JPH04126815A - Ultra-fine fiber-forming conjugate fiber - Google Patents
Ultra-fine fiber-forming conjugate fiberInfo
- Publication number
- JPH04126815A JPH04126815A JP2248163A JP24816390A JPH04126815A JP H04126815 A JPH04126815 A JP H04126815A JP 2248163 A JP2248163 A JP 2248163A JP 24816390 A JP24816390 A JP 24816390A JP H04126815 A JPH04126815 A JP H04126815A
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- sea
- fibers
- sheath
- ultrafine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 101
- 229920001410 Microfiber Polymers 0.000 claims abstract description 34
- 229920000642 polymer Polymers 0.000 claims abstract description 17
- 239000002759 woven fabric Substances 0.000 claims abstract description 12
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 239000004745 nonwoven fabric Substances 0.000 claims description 26
- 239000002131 composite material Substances 0.000 claims description 17
- 238000012545 processing Methods 0.000 abstract description 5
- 239000000306 component Substances 0.000 description 44
- -1 polypropylene Polymers 0.000 description 36
- 239000004743 Polypropylene Substances 0.000 description 24
- 229920001155 polypropylene Polymers 0.000 description 24
- 238000009987 spinning Methods 0.000 description 22
- 238000001125 extrusion Methods 0.000 description 15
- 238000000034 method Methods 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 9
- 239000005020 polyethylene terephthalate Substances 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229920002451 polyvinyl alcohol Polymers 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 229920001169 thermoplastic Polymers 0.000 description 6
- 239000004416 thermosoftening plastic Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 229920002292 Nylon 6 Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000007127 saponification reaction Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000009960 carding Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Landscapes
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Multicomponent Fibers (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Woven Fabrics (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は極細繊維発生繊維に関し、さらに詳しくは溶剤
等を用いて構成成分の一部を除去することにより極、#
w&雄を発生させる海島構造部を有し、かつその海島構
造部を剥離可能な重合体で包んだ事を特徴とする複合繊
維であり、製造安定性、加工安定性、保存性に優れた極
細繊維発生複合繊維及びこれを用いて得られる極細繊維
を有する織布または不織布に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to microfiber-generated fibers, and more specifically, the present invention relates to microfiber-generated fibers, and more specifically, by removing a part of the constituent components using a solvent or the like, ultrafine fibers can be produced.
It is a composite fiber characterized by having a sea-island structure that generates w&m, and wrapping the sea-island structure with a peelable polymer, and is an ultra-fine fiber with excellent manufacturing stability, processing stability, and storage stability. The present invention relates to fiber-generated conjugate fibers and woven or nonwoven fabrics having ultrafine fibers obtained using the same.
最近、衣料品の高級化、多様化に伴い繊維の極細化によ
る風合いの改良が試みられている。また合成紙、不織布
などの用途開発が進むにつれて、極細繊維の製造方法の
開発が望まれている。極細繊維を発生する繊維としては
、一般に海島型繊維と称さ九でいる極、flll繊維発
生繊維が、 きわめて有用であり、これを用いた新しい
製品が多く世に出ている。Recently, as clothing becomes more luxurious and diversified, attempts have been made to improve the texture by making the fibers ultra-fine. Furthermore, as the development of applications for synthetic paper, nonwoven fabrics, etc. progresses, there is a desire to develop methods for producing ultrafine fibers. As a fiber that generates ultrafine fibers, ultra-fine fibers, generally called sea-island fibers, are extremely useful, and many new products using them are now on the market.
これらの海島型繊維のうち、特に特公昭47−3764
、8号公報等に開示されたものは、海成分と島成分の異
種のポリマーをブレンドして溶融紡糸した後、海成分を
溶剤により除去し、島成分のみを残すようにしたもので
ある。また特開昭60−21904号公報等に開示され
たものは、イ毎島構造となるように異種のポリマーを複
合紡糸したものである。しかし、これらはいずれも海成
分の可紡性が劣るため安定した紡糸か出来ない、あるい
は海成分を除去して得られる極m繊維束の強力が不充分
であるなどの欠点を有している。Among these sea-island type fibers, especially
, No. 8, etc., is a method in which different polymers of a sea component and an island component are blended and melt-spun, and then the sea component is removed with a solvent, leaving only the island component. Further, the material disclosed in Japanese Patent Application Laid-Open No. 60-21904 and the like is a material in which different types of polymers are compositely spun to form an island structure. However, all of these have drawbacks, such as the fact that stable spinning is not possible due to the poor spinnability of the sea component, or that the strength of the ultra-m fiber bundle obtained by removing the sea component is insufficient. .
一方、これら海島型繊維の改良型として本出願人による
特願平01−18269に示される極細繊維発生複合繊
維は、海島構造を有する極細繊維発生部分と他の部分か
らなる複合繊維であって、海島構造の部分は繊維表面に
露出しており、島成分を単糸繊度0. 1デニール以下
の極細繊維とし、他の部分を単糸繊度0.5デニ一ル以
上の繊維とすることにより、充分な強力、安定した紡糸
性を得ている。On the other hand, ultrafine fiber-generated conjugate fibers, which are disclosed in Japanese Patent Application No. 01-18269 filed by the present applicant as an improved version of these sea-island type fibers, are conjugate fibers consisting of an ultrafine fiber-generated portion having a sea-island structure and other portions, The sea-island structure part is exposed on the fiber surface, and the island component is divided into single yarns with a fineness of 0. By using ultrafine fibers with a diameter of 1 denier or less and using fibers with a single fiber fineness of 0.5 denier or more in the other parts, sufficient strength and stable spinnability can be obtained.
