荷重を測定し
た。
(2) Create a test piece with a compression bending strength of 50+nm x 100mm, make this test piece into a cylindrical shape with a height of 50mm and a circumference of 10Q a+m, place it on a flat plate type load cell, and conduct a cylindrical test at a speed of 50++ un/min. The piece was compressed and the maximum load at that time was measured.

(3)目付 JIS P−8142に準じて測定した。(3) Weight Measured according to JIS P-8142.

実施例1〜3.比較例1 相対粘度〔フェノールと四塩化エタンとの等重量混合物
を溶媒とし、溶液濃度0.5g/100m l 、温度
20℃で測定〕が1.38のポリエチレンテレフタレー
ト(融点260℃)と第1表に示す種々のメルトインデ
ックス値(以下Mlという)を有するポリプロピレン(
融点170℃)とを溶融紡糸するに当たり、第2〜第4
図に示す紡糸口金(孔数319)を用い、Aよりポリプ
ロピレン、Bよりポリエチレンテレフタレートを導入し
、吐出量をそれぞれ第1表に示す内・容で吐出し、紡糸
温度280℃、捲取速度1000m/分で捲き取った。
Examples 1-3. Comparative Example 1 Polyethylene terephthalate (melting point 260°C) with a relative viscosity of 1.38 (measured using an equal weight mixture of phenol and tetrachloroethane as a solvent, solution concentration 0.5g/100ml, temperature 20°C) and the first Polypropylene (hereinafter referred to as Ml) having various melt index values (hereinafter referred to as Ml) shown in the table
(melting point 170°C), the second to fourth
Using the spinneret shown in the figure (number of holes: 319), polypropylene was introduced from A and polyethylene terephthalate was introduced from B, and the discharge amounts were as shown in Table 1, respectively, at a spinning temperature of 280°C and a winding speed of 1000 m. I finished it in / minute.

得られた未延伸系の断面形状は、第5図に示すものであ
った。得られた糸条を10万デニールのトウに集束し、
延伸温度75℃にて第1表に示す延伸倍率で延伸し、押
込み式クリンパ−で捲縮を付与した後、長さ51mmに
切断して繊度2デニールの熱分割型複合繊維を得た。次
に、この複合繊維スフをカード機に供給し、目付80g
/m”の不織ウェブを得た。次に、バーブ付ニドルを有
するニードルロッカールームに通して針密度160本/
 ctl、にてニードリングを行った。引続き、ニード
ルパンチ後の該ウェブをサクションドライヤーにて19
0℃で1分間熱処理することで不織布を得た。得られた
不織布は8第1表に示すように、風合がソフトで、良好
な感触を有するものであった。また9本発明と比較する
目的で比較例1として第6図(ア)に示す断面形状を有
する複合繊維を製造した。A成分とB成分の重量比を第
1表に示す割合で行う以外、他の条件については第1表 第1表(続) 実施例1で用いたポリエチレンテレフタレートを使用し
て0.5デニ一ルX51mmの短繊維を得1次いで該短
場維をカード機に通したところ、カード沈みが発生し、
均一な不織ウェブが得られなかった。
The cross-sectional shape of the obtained unstretched system was as shown in FIG. The obtained yarn is gathered into a 100,000 denier tow,
The fibers were drawn at a drawing temperature of 75 DEG C. and at the draw ratio shown in Table 1, crimped using a push-in crimper, and then cut into a length of 51 mm to obtain a thermally splittable composite fiber having a fineness of 2 denier. Next, this composite fiber fabric was fed to a carding machine, and the basis weight was 80g.
/m” was obtained.Then, the nonwoven web was passed through a needle locker room with barbed needles to obtain a needle density of 160/m”.
Needling was performed with ctl. Subsequently, the web after needle punching was dried in a suction dryer for 19 minutes.
A nonwoven fabric was obtained by heat treatment at 0°C for 1 minute. As shown in Table 8, the obtained nonwoven fabric had a soft texture and a good feel. Further, for the purpose of comparison with the present invention, a composite fiber having a cross-sectional shape shown in FIG. 6(A) was manufactured as Comparative Example 1. Except for the weight ratio of component A and component B shown in Table 1, other conditions are shown in Table 1 (Continued). Using the polyethylene terephthalate used in Example 1, When short fibers of 51 mm in diameter were obtained and then passed through a card machine, card sinking occurred.
A uniform nonwoven web was not obtained.

実施例4〜5 実施例1のA成分を高密度ポリエチレン(融点130℃
)に変更し、さらに第2表に示した以外の他の条件は、
実施例1と全く同一条件で不織布を作成した。得られた
不織布の性能を第2表に示す。
Examples 4-5 Component A of Example 1 was replaced with high-density polyethylene (melting point 130°C
), and other conditions other than those shown in Table 2 are as follows:
A nonwoven fabric was created under exactly the same conditions as in Example 1. Table 2 shows the performance of the obtained nonwoven fabric.

表より、風合がソフトで強力が優れていることが明らか
である。
From the table, it is clear that the texture is soft and the strength is excellent.

全〈実施例1に準じて不織布を製造した。第1表から明
らかなように不織布の強力が低く、かつ不織布を構成し
ている複合繊維の分割も認められなかった。
A nonwoven fabric was produced in accordance with Example 1. As is clear from Table 1, the strength of the nonwoven fabric was low, and no splitting of the composite fibers constituting the nonwoven fabric was observed.

比較例2 第2表(続) 実施例6 実施例1のA成分をポリプロピレン(メルトインデック
ス値50g/10分)とし、B成分をユニチカ■製ナイ
ロン6樹脂(融点217℃)(商品名へ1030BRF
)として第2図の紡糸口金(孔数319)を用い、紡糸
温度270℃、捲取速度10QOm/分で捲き取った。
Comparative Example 2 Table 2 (Continued) Example 6 The A component of Example 1 was polypropylene (melt index value 50 g/10 min), and the B component was Unitika's nylon 6 resin (melting point 217°C) (product name 1030BRF).
), using the spinneret shown in FIG. 2 (319 holes), spinning at a spinning temperature of 270° C. and at a winding speed of 10 QOm/min.

得られた糸条を10万デニールのトウに集束し、75℃
で延伸倍率2.6の条件で延伸し、押込み式クリンパ−
で捲縮を付与した後、長さ51m1こ切断して繊度2デ
ニールの熱分割型複合繊維を得た。次に、この複合繊維
スフをカード機に通し、目付8h/m2の不織ウェブを
構成した後、バーブ付ニードルを有するニードルロッカ
ールームに通して針密度160本/am2にてニードリ
ング処理を行った。該不織ウェブをサクションドライヤ
ーにて190℃で1分間熱処理を行い、不織布を得た。
The obtained yarn was bundled into a 100,000 denier tow and heated at 75°C.
Stretched at a stretching ratio of 2.6, and then stretched using a push-in crimper.
After applying crimps, the fiber was cut into a length of 51 m to obtain a thermally splittable composite fiber having a fineness of 2 denier. Next, this composite fiber fabric was passed through a carding machine to form a nonwoven web with a basis weight of 8 h/m2, and then passed through a needle locker room with barbed needles for needling at a needle density of 160/am2. Ta. The nonwoven web was heat-treated at 190° C. for 1 minute using a suction dryer to obtain a nonwoven fabric.

得られた不織布の強力は3210g、圧縮剛軟度50g
の非常にソフトな風合のものであった。
The strength of the obtained nonwoven fabric is 3210 g, and the compression stiffness is 50 g.
It had a very soft texture.

実施例7 実施例1のB成分を相対粘度1.60のポリブチレンテ
レフタレートに変更した以外、他は全〈実施例1に準じ
て不織布を製造した。得られた不織布の強力は3550
g、圧縮剛軟度は56gで9強力、風合とも満足のでき
るものであった。
Example 7 A nonwoven fabric was produced in the same manner as in Example 1 except that component B in Example 1 was changed to polybutylene terephthalate having a relative viscosity of 1.60. The strength of the obtained nonwoven fabric is 3550
g, compression bending strength was 56 g, strength was 9, and the texture was satisfactory.