しかし、この海島型極細繊維発生繊維では海島構造部の
海成分にポリヒニルアルコール等水溶性の重合体を用い
ると、水溶液の繊維仕上剤が使用できない、保存中に空
気中の水分を吸収し繊維同士の融着な起こす等積々の問
題があった。However, if a water-soluble polymer such as polyhinyl alcohol is used as the sea component of the sea-island structure in this sea-island type microfiber-generated fiber, an aqueous solution fiber finishing agent cannot be used, and moisture in the air will be absorbed during storage. There were many problems such as fusion of fibers.
本発明の目的は、製造安定性、加工安定性、保存性に優
れた極細繊維発生繊維を提供することにあ る。An object of the present invention is to provide ultrafine fiber-generated fibers that have excellent manufacturing stability, processing stability, and storage stability.
本発明者は、海島型極細繊維発生繊維の上記の課題を解
決するために鋭意研究の結果、極細繊維発生繊維の表面
を互いに剥離が可能であり、透湿性の小さな重合体で覆
うことにより所期の成果が得られることを知り本発明を
完成するに到った。In order to solve the above-mentioned problems with the sea-island type microfiber-generated fibers, the present inventor has conducted extensive research and discovered that the surfaces of the microfiber-generated fibers can be peeled from each other and are covered with a polymer having low moisture permeability. This led to the completion of the present invention after realizing that the same results could be obtained.
本発明の極細繊維発生複合繊維とは、鞘芯型複合繊維で
あって、鞘部分は互いに剥離可能な複数部分からなり、
窓部分は海島構造を有し、この窓部分の海成分は溶剤で
除去可能な重合体からなり、島成分が単糸繊度0. 1
デニール以下の極細繊維を形成していることを特徴とす
る複合繊維である。The ultrafine fiber-generated conjugate fiber of the present invention is a sheath-core type conjugate fiber, and the sheath portion is composed of multiple parts that can be peeled from each other,
The window portion has a sea-island structure, the sea component of this window portion is made of a polymer that can be removed with a solvent, and the island component has a single yarn fineness of 0. 1
It is a composite fiber characterized by forming ultrafine fibers with a denier or less.
本発明の極細繊維束とは、前記の極細繊維発生複合繊維
の、鞘部分を剥離し、窓部分の海成分を除去して得られ
る極細繊維を含有する繊維束である。The ultrafine fiber bundle of the present invention is a fiber bundle containing ultrafine fibers obtained by peeling off the sheath portion and removing the sea component of the window portion of the above-mentioned ultrafine fiber-generated conjugate fiber.
本発明の極細繊維を有する織布あるいは不織布とは、前
記の極細繊維発生複合繊維を用いて製造した織布もしく
は不織布を、極細繊維発生複合繊維の鞘部分を剥離し、
窓部分の海成分を除去して得られる、極細繊維を含有す
る織布または不織布である。The woven fabric or nonwoven fabric having ultrafine fibers of the present invention is obtained by peeling off the sheath portion of the ultrafine fiber generated conjugate fiber from the woven fabric or nonwoven fabric produced using the ultrafine fiber generated conjugate fiber, and
A woven or nonwoven fabric containing ultrafine fibers obtained by removing sea components from the window area.
本発明における複合繊糸トの形態は、海、ら構造を有す
る窓部分の表面を剥離可能な複数の鞘部分が包んでいれ
ばどのようなものでもよいが、各鞘部分が繊度0. 3
デニ一ル以上であることか特に望ましい。各鞘成分がQ
、 3デニ一ル未満であると繊維強度、あるいはこの
繊維を用いて得た織布あるいは不繊布の強力か低下する
場合がある。複合繊維形態の例としては、海IJ3構造
を有する窓部分(1)を、鞘部分を構成する複合部分(
2)、 (3)がサイドバイトサイド型で包んでいる複
合繊維(第」−図)が上げられる。The composite fiber in the present invention may have any form as long as a plurality of removable sheath parts wrap the surface of a window part having a sea-grain structure, but each sheath part has a fineness of 0. 3
It is particularly desirable that the material be at least one denier. Each sheath component is Q
If it is less than 3 denier, the fiber strength or the strength of the woven or nonwoven fabric obtained using this fiber may decrease. As an example of a composite fiber form, a window portion (1) having a sea IJ3 structure and a composite portion (1) constituting a sheath portion are used.
2) and (3) are composite fibers wrapped in a side-by-side type (Fig. 1).
本発明において鞘部分の剥離とは、鞘部分を構成する複
数部分が第2図の様に完全に分割する必要はなく、第3
図の様に海島構造を有する窓部分が繊維の表面に露出す
る程度の剥離でも充分である。In the present invention, peeling of the sheath portion does not mean that the plurality of parts constituting the sheath portion do not need to be completely divided as shown in FIG.
As shown in the figure, peeling to the extent that the window portion having a sea-island structure is exposed on the surface of the fiber is sufficient.