実施例8 実施例1のB成分を5ソジウムイソフタレート2、5m
o1%共重合したポリエステルに変更した以外。
Example 8 Component B of Example 1 was added to 5 sodium isophthalate 2.5 m
o Except for changing to 1% copolymerized polyester.

他は、全〈実施例1に準じて不織布を製造した。Otherwise, a nonwoven fabric was produced in accordance with Example 1.

得られた不織布の強力は3390g、圧縮剛軟度は63
gで2強力、風合とも満足のできるものであった。
The strength of the obtained nonwoven fabric was 3390 g, and the compression stiffness was 63.
It had a strength of 2 g and a satisfactory texture.

実施例9〜11 実施例1で使用したポリエチレンテレフタレートをB成
分とし、第3表に示す各種ポリオレフィンをA成分とし
て溶融紡糸するにあたり第2図〜第4図に示す紡糸口金
を用い単糸繊度が2デニル、A成分とB成分吐出比が1
:2のフィラメントを紡糸し、直ちに空気圧で延伸し、
開繊装置にて開繊した後、移動する多孔質帯状体に堆積
させてウェブを製造した。ウェブ化したものを圧接部分
の面積比が15%、圧接点の密度が22ケ/ c++f
である点状模様をもつ彫刻ロールとフラットロールから
なる熱圧接装置を用い、第3表に示す熱圧接温度で部分
的に熱圧接し、目付が40g/m”である不織シートを
得た。さらに、該不織シ”−トを熱風乾燥機を用い第3
表に示す温度で1分間熱処理を行った。得られた不織シ
ートは第3表に特性を示すように風合がソフトで良好な
感触を示していた。
Examples 9 to 11 The polyethylene terephthalate used in Example 1 was used as the B component, and the various polyolefins shown in Table 3 were used as the A component to melt spin the spinneret shown in FIGS. 2 to 4 to determine the single yarn fineness. 2 denyl, A component and B component discharge ratio is 1
: Spinning the filament of 2 and immediately drawing it with air pressure,
After the fibers were opened using a fiber opening device, they were deposited on a moving porous strip to produce a web. The area ratio of the press-contact part of the web is 15%, and the density of press-contact points is 22 pieces/c++f.
Using a heat pressure welding device consisting of an engraved roll with a dotted pattern and a flat roll, partial heat pressure welding was performed at the heat welding temperature shown in Table 3 to obtain a nonwoven sheet with a basis weight of 40 g/m''. .Furthermore, the nonwoven sheet was dried in a third dryer using a hot air dryer.
Heat treatment was performed for 1 minute at the temperature shown in the table. The resulting nonwoven sheet had a soft texture and a good feel, as shown in Table 3.

第3表 第3表(続) 但し、PPは密度0.90g/ca!、 M I 50
g/10分、融点170℃のポリプロピレンを、HDP
Eは密度0.96g/cIIl、 M I 2h/10
分、融点130℃の高密度ポリエチレンを、LLDPE
は密度0.92g/cut、 M I 25g/10分
、融点128℃の直鎖低密度ポリエチレンを意味する。
Table 3 Table 3 (continued) However, PP has a density of 0.90g/ca! , MI 50
g/10 minutes, polypropylene with a melting point of 170°C was
E is density 0.96g/cIIl, M I 2h/10
Minutes, high-density polyethylene with a melting point of 130°C is
means linear low-density polyethylene with a density of 0.92 g/cut, M I of 25 g/10 min, and a melting point of 128°C.