本発明の複合繊維の鞘部分を構成する複合部分に用いる
重合体としては一般に繊維原料として用いられるポリオ
レフィン、ポリアミド、ポリエステル等の中から、相溶
性の比較的劣ったものを組み合わせて使用する。例えば
、ポリプロピレン/ポリエチレンテレフタレート、ポリ
プロピレン/ナイロン6等が例示できる。As the polymers used in the composite part constituting the sheath part of the composite fiber of the present invention, a combination of polymers with relatively poor compatibility among polyolefins, polyamides, polyesters, etc., which are generally used as fiber raw materials, is used. Examples include polypropylene/polyethylene terephthalate, polypropylene/nylon 6, and the like.
本発明の複合繊維の;(5島構造を有する窓部分の海成
分には、溶剤等によって除去可能な重合体、例えば、水
溶性熱可塑性ポリビニルアルコール等が使用できる。For the sea component of the window portion of the composite fiber of the present invention having a five-island structure, a polymer that can be removed with a solvent or the like, such as water-soluble thermoplastic polyvinyl alcohol, can be used.
本発明の複合繊維の海島構造を有する窓部分の島成分に
使用する重合体は、上記海成分中に溶解せず独立した島
構造を形成できる重合体ならばどのようなものでもよい
。例えば、海成分に熱可塑性ポリビニルアルコールを用
いた場合には、ポリエチレン、ポリプロピレン等のポリ
オレフィン等が使用できる。The polymer used for the island component of the window portion having a sea-island structure of the composite fiber of the present invention may be any polymer as long as it is not dissolved in the sea component and can form an independent island structure. For example, when thermoplastic polyvinyl alcohol is used as the sea component, polyolefins such as polyethylene and polypropylene can be used.
第1図のような繊維断面を形成させる方法としては、本
出願人による特願平02−172719に示される紡糸
口金等を用いる方法等が例示できる。An example of a method for forming a fiber cross section as shown in FIG. 1 is a method using a spinneret or the like as shown in Japanese Patent Application No. 02-172719 filed by the present applicant.
窓部分を海島型に紡糸する方法としては、従来公知の方
法、例えば、特公昭47−37648号公報に示された
、海島両成分をポリマーブレンドする方′法を用いるこ
とができる。As a method for spinning the window portion into a sea-island shape, a conventionally known method can be used, for example, a method of polymer blending both sea-island components as disclosed in Japanese Patent Publication No. 47-37648.
以下、本説明を実施例により詳細に説明する。Hereinafter, this description will be explained in detail with reference to examples.
実施例1
窓部分を構成する成分として、海成分の熱可塑・性ポリ
ビニルアルコール(メルトフローレ−1・190°C3
0g/10m1n、重合度400、ケン化度62%)と
、島成分のポリプロピレン(メルトフローレート230
′030g/10m1n)とを、重量比で1:1にブレ
ンドしたものを紡糸温度2300C1押出量100 g
/ m i nで、また鞘部分の一部を構成する成分
(第1図の2部分)としてポリプロピレン(メルトフロ
ーレート230”C30g/10m1n)を紡糸温度2
30℃、押出量50 g / m i nで、他の部分
を構成する成分(第1図の3部分)としてポリエチレン
テレフタレート(極限粘度0.65)を紡糸温度280
°C1押出量50 g / m i、 nで、直径0.
6mmの円形紡糸孔を有する紡糸口金(紡糸孔数200
個)にそれぞれ供給し、押し出して、C及びCのアルキ
ルフオスフェートカリウム塩(C:C=18 1.2
:1)の水溶液(5wt%)を塗布しながら1000
m / m j、 nで引き取り、第1図に示すような
断面を有する極細繊維発生複合繊維の未延伸糸(9d/
f)を得た。Example 1 As a component constituting the window part, thermoplastic polyvinyl alcohol with a sea component (melt flow rate 1, 190°C3
0 g/10 m1n, degree of polymerization 400, degree of saponification 62%) and polypropylene as an island component (melt flow rate 230
'030g/10m1n) at a weight ratio of 1:1, spinning temperature 2300C1 extrusion amount 100g
/min, and polypropylene (melt flow rate 230"C30g/10m1n) as a component constituting a part of the sheath part (2 parts in Figure 1) was spun at a spinning temperature of 2.
Polyethylene terephthalate (intrinsic viscosity 0.65) was spun as a component constituting the other parts (part 3 in Figure 1) at a spinning temperature of 280° C. and an extrusion rate of 50 g/min.
°C1 throughput 50 g/m i, n, diameter 0.
A spinneret with a 6 mm circular spinning hole (200 spinning holes)
1000 while applying an aqueous solution (5wt%) of C and C alkyl phosphate potassium salt (C:C=18 1.2:1).
m / m j, n, undrawn yarn (9d /
f) was obtained.
この未延伸糸を90℃に加熱しながら3倍延伸して極細
繊維発生複合繊維の延伸糸(3d/f)を得た。この延
伸糸を顕微鏡にてその海島部の断面を観察した結果、島
成分の数は数百〜数千であり、その直径は0.01〜4
μmであった。また、この延伸糸を温度25°C,湿度
50%の空気中に30日間放置したが吸湿による繊維同
士の融着は起こらなかった。This undrawn yarn was stretched 3 times while heating to 90° C. to obtain a drawn yarn (3d/f) of ultrafine fiber-generated conjugate fibers. As a result of observing the cross section of the sea-island part of this drawn yarn under a microscope, the number of island components was several hundred to several thousand, and the diameter was 0.01 to 4.