(発明の効果) 本発明の熱分割型複合繊維は1分割割繊することで、極
細繊維となるもので、これを不織布に使用すると、極細
繊維間に均一にポリオレフィン成分が点接着されるため
バインダーを新たに付与することもなく経済的でしかも
風合の良好なものが得られるものである。
(Effects of the invention) The thermally splittable composite fiber of the present invention becomes ultrafine fibers by splitting into one piece, and when this is used in a nonwoven fabric, the polyolefin component is uniformly dot-bonded between the ultrafine fibers. It is economical and provides a good texture without adding a new binder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は1本発明の繊維の断面形状の一例を示す説明図
である。第2図は1本発明に係る複合繊維の紡糸口金装
置の断面図で、第3図および第4図は、それぞれ第1図
のC−C・およびD−D・線の切断断面図、第5図は、
第1図の紡糸口金装置において得られた複合繊維の断面
形状を示す説明図また。第6図は、比較例の繊維断面形
状を示す説明図である。 A  紡糸液AB ■  下口金板   2 3  異形吐出孔  4 5  キャピラリー 6 7  誘導孔    8 紡糸液B 誘導孔 上口金板 切欠き 間隙
FIG. 1 is an explanatory diagram showing an example of the cross-sectional shape of the fiber of the present invention. FIG. 2 is a cross-sectional view of a spinneret device for composite fibers according to the present invention, and FIGS. 3 and 4 are cross-sectional views taken along lines CC and D-D in FIG. 1, respectively. Figure 5 is
An explanatory diagram showing the cross-sectional shape of the composite fiber obtained in the spinneret device of FIG. 1. FIG. 6 is an explanatory diagram showing a fiber cross-sectional shape of a comparative example. A Spinning solution AB ■ Lower cap plate 2 3 Irregular discharge hole 4 5 Capillary 6 7 Guide hole 8 Spinning solution B Guide hole upper cap plate notch gap

Claims (2)

【特許請求の範囲】[Claims] (1)ポリオレフイン成分Aとポリオレフイン成分Aと
は非相溶性の繊維形成性重合体成分Bからなる複合繊維
において,A成分とB成分の融点差が20℃以上で,か
つ高融点成分が2個以上に分割配置された断面形状を有
し,しかも該複合繊維の両成分とも一部は繊維表面に露
出しており,熱処理にて高融点成分が分割可能である熱
分割型複合繊維。
(1) Polyolefin component A and polyolefin component A are incompatible fiber-forming polymer component B in a conjugate fiber that has a melting point difference of 20°C or more and two high melting point components. A thermally splittable conjugate fiber having a cross-sectional shape divided into parts as described above, in which both components of the conjugate fiber are partially exposed on the fiber surface, and the high melting point component can be split by heat treatment.
(2)ポリオレフイン成分Aとポリオレフイン成分Aと
は非相溶性の繊維形成性重合体成分Bから構成された複
合繊維からなる不織布であって,前記複合繊維を構成す
るA成分とB成分の融点差が20℃以上で,かつ高融点
成分が2個以上に分割配置された断面形状を有し,しか
も該複合繊維の両成分とも一部は繊維表面に露出してお
り,低融点成分の融点以上の温度で熱処理することで実
質的に分割せしめられている熱分割型複合繊維からなる
不織布。
(2) Polyolefin component A and polyolefin component A are nonwoven fabrics made of composite fibers composed of incompatible fiber-forming polymer component B, and the difference in melting point between component A and component B constituting the composite fibers. is 20°C or higher, and has a cross-sectional shape in which the high melting point component is divided into two or more parts, and both components of the composite fiber are partly exposed on the fiber surface, and the melting point of the low melting point component is higher than the melting point of the low melting point component. A nonwoven fabric made of thermally splittable composite fibers that are substantially split by heat treatment at a temperature of .
JP1172470A 1988-09-12 1989-07-04 Thermal splitting type conjugate fiber and nonwoven fabric thereof Pending JPH02169720A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP63-227881 1988-09-12
JP22788188 1988-09-12

Publications (1)

Publication Number Publication Date
JPH02169720A true JPH02169720A (en) 1990-06-29

Family

ID=16867805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172470A Pending JPH02169720A (en) 1988-09-12 1989-07-04 Thermal splitting type conjugate fiber and nonwoven fabric thereof

Country Status (1)

Country Link
JP (1) JPH02169720A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0624676A1 (en) * 1992-10-05 1994-11-17 Unitika Ltd. Nonwoven cloth of ultrafine fibers and method of manufacturing the same
US6200669B1 (en) 1996-11-26 2001-03-13 Kimberly-Clark Worldwide, Inc. Entangled nonwoven fabrics and methods for forming the same
US6506327B2 (en) 1997-11-05 2003-01-14 Pedex & Co. Gmbh Process of making monofilaments
US6871373B2 (en) 1998-09-14 2005-03-29 Braun Gmbh Bristle for a toothbrush, particularly for an electric toothbrush, and method for its manufacture
WO2007105503A1 (en) * 2006-03-13 2007-09-20 Mitsui Chemicals, Inc. Divided conjugated filament nonwoven fabrics excellent in lint freeness and process for production thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0624676A1 (en) * 1992-10-05 1994-11-17 Unitika Ltd. Nonwoven cloth of ultrafine fibers and method of manufacturing the same
EP0624676A4 (en) * 1992-10-05 1995-02-01 Unitika Ltd Nonwoven cloth of ultrafine fibers and method of manufacturing the same.
US6200669B1 (en) 1996-11-26 2001-03-13 Kimberly-Clark Worldwide, Inc. Entangled nonwoven fabrics and methods for forming the same
US6506327B2 (en) 1997-11-05 2003-01-14 Pedex & Co. Gmbh Process of making monofilaments
US6871373B2 (en) 1998-09-14 2005-03-29 Braun Gmbh Bristle for a toothbrush, particularly for an electric toothbrush, and method for its manufacture
WO2007105503A1 (en) * 2006-03-13 2007-09-20 Mitsui Chemicals, Inc. Divided conjugated filament nonwoven fabrics excellent in lint freeness and process for production thereof
JPWO2007105503A1 (en) * 2006-03-13 2009-07-30 三井化学株式会社 Split composite long fiber nonwoven fabric excellent in lint-free property and production method
JP4943420B2 (en) * 2006-03-13 2012-05-30 三井化学株式会社 Split composite long fiber nonwoven fabric excellent in lint-free property and production method

Similar Documents

Publication Publication Date Title
US5124194A (en) Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same
US4966808A (en) Micro-fibers-generating conjugate fibers and woven or non-woven fabric thereof
JP5272229B2 (en) Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber
US5277974A (en) Heat-bondable filament and nonwoven fabric made of said filament
JP3240819B2 (en) Non-woven fabric and its manufacturing method
EP0311860B1 (en) Nonwoven fabric made of heat bondable fibers
JPH02169723A (en) Thermally splitting type conjugate fiber and nonwoven fabric thereof
JPH02169720A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JPH10219555A (en) Laminated nonwoven fabric and its production
JP2904966B2 (en) Thermally splittable composite fiber
JP3113124B2 (en) Method for manufacturing ultrafine fiber web
JP3124017B2 (en) Thermal adhesive fibers and nonwovens
JPH02169719A (en) Thermal splitting type conjugate fiber and nonwoven fabric thereof
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JPH04126815A (en) Ultra-fine fiber-forming conjugate fiber
JP5248832B2 (en) Polycarbonate split type composite fiber, fiber assembly and non-woven fabric using the same
JPH0316427B2 (en)
JPH0434058A (en) Production of nonwoven fabric of ultrafine short fiber
JP2741113B2 (en) Method for manufacturing stretchable nonwoven fabric
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH0333218A (en) Thermally splittable polyester conjugate fiber and nonwoven fabric made thereof
JPH0823085B2 (en) Thermoadhesive conjugate fiber and non-woven fabric thereof
JPS6119815A (en) Bicomponent conjugated hollow fiber and its production
JP2002088580A (en) Dividable fiber and fabric using the same
JPH0525762A (en) Staple, nonwoven fabric and production thereof