It was μm. Further, this drawn yarn was left in air at a temperature of 25° C. and a humidity of 50% for 30 days, but no fusion of the fibers occurred due to moisture absorption.
得られた極細繊維発生複合繊維の延伸糸に機械捲縮(1
3山/インチ)を掛け、51mmにカットしステーブル
とした後、 ローラーカード機によつてカーデイングし
14寸け50 g / m のウェブとした。このウェ
ブをフォークニードル機で加工し鞘部分の剥離とウェブ
の不織布化を同時に行った後、水(30″C)にて洗浄
し窓部分の海成分を除去した。この不織布を顕微鏡にて
観察した結果、ポリプロピレンの極細繊維が数多く発生
していた。The drawn yarn of the resulting microfiber-generated composite fibers was mechanically crimped (1
The web was cut into 51 mm (3 threads/inch) and stabilized, and then carded using a roller card machine to form a web of 14 dimensions and 50 g/m2. This web was processed using a fork needle machine to simultaneously peel off the sheath part and make the web into a non-woven fabric, and then washed with water (30"C) to remove sea components from the window area. This non-woven fabric was observed under a microscope. As a result, many ultrafine polypropylene fibers were generated.
また鞘部分を形成していた、ポリプロピレン(約0、
75 d / f )及びポリエチレンテレフタレート
(約0.75d/f)の繊維は第2図の(2)及び(3
)の様な形状で見られた。この延伸糸のQ−
繊維強度及び保存性、不織布強力、発生した極細繊維の
繊維径についての測定結果を第1表に示した。In addition, the sheath was made of polypropylene (approximately 0,
75 d/f) and polyethylene terephthalate (approximately 0.75 d/f) as shown in (2) and (3) in Figure 2.
) was seen in the shape. Table 1 shows the measurement results for the Q-fiber strength and storage stability of this drawn yarn, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
実施例2
実施例1で窓部分の島成分として用いたポリプロピレン
に代えてポリエチレン(メルトフローレート190℃
15 g / 10m1 n)を紡糸温度200℃、押
出量100 g / m i nに、鞘部分を構成する
成分(第1図の3部分)として用いたポリエチレンテレ
フタレートに代えて、ナイロン6(メルトフローレート
275℃ 85 g / 10m1n)を紡糸温度25
0℃、押出量50 g / m inに変更して、それ
ぞれ前記紡糸口金に供給する以外は実施例1と同様に操
作を行い、極細繊維発生複合繊維の延伸糸(3d/f)
を得た。この延伸糸の断面を顕微鏡にて観察した結果、
島成分の数は数百〜数千であり、その直径は0.01〜
4μmであった。また、この延伸糸を温度25°C1湿
度50%の空気中に30日間放置したが吸湿による繊維
同士の融着は起こらなかった。Example 2 Polyethylene (melt flow rate 190°C) was used instead of polypropylene used as the island component of the window part in Example 1
Nylon 6 (melt flow Spinning rate 275℃ 85g/10m1n) Spinning temperature 25
The same procedure as in Example 1 was carried out except that the extrusion rate was changed to 0°C and the extrusion rate was 50 g/min, and each was supplied to the spinneret.
I got it. As a result of observing the cross section of this drawn yarn with a microscope,
The number of island components is several hundred to several thousand, and the diameter is 0.01 to several thousand.
It was 4 μm. Further, this drawn yarn was left in air at a temperature of 25° C. and a humidity of 50% for 30 days, but no fusion of the fibers occurred due to moisture absorption.
得られた延伸糸を実施例1と同様な操作で不織布とし、
水洗後、顕微鏡にて観察した結果、ポリエチレンの極細
繊維が数多く発生していた。また鞘部分を形成していた
ポリプロピレン(約0. 75 d/f)及びナイロン
6(約0. 75 d / f )の繊維は第2図の(
2)及び(3)の様な形状で見られた。この延伸糸の繊
維強度及び保存性、不織布強力、発生した極細繊維の繊
維径についての測定結果を第1表に示した。The obtained drawn yarn was made into a nonwoven fabric by the same operation as in Example 1,
After washing with water, observation under a microscope revealed that many ultrafine polyethylene fibers had been generated. In addition, the polypropylene (approximately 0.75 d/f) and nylon 6 (approximately 0.75 d/f) fibers that formed the sheath were shown in Figure 2 (
It was observed in the shapes shown in 2) and (3). Table 1 shows the measurement results for the fiber strength and storage stability of the drawn yarn, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
実施例3
芯部分として、海成分の熱可塑性ポリビニルアルコール
(メルトフローレート190℃ 50g/ 10 m
i n、重合度400、ケン化度62%)と、島成分と
してポリプロピレン(メルトフローレート230℃ 3
0g/10m1n)とを、重量比で1:1にブレンドし
たものを用い、紡糸温度230℃、押出ft 100
g / m i nで、N部分の一部を構成する成分(
第1図の2部分)としてポリプロピレン(メルトフロー
レート23o℃30 g / 10m i n )を紡
糸温度230℃、押出量50 g / m i nで、
他の部分を構成する成分(第1図の3部分)としてポリ
エチレンテレフタレート(極限粘度0.65)を紡糸温
度280 ’C1押出1k 50 g / m i n
で、直径0.4mmの円形紡糸孔を有する紡糸口金(紡
糸孔200個)にそれぞれ供給し、引き取り速度3o○
○m / m i nのスパンボンド法で複合紡糸し、
目付け30g/m のフリースを得た。得られた複合繊
維は、第1図に示すような断面を有していた。このフリ
ースを温度25°C,湿度50%の空気中に3o日間放
置したが吸湿による繊維同士の融着は起こらなかった。Example 3 As the core part, thermoplastic polyvinyl alcohol with sea component (melt flow rate 190°C 50 g / 10 m
in, polymerization degree 400, saponification degree 62%) and polypropylene (melt flow rate 230℃ 3
0g/10mln) at a weight ratio of 1:1, spinning temperature 230℃, extrusion ft 100
g/min, the component that forms part of the N part (
2 parts in Fig. 1), polypropylene (melt flow rate 23 o C 30 g/10 min) was spun at a spinning temperature of 230 C and an extrusion rate of 50 g/min.
Polyethylene terephthalate (intrinsic viscosity 0.65) was used as a component constituting the other parts (part 3 in Figure 1) at a spinning temperature of 280'C1 extrusion 1k 50 g/min.
Then, the yarn was fed to a spinneret (200 spinning holes) having circular spinning holes with a diameter of 0.4 mm, and the take-up speed was 3 o○.
○ Composite spinning using m/min spunbond method,
A fleece with a basis weight of 30 g/m 2 was obtained. The obtained composite fiber had a cross section as shown in FIG. This fleece was left in air at a temperature of 25°C and a humidity of 50% for 30 days, but no fusion of fibers occurred due to moisture absorption.
得られたフリースをウォーターニードル加工(水圧70
Kg/cm)することで、鞘部分の剥離と、海島構造を
有す為芯部分の海成分の除去とフリースの不織布化を同
時に行った。この不織布を顕微鏡で観察した結果、ポリ
プロピレンの極細繊維が数多く発生していた。また、鞘
成分を形成していたポリプロピレン(約0.75d/f
)及びポリエチレンテレフタレート(約0. 75d/
f)の繊維は第2図の(2)及び(3)の様な形状で見
られた。このフリースの保存性及び、不織布強力、発生
した極細繊維の繊維径についての測定結果を第1表に示
した。The obtained fleece was subjected to water needle processing (water pressure 70
Kg/cm), the sheath part was peeled off, the sea component of the core part was removed because it had a sea-island structure, and the fleece was made into a non-woven fabric at the same time. When this nonwoven fabric was observed under a microscope, it was found that many ultrafine polypropylene fibers were generated. In addition, the polypropylene that formed the sheath component (approximately 0.75 d/f
) and polyethylene terephthalate (approximately 0.75d/
The fibers in f) were seen in shapes like (2) and (3) in Figure 2. Table 1 shows the measurement results for the storage stability of this fleece, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
実施例4
実施例1で用いた紡糸口金に供給する重合体の紡糸温度
、押出量をそれぞれ、芯部分の熱可塑性ポリビニルアル
コールとポリプロピレンの混合物を紡糸温度230℃、
押出量160g/minに、鞘部分のポリプロピレンを
紡糸温度230 ℃、押出;120 g / m i
nに、鞘部分のポリエチレンテレフタレートを紡糸温度
280℃、押出量20 g/ m i nに変更した以
外は実施例1と同様に操作を行い、極細繊維発生複合繊
維の延伸糸(3d/f)を得た。この延伸糸の断面を顕
微鏡にて観察した結果、島成分の数は数百〜数千であり
、その直径は0.01〜4μmであった。また、この延
伸糸を温度25℃、湿度50%の空気中に30日間放置
したが吸湿による繊維同士の融着は起こらなかった。Example 4 The spinning temperature and extrusion amount of the polymer supplied to the spinneret used in Example 1 were changed, respectively.
At an extrusion rate of 160 g/min, the polypropylene sheath was spun at a spinning temperature of 230°C and extruded at 120 g/min.
The same operation as in Example 1 was carried out except that the polyethylene terephthalate in the sheath was changed to a spinning temperature of 280°C and an extrusion rate of 20 g/min, and a drawn yarn (3d/f) of ultrafine fiber-generated conjugate fibers was prepared. I got it. When the cross section of this drawn yarn was observed under a microscope, the number of island components was several hundred to several thousand, and the diameter was 0.01 to 4 μm. Further, this drawn yarn was left in air at a temperature of 25° C. and a humidity of 50% for 30 days, but no fusion of the fibers occurred due to moisture absorption.
得られた延伸糸を実施例1と同様な操作で不織布とし、
水洗後、R機銃にて@察した結果、ポリプロピレンの極
細繊維が数多く発生していた。また、鞘成分を形成して
いたポリプロピレン(約0゜3 d/f)及びポリエチ
レンテレフタレート(約0、 3 d / f )の繊
維は第2図の(2)及び(3)の様な形状で見られた。The obtained drawn yarn was made into a nonwoven fabric by the same operation as in Example 1,
After washing with water, inspection using an R machine gun revealed that many ultrafine polypropylene fibers had been generated. In addition, the polypropylene (approximately 0°3 d/f) and polyethylene terephthalate (approximately 0,3 d/f) fibers that formed the sheath component had shapes as shown in (2) and (3) in Figure 2. It was seen.
この延伸糸の繊維強度及び保存性、不織布強力、発生し
た極細繊維の繊維径についての測定結果を第1表に示し
た。Table 1 shows the measurement results for the fiber strength and storage stability of the drawn yarn, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
実施例5
実施例1で、得られた極細繊維発生複合繊維の延伸糸に
機械捲縮(13山/インチ)を掛け、51mmにカット
しステープルとした後、これと鞘成分がポリエチレン、
芯成分がポリプロピレンの鞘芯型熱接着性複合繊維のス
テープル(2デニール、 51mm)とを重量比1対1
で混綿した。これなローラーカード機によってカーデイ
ングし目付け50 g / m のウェブとした後、フ
ォークニードル機で加工し極細繊維発生複合繊維の鞘部
分の剥離を行った。さらにこれを130℃に加熱したエ
ンボスロールで加工することで不織布とした後、水(3
0℃)にて洗浄し芯部分の海成分を除去した。この不織
布を顕微鏡にて観察した結果、ポリプロピレンの極細繊
維が数多く発生していた。また、鞘成分を形成していた
ポリプロピレン(約0゜75d/f)及ヒホリエチレン
テレフタレート(約0.75d/f)の繊維は第2図の
(2)及び(3)の様な形状で見られ、これらの繊維を
熱接着繊維が接着していた。この延伸糸の繊維強度及び
保存性、不織布強力、発生した極細繊維の繊維径につい
ての測定結果を第1表に示した。Example 5 The drawn yarn of the ultrafine fiber-generated conjugate fiber obtained in Example 1 was mechanically crimped (13 threads/inch), cut into 51 mm lengths, and stapled.
A sheath-core type heat-adhesive composite fiber staple (2 denier, 51 mm) whose core component is polypropylene in a weight ratio of 1:1.
It was mixed with cotton. After carding with this roller card machine to obtain a web with a basis weight of 50 g/m2, it was processed with a fork needle machine to peel off the sheath portion of the composite fibers generated from ultrafine fibers. This was further processed with an embossing roll heated to 130°C to make a nonwoven fabric, and then water (3
(0°C) to remove sea components from the core. When this nonwoven fabric was observed under a microscope, it was found that many ultrafine polypropylene fibers were generated. In addition, the polypropylene (approximately 0°75 d/f) and hypholyethylene terephthalate (approximately 0.75 d/f) fibers that formed the sheath component can be seen in the shapes shown in (2) and (3) in Figure 2. These fibers were bonded together using thermal adhesive fibers. Table 1 shows the measurement results for the fiber strength and storage stability of the drawn yarn, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
比較例1
直径0.6mmの円形紡糸孔を有する紡糸口金(紡糸孔
数200個)に、熱可塑性ポリビニルアルコール(メル
トフローレ−1−1900C50g/ 10 m i
n、重合度400、ケン化度62%)と、ポリプロピレ
ン(メルトフローレート230°C30g/10m1n
)とを、重量比で1=1にブレンドしたものを、紡糸温
度230℃、押出ik 200 g / m i nで
供給し、 1000 m / m inで引き取り、極
細繊維発生繊維の未延伸糸(9d/f)を得た。Comparative Example 1 Thermoplastic polyvinyl alcohol (Melt Flowray-1-1900C 50 g/10 m i
n, degree of polymerization 400, degree of saponification 62%) and polypropylene (melt flow rate 230°C 30g/10m1n
) were blended at a weight ratio of 1=1, the spinning temperature was 230°C, the extrusion rate was 200 g/min, and the undrawn yarn ( 9d/f) was obtained.
この未延伸糸を90 ’Cに加熱しながら3倍延伸して
極細繊維発生繊維の延伸糸(3d/f)を得た。この延
伸糸を顕微鏡にてその海島部の断面を観察した結果、島
成分の数は数百〜数千であり、その直径は0.01〜4
μmであった。また、この延伸糸を温度25℃、湿度5
0%の空気中に30日間放置したところ、吸湿により繊
維同士の融着が起こった。この繊維の繊維強度及び、繊
維断面の島成分の直径についての測定結果を第1表に示
した。This undrawn yarn was stretched 3 times while heating to 90'C to obtain a drawn yarn (3d/f) of microfiber-generated fibers. As a result of observing the cross section of the sea-island part of this drawn yarn under a microscope, the number of island components was several hundred to several thousand, and the diameter was 0.01 to 4.
It was μm. In addition, this drawn yarn was heated at a temperature of 25°C and a humidity of 5°C.
When it was left in 0% air for 30 days, the fibers fused together due to moisture absorption. Table 1 shows the measurement results for the fiber strength of this fiber and the diameter of the island component in the cross section of the fiber.
比較例2
実施例1で用いた紡糸口金に供給する重合体の紡糸温度
、押出量をそれぞれ、芯部分の熱可塑性ポリビニルアル
コールとポリプロピレンの混合物を紡糸温度230°C
1押出量170g/minに、鞘部分のポリプロピレン
を紡糸温度23o℃、押出量15 g / m i n
に、鞘部分のポリエチレンテレフタレートを紡糸温度2
8o℃、押出量15g/ m i nに変更した以外は
実施例1と同様に操作を行い、極細繊維発生複合繊維の
延伸糸(3d/f)を得た。この延伸糸の断面を顕微鏡
にて観察した結果、島成分の数は数百〜数千であり、そ
の直径は0.01〜4μmであった。また、この延伸糸
を温度25℃、温度5o%の空気中に30日間放置した
が吸湿による繊維同士の融着は起こらなかった。Comparative Example 2 The spinning temperature and extrusion amount of the polymer supplied to the spinneret used in Example 1 were respectively changed, and the spinning temperature of the core portion of the mixture of thermoplastic polyvinyl alcohol and polypropylene was 230°C.
One extrusion rate was 170g/min, the polypropylene sheath was spun at a spinning temperature of 23oC, and the extrusion rate was 15g/min.
The polyethylene terephthalate sheath was spun at a temperature of 2.
The operation was carried out in the same manner as in Example 1 except that the temperature was changed to 8° C. and the extrusion rate was changed to 15 g/min to obtain a drawn yarn (3 d/f) of ultrafine fiber-generated conjugate fibers. When the cross section of this drawn yarn was observed under a microscope, the number of island components was several hundred to several thousand, and the diameter was 0.01 to 4 μm. Further, this drawn yarn was left in air at a temperature of 25° C. and a temperature of 50% for 30 days, but no fusion of the fibers occurred due to moisture absorption.
得られた延伸糸を実施例1と同様な操作で不織布とし、
水洗後、顕微鏡にて観察した結果、ポリプロピレンの極
細繊維が数多く発生していた。また、鞘成分を形成して
いたポリプロピレン(約0゜2 d/f)及びポリエチ
レンテレフタレート(約0、 2 d / f )の繊
維は第2図の(2)及び(3)の様な形状で見られた。The obtained drawn yarn was made into a nonwoven fabric by the same operation as in Example 1,
After washing with water, observation under a microscope revealed that many ultrafine polypropylene fibers had been generated. In addition, the polypropylene (approximately 0°2 d/f) and polyethylene terephthalate (approximately 0,2 d/f) fibers that formed the sheath component had shapes as shown in (2) and (3) in Figure 2. It was seen.
この延伸糸の繊m強度及び保存性、不織布強力、発生し
た極細繊維の繊維径についての測定結果を第1表に示し
た。Table 1 shows the measurement results for the fiber strength and storage stability of the drawn yarn, the strength of the nonwoven fabric, and the fiber diameter of the generated ultrafine fibers.
本発明の極細繊維発生複合繊維は、0. 1デニール以
下の極細繊維を発生させる海島構造を有する窓部分と、
該窓部分を包む様に剥離可能な鞘部分が有るため、該海
島構造を有する窓部分の海成分に水溶性のポリビニルア
ルコール等を用いても製造工程、加工工程を非水系にす
る必要がなく、極細繊維を発生させる海島構造部分のみ
て製造する場合と較べて、操作性が大きく向上した。ま
た、鞘部分が繊維自身及び極細繊維を含有する織布ある
いは不織布の補強材としても働くため実用上充分な強力
を示した。さらに、該極細繊維発生複合繊維を保存する
場合も、空気中の湿度を調整する必要がないという優れ
た効果が得られた。The ultrafine fiber-generated conjugate fiber of the present invention has 0. A window portion having a sea-island structure that generates ultrafine fibers of 1 denier or less;
Since there is a peelable sheath that wraps around the window, there is no need to make the manufacturing and processing processes non-aqueous even if water-soluble polyvinyl alcohol is used as the sea component of the window with a sea-island structure. Compared to manufacturing only the sea-island structure part that generates ultrafine fibers, operability has been greatly improved. Furthermore, since the sheath part acts as a reinforcing material for the fiber itself and the woven or nonwoven fabric containing ultrafine fibers, it exhibited sufficient strength for practical use. Furthermore, even when storing the ultrafine fiber-generated conjugate fibers, an excellent effect was obtained in that there was no need to adjust the humidity in the air.
第1図は極細繊維発生複合繊維の断面の模式図。
第2図及び第3図は、極細繊維発生複合繊維の鞘部分の
剥離状態を示す図。
1: 海島構造を有する窓部分
2: 鞘部分の1方の成分
3: 鞘部分の他の成分
ユ・X 上
へ
−8εFIG. 1 is a schematic diagram of a cross section of a composite fiber produced from ultrafine fibers. FIG. 2 and FIG. 3 are diagrams showing the peeling state of the sheath portion of the ultrafine fiber-generated conjugate fiber. 1: Window portion with sea-island structure 2: One component of the sheath portion 3: Other component of the sheath portion U・X Up −8ε
Claims (4)
能な複数部分からなり、芯部分は海島構造を有し、この
芯部分の海成分は溶剤で除去可能な重合体からなり、島
成分が単糸繊度0.1デニール以下の極細繊維を形成し
ていることを特徴とする極細繊維発生複合繊維。(1) A sheath-core type composite fiber, in which the sheath portion consists of a plurality of mutually peelable parts, the core portion has a sea-island structure, and the sea component of this core portion is made of a polymer that can be removed with a solvent; An ultrafine fiber-generated conjugate fiber characterized in that the island component forms ultrafine fibers with a single filament fineness of 0.1 denier or less.
を剥離し、芯部分の海成分を除去して得られる極細繊維
を含有する繊維束。(2) A fiber bundle containing ultrafine fibers obtained by peeling off the sheath portion and removing the sea component of the core portion of the ultrafine fiber-generated conjugate fiber of claim (1).
造した織布もしくは不織布を、極細繊維発生複合繊維の
鞘部分を剥離し、芯部分の海成分を除去して得られる、
極細繊維を含有する織布または不織布。(3) A woven or nonwoven fabric produced using the ultrafine fiber-generated conjugate fiber of claim (1), which is obtained by peeling off the sheath portion of the ultrafine fiber-generated conjugate fiber and removing the sea component of the core portion.
Woven or non-woven fabrics containing ultrafine fibers.
性複合繊維とを用いて製造した織布もしくは不織布から
、極細繊維発生複合繊維の鞘部分を剥離し、芯部分の海
成分を除去して得られる、極細繊維を含有する織布また
は不織布。(4) From the woven fabric or nonwoven fabric produced using the ultrafine fiber generated conjugate fiber of claim (1) and the thermoadhesive conjugate fiber, the sheath portion of the ultrafine fiber generated conjugate fiber is peeled off, and the sea component of the core portion is removed. Woven or nonwoven fabric containing ultrafine fibers obtained by removing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248163A JP2928364B2 (en) | 1990-09-18 | 1990-09-18 | Ultrafine fiber-generating composite fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2248163A JP2928364B2 (en) | 1990-09-18 | 1990-09-18 | Ultrafine fiber-generating composite fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04126815A true JPH04126815A (en) | 1992-04-27 |
JP2928364B2 JP2928364B2 (en) | 1999-08-03 |
Family
ID=17174156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2248163A Expired - Fee Related JP2928364B2 (en) | 1990-09-18 | 1990-09-18 | Ultrafine fiber-generating composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2928364B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002012602A1 (en) * | 2000-08-10 | 2002-02-14 | Dollfus Mieg & Cie - Dmc | Yarn with central core and use thereof |
JP2008075228A (en) * | 2006-09-25 | 2008-04-03 | Teijin Fibers Ltd | False-twist textured yarn and method for producing the same |
WO2009029391A3 (en) * | 2007-08-02 | 2009-06-25 | Univ North Carolina State | Mixed fibers and nonwoven fabrics made from the same |
CN104451926A (en) * | 2014-12-23 | 2015-03-25 | 常熟市云燕化纤有限公司 | Composite antibacterial fiber |
CN104769172A (en) * | 2012-11-08 | 2015-07-08 | 3M创新有限公司 | Nonwoven and stretchable laminate |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11408098B2 (en) * | 2019-03-22 | 2022-08-09 | Global Materials Development, LLC | Methods for producing polymer fibers and polymer fiber products from multicomponent fibers |
-
1990
- 1990-09-18 JP JP2248163A patent/JP2928364B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002012602A1 (en) * | 2000-08-10 | 2002-02-14 | Dollfus Mieg & Cie - Dmc | Yarn with central core and use thereof |
JP2008075228A (en) * | 2006-09-25 | 2008-04-03 | Teijin Fibers Ltd | False-twist textured yarn and method for producing the same |
WO2009029391A3 (en) * | 2007-08-02 | 2009-06-25 | Univ North Carolina State | Mixed fibers and nonwoven fabrics made from the same |
CN104769172A (en) * | 2012-11-08 | 2015-07-08 | 3M创新有限公司 | Nonwoven and stretchable laminate |
US10266975B2 (en) | 2012-11-08 | 2019-04-23 | 3M Innovative Properties Company | Nonwoven and stretchable laminate |
CN104451926A (en) * | 2014-12-23 | 2015-03-25 | 常熟市云燕化纤有限公司 | Composite antibacterial fiber |
Also Published As
Publication number | Publication date |
---|---|
JP2928364B2 (en) | 1999-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2783602B2 (en) | Ultrafine composite fiber for thermal bonding and its woven or nonwoven fabric | |
JP2703971B2 (en) | Ultrafine composite fiber and its woven or nonwoven fabric | |
JP5629577B2 (en) | Mixed fiber and non-woven fabric made therefrom | |
US6468651B2 (en) | Nonwoven fabric containing fine fiber, and a filter material | |
US5672415A (en) | Low density microfiber nonwoven fabric | |
JPS58191215A (en) | Polyethylene hot-melt fiber | |
WO1994008083A1 (en) | Nonwoven cloth of ultrafine fibers and method of manufacturing the same | |
KR100335729B1 (en) | High Crimp Composite Fiber and Nonwoven Web Made therefrom | |
JP3815517B2 (en) | Tow | |
JP3741886B2 (en) | Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber | |
JPH04126815A (en) | Ultra-fine fiber-forming conjugate fiber | |
JP2002061060A (en) | Nonwoven fabric and finished article of nonwoven fabric | |
JPH04194013A (en) | Fiber capable of producing ultrafine fiber | |
JP2005539158A (en) | Medical textile fabric with improved barrier performance | |
JP2918988B2 (en) | Modified polyolefin ultrafine fiber generating composite fiber and woven or non-woven fabric | |
JP3725716B2 (en) | Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber | |
JPH10331063A (en) | Composite nonwoven fabric and its production | |
JP2006124903A (en) | Tow | |
JP2980294B2 (en) | Staple, nonwoven fabric and method for producing the same | |
JPH1037055A (en) | Composite nonwoven fabric | |
JPH02169720A (en) | Thermal splitting type conjugate fiber and nonwoven fabric thereof | |
JP4476724B2 (en) | Method for producing drawn extracted fiber, drawn extracted fiber, and nonwoven fabric | |
JPH0434058A (en) | Production of nonwoven fabric of ultrafine short fiber | |
JPH08109567A (en) | Laminated nonwoven structure and its production | |
JPH10273870A (en) | Composite non-woven fabric and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |