JPS6316504B2 - - Google Patents

Info

Publication number
JPS6316504B2
JPS6316504B2 JP55014817A JP1481780A JPS6316504B2 JP S6316504 B2 JPS6316504 B2 JP S6316504B2 JP 55014817 A JP55014817 A JP 55014817A JP 1481780 A JP1481780 A JP 1481780A JP S6316504 B2 JPS6316504 B2 JP S6316504B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fibers
melting point
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55014817A
Other languages
Japanese (ja)
Other versions
JPS56112551A (en
Inventor
Katsuji Hikasa
Kozo Ito
Hideo Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP1481780A priority Critical patent/JPS56112551A/en
Publication of JPS56112551A publication Critical patent/JPS56112551A/en
Publication of JPS6316504B2 publication Critical patent/JPS6316504B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性有機合成体の長繊維より成
る、極めて柔軟でかつ秀れた実用物性を有する新
規不織布、及びその製造法に関するものであり、
さらに詳しくは、熱可塑性有機合成体の熱捲縮性
複合長繊維より成り、不織布の形態保持が接着剤
や熱融着接合によらず、実質的に繊維間の交絡に
よつて成された極めて柔軟で、秀れた伸縮性、引
張破断強力、引裂強力、耐摩耗性、表面が均一で
高級感を有する不織布及びその製造法である。 近年不織布の開発が進み各種の不織布が提供さ
れており、とりわけスパンボンド法から得られる
長繊維不織布は、その秀れた物性と高い生産性か
ら将来性のある不織布として注目されている。 熱可塑性有機合成体より成るスパンボンドは、
通常溶融された状態で多数のノズルより吐出され
た糸条を高速気流によつて牽引し、ネツトコンベ
ア等に分散させることによつて連続フイラメント
ウエブとしたものを形態保持させた不織布であ
る。 最も一般的に形態保持されたスパンボンドは繊
維間を接着剤樹脂(謂わゆるバインダーであり、
通常はエマルジヨンとして付与される)で接合し
た不織布であるが、接着剤付与や、その後の乾燥
に要するコストが高い、不織布としての使用時に
バインダーの変質や溶出がみられる、さらには柔
軟な不織布にするためには特殊な接着剤樹脂を用
い、特殊な接着剤付与方法を用いなければならな
い等の欠点を有しており、近年では接着剤を用い
ないスパンボンドの開発が活発に行なわれてい
る。 接着剤樹脂を用いない謂わゆるノーバインダー
のスパンボンドとしては、熱融着接合不織布が知
られている。この熱融着接合によるスパンボンド
は連続フイラメントウエブを加熱してフイラメン
トの一部を融着接合した不織布である。この不織
布は熱融着による接合点を有しており、接合点で
は完全に自由度が失なわれるため、一般の織・編
物に比べてボリユーム感の損なわれた著じるしく
硬いものとする。そのために熱融着接合不織布の
柔軟性を改良するための方法が各種提案されてお
り、例えば低融点繊維を混合したり、低融点成分
を表層部の一部又は全部とした繊維を用いること
により、接合点の密度や接着状態を調整する方
法、また接合点間の自由度を増す意味から捲縮繊
維を混合したり、低融点成分を表層部の少なくと
も一部となるように配置した潜在捲縮性繊維を混
合し、捲縮を発現させて低融点成分を接着成分と
して用いる方法等が提案されている。 しかし、これらのいかなる方法に依つても熱融
着接合によるスパンボンドはペーパーライクであ
り布的柔軟性に到達していないのが現状である。 又、接着剤樹脂を用いないスパンボンドとして
機械的な力によつて繊維間を交絡して形態保持を
行つた不織布も公知である。この代表的な不織布
は、ニードルパンチ機によつて繊維間を交絡させ
た不織布である。 一般に、ニードルパンチングにより交絡された
不織布は熱融着接合不織布と比較すると接合部の
自由度の損失が少なく柔軟に仕上げることは可能
である。しかし従来のニードルパンチ不織布は、
引張強力をあげ、表面毛羽を防止するためには針
密度を増加させる必要があり、そのために生産性
が低下するという問題点を有しており、あまり針
密度を上げすぎることは繊維の切断による強度の
低下をきたすために引張強度に限界があり、伸縮
性がほとんどなく、充分な物性が得られないとい
う欠点を有していた。特にスパンボンド法から得
られる長繊維不織布においては、極端に目付を大
きくしたり、長繊維の繊度を極端に太くすること
によつてニードリングの効果をあげなければ実用
に供し得ないのが実情であり、このようなスパン
ボンドは、布的な風合からほど遠く、引張強力や
伸縮性が不十分であり、しかもニードルマークが
顕著であるために不織布としての品位が劣り、特
殊用途にしか使用できないという問題を有してい
る。 また、スパンボンド方式から顕在化した捲縮繊
維ウエブを作り、ニードルパンチ処理を施して柔
軟な不織布を得る技術も提案されている。即ち特
開昭49−2975の如く、紡糸、牽引に続く弛緩によ
り捲縮を顕在化させてウエブとして集積し、ニー
ドルパンチを行なう方法である。しかしこの方法
によつては、捲縮ループを顕在化させた連続フイ
ラメントを単糸開繊し均一に分散させることが困
難であり、高速で紡糸牽引できないという問題を
有している。さらには連続フイラメントをウエブ
として堆積する時に既に捲縮が発現しているため
嵩高なシートとはなるものの捲縮による繊維間の
交絡がほとんど得られず、その形態保持がニード
リングによる交絡のみによつているため引張強力
や表面の耐摩耗性を満たすためにはニードルパン
チの針密度をあげなければならないとか、繊維間
の捲縮による交絡効果が発揮されていず、ニード
リングによつて交絡させても複合繊維の捲縮が引
張回複率の差によるものであるために捲縮ループ
が不安定であり、又ニードルにより厚み方向に配
列された捲縮が容易に抜けるため伸長回複性が劣
る、引張強力や引裂強力、さらには表面の耐摩耗
性が劣るという問題点も有している。さらにこの
不織布においては、ニードルマークが目立ちやす
いという欠点もあり、一般的な用途には使用し得
ないものである。 本発明者らは、これらの点に鑑みて、織・編物
的な風合を有する嵩高で極めて柔軟な、秀れた伸
縮性と高い引張破断強力と引裂強力、耐摩耗性を
有し、かつ表面均一で高級感を有するスパンボン
ドを得るべく鋭意検討を重ねた結果、本発明の完
成に到つた。 即ち、本発明の不織布は、熱捲縮性を示す熱可
塑性有機合成重合体の偏心的複合繊維に捲縮を顕
在化させた長繊維より成る不織布であつて、(a)該
複合繊維が、平均捲縮数10個/インチ以上の捲縮
を有し、(b)不織布の厚み方向に貫通する交絡繊維
束となる該複合繊維を含み、(c)貫通交絡繊維束で
ある該複合繊維が、貫通して表層に露出された部
位において、より高度なコイル状の捲縮を有し、
毛玉状あるいは毛玉が不織布表面に押しつけられ
た状態となり、糸抜けに対する立体的障害を有し
ている、ことを特徴とする三次元的に交絡するこ
とによつて形態保持されている長繊維不織布であ
る。 又、本発明の不織布の製造法は、 長繊維不織布の製造において、(a)少なくとも一
つの成分は、繊維形成能のある熱可塑性有機合成
重合体であり、他が該重合体とは熱収縮能力に差
がある熱可塑性有機合成重合体である少なくとも
二つの成分を溶融し、繊維横断面において偏心的
配置となるように吐出し、紡糸速度が4000〜
8000m/分となるように牽引し、潜在的熱捲縮性
複合繊維と成し、これを連続フイラメントウエブ
として、(b)該複合繊維成分のうち最も低融点であ
る成分の融点よりも40℃低い温度での、該複合繊
維の捲縮収縮率が20%以上であることを保ちつ
つ、該温度での繊維収縮率を少なくとも2%低下
せしめる熱処理を該連続フイラメントウエブに施
し、(c)該熱処理連続フイラメントウエブに、一面
に対して5〜100P/cm2の針密度で、貫通交絡繊
維束を生じせしめうる針深さで片面からのみ、あ
るいは両面からニードルパンチングして、(d)該ニ
ードルパンチングしたウエブに、繊維間の熱融着
接合が明確化しない条件で、平均10個/インチ以
上の捲縮数を有するように該複合繊維に捲縮を顕
在化させることを特徴とする、及び該捲縮発現不
織布を繊維間熱融着接合が明確化しない条件で圧
縮、又は引張等による整形を行うことを特徴とす
る、繊維間に熱融着接合が存在しないか、熱融着
接合が極めて擬似的で実質的な不織布の形態保持
が繊維間の交絡によつている極めて柔軟な不織布
の製造法である。 以下に本発明の内容を詳細に説明する。 本発明における長繊維不織布の製造法において
は、熱可塑性有機合成重合体より成る潜在捲縮性
複合連続フイラメントからのウエブがスパンボン
ド法により得られる。 即ち、連続フイラメントを構成する1つの成分
は繊維形成能を有する熱可塑性有機合成重合体で
あり、好ましくはポリエチレンテレフタレート,
ナイロン6,ナイロン66,ポリプロピレン等の単
独重合体が選択されるが、その他の単独重合体や
共重合体であつてもよい。又他の成分は、これと
は熱収縮能の異なる熱可塑性有機合成重合体であ
り、前記単独重合体でもよく、好適には高い熱収
縮力を有するポリエステル系,ポリアミド系,ポ
リオレフイン系の共重合体やブレンド物が使用で
きる。そして少なくとも二つの熱収縮能の異なる
熱可塑性有機合成重合体から成る複合繊維は、そ
の横断面において、成分が偏心的に配置されてい
ることが必要である。即ち、貼り合せ型や、偏心
鞘芯型の如く、二つの部分に分けられている偏心
的配置の他、三つ以上の部分に分けられている偏
心的配置等が可能であり、界面の親和性に欠ける
部分の組み合せ、一成分の紡糸性が極端に劣る場
合や用いる成分の融点差が大きい場合には偏心鞘
芯型が好ましい等、成分や組み合わせに応じて任
意に選択されてよい。本発明では、捲縮発現力が
大きいことが必要であり、貼り合せ型や半円状芯
の偏心鞘芯型の偏心的配置が好ましい。 潜在捲縮性複合連続フイラメントウエブを得る
ためには、二以上の押出機を有し、多数のノズル
を有する紡糸設備を用い、溶融した重合体を上記
の如き偏心的配置にして複合構造と成して吐出
し、糸条を高速気流によつて牽引し、ネツトコン
ベア上等に分散させる。この時の紡糸条件は、通
常のスパンボンド法において用いられる紡糸条件
が選択されてよいが、紡糸速度としては4000m/
分以上が好ましい。即ち、4000m/分未満の紡糸
速度であれば、得られる繊維の強度が不充分であ
り、伸度が高くいわゆる未延伸糸状態であり、実
用的な物性を得ることは出来ない。逆にあまりに
高速牽引することは、ある種の重合体の組み合せ
において本発明でいう捲縮収縮率が得られなくな
り、紡糸速度は4000〜8000m/分が採られる。こ
のように高速牽引によつて紡糸された複合繊維の
単糸物性は、強度2.0g/d以上で伸度100%以下
であり、潜在的熱捲縮性を有する複合連続フイラ
メントである。ここでいう複合繊維の潜在的熱捲
縮性は、複合繊維を構成する成分の組み合せ、繊
維の太さや断面形状、繊維断面での成分の配置方
法や質量割合、及び紡糸条件によつて調整するこ
とが可能であり、次の熱処理条件によつても変化
する。本発明においては、複合繊維が熱処理後に
本発明に示される潜在的な捲縮収縮率を有するよ
うに、これらの条件は選択されるべきである。 即ち、本発明の長繊維不織布の製造法において
は、該潜在捲縮性複合連続フイラメントウエブを
熱処理する工程が含まれる。 本発明でいう熱処理条件としては、該複合繊維
成分のうち最も低融点成分の融点よりも40℃低い
温度での、該複合繊維が有する捲縮収縮率が20%
以上の値であり、かつ熱処理によつてその温度で
の繊維収縮率を熱処理前に比して少なくとも2%
低下せしめる条件が選択される。ここでいう捲縮
収縮率及び繊維収縮率は、最初0.5g/dの荷重
下で測定した繊維長をloとし、次いで1mg/dの
荷重をかけて加熱雰囲気下で捲縮及び収縮を生じ
せしめその荷重下での繊維長をl1とし、そして1
mg/dの荷重に代えて0.5mg/dの荷重をかけた
時の繊維長をl2として、捲縮収縮率はl2−l1/l2× 100、繊維収縮率はl0−l2/l0×100で示される数値で あり、本発明ではこの捲縮収縮率、繊維収縮率の
測定のために捲縮・収縮を生じせしめる加熱雰囲
気温度はすべて、複合繊維成分のうち最も低融点
成分の融点よりも40℃低い温度とした。 即ち、本発明においては、捲縮発現時にウエブ
を構成する複合繊維が充分に捲縮を発現する潜在
的な捲縮発現力を有しつつ、加熱による繊維自体
の収縮を抑制する熱処理が施される。本発明の複
合繊維は高速牽引されており、熱処理されなくて
もそれ程大きな繊維収縮率を有していないが、繊
維収縮率を少なくとも2%低下させる熱処理によ
り、繊維の結晶化を促進し、自己接着性を低下せ
しめ、捲縮発現時の繊維の不必要な収縮や、繊維
間の融着接合を抑えて、柔軟で嵩高な不織布に仕
上げることが可能となる。さらにこの熱処理によ
る予期しなかつた効果として、熱処理を施して捲
縮を発現した不織布が斑のない均一なものとなる
ことが挙げられる。即ち、捲縮発現に伴なうウエ
ブの形態収縮において不均一な捲縮収縮斑を防止
し、不織布の目付や機械的な物性において斑のな
い均一なものとなり、非常に重要な効果をもたら
す。このように熱処理を施すことによつて均一な
不織布が得られる原因は定かではないが、ウエブ
を構成する複合繊維の捲縮発現斑を低下せしめて
いることから、複合繊維の荷重下での捲縮発現力
を均一化していると推定される。この熱処理の実
施にあたつては、複合繊維の成分の組み合せ、紡
糸条件、ウエブ目付等により適当な条件を選択す
る必要がある。即ち、あまりに低い温度では熱処
理の効果がみられず、捲縮発現時に斑の多い、柔
軟性が損なわれた不織布に仕上がる。又、あまり
に高い温度では、複合繊維の捲縮発現能が低下
し、本発明の不織布に必要な捲縮収縮率が得られ
ない結果となり、一般的に複合繊維を構成する成
分のガラス転移点と融点から、最も高いガラス転
移点以上で、最も低い融点未満から熱処理後の繊
維が本発明に示される条件を満たすように選択さ
れる。 本発明においては、複合繊維特有の潜在的な捲
縮発現能を、ニードリング後に顕在化させること
が特徴であり、熱処理された複合繊維は、捲縮が
全く顕在化していないか、わずかに捲縮が認めら
れる程度にとどめる必要があり、そのための熱処
理の方法としては、連続フイラメントウエブを適
当な間隙を有する加熱ローラーの間を通すとか、
コンベアネツトに乗せてカバーネツトと共に加熱
領域を通す等、ウエブを完全なフリーではなく、
若干の拘束を持たせた状態で熱処理することが好
ましく、次の工程への移行がスムーズに実施され
る。 即ち、本発明における不織布の製造法において
は、このように熱処理された連続フイラメントウ
エブに、一面に対して5〜100P/cm2の針密度で
ニードルパンチングを施す工程が含まれる。この
時、針密度が5P/cm2に満たない場合には、捲縮
発現処理した不織布が、充分な引張強度を持たな
い、伸長回復性が劣り、耐摩耗性が劣る等の欠点
を有し、又針密度が100P/cm2を越えるとニード
ルパンチングの交絡程度が増加して捲縮発現処理
において、充分な捲縮が起らず、捲縮発現が不均
一でありニードルマークが目立ち品位がそこなわ
れ、さらには繊維の切断が著しく引張強力が低下
してくるという現象が見い出される。又、針密度
を上げるためには処理速度を下げる必要があり、
生産性という面でも大きな問題になる。従つて本
発明の実施に当つては、針密度は5〜100P/cm2
が選択される。又、本発明では、両面からのニー
ドルパンチングも、表面の耐摩耗性向上やその他
の物性に対して効果を有している。この場合に
は、それぞれの面に対して5〜100P/cm2の針密
度が可能であり、計10〜200P/cm2の針密度をと
り得るが、上述の理由からこの場合には10〜
150P/cm2の針密度が好ましい結果を与える。 本発明は、高速牽引された連続フイラメントに
ニードルパンチングを施すものであり、フイラメ
ントの伸度も小さいことから、ニードリング条件
によつてはフイラメントの切断が生じるが、本発
明で示される針密度においては、得られる不織布
は実質的に長繊維から成つており、長繊維特有の
好ましい物性を示す。又、このニードルパンチに
おいては、いわゆる縮絨は生じることなく、単に
機械的に交絡されるものであり、複合繊維はいま
だ潜在的な捲縮能を有している。 本発明においては、このニードルパンチにより
複合繊維の貫通交絡繊維束が生じる。ここでいう
貫通交絡繊維束とは、ニードルによりウエブの厚
み方向に機械的に配列させられた繊維束を示し、
貫通という意味は、ニードルの突起物により、引
つ掛けられた繊維が、表側から裏側まで文字通り
貫通している場合や、中間層から裏側まで達して
突き抜けている場合も含むものである。又、ニー
ドリングにより、このような貫通交絡繊維束の他
に交絡効果を有する貫入交絡繊維束も生じ、本発
明の実施にあたり、当然発生してもよい。この貫
通交絡繊維束は、ニードリングにおける針深さを
調整することによつて容易に生じせしめることが
出来、本発明においては、ニードルの突起物の少
なくとも一部が、ウエブ裏側に到達しうる針深さ
が選択される。 このようにして得られた貫通交絡繊維束は、ウ
エブ表面に露出させられたループ状あるいは立毛
状の形態を有し、これは本発明の不織布の製造に
おいて重要な役割を果たす。 ニードリングにおける、針密度と、針深さ以外
の条件は、任意に採られてよく、針の種類(フエ
ルト針のバーブ形状や、フオーク針のフオーク形
状)、針の番手、処理速度等は適宜選択される。
さらには、ニードリングの効果を上げるために薬
品の塗布等の手段も場合によつて併用されてよ
い。 通常のニードルパンチ不織布は、その形態保持
をニードルパンチのみによつているため針密度は
100〜400P/cm2が一般的であるのに対し、本発明
では極端に低い針密度で好ましい不織布物性が得
られ、従来にない高い生産性も本発明の特徴の一
つである。 本発明の不織布の製造法においては、ニードル
パンチング処理を施こした潜在捲縮性複合長繊維
ウエブに、捲縮数10個/インチ以上の捲縮を顕在
化させる捲縮発現工程が含まれる。この時本発明
でいう不織布を得るためには、繊維間の熱融着接
合が明確化しない条件が選択されることが不可欠
である。本発明においては、高速牽引された繊維
を用い、さらに熱処理によつて繊維の結晶化が進
んでおり、捲縮発現温度としては、該複合繊維横
断面の表層部を形成する最も低融点成分の融点未
満の温度が採用される。即ち、本発明の不織布の
製造法においては、その形態保持が実質的に繊維
間の交絡による限り、繊維間のわずかな擬似的な
熱融着接合は許容され、捲縮発現においては自由
にウエブを収縮させる必要があり、繊維間に殆ん
ど圧縮力がかからないため、上記の温度が採用さ
れる。従つて、高融点成分と低融点成分の組み合
せて、貼り合せ型や低融点成分が鞘となる偏心的
鞘芯構造では、低融点成分の融点未満で処理され
るべきである。又、同じく高融点成分と低融点成
分の組み合せで、低融点成分が芯となる偏心鞘芯
構造では、高融点成分の融点未満で処理されれば
よいが、たとえ繊維断面の内部にあるとはいえ低
融点成分の融点以上で処理することは推奨される
べきことではなく、低融点成分の融点以上で処理
する場合は瞬時にとどめる必要がある。さらにこ
のような繊維横断面構造の場合には、表層部を形
成する高融点成分の軟化点未満での捲縮発現が可
能であり、繊維間に熱融着接合が存在しない不織
布の製造も容易に達成される。 本発明における不織布の製造法の特徴は、不織
布の形態保持を繊維間の熱融着接合によらず、繊
維間の交絡によつて達成するものであり、本発明
の効果は、熱融着接合が存在しないか、熱融着接
合が極めて擬似的である本発明の不織布と、熱融
着接合が明確化された不織布を比較することによ
つて明らかにされる。即ち、本発明においては熱
融着接合は、存在しないか、極めて擬似的である
範囲にとどめるべきであり、明確な熱融着接合は
不織布の柔軟性を大きく損ない、伸張回復率や引
裂強力の低下をきたし、好ましくない。又、本発
明でいう繊維間の擬似的な熱融着接合は、わずか
に粘着が認められる程度でありほとんど不織布の
形態保持に関与せず、このことは、貼り合せ型複
合繊維より成り、低融点成分の軟化点以上、融点
以下で処理された不織布と、それと同成分の組み
合せで低融点成分を芯とする偏心鞘芯型複合繊維
より成り、高融点成分の軟化点以下で処理された
不織布の物性があまり変わらないことから認めら
れる。 この捲縮発現工程において、ウエブを構成する
複合繊維は、その潜在捲縮発現能に従つて捲縮数
10個/インチ以上の捲縮が顕在化される。即ち、
捲縮数10個/インチに満たない場合は捲縮が充分
に発現されていない状態であり、繊維間の細かな
交絡がみられないため、引張・引裂強力が劣り、
柔軟性、伸縮性や耐摩耗性に乏しく、嵩高感や表
面の均一性がみられない不織布となる。又、本発
明において捲縮数は10個/インチ以上であれば、
特に制限されることはないが、あまりに捲縮数が
多くても、不織布の柔軟性においてそれ程の効果
がみられず、経済的に有利な方法でないために好
ましくなく、捲縮数は100個/インチ以下で充分
である。即ち、捲縮発現に伴なうウエブの線収縮
率(CS)は5〜30%となるように捲縮を発現さ
せることが好ましく、CSは、捲縮発現前後の不
織布の目付をそれぞれG0,G1として(1−√
G0/G1)×100で示される数値である。 また、この捲縮発現により、先のニードルパン
チ工程で生じた複合繊維の貫通交絡繊維束の、貫
通してループ状あるいは貫通切断されて立毛状に
なり表層部に露出された個所においては、他の個
所におけるが如き繊維間の絡み合いによる拘束が
ない故に、より高度な捲縮が発現し、コイル状の
捲縮を顕在化させるに到る。このコイル状の捲縮
においては、捲縮数は不織布を構成する複合繊維
の平均捲縮数よりも多く、1.2倍以上の値を示し、
微細な毛玉状となり、立体的なボリユームを有す
る故に糸抜けが容易に生じることなく不織布に多
くの好ましい物性を与える。 この捲縮発現によつて、既にニードルパンチさ
れたウエブは、平面方向は収縮し、厚み方向は増
すためこれに適した方法・装置は任意にとられて
よい。即ち、熱ロールに接触させる、あるいはオ
ーブン等の加熱領域を通過させ自由に捲縮を発現
させるといつた方法、遠赤外や高周波のような特
殊な加熱方法を採る等任意である。 又、本発明に従う限り、ウエブ中の繊維自体の
加熱による収縮は極めて少ないため、複合繊維の
捲縮数はCSに相関し、不織布物性をコントロー
ルするためにCSを規制する方法も採ることも出
来る。即ち、ピンテンターやクリツプテンターに
よつて巾方向の収縮を規制する、オーバーフイー
ド機構をもたせてマシン方向の収縮を規制するこ
とが可能であり、あるいは熱融着接合が明確化し
ない範囲での適当な間隙を有する熱ロールの間を
通していくこことによつて厚みを規制する等の方
法が適宜採られてよい。さらには、これらの規制
方法を応用することによつて例えば一方向のみ非
常に伸縮性を有する不織布等の製造法が容易であ
り、当然本発明に含まれる。 本発明においては、捲縮発現させた不織布をさ
らに熱融着接合が明確化しない範囲で整形するこ
とも含んでおり、圧縮や引張りによる表面整形や
物性面の改質が可能である。この工程においても
熱融着接合を明確化させないことが必要であり、
そのために、例えばテンター等による巾出しや、
ヒートセツト、あるいは熱板や熱ロールによつて
不織布表面を軟化させて平滑に仕上げるといつた
繊維に圧力がほとんどかからない場合の温度条件
は、繊維断面の表層部を形成する成分の融点未満
の温度とすべきであり、彫刻板や彫刻ロール等で
模様をつける、あるいは熱板や熱ロールで強く圧
縮して密度を大きく変化させるといつた場合に
は、当然ながら繊維断面の表層部を形成する成分
の融点よりもさらに低い温度で処理されるべきで
ある。このような観点からは、高融点、低融点の
組み合わせにより成る複合繊維においては、低融
点成分を芯とする偏心鞘芯型にすることによつて
温度や圧力条件を広く採ることが可能であり好ま
しい。 この捲縮発現不織布を整形する効果は、不織布
の密度、厚みを変化させ用途に応じた所望の物性
を有する不織布とすることと、表面の均一性を一
段と増すことにある。即ち、本発明の不織布は複
合繊維の貫通交絡繊維束を含み、これらは貫通し
て表層に露出された個所において微細な毛玉状を
呈しており、これらを不織布表面に押しつけ目立
たなくさせる。あるいは、捲縮発現によつてほと
んど目立たなくなつたニードルマークをさらに目
立たなくするといつた、表面の均一性を一段と増
し、不織布の品位をあげることが可能である。 本発明の長繊維不織布の製造法は、このような
一連の工程より成り、多数のノズルより溶融吐出
された連続フイラメントを高速気流によつて牽引
細化して堆積してウエブ化するスパンボンド法に
適用するのが好ましい。しかし本発明に従い、連
続フイラメントを用いる限り、他の方法も可能で
あり、高速回転ロールを使用するスパンボンド法
も含まれる。 さらに本発明の製造法においては、潜在捲縮性
複合繊維に、その他の繊維を混合して実施するこ
とも当然可能であり、得られる不織布の物性の調
整、捲縮発現時の収縮斑の抑制に用いる等任意で
あり、本発明でいう潜在捲縮性長繊維を50wt%
以上含む場合に効果を発揮する。 本発明の長繊維不織布は、熱捲縮性を示す熱可
塑性有機合成重合体の偏心的複合繊維に捲縮を顕
在化させた長繊維より成つており、(a)該複合繊維
が、平均捲縮数10個/インチ以上の捲縮を有し、
(b)不織布の厚み方向に貫通する交絡繊維束となる
該複合繊維を有し(c)貫通交絡繊維束である複合繊
維が、貫通して表層に露出された部位においてよ
り高度なコイル状の捲縮を有し、毛玉状あるいは
毛玉が不織布表面に押しつけられた状態となり、
糸抜けに対する立体的障害となつていることを特
徴とする三次元的に交絡することによつて形態保
持されている長繊維不織布である。 即ち、マクロ的には厚み方向に貫通する交絡繊
維束が不織布全体を大きく形態保持し、かつ、ミ
クロ的に不織布を構成する複合長繊維が三次元的
な細かな捲縮により交絡されており、さらに貫通
交絡繊維束となる複合繊維が、貫通して表層部に
露出された部位において、より高度なコイル状の
捲縮の毛玉状物となつているために、交絡した繊
維が容易には糸抜けしえない構造を有し、これら
が一体となつて不織布としての形態を保持してい
る全く新規な長繊維不織布である。 この長繊維不織布の特徴の一つは、不織布を構
成する複合繊維が偏心的熱捲縮性複合繊維構造特
有の捲縮を、平均捲縮数10個/インチ以上有して
いることであり、この捲縮が、ニードルパンチで
少なくとも一部の繊維が交絡された後で顕在化さ
れたものであるが故に、複雑な絡み合いを生じ、
不織布物性の引張り強度、伸度や伸長回復性に効
果を及ぼし、ボリユーム感のある、表面に美観を
有する不織布となる。 またこの長繊維不織布は、複合繊維を含む不織
布の厚み方向に貫通する交絡繊維束を有してお
り、これはニードルパンチングによつて生じた繊
維束である。即ち、ニードルの突起物によつて強
制的に配列、貫通させられた繊維束であり、束の
大きさや、束中の繊維の本数は、ニードルの突起
物や繊維径の大小によつて任意に選択されるもの
である。また、束の数は、ニードルパンチングの
針密度によつて選択されるものである。 さらに貫通交絡繊維束となつた複合繊維は貫通
して表層に露出された部位において、より高度な
コイル状の捲縮を顕在化させて、微細な毛玉状、
あるいはこの毛玉が不織布表面に圧縮された形と
なつており、容易に糸の素抜けが生じないため、
不織布の引張り特性、引裂強力に寄与し、表面に
耐摩耗性、均一性を付与する。即ち、本発明の長
繊維不織布は、ニードルパンチングにより第1図
及び第2図に示される如き潜在捲縮性複合繊維1
のループ2及び立毛3を形成させた後、捲縮を発
現させ、ループ2及び立毛3を第3図及び第4図
に示す如き捲縮複合繊維4からなる不織布表面に
高度に捲縮が発現した毛玉5及び毛玉6とした構
造を有している。更には、この毛玉5及び毛玉6
か、第5図に示す如き圧縮整形処理されて押しつ
けられたもの7となつた構造を有している。 従つて、本発明の不織布は、偏心的複合長繊維
より成る独特の構造を有する長繊維不織布であ
り、その構造故に、従来にないすぐれた物性を有
している。即ち、強大な引張破断強度と秀れた伸
長回復力を有し、高い引裂強力、耐摩耗性を示
し、極めて柔軟であり、嵩高でボリユーム感のあ
る、表面均一な高級感を有する長繊維不織布であ
る。 本発明の長繊維不織布は、熱捲縮性を示す熱可
塑性有機合成重合体の偏心的複合繊維に捲縮を顕
在化させた長繊維より成つており、複合繊維は熱
収縮能を異にする二以上の成分より成つている。 このうちの一つの成分は、繊維形成能を有する
ポリエステル、ポリアミド、ポリオレフイン等か
ら選択され、他の成分はこれとは熱収縮能を異と
する成分が選択されてよい。複合繊維における界
面の親和性や熱捲縮能力の点から、好ましくは、
ポリエステルとその共重合体の組み合わせ、ポリ
アミドとその共重合体の組み合わせ、ポリプロピ
レンとポリオレフイン共重合体の組み合わせ等が
好ましい。さらに好ましくは、ポリエステルとそ
の共重合体の組み合わせであり、本発明の不織布
は従来のポリエステル不織布の最大の欠点であつ
た「かたさ」,「ペーパーライク」を克服したもの
であり、極めて柔軟な不織布である。ポリエステ
ルとしてはポリエチレンテレフタレート、その共
重合体としては、ポリエチレンテレフタレートの
各種共重合体が選択されて良く、共重合成分とし
ては、酸成分として、イソフタル酸、フタール
酸、グルタール酸、アジピン酸等の各種酸が可能
であり、グリコール成分として、ジエチレングリ
コール、プロピレングリコール、1,4―ブタン
ジオール、2,2―ビス(4―ヒドロキシエトキ
シフエニル)プロパン等の各種グリコールを用い
ることが出来る。 また、本発明に示す複合繊維の断面構造は、二
以上の成分が偏心的に配置されている限り、任意
の公知の複合断面構造が採られてよい。例えば、
この複合繊維が、比較的高融点、低融点の組み合
わせで、低融点成分が芯となり高融点成分が鞘と
なる断面構造をとり、捲縮発現や所望に応じた整
形を高融点成分の軟化点以下で行つた不織布は、
熱融着接合を有していず、形態保持が繊維間の交
絡のみによつており、本発明の代表的不織布であ
る。また、成分が同じく高融点、低融点の組み合
わせで、繊維横断面において低融点成分が外層表
面の少なくとも一部を形成する偏心的構造を成し
ているものの、低融点成分の融点以下の適当な条
件で捲縮発現や所望に応じた整形を行つた不織布
は、繊維間に熱融着接合が存在しないか、熱融着
接合が極めて擬似的であり、実質的な不織布の形
態保持が繊維間の交絡によつており、当然本発明
に含まれる。また本発明でいう不織布の形態保持
が実質的に繊維間の交絡によつており、熱融着接
合が存在しない、あるいは極めて擬似的であるこ
とは、例えば本発明の不織布を巾0.1〜1.0mmのス
リツトや小片に切断した場合、そのスリツトや小
片が指先や針状物で容易に個々の単繊維に分離し
うる状態であり、通常の熱融着接合不織布とは異
質のものである。 又、本発明に示される不織布は、その製造法は
先に述べたスパンボンド法に限定されるものでは
ない。即ち、潜在的な熱捲縮性を示し延伸糸と同
等の物性を有する複合連続フイラメントからなる
ウエブを、縮絨させることなく貫通交絡繊維束が
生じるようにニードリングした後、複合繊維の捲
縮を顕在化せしめたものであり、当然複合繊維ト
ウを開繊した不織布も含まれる。 本発明の長繊維不織布を構成する繊維の繊度は
特に制限されることはないが、繊度があまりに小
さい場合には、柔軟にはなるもののニードルパン
チによる糸切れが激しくなり不織布の引張強力が
得られにくく、また繊度があまりに大きい場合に
は、捲縮発現において捲縮ループが大きく捲縮数
も少なくなる傾向にあり、好ましい交絡状態が得
られない、又表面の平滑さや高級感に乏しくなる
ことから1〜10dが好ましい。又繊維断面形状も
円形、楕円形他従来公知のいかなる形状であつて
もよい。 また、この長繊維不織布の目付は特に限定され
ることはないが、50〜500g/m2が好ましく用途
によつて任意に設定されるべきである。 本発明の長繊維不織布は、その独特の構造の故
に、種々の非常に特徴のある性質を有している。
即ち、秀れた機械的物性と、嵩高感と柔軟さを併
せもち、かつ表面が高級感を有するものである。
例えば、ポリエチレンテレフタレートとその共重
合体から成る本発明の長繊維不織布は、通常下記
の如き物性を有している。 引張破断強度が3〜6g/tex,引張強力(目
付:100g/m2換算)4Kg以上,15%伸長回復率
60%以上、圧縮率20%以上で圧縮回復率80%以上
で高強力、秀れた回復性を有し、純曲げ剛性率が
目付200g/m2においても1.0g・cm2/cm以下で極
めて柔軟であり、密度が0.05〜0.3g/cm3の範囲
の選択が可能な嵩高な不織布である。 このように種々の秀れた特徴を有する本発明の
長繊維不織布は、各種の用途に使用される。例え
ば、合成皮革や人工皮革の基布、医療用患部被覆
材等の基布、カーテン、テーブルクロス、壁装材
自動車天井材等のインテリア表面材や芯地、さら
にはその特殊構造を活かしたフイルター等用途は
多大である。当然フイルムや織物、編物その他の
不織布との積層という形での使用も可能であり、
本発明不織布の嵩高性を活かし、樹脂を含浸して
各種商品にすることも容易である。 なお、本発明において用いられる不織布の各種
の物性及びその測定法については、引張強伸度は
引張試験機により把握長10cm、試料巾3cm、引張
速度30%/分で測定した値であり、引張破断強度
はg/tex単位で表示し、
破断強力〔Kg〕/3〔cm〕×目付〔g/m2〕×100で計
算される。又、 伸長回復率は、JISL―1079に準じて、一定伸び
を15%とした値である。 圧縮率及び圧縮回復率は、不織布から10cm×10
cmの正方形の小片10枚をサンプリングし、この10
枚を重ねてその上に同じ広さの薄い金属板(50
g)をのせ、2分間放置して、その厚さt0を測定
し、次いで10Kgの荷重を全面に均等にかかる様に
して30分間置く。荷重下30分後の厚さt1を測定
し、次いで荷重を取り除いて更に30間放置してそ
の時の厚さt2を求める。t0,t1,t2より圧縮率及
び圧縮回復率は 圧 縮 率=t0−t1/t0×100(%) 圧縮回復率=t2−t1/t0×100(%) で与えられる。 また、柔軟度の尺度となる純曲げ剛性率は、加
藤製作所製純曲げ剛性率測定器(KES―F2型)
にて測定した。引裂強力はエレメンドルフ引裂試
験器で測定した数値である。 なお不織布の捲縮数は、最小単位100μのスケ
ール付拡大鏡によつて観察し、捲縮の山と谷の距
離(mm)を測定し、その平均値(n=15)を求
め、1インチ間の捲縮数を〔25.4/平均距離〕で
計算したものである。 また、本発明において不織布を構成する繊維は
ランダムに配列されているものであるが、本発明
に示す不織布の物性は繊維配列の影響を軽減する
ためにマシン方向とクロスマシン方向について測
定し、その平均値を採用したものである。 以下に本発明を実施例によつて説明するが、実
施例は本発明を何ら限定するものではない。 実施例 1 固有粘度0.65(0―クロルフエノール中.35℃)
のポリエチレンテレフタレート(融点261℃)と
イソフタル酸を10モル%含む固有粘度0.62の融点
231℃のポリエチレンテレフタレート共重合体を
用い、吐出量比1/1の貼り合せ型配置として溶
融ポリマーを吐出し、エアサツカーにて高速牽引
し、開繊・分散して集積して連続フイラメントウ
エブとした。この複合繊維は単糸3.6d(糸速換算
5200m/分で、強度は2.9g/d、伸度65%であ
り、繊維収縮率は9%であつた。 このウエブを160℃に加熱したロール間隙500μ
の1対のカレンダーロールに通し熱処理した。熱
処理を施されたウエブを構成する複合繊維は、繊
維収縮率が4%であり、捲縮収縮率が35%である
潜在捲縮性を有するほとんど捲縮が顕在化してい
ない連続フイラメントである。 このウエブを36番手のフエルト針によつて、
30P/cm2の針密度で針深さ9mmでニードルパンチ
ングして目付120g/m2の貫通交絡繊維を含むニ
ーパンウエブとした。 これを、220℃に加熱したピンテンターにより
マシン方向、クロスマシン方向にオーバーフイー
ド率15%で30秒間処理することにより捲縮を発現
させた。得られた不織布は目付155g/m2(CS=
12%)で、捲縮が1インチ間に45個あり純曲げ剛
性率が0.51g・cm2/cmで非常に柔軟であり、15%
伸長時の回復率が79%と高く、極めて秀れた伸縮
性を示し、密度0.15g/cm2と嵩高な、引張破断強
度4.8g/tex、引張破断伸度85%のニードルパン
チ跡がほとんど判別できない表面均一な不織布で
あつた。又、不織布表面に高度に捲縮したコイル
状捲縮を有す毛玉状繊維が拡大鏡により確認され
た。この状態は、不織布断面を観察すると判り易
く、第3図、第4図に模式的に示した構造が、拡
大鏡観察により確認される。 比較例 1 実施例1で得た連続フイラメントウエブを熱処
理することなく同様のニードルパンチング、捲縮
発現処理を行つたところ、目付157g/m2(CS=
13%)の不織布を得たが、繊維収縮率が大きいた
めに捲縮発現が充分に起こつておらず、捲縮が8
個/インチと少なく、純曲げ剛性率が1.35g・
cm2/cmと高い柔軟性の損われた不織布であつた。
又、非常に目付斑の目立つ不織布であつた。 実施例 2 固有粘度0.65(0―クロルフエノール中,35℃)
のポリエチレンテレフタレート(融点261℃)と、
ジオール成分として、2,2―ビス(4―ヒドロ
キシエトキシフエニル)プロパンを10モル%含む
固有粘度0.63,融点236℃のポリエチレンテレフ
タレート共重合体を用い吐出量比(PET/
COPET)2/1の共重合体成分が半円状芯とな
る偏心鞘芯型配置として溶融ポリマーを吐出し、
エアーサツカーにて高速牽引し、開繊・分散して
集積し連続フイラメントウエブとした。この複合
繊維は単糸4.0d(糸速換算4700m/分)で強度3.1
g/d、伸度74%であり繊維収縮率は12%であつ
た。このウエブを155℃に加熱したロール間隙
500μの1対のカレンダーロールに通し熱処理し
た。熱処理により複合繊維の繊維収縮率が6%に
低下した捲縮収縮率31%のほとんど捲縮が顕在化
していない潜在捲縮性連続フイラメントとなつ
た。この熱処理ウエブを40番手のフエルト針によ
つて50P/cm2の針密度で針深さ10mmでニードルパ
ンチングして目付80g/m2のニーパンウエブとし
た。これを215℃に加熱した間隙1cmの熱板間に
10秒間放置した後、熱板間の距離を1.2mmとして
5秒間の圧縮整形を行つた。得られた不織布は目
付115g/m2(CS=17%)で捲縮数が51個/イン
チ純曲げ剛性率が0.24g・cm2/cm,15%伸張時の
回復率が85%,引張破断強度が5.4g/tex,引張
破断伸度が90%,密度が0.09g/cm3で極めて柔軟
で嵩高な表面均一な不織布であつた。又、不織布
断面を拡大鏡により観察することにより、第5図
に模式的に示した如き構造が確認された。 比較例 2 実施例2のPET/COPET吐出量比を4/1と
して目付80g/m2の連続フイラメントウエブを製
造した。 この複合繊維は、単糸3.8d(糸速換算4900m/
分)で強度3.3g/d,伸度68%,繊維収縮率9
%であつた。このウエブを実施例2と同様に熱処
理、ニードルパンチング、捲縮発現、圧縮整形し
て得られた不織布は目付88g/m2(CS=5%)
で捲縮数5個/インチ純曲げ剛性率が0.68g・
cm2/cm,15%伸張時の回復率が42%と柔軟性、伸
縮性に欠ける不織布であつた。この時の熱処理後
の複合繊維の捲縮収縮率は12であつた。 比較例 3 実施例2における偏心鞘芯型配置を貼り合わせ
型配置にする以外は実施例2と同様にして目付80
g/m2の連続フイラメントウエブを製造した。こ
の複合繊維は単糸4.1d(糸速換算4700m/分)で
強度3.0g/d,伸度72%,繊維収縮率10%であ
つた。このウエブを実施例2と同様に熱処理、ニ
ードルパンチング、捲縮発現、圧縮整形して得ら
れた不織布は、目付125g/m2(CS=20%)で捲
縮数が61個/インチ、純曲げ剛性率が0.36g・
cm2/cm,15%伸張時の回復率が87%,引張破断強
度が5.2g/tex,引張破断伸度が97%,引裂強力
が6.4Kg以上密度が0.11g/cm3で極めて柔軟で嵩
高な表面均一な不織布であつた。この不織布を
240℃に加熱した熱板間で間隙1.0mmで5秒間圧縮
整形して得られた不織布は、純曲げ剛性率が2.3
g・cm2/cmと非常に高くなり、15%伸長時の回復
率も37%に低下する。更には引裂強力が1.2Kgと
著しく低下する。この不織布を、幅0.5mmのスリ
ツト片に切断し、これを板の上に置いて、指先で
もみほぐしても単繊維に分かれず、繊維間の熱融
着接合は強固であつた。これは拡大鏡観察によつ
ても確認された。 実施例 3 固有粘度0.65(0―クロルフエノール中,35℃)
のポリエチレンテレフタレート(融点261℃)と
相対粘度2.4(95%硫酸中,30℃)のナイロン6
(融点215℃)を用い吐出量比1/1のナイロン6
が半円状芯となる偏心鞘芯型配置として溶融ポリ
マーを吐出し、エアーサツカーにて高速牽引し、
開繊・分散して集積し連続フイラメントウエブと
した。この複合繊維は単糸1.8d(糸速換算5200
m/分)で強度3.3g/d,伸度78%,繊維収縮
率が13%であつた。このウエブを160℃に加熱し
た1対のカレンダーロールに通し熱処理した。熱
処理により複合繊維の繊維収縮率が8%に低下し
た捲縮収縮率25%の潜在捲縮性連続フイラメント
となつた。この熱処理ウエブを40番手のフエルト
針によつて30P/cm2の針密度、針深さ10mmでニー
ドルパンチングして目付100g/m2のニーパンウ
エブとした。これを200℃に加熱した間隙1cmの
熱板間に10秒間放置した後、熱板間の距離を1.2
mmとして5秒間の圧縮整形を行つた。得られた不
織布は目付153g/m2(CS=19%)で捲縮数が43
個/インチ,純曲げ剛性率が0.54g・cm2/cm,15
%伸長時の回復率が78%,引張破断強度が5.9
g/tex,引張破断伸度82%,密度が0.12g/cm3
の極めて柔軟で嵩高な表面均一な不織布であつ
た。この不織布の断面構造は、拡大鏡観察によ
り、第5図に模式的に示す如き構造であることが
確認された。 ポリエチレンテレフタレートとナイロン6が貼
り合わせ断面配置の複合繊維の場合は、ニードル
パンチングによりポリエチレンテレフタレートと
ナイロン6の接触面が分離する結果潜在捲縮性が
損われ好ましくない。この捲縮性はニードルパン
チングの針密度の増加に伴つて低下する。 実施例 4 相対粘度2.7(95%硫酸中,30℃)のナイロン66
(融点261℃)と相対粘度2.3(95%硫酸中,30℃)
の66/6T/6・10=35/15/50(wt%)のラン
ダム共重合ポリアミドを用い吐出量比1/1でラ
ンダム共重合ポリアミド(融点218℃)が半円状
になる偏心鞘芯型配置で溶融ポリマーを吐出し、
エアーサツカーにより高速牽引し、開繊、分散し
て集積し連続フイラメントウエブとした。この複
合繊維は単糸2.1d(糸速換算5200m/分)で強度
2.7g/d,伸度73%、捲縮収縮率14%であつた。 このウエブを140℃に加熱した1対のカレンダ
ーロールに通し熱処理した。熱処理を施こされた
ウエブを構成する複合繊維は繊維収縮率が9%で
あり、捲縮収縮率が37%であるほとんど捲縮が顕
在化していない潜在捲縮性を有する連続フイラメ
ントである。 このウエブを40番手のフエルト針によつて
30P/cm2の針密度10mmの針深さでニードルパンチ
ングして目付100g/m2のニーパンウエブとした。
このニーパンウエブを180℃に加熱熱したピンテ
ンターによりマシン方向、クロスマシン方向にオ
ーバーフイード率15%及び30%で30秒間処理する
ことにより捲縮を発現させた後、185℃に加熱し
たロール間隙1mmの1対のカレンダーロールに通
し、圧縮整形した。 得られた不織布の物性を表―1に示すが、極め
て柔軟で伸縮性に富む表面が均一な不織布であ
る。又、この不織布の断面構造は、第5図に模式
的に示した如き構造であることが、拡大鏡観察に
より確認された。
The present invention relates to a novel nonwoven fabric made of long fibers of thermoplastic organic composite, which is extremely flexible and has excellent practical properties, and a method for producing the same.
More specifically, the nonwoven fabric is made of heat-crimpable conjugate long fibers of a thermoplastic organic composite, and the shape of the non-woven fabric is maintained not by adhesives or heat fusion bonding, but by substantially entangling the fibers. A nonwoven fabric that is flexible, has excellent elasticity, tensile strength at break, tear strength, abrasion resistance, a uniform surface, and a luxurious feel, and a method for producing the same. In recent years, the development of nonwoven fabrics has progressed and a variety of nonwoven fabrics have been provided, and in particular, long fiber nonwoven fabrics obtained by the spunbond method are attracting attention as promising nonwoven fabrics due to their excellent physical properties and high productivity. Spunbond is made of thermoplastic organic composite.
It is a nonwoven fabric that is made by forming a continuous filament web by pulling yarns discharged from a number of nozzles in a molten state by high-speed air currents and dispersing them on a net conveyor, etc., which retains its shape. Most commonly, form-retaining spunbond uses an adhesive resin (so-called binder) between the fibers.
This is a non-woven fabric bonded with an emulsion (usually applied as an emulsion), but the cost of applying adhesive and subsequent drying is high, the binder deteriorates or elutes when used as a non-woven fabric, and it is also difficult to use a flexible non-woven fabric. However, in order to do so, it has disadvantages such as the need to use a special adhesive resin and a special adhesive application method, and in recent years, spunbond that does not use adhesive has been actively developed. . As a so-called binder-free spunbond material that does not use an adhesive resin, a heat-seal bonded nonwoven fabric is known. This spunbond fabric made by thermal fusion bonding is a nonwoven fabric made by heating a continuous filament web and fusion bonding some of the filaments. This non-woven fabric has bonding points created by heat-sealing, and since the degree of freedom is completely lost at the bonding points, it is significantly harder and has less volume than ordinary woven or knitted fabrics. . For this purpose, various methods have been proposed to improve the flexibility of thermally bonded nonwoven fabrics, such as mixing low melting point fibers or using fibers with a low melting point component in part or all of the surface layer. , methods of adjusting the density and adhesion state of the bonding points, mixing crimped fibers to increase the degree of freedom between the bonding points, and latent crimping in which a low-melting point component is placed in at least a part of the surface layer. A method has been proposed in which a low-melting point component is used as an adhesive component by mixing compressible fibers to cause crimp. However, no matter which of these methods is used, spunbond bonded by thermal fusion bonding is paper-like and does not reach the flexibility of cloth. Also known is a spunbond fabric that does not use an adhesive resin and maintains its shape by entangling the fibers with mechanical force. This typical nonwoven fabric is a nonwoven fabric whose fibers are entangled using a needle punch machine. In general, nonwoven fabrics intertwined by needle punching have less loss of freedom at joints than nonwoven fabrics bonded by heat-sealing, and can be finished more flexibly. However, conventional needle-punched nonwoven fabrics
In order to increase the tensile strength and prevent surface fuzz, it is necessary to increase the needle density, which has the problem of reducing productivity, and increasing the needle density too much may cause fiber breakage. This has the disadvantage that there is a limit to the tensile strength due to a decrease in strength, there is almost no elasticity, and sufficient physical properties cannot be obtained. In particular, long-fiber nonwoven fabrics obtained by the spunbond method cannot be put to practical use unless the needling effect is improved by increasing the basis weight or making the fineness of the long fibers extremely thick. However, this kind of spunbond is far from having a cloth-like feel, has insufficient tensile strength and elasticity, and has noticeable needle marks, so it is inferior in quality as a nonwoven fabric, and can only be used for special purposes. The problem is that it cannot be done. In addition, a technique has been proposed in which a crimped fiber web is produced using a spunbond method and then subjected to needle punching to obtain a flexible nonwoven fabric. That is, as in Japanese Patent Application Laid-Open No. 49-2975, crimps are made apparent by loosening after spinning and pulling, and the web is accumulated and needle punched. However, this method has the problem that it is difficult to open and uniformly disperse a continuous filament in which crimped loops are exposed, and that spinning cannot be drawn at high speed. Furthermore, since crimping has already occurred when the continuous filament is deposited as a web, although the sheet is bulky, there is almost no entanglement between the fibers due to crimping, and its shape is maintained only by the entanglement by needling. Therefore, in order to satisfy the tensile strength and surface abrasion resistance, it is necessary to increase the needle density of the needle punch, and the interlacing effect due to crimping between fibers is not exerted, and it is difficult to intertwine by needling. The crimping of the composite fiber is due to the difference in the tensile cycle rate, so the crimping loop is unstable, and the crimps arranged in the thickness direction by the needle are easily removed, resulting in poor stretching cycle properties. It also has the problem of poor strength, tear strength, and surface abrasion resistance. Furthermore, this nonwoven fabric has the disadvantage that needle marks are easily noticeable, so it cannot be used for general purposes. In view of these points, the present inventors have developed a fabric that is bulky and extremely flexible, has the texture of a woven or knitted fabric, has excellent elasticity, high tensile strength at break, high tear strength, and abrasion resistance. As a result of intensive studies to obtain a spunbond material with a uniform surface and a high-quality appearance, the present invention was completed. That is, the nonwoven fabric of the present invention is a nonwoven fabric made of long fibers made of eccentric conjugate fibers of a thermoplastic organic synthetic polymer exhibiting thermal crimpability with visible crimping, wherein (a) the conjugate fibers are The conjugate fiber has an average number of crimps of 10 or more per inch, (b) includes the conjugate fiber that becomes an interlaced fiber bundle penetrating in the thickness direction of the nonwoven fabric, and (c) the conjugate fiber is a penetrating entangled fiber bundle. , has a higher degree of coiled crimp in the part penetrated and exposed to the surface layer,
A long-fiber nonwoven fabric whose shape is maintained by three-dimensional entanglement, characterized by a fluff-like or fluffy state that is pressed against the surface of the nonwoven fabric, and a steric hindrance to thread removal. be. Furthermore, in the method for producing a nonwoven fabric of the present invention, in the production of a long fiber nonwoven fabric, (a) at least one component is a thermoplastic organic synthetic polymer capable of forming fibers, and the other components are heat-shrinkable. At least two components, which are thermoplastic organic synthetic polymers with different abilities, are melted and discharged so that they are arranged eccentrically in the fiber cross section, and the spinning speed is 4000~4000~
8,000 m/min to form a latent heat-crimpable conjugate fiber, which is made into a continuous filament web; (c) subjecting the continuous filament web to a heat treatment that reduces the fiber shrinkage rate at low temperature by at least 2% while maintaining the crimp shrinkage rate of the composite fibers at a low temperature of 20% or more; (d) needle-punching the heat-treated continuous filament web from only one side or from both sides at a needle density of 5 to 100 P/cm 2 per side and a needle depth capable of producing penetrating entangled fiber bundles; The punched web is characterized in that the composite fibers are made to have crimps so as to have an average number of crimps of 10 or more per inch under conditions that do not make the thermal fusion bond between the fibers clear; The crimped nonwoven fabric is shaped by compression, tension, etc. under conditions in which thermal fusion bonding between the fibers is not clear, or there is no thermal fusion bonding between the fibers, or there is no thermal fusion bonding between the fibers. This is a method for producing an extremely flexible nonwoven fabric in which the highly pseudo-substantial shape retention of the nonwoven fabric is due to the entanglement of fibers. The contents of the present invention will be explained in detail below. In the method for producing a long-fiber nonwoven fabric according to the present invention, a web made of latent crimpable composite continuous filaments made of a thermoplastic organic synthetic polymer is obtained by a spunbond method. That is, one component constituting the continuous filament is a thermoplastic organic synthetic polymer having fiber-forming ability, preferably polyethylene terephthalate,
Homopolymers such as nylon 6, nylon 66, and polypropylene are selected, but other homopolymers and copolymers may also be used. The other component is a thermoplastic organic synthetic polymer having a different heat shrinkage ability, and may be the above-mentioned homopolymer, preferably a copolymer of polyester, polyamide, or polyolefin that has a high heat shrinkage ability. Combinations and blends can be used. In a composite fiber made of at least two thermoplastic organic synthetic polymers having different heat shrinkability, the components must be arranged eccentrically in its cross section. In other words, in addition to an eccentric arrangement that is divided into two parts, such as a bonded type or an eccentric sheath-core type, eccentric arrangement that is divided into three or more parts is possible, and it is possible to have an eccentric arrangement that is divided into three or more parts. The eccentric sheath-core type is preferable when a combination of parts lacking in properties, when the spinnability of one component is extremely poor, or when the difference in melting point of the components used is large, and may be arbitrarily selected depending on the components and combination. In the present invention, it is necessary to have a large crimp force, and an eccentric arrangement such as a bonded type or an eccentric sheath-core type with a semicircular core is preferable. In order to obtain a latent crimpable composite continuous filament web, a spinning equipment having two or more extruders and a large number of nozzles is used, and the molten polymer is eccentrically arranged as described above to form a composite structure. The yarn is pulled by a high-speed air current and dispersed on a net conveyor or the like. As the spinning conditions at this time, the spinning conditions used in the normal spunbond method may be selected, but the spinning speed is 4000 m/
Minutes or more is preferable. That is, if the spinning speed is less than 4000 m/min, the strength of the resulting fibers will be insufficient, the elongation will be high, and the fibers will be in a so-called undrawn state, making it impossible to obtain practical physical properties. On the other hand, if the spinning speed is too high, the crimp shrinkage ratio defined in the present invention cannot be obtained with certain polymer combinations, and the spinning speed is set at 4,000 to 8,000 m/min. The single fiber properties of the composite fiber spun by high-speed traction in this manner are a strength of 2.0 g/d or more and an elongation of 100% or less, making it a composite continuous filament with latent thermal crimpability. The potential thermal crimpability of the composite fiber here is adjusted by the combination of components that make up the composite fiber, the thickness and cross-sectional shape of the fiber, the arrangement method and mass ratio of the components in the fiber cross-section, and the spinning conditions. It is possible to change the temperature depending on the following heat treatment conditions. In the present invention, these conditions should be selected such that the composite fiber has the potential crimp shrinkage rate shown in the present invention after heat treatment. That is, the method for producing a long fiber nonwoven fabric of the present invention includes a step of heat treating the latent crimp composite continuous filament web. The heat treatment conditions in the present invention include a crimp shrinkage rate of the composite fiber of 20% at a temperature 40°C lower than the melting point of the component with the lowest melting point among the composite fiber components.
or above, and by heat treatment, the fiber shrinkage rate at that temperature is at least 2% compared to that before heat treatment.
Conditions are selected that cause the decrease. The crimp shrinkage rate and fiber shrinkage rate referred to here are defined as the fiber length initially measured under a load of 0.5 g/d, and then subjected to a load of 1 mg/d to cause crimp and shrinkage in a heated atmosphere. Let the fiber length under that load be l 1 , and 1
If the fiber length is l 2 when a load of 0.5 mg/d is applied instead of the load of mg/d, the crimp shrinkage rate is l 2 −l 1 /l 2 × 100, and the fiber shrinkage rate is l 0 −l. 2 / l 0 × 100, and in the present invention, in order to measure the crimp shrinkage rate and fiber shrinkage rate, the heating atmosphere temperature that causes crimp and shrinkage is set at the lowest temperature among the composite fiber components. The temperature was set to be 40°C lower than the melting point of the melting point component. That is, in the present invention, the composite fibers constituting the web have the latent crimp-generating ability to sufficiently develop crimp when crimp occurs, while heat treatment is applied to suppress shrinkage of the fiber itself due to heating. Ru. The composite fiber of the present invention is drawn at high speed and does not have a large fiber shrinkage rate even without heat treatment, but the heat treatment that reduces the fiber shrinkage rate by at least 2% promotes the crystallization of the fibers and self-generates. By reducing adhesion and suppressing unnecessary shrinkage of fibers when crimp occurs and fusion bonding between fibers, it is possible to produce a flexible and bulky nonwoven fabric. Furthermore, an unexpected effect of this heat treatment is that the nonwoven fabric that has undergone the heat treatment to develop crimp becomes uniform without unevenness. That is, non-uniform crimp shrinkage spots are prevented in the form shrinkage of the web due to crimp development, and the basis weight and mechanical properties of the nonwoven fabric are uniform without any spots, which is a very important effect. Although it is not clear why a uniform nonwoven fabric can be obtained by applying heat treatment in this way, it reduces the crimp appearance of the composite fibers that make up the web. It is presumed that the compression force is equalized. When carrying out this heat treatment, it is necessary to select appropriate conditions depending on the combination of components of the composite fiber, spinning conditions, web area weight, etc. That is, if the temperature is too low, the effect of heat treatment will not be seen, and the nonwoven fabric will be finished with many spots and poor flexibility when crimp occurs. In addition, if the temperature is too high, the ability of the composite fiber to develop crimp will decrease, resulting in not being able to obtain the crimp shrinkage rate necessary for the nonwoven fabric of the present invention, and generally lowering the glass transition point of the components constituting the composite fiber. The melting point is selected such that the heat-treated fiber satisfies the conditions shown in the present invention, with the melting point being above the highest glass transition point and below the lowest melting point. The present invention is characterized in that the latent ability to develop crimp, which is unique to composite fibers, is brought to light after needling. It is necessary to keep the shrinkage to a level where it is recognized, and the heat treatment method for this purpose is to pass the continuous filament web between heated rollers with an appropriate gap,
The web is not completely free, for example by placing it on a conveyor net and passing it through a heating area with a cover net.
It is preferable to perform the heat treatment with some restraint, so that the transition to the next step is carried out smoothly. That is, the method for producing a nonwoven fabric according to the present invention includes a step of needle punching the continuous filament web that has been heat treated in this way at a needle density of 5 to 100 P/cm 2 on one side. At this time, if the needle density is less than 5P/ cm2 , the crimped nonwoven fabric will have disadvantages such as not having sufficient tensile strength, poor elongation recovery, and poor abrasion resistance. In addition, when the needle density exceeds 100P/cm 2 , the degree of entanglement during needle punching increases, and sufficient crimp does not occur during the crimp treatment, resulting in uneven crimp development and noticeable needle marks, resulting in poor quality. It has been found that the fibers are damaged and the tensile strength is significantly reduced due to fiber breakage. Also, in order to increase the needle density, it is necessary to reduce the processing speed.
This is also a big problem in terms of productivity. Therefore, in carrying out the present invention, the needle density is 5 to 100P/cm 2
is selected. Further, in the present invention, needle punching from both sides is also effective in improving surface wear resistance and other physical properties. In this case, a needle density of 5 to 100 P/cm 2 is possible for each surface, and a total needle density of 10 to 200 P/cm 2 is possible.
A needle density of 150 P/cm 2 gives favorable results. In the present invention, needle punching is performed on a continuous filament pulled at high speed, and since the elongation of the filament is small, the filament may break depending on the needling conditions, but at the needle density shown in the present invention, the elongation of the filament is small. The obtained nonwoven fabric consists essentially of long fibers and exhibits favorable physical properties peculiar to long fibers. In addition, in this needle punching, so-called crimp does not occur, and the composite fibers are merely mechanically entangled, and the composite fibers still have a potential crimp ability. In the present invention, this needle punch produces a penetrating intertwined fiber bundle of composite fibers. The penetrating intertwined fiber bundles herein refer to fiber bundles that are mechanically arranged in the thickness direction of the web by needles,
The meaning of "penetrating" includes cases in which the fibers hooked by the protrusion of the needle literally penetrate from the front side to the back side, and cases in which the fibers penetrate from the middle layer to the back side. Further, by needling, in addition to such penetrating entangled fiber bundles, penetrating entangled fiber bundles having an entangling effect are also produced, which may naturally occur in carrying out the present invention. This penetrating entangled fiber bundle can be easily produced by adjusting the needle depth during needling, and in the present invention, at least a part of the needle protrusion can reach the back side of the web. Depth is selected. The penetrating entangled fiber bundle thus obtained has a loop-like or napped-like form exposed on the web surface, which plays an important role in the production of the nonwoven fabric of the present invention. Conditions other than needle density and needle depth in needling may be arbitrarily adopted, and needle type (barb shape of felt needles, fork shape of fork needles), needle count, processing speed, etc. may be set as appropriate. selected.
Furthermore, in order to increase the effect of needling, means such as application of chemicals may be used in conjunction with the needling. Ordinary needle-punched nonwoven fabrics rely only on needle punching to maintain their shape, so the needle density is
While the needle density is generally 100 to 400 P/cm 2 , in the present invention, preferable physical properties of the nonwoven fabric can be obtained with an extremely low needle density, and one of the features of the present invention is unprecedentedly high productivity. The method for producing a nonwoven fabric of the present invention includes a crimp development step in which the needle-punched latent crimpable composite long fiber web exhibits 10 or more crimps per inch. At this time, in order to obtain the nonwoven fabric referred to in the present invention, it is essential to select conditions that do not make the thermal bonding between the fibers clear. In the present invention, fibers that have been pulled at high speed are used, and the fibers are further crystallized by heat treatment, and the crimp onset temperature is the lowest melting point component that forms the surface layer of the cross section of the composite fiber. Temperatures below the melting point are employed. That is, in the method for producing a nonwoven fabric of the present invention, as long as the shape retention is substantially due to the entanglement between the fibers, a slight amount of pseudo heat-sealing bonding between the fibers is allowed, and the web can freely form crimps. The above temperature is adopted because it is necessary to shrink the fibers and there is almost no compressive force between the fibers. Therefore, in the case of a combination of a high melting point component and a low melting point component, such as a bonded type or an eccentric sheath-core structure in which the low melting point component serves as a sheath, processing should be performed at a temperature below the melting point of the low melting point component. Similarly, in the case of an eccentric sheath-core structure in which a high melting point component and a low melting point component are combined, and the low melting point component is the core, it is sufficient to process the temperature below the melting point of the high melting point component, but even if it is inside the fiber cross section, No, it is not recommended to process at a temperature above the melting point of the low melting point component, and when processing at a temperature above the melting point of the low melting point component, it is necessary to stop the process instantaneously. Furthermore, in the case of such a fiber cross-sectional structure, crimping can occur below the softening point of the high-melting point component forming the surface layer, and it is easy to produce a nonwoven fabric without thermal bonding between the fibers. will be achieved. A feature of the nonwoven fabric manufacturing method of the present invention is that the shape retention of the nonwoven fabric is achieved not by heat fusion bonding between the fibers, but by entangling the fibers. This will be clarified by comparing the nonwoven fabric of the present invention in which there is no bonding or the thermal bonding is extremely simulative, and the nonwoven fabric in which the thermal bonding is clearly defined. That is, in the present invention, thermal fusion bonding should be kept to a range where it does not exist or is extremely pseudo; clear thermal fusion bonding greatly impairs the flexibility of the nonwoven fabric and reduces the elongation recovery rate and tear strength. This is not desirable. In addition, the pseudo-thermal bonding between fibers as used in the present invention is only a slight amount of adhesion and is hardly involved in maintaining the shape of the nonwoven fabric. A nonwoven fabric that has been treated to a temperature above the softening point of the melting point component and below the melting point, and an eccentric sheath-core composite fiber that is a combination of the same components and has a low melting point component as its core, and has been processed to a temperature below the softening point of the high melting point component. This is recognized because the physical properties of the two do not change much. In this crimp development process, the composite fibers constituting the web have a number of crimp according to their potential crimp development ability.
10 or more crimps/inch become apparent. That is,
If the number of crimps is less than 10/inch, the crimps are not sufficiently developed and there is no fine entanglement between the fibers, resulting in poor tensile and tearing strength.
The resulting nonwoven fabric has poor flexibility, stretchability, and abrasion resistance, and lacks bulk and surface uniformity. In addition, in the present invention, if the number of crimps is 10 or more per inch,
Although there is no particular restriction, if the number of crimps is too large, the flexibility of the nonwoven fabric will not be significantly improved and it is not an economically advantageous method, so it is not preferable, and the number of crimps is 100// An inch or less is sufficient. That is, it is preferable to develop crimp so that the linear shrinkage rate (CS) of the web due to the occurrence of crimp is 5 to 30%, and CS is the basis weight of the nonwoven fabric before and after the occurrence of crimp, respectively . ,G 1 as (1−√
It is a numerical value expressed as G 0 /G 1 )×100. In addition, due to this crimping, the intertwined fiber bundles of the composite fibers produced in the previous needle punching process are penetrated into a loop shape or penetrated and cut into a nape shape, and at the part exposed to the surface layer, other Since there is no restriction due to intertwining between the fibers as in the locations shown in FIG. In this coiled crimping, the number of crimps is greater than the average number of crimps of the composite fibers constituting the nonwoven fabric, which is 1.2 times or more.
Because it forms a fine pill shape and has a three-dimensional volume, threads do not easily come off and provide many desirable physical properties to the nonwoven fabric. As a result of this crimping, the web that has already been needle punched shrinks in the plane direction and increases in the thickness direction, so any method or device suitable for this may be used. That is, methods such as contacting with a hot roll or passing through a heating area such as an oven to freely develop crimp, or special heating methods such as far infrared or high frequency may be used. Furthermore, as long as the present invention is followed, the shrinkage of the fibers themselves in the web due to heating is extremely small, so the number of crimps of the composite fibers correlates with CS, and it is also possible to adopt a method of regulating CS in order to control the physical properties of the nonwoven fabric. . In other words, it is possible to control shrinkage in the width direction using a pin tenter or clip tenter, it is possible to control shrinkage in the machine direction by providing an overfeed mechanism, or an appropriate An appropriate method may be adopted, such as controlling the thickness by passing it between heated rolls having gaps. Furthermore, by applying these regulating methods, it is easy to manufacture nonwoven fabrics that are extremely stretchable in only one direction, and are naturally included in the present invention. The present invention includes further shaping the crimped nonwoven fabric to the extent that thermal fusion bonding does not become clear, and it is possible to shape the surface and modify the physical properties by compression or tension. In this process as well, it is necessary not to make heat fusion bonding obvious.
For this purpose, for example, the width can be increased using a tenter, etc.
When almost no pressure is applied to the fibers, such as by heat setting or by softening the surface of the nonwoven fabric using a hot plate or hot roll to make it smooth, the temperature conditions are below the melting point of the components forming the surface layer of the cross section of the fibers. However, if a pattern is applied using an engraving plate or an engraving roll, or the density is greatly changed by strongly compressing it with a hot plate or a hot roll, it is natural that the components that form the surface layer of the fiber cross section are used. should be processed at temperatures even lower than the melting point of From this point of view, it is possible to adopt a wide range of temperature and pressure conditions for composite fibers made of a combination of high melting point and low melting point components by using an eccentric sheath-core type with a low melting point component as the core. preferable. The effect of shaping this crimped nonwoven fabric is to change the density and thickness of the nonwoven fabric to produce a nonwoven fabric with desired physical properties depending on the application, and to further increase the uniformity of the surface. That is, the nonwoven fabric of the present invention includes penetrating intertwined fiber bundles of composite fibers, which exhibit fine fluff-like shapes at the locations where they penetrate and are exposed to the surface layer, and these are pressed against the surface of the nonwoven fabric to make them inconspicuous. Alternatively, it is possible to further improve the quality of the nonwoven fabric by making needle marks, which have become almost invisible due to crimp development, even less noticeable, and by further increasing surface uniformity. The method for manufacturing the long fiber nonwoven fabric of the present invention consists of a series of steps as described above, and includes a spunbond method in which continuous filaments melted and discharged from a number of nozzles are drawn and thinned by high-speed air currents and deposited to form a web. It is preferable to apply. However, other methods are possible as long as continuous filaments are used in accordance with the present invention, including spunbond methods using high speed rotating rolls. Furthermore, in the production method of the present invention, it is of course possible to mix other fibers with the latent crimpable composite fibers, thereby adjusting the physical properties of the resulting nonwoven fabric and suppressing shrinkage spots when crimp occurs. 50wt% of latent crimpable long fibers as used in the present invention.
It is effective when it contains more than The long-fiber nonwoven fabric of the present invention is made of eccentric composite fibers of a thermoplastic organic synthetic polymer exhibiting thermal crimpability, and includes long fibers with visible crimp. Has 10 or more crimps/inch,
(b) The conjugate fibers form intertwined fiber bundles that penetrate in the thickness direction of the nonwoven fabric; (c) The conjugate fibers, which are penetrating intertwined fiber bundles, form a more highly coiled shape at the part where the conjugate fibers penetrate and are exposed to the surface layer. It has crimps and is in the form of a pill or a pill pressed against the surface of the nonwoven fabric.
It is a long fiber nonwoven fabric that maintains its shape by being three-dimensionally intertwined, and is characterized by sterically hindering yarn shedding. That is, macroscopically, the intertwined fiber bundles penetrating the nonwoven fabric in the thickness direction largely maintain the shape of the entire nonwoven fabric, and microscopically, the composite long fibers that make up the nonwoven fabric are intertwined by fine three-dimensional crimp. In addition, the composite fibers that become the penetrating entangled fiber bundles become more highly coiled and crimped in the part where they pass through and are exposed to the surface layer, so the intertwined fibers do not come out easily. It is a completely new long fiber nonwoven fabric that has an unbreakable structure and maintains the form of a nonwoven fabric when these are integrated. One of the characteristics of this long-fiber nonwoven fabric is that the composite fibers constituting the nonwoven fabric have an average number of crimps of 10 or more per inch, which is unique to the eccentric heat-crimpable composite fiber structure. This crimp became apparent after at least some of the fibers were entangled with the needle punch, resulting in complex entanglements,
It has an effect on the tensile strength, elongation and elongation recovery of the physical properties of the nonwoven fabric, resulting in a nonwoven fabric with a sense of volume and a beautiful appearance on the surface. Further, this long-fiber nonwoven fabric has intertwined fiber bundles that penetrate in the thickness direction of the nonwoven fabric containing composite fibers, and these are fiber bundles produced by needle punching. In other words, it is a fiber bundle that is forcibly arranged and penetrated by the protrusion of the needle, and the size of the bundle and the number of fibers in the bundle can be arbitrarily determined depending on the protrusion of the needle and the diameter of the fibers. It is selected. Further, the number of bundles is selected depending on the needle density of needle punching. Furthermore, the composite fibers that have become a penetrating intertwined fiber bundle manifest a more advanced coil-like crimp in the part that penetrates and is exposed to the surface layer, resulting in fine pill-like formations.
Alternatively, this pill is compressed on the surface of the nonwoven fabric, and the threads do not easily come off.
Contributes to the tensile properties and tear strength of nonwoven fabrics, and imparts wear resistance and uniformity to the surface. That is, the long-fiber nonwoven fabric of the present invention is made by needle punching to form latent crimpable conjugate fibers 1 as shown in FIGS. 1 and 2.
After forming the loops 2 and napped 3, crimps are developed, and the loops 2 and napped 3 are highly crimped on the surface of the nonwoven fabric made of crimped composite fibers 4 as shown in FIGS. 3 and 4. It has a structure with a fluff 5 and a fluff 6. Furthermore, this hairball 5 and hairball 6
Alternatively, it has a structure 7 that has been compressed and pressed as shown in FIG. Therefore, the nonwoven fabric of the present invention is a long fiber nonwoven fabric having a unique structure composed of eccentric composite long fibers, and because of this structure, it has excellent physical properties that have never existed before. In other words, it is a long-fiber nonwoven fabric that has great tensile strength at break and excellent elongation recovery, exhibits high tear strength and abrasion resistance, is extremely flexible, has a bulky and voluminous feel, and has a uniform surface and a luxurious appearance. It is. The long-fiber nonwoven fabric of the present invention is made of eccentric composite fibers of a thermoplastic organic synthetic polymer exhibiting thermal crimpability, and long fibers with visible crimp.The composite fibers have different thermal shrinkability. Consists of two or more components. One of these components may be selected from polyester, polyamide, polyolefin, etc. that have fiber-forming ability, and the other component may be selected from a component that has a different heat shrinkage ability. From the viewpoint of interfacial affinity and heat crimping ability in composite fibers, preferably,
Preferred are a combination of polyester and its copolymer, a polyamide and its copolymer, a polypropylene and polyolefin copolymer, and the like. More preferably, it is a combination of polyester and its copolymer, and the nonwoven fabric of the present invention overcomes the "hardness" and "paper-likeness" that were the biggest drawbacks of conventional polyester nonwoven fabrics, and is an extremely flexible nonwoven fabric. It is. As the polyester, polyethylene terephthalate may be selected, as its copolymer, various copolymers of polyethylene terephthalate may be selected, and as the copolymerization component, as the acid component, various types such as isophthalic acid, phthalic acid, glutaric acid, adipic acid, etc. may be selected. An acid is possible, and various glycols such as diethylene glycol, propylene glycol, 1,4-butanediol, and 2,2-bis(4-hydroxyethoxyphenyl)propane can be used as the glycol component. Moreover, the cross-sectional structure of the composite fiber shown in the present invention may be any known composite cross-sectional structure as long as two or more components are eccentrically arranged. for example,
This composite fiber is a combination of relatively high melting point and low melting point, and has a cross-sectional structure in which the low melting point component is the core and the high melting point component is the sheath. The nonwoven fabric made below is
It does not have heat-sealed bonding and retains its shape only by entanglement between fibers, and is a typical nonwoven fabric of the present invention. In addition, although the components are the same combination of high melting point and low melting point, and the low melting point component forms at least a part of the outer layer surface in the cross section of the fiber, it has an eccentric structure, but an appropriate one with a melting point below the low melting point component is used. Nonwoven fabrics that have been crimped or shaped as desired will either have no thermal bonding between the fibers, or the thermal bonding will be extremely artificial, and the shape of the nonwoven fabric will not be maintained effectively due to the formation of nonwoven fabrics. This is naturally included in the present invention. Furthermore, the shape retention of the nonwoven fabric according to the present invention is substantially due to the entanglement between the fibers, and the fact that thermal fusion bonding does not exist or is extremely pseudo means that, for example, when the nonwoven fabric of the present invention has a width of 0.1 to 1.0 mm, When cut into slits or small pieces, the slits or pieces can be easily separated into individual filaments with fingertips or needle-like objects, which is different from ordinary heat-sealed nonwoven fabrics. Further, the manufacturing method of the nonwoven fabric according to the present invention is not limited to the above-mentioned spunbond method. That is, a web made of composite continuous filaments that exhibit latent thermal crimpability and have physical properties equivalent to drawn yarns is needled to produce penetrating intertwined fiber bundles without shrinking, and then the composite fibers are crimped. Naturally, non-woven fabrics made by opening composite fiber tows are also included. The fineness of the fibers constituting the long-fiber nonwoven fabric of the present invention is not particularly limited, but if the fineness is too small, the fibers will break easily when needle punched, although they will be flexible, making it difficult to obtain the tensile strength of the nonwoven fabric. In addition, if the fineness is too large, the crimp loops will be large and the number of crimp will tend to be small, making it impossible to obtain a desirable intertwined state, and the surface will lack smoothness and luxury. 1 to 10d is preferable. Further, the fiber cross-sectional shape may be circular, oval, or any other conventionally known shape. Further, the basis weight of this long fiber nonwoven fabric is not particularly limited, but it is preferably 50 to 500 g/m 2 and should be arbitrarily set depending on the use. Due to its unique structure, the long fiber nonwoven fabric of the present invention has a variety of very distinctive properties.
That is, it has excellent mechanical properties, is bulky and flexible, and has a high-quality surface.
For example, the long fiber nonwoven fabric of the present invention made of polyethylene terephthalate and its copolymer usually has the following physical properties. Tensile strength at break is 3 to 6g/tex, tensile strength (fabric weight: 100g/ m2 conversion) 4Kg or more, 15% elongation recovery rate
60% or more, compression rate of 20% or more, compression recovery rate of 80% or more, high strength, excellent recovery properties, and pure bending rigidity of 1.0g・cm 2 /cm or less even at a basis weight of 200g/m 2 It is a bulky nonwoven fabric that is extremely flexible and can have a density in the range of 0.05 to 0.3 g/cm 3 . The long fiber nonwoven fabric of the present invention having various excellent characteristics as described above can be used for various purposes. For example, synthetic leather and artificial leather base fabrics, base fabrics for medically-use affected area covering materials, interior surface materials and interlinings such as curtains, tablecloths, wall coverings and automobile ceiling materials, and even filters that take advantage of their special structure. It has many uses. Of course, it can also be used in the form of lamination with films, woven fabrics, knitted fabrics, and other non-woven fabrics.
Taking advantage of the bulkiness of the nonwoven fabric of the present invention, it is easy to impregnate it with resin and make it into various products. Regarding the various physical properties of the nonwoven fabric used in the present invention and their measurement methods, the tensile strength and elongation are values measured using a tensile tester at a grasp length of 10 cm, a sample width of 3 cm, and a tensile speed of 30%/min. Breaking strength is expressed in g/tex,
It is calculated as breaking strength [Kg]/3 [cm] x basis weight [g/m 2 ] x 100. In addition, the elongation recovery rate is a value based on a constant elongation of 15% in accordance with JISL-1079. Compression rate and compression recovery rate are 10 cm x 10 from non-woven fabric.
Sample 10 square pieces of cm, and these 10
Stack the sheets and place a thin metal plate of the same width on top of it (50
g) was placed, left for 2 minutes, its thickness t 0 was measured, and then a load of 10 kg was applied evenly over the entire surface and left for 30 minutes. The thickness t 1 after 30 minutes under load is measured, then the load is removed and the thickness t 2 is determined after being left for another 30 minutes. From t 0 , t 1 , and t 2 , the compression rate and compression recovery rate are: Compression rate = t 0t 1 / t 0 × 100 (%) Compression recovery rate = t 2 − t 1 / t 0 × 100 (%) is given by In addition, pure bending rigidity, which is a measure of flexibility, can be measured using a pure bending rigidity meter (KES-F2 type) made by Kato Seisakusho.
Measured at The tear strength is a value measured using an Elmendorf tear tester. The number of crimp in the nonwoven fabric is determined by observing it with a magnifying glass with a scale of minimum unit 100μ, measuring the distance (mm) between the peaks and valleys of the crimp, and finding the average value (n = 15). The number of crimps in between is calculated as [25.4/average distance]. In addition, although the fibers constituting the nonwoven fabric in the present invention are arranged randomly, the physical properties of the nonwoven fabric shown in the present invention are measured in the machine direction and cross-machine direction in order to reduce the influence of fiber arrangement. The average value is used. EXAMPLES The present invention will be explained below with reference to Examples, but the Examples are not intended to limit the present invention in any way. Example 1 Intrinsic viscosity 0.65 (in 0-chlorophenol, 35°C)
Contains polyethylene terephthalate (melting point 261℃) and 10 mol% isophthalic acid, melting point intrinsic viscosity 0.62
Using polyethylene terephthalate copolymer at 231℃, the molten polymer was discharged in a laminated arrangement with a discharge rate ratio of 1:1, pulled at high speed with an air sucker, opened, dispersed, and aggregated to form a continuous filament web. . This composite fiber has a single yarn of 3.6d (in terms of yarn speed)
At 5200 m/min, the strength was 2.9 g/d, the elongation was 65%, and the fiber shrinkage was 9%. This web was heated to 160℃ with a gap of 500μ.
The mixture was passed through a pair of calender rolls for heat treatment. The composite fibers constituting the heat-treated web are continuous filaments with a fiber shrinkage rate of 4% and a latent crimpability with a crimp shrinkage rate of 35%, with almost no apparent crimp. This web is made using a 36th felt needle.
A kneepan web containing penetrating interlaced fibers with a basis weight of 120 g/m 2 was obtained by needle punching at a needle density of 30 P/cm 2 and a needle depth of 9 mm. This was treated with a pin tenter heated to 220°C for 30 seconds in the machine direction and cross-machine direction at an overfeed rate of 15% to develop crimp. The obtained nonwoven fabric has a basis weight of 155 g/m 2 (CS=
12%), there are 45 crimps per inch, and the pure bending stiffness is 0.51g・cm 2 /cm, making it extremely flexible.
It has a high recovery rate during elongation of 79%, exhibits extremely excellent elasticity, has a bulky density of 0.15 g/ cm2 , has a tensile strength at break of 4.8 g/tex, and has a tensile elongation at break of 85%, with almost no needle punch marks. It was a nonwoven fabric with a uniform surface that could not be distinguished. In addition, pill-like fibers with highly crimped coil-like crimps were confirmed on the surface of the nonwoven fabric using a magnifying glass. This state is easy to understand when observing the cross section of the nonwoven fabric, and the structure schematically shown in FIGS. 3 and 4 is confirmed by observing with a magnifying glass. Comparative Example 1 When the continuous filament web obtained in Example 1 was subjected to the same needle punching and crimp development treatment without heat treatment, the fabric weight was 157 g/m 2 (CS=
13%) was obtained, but due to the high fiber shrinkage rate, crimp development did not occur sufficiently, and the crimp was 8.
As few as pieces/inch, pure bending rigidity is 1.35g.
The nonwoven fabric had a high flexibility of cm 2 /cm.
In addition, the nonwoven fabric had very noticeable unevenness. Example 2 Intrinsic viscosity 0.65 (in 0-chlorophenol, 35°C)
of polyethylene terephthalate (melting point 261℃),
As the diol component, a polyethylene terephthalate copolymer with an intrinsic viscosity of 0.63 and a melting point of 236°C containing 10 mol% of 2,2-bis(4-hydroxyethoxyphenyl)propane was used, and the discharge rate ratio (PET/
The molten polymer is discharged in an eccentric sheath-core arrangement in which the copolymer component of COPET) 2/1 forms a semicircular core.
The filaments were pulled at high speed using an air satsuka car, and the fibers were opened, dispersed, and accumulated to form a continuous filament web. This composite fiber has a strength of 3.1 with a single yarn of 4.0 d (fiber speed converted to 4700 m/min).
g/d, elongation was 74%, and fiber shrinkage was 12%. The gap between the rolls that heated this web to 155℃
It was heat-treated by passing it through a pair of 500μ calender rolls. By heat treatment, the fiber shrinkage rate of the composite fiber was reduced to 6%, resulting in a latent crimpable continuous filament with a crimp shrinkage rate of 31% and almost no apparent crimp. This heat-treated web was needle-punched using a No. 40 felt needle at a needle density of 50P/cm 2 and a needle depth of 10 mm to obtain a kneepan web having a basis weight of 80 g/m 2 . This was heated to 215℃ between hot plates with a gap of 1cm.
After leaving it for 10 seconds, compression shaping was performed for 5 seconds with the distance between the hot plates set to 1.2 mm. The obtained nonwoven fabric has a basis weight of 115 g/m 2 (CS = 17%), a number of crimps of 51/inch, a pure bending stiffness of 0.24 g cm 2 /cm, a recovery rate of 85% at 15% elongation, and a tensile It had a breaking strength of 5.4 g/tex, a tensile elongation at break of 90%, and a density of 0.09 g/cm 3 , making it an extremely flexible and bulky nonwoven fabric with a uniform surface. Further, by observing the cross section of the nonwoven fabric with a magnifying glass, a structure as schematically shown in FIG. 5 was confirmed. Comparative Example 2 A continuous filament web with a basis weight of 80 g/m 2 was manufactured by changing the PET/COPET discharge ratio of Example 2 to 4/1. This composite fiber has a single yarn of 3.8 d (yarn speed equivalent: 4900 m/
min), strength 3.3g/d, elongation 68%, fiber shrinkage rate 9
It was %. This web was heat treated, needle punched, crimped, and compressed in the same manner as in Example 2, and the obtained nonwoven fabric had a basis weight of 88 g/m 2 (CS = 5%).
The number of crimps is 5/inch and the pure bending rigidity is 0.68g.
The recovery rate at cm 2 /cm and 15% elongation was 42%, indicating that the nonwoven fabric lacked flexibility and stretchability. The crimp shrinkage rate of the composite fiber after heat treatment at this time was 12. Comparative Example 3 The fabric weight was 80 in the same manner as in Example 2 except that the eccentric sheath-core arrangement in Example 2 was changed to a bonded arrangement.
A continuous filament web of g/m 2 was produced. This composite fiber had a single yarn of 4.1 d (fiber speed converted to 4700 m/min), strength of 3.0 g/d, elongation of 72%, and fiber shrinkage of 10%. This web was heat treated, needle punched, crimped, and compressed in the same manner as in Example 2. The obtained nonwoven fabric had a basis weight of 125 g/m 2 (CS = 20%), a number of crimps of 61/inch, and a pure Bending rigidity is 0.36g・
cm2 /cm, recovery rate at 15% elongation is 87%, tensile strength at break is 5.2g/tex, tensile elongation at break is 97%, tear strength is 6.4Kg or more, density is 0.11g/ cm3 , and it is extremely flexible. It was a bulky nonwoven fabric with a uniform surface. This nonwoven fabric
The nonwoven fabric obtained by compression shaping for 5 seconds between hot plates heated to 240°C with a gap of 1.0 mm has a pure bending rigidity of 2.3.
g·cm 2 /cm, which is extremely high, and the recovery rate at 15% elongation also drops to 37%. Furthermore, the tear strength significantly decreases to 1.2 kg. This nonwoven fabric was cut into slit pieces with a width of 0.5 mm, placed on a board, and even when rubbed with the fingertips, the fabric did not separate into single fibers, and the heat-sealed bond between the fibers was strong. This was also confirmed by magnifying glass observation. Example 3 Intrinsic viscosity 0.65 (in 0-chlorophenol, 35°C)
of polyethylene terephthalate (melting point 261°C) and nylon 6 with a relative viscosity of 2.4 (in 95% sulfuric acid, 30°C).
(melting point 215℃) using nylon 6 with a discharge rate ratio of 1/1.
The molten polymer is discharged in an eccentric sheath-core arrangement with a semicircular core, and is towed at high speed with an air suction car.
The fibers were spread, dispersed, and accumulated to form a continuous filament web. This composite fiber has a single yarn of 1.8d (yarn speed conversion: 5200
The strength was 3.3 g/d (m/min), the elongation was 78%, and the fiber shrinkage was 13%. This web was heat-treated by passing it through a pair of calender rolls heated to 160°C. By heat treatment, the fiber shrinkage of the composite fiber was reduced to 8%, resulting in a latent crimpable continuous filament with a crimp shrinkage of 25%. This heat-treated web was needle-punched using a No. 40 felt needle at a needle density of 30P/cm 2 and a needle depth of 10 mm to obtain a kneepan web having a basis weight of 100 g/m 2 . After leaving this for 10 seconds between hot plates heated to 200℃ with a gap of 1 cm, the distance between the hot plates was increased to 1.2
Compression shaping was performed for 5 seconds as mm. The obtained nonwoven fabric had a basis weight of 153 g/m 2 (CS = 19%) and a crimp count of 43.
pieces/inch, pure bending rigidity 0.54g・cm 2 /cm, 15
Recovery rate at % elongation is 78%, tensile strength at break is 5.9
g/tex, tensile elongation at break 82%, density 0.12 g/cm 3
It was an extremely flexible, bulky nonwoven fabric with a uniform surface. The cross-sectional structure of this nonwoven fabric was confirmed to be as schematically shown in FIG. 5 by observation with a magnifying glass. In the case of a conjugate fiber in which polyethylene terephthalate and nylon 6 are bonded together in cross-section, the contact surface between the polyethylene terephthalate and nylon 6 is separated by needle punching, which impairs latent crimpability, which is not preferable. This crimpability decreases as the needle density of needle punching increases. Example 4 Nylon 66 with relative viscosity 2.7 (in 95% sulfuric acid, 30°C)
(melting point 261℃) and relative viscosity 2.3 (in 95% sulfuric acid, 30℃)
Using random copolyamide of 66/6T/6・10 = 35/15/50 (wt%), the random copolymer polyamide (melting point 218℃) has a semicircular shape at a discharge rate ratio of 1/1. Dispense molten polymer with mold arrangement,
The fibers were pulled at high speed by an air suction car, opened, dispersed, and accumulated to form a continuous filament web. This composite fiber has a strength of 2.1d (fiber speed equivalent: 5200m/min).
It had an elongation of 2.7 g/d, an elongation of 73%, and a crimp shrinkage rate of 14%. This web was heat-treated by passing it through a pair of calender rolls heated to 140°C. The composite fibers constituting the heat-treated web have a fiber shrinkage rate of 9% and a crimp shrinkage rate of 37%, which is a continuous filament having latent crimpability with almost no apparent crimp. This web is sewn using a 40-grit felt needle.
A kneepan web with a fabric weight of 100 g/m 2 was obtained by needle punching with a needle density of 30 P/cm 2 and a needle depth of 10 mm.
This kneepan web was treated with a pin tenter heated to 180°C for 30 seconds in the machine direction and cross-machine direction at overfeed rates of 15% and 30% to develop crimp, and then heated to 185°C with a 1 mm gap between the rolls. It was passed through a pair of calendar rolls and compressed. The physical properties of the obtained nonwoven fabric are shown in Table 1. The nonwoven fabric is extremely flexible and highly elastic, and has a uniform surface. Further, it was confirmed by observation with a magnifying glass that the cross-sectional structure of this nonwoven fabric was as schematically shown in FIG.

【表】 実施例 5 固有粘度0.650―クロルフエノール中、35℃)
のポリエチレンテレフタレート(融点261℃)と
ポリプロピレン(融点170℃)(チツソ社製:
S5056)を用い吐出量比1/1でポリプロピレン
が半円状になる偏心鞘芯型配置で溶融ポリマーを
吐出し、エアーサツカーにより高速牽引し、開
繊・分散し連続フイラメントウエブとした。この
複合繊維は単糸1d(糸速換算4500m/分)で強度
2.5g/d,伸度87%,繊維収縮率12%であつた。
このウエブを120℃に加熱した1対のカレンダー
ロールに通し熱処理した。熱処理を施こされたウ
エブを構成する複合繊維は繊維収縮率が9%であ
り、捲縮収縮率が24%である一部捲縮が顕在化し
ている潜在捲縮性連続フイラメントである。この
ウエブを40番手のフエルト針によつて30P/cm2
針密度針深さ10mmでニードルパンチングして目付
120g/m2のニーパンウエブとした。このニーパ
ンウエブを150℃に加熱した間隙1cmの熱板間に
10秒間放置した後、熱板間の距離を1.2mmとして
5秒間の圧縮整形を行つた。得られた不織布は、
目付155g/m2(CS=12%)で捲縮数が28個/イ
ンチ純曲げ剛性率が0.64g・cm2/cm,15%伸長時
の回復率68%、密度が0.12g/cm3で極めて柔軟で
嵩高な表面均一な不織布であつた。この不織布の
断面構造は第5図に模式的に示した如き構造であ
ることが拡大鏡観察により確認された。
[Table] Example 5 Intrinsic viscosity 0.650 - in chlorophenol, 35°C)
polyethylene terephthalate (melting point 261℃) and polypropylene (melting point 170℃) (manufactured by Chitsuso Corporation:
S5056) was used to discharge the molten polymer in an eccentric sheath-core configuration in which the polypropylene was semicircular at a discharge rate ratio of 1/1, and was pulled at high speed by an air sucker to open and disperse the polymer to form a continuous filament web. This composite fiber has strength at 1d single yarn (4500m/min yarn speed conversion).
It had an elongation of 2.5 g/d, an elongation of 87%, and a fiber shrinkage rate of 12%.
This web was heat-treated by passing it through a pair of calender rolls heated to 120°C. The composite fibers constituting the heat-treated web have a fiber shrinkage rate of 9% and a crimping shrinkage rate of 24%, which is a latent crimpable continuous filament with some crimps becoming apparent. This web is needle-punched with a 40-count felt needle at a needle density of 30P/cm 2 and a needle depth of 10mm.
The kneepan web was 120 g/m 2 . This kneepan web was heated to 150℃ between hot plates with a gap of 1cm.
After leaving it for 10 seconds, compression shaping was performed for 5 seconds with the distance between the hot plates set to 1.2 mm. The obtained nonwoven fabric is
Fabric weight: 155 g/m 2 (CS = 12%), number of crimps: 28/inch, pure bending rigidity: 0.64 g/cm 2 /cm, recovery rate at 15% elongation: 68%, density: 0.12 g/cm 3 It was an extremely flexible, bulky nonwoven fabric with a uniform surface. It was confirmed by observation with a magnifying glass that the cross-sectional structure of this nonwoven fabric was as schematically shown in FIG.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の長繊維不織布を製
造する過程の捲縮発現処理前の不織布の断面構造
を模式的に示した図であり、第3図、第4図及び
第5図は捲縮発現処理された本発明の長繊維不織
布の断面構造を模式的に示した図である。 1……潜在熱捲縮性複合繊維、2……ループ、
3……立毛、4……捲縮複合繊維、5……毛玉、
6……毛玉、7……毛玉が押しつけられたもの。
FIGS. 1 and 2 are diagrams schematically showing the cross-sectional structure of a nonwoven fabric before crimping treatment in the process of manufacturing the long fiber nonwoven fabric of the present invention, and FIGS. 3, 4, and 5. 1 is a diagram schematically showing the cross-sectional structure of a long fiber nonwoven fabric of the present invention that has been subjected to crimp development treatment. 1... Latent heat-crimpable composite fiber, 2... Loop,
3... Napped, 4... crimped composite fiber, 5... pill,
6...Furball, 7...Furball pressed.

Claims (1)

【特許請求の範囲】 1 熱捲縮性を示す熱可塑性有機合成重合体の偏
心的複合繊維に捲縮を顕在化させた長繊維より成
る不織布であつて、 (a) 該複合繊維が、平均捲縮数10個/インチ以上
の捲縮を有し、 (b) 不織布の厚み方向に貫通する交絡繊維束とな
る該複合繊維を有し、 (c) 貫通交絡繊維束である該複合繊維が、貫通し
て表層に露出された部位において、より高度な
コイル状の捲縮を有し、毛玉状あるいは毛玉が
不織布表面に押しつけられた状態となり、糸抜
けに対する立体的障害を有している、 ことを特徴とする三次元的に交絡することによつ
て形態保持されている長繊維不織布。 2 繊維間に熱融着接合が存在しないか、擬似的
な熱融着接合であり、実質的な不織布の形態保持
が繊維間の交絡によつている特許請求の範囲第1
項記載の長繊維不織布。 3 複合繊維が、繊維横断面において、低融点成
分が芯となり、高融点成分が鞘となる偏心的鞘芯
構造を成しており、繊維間に熱融着接合が存在し
ない特許請求の範囲第1項記載の長繊維不織布。 4 長繊維不織布を構成する複合繊維が、一つの
成分がポリエステル、ポリアミドかポリオレフイ
ンの実質的単独重合体であり、他の成分が共重合
ポリエステル、共重合ポリアミドか共重合ポリオ
レフインである組み合わせからなる特許請求の範
囲第1項記載の長繊維不織布。 5 長繊維不織布を構成する複合繊維が、一つの
成分がポリエチレンテレフタレートであり、他の
成分がエチレンテレフタレート単位を含有する共
重合ポリエステルである組み合わせからなる特許
請求の範囲第1項記載の長繊維不織布。 6 長繊維不織布の製造において、 (a) 少なくとも1つの成分は、繊維形成能のある
熱可塑性有機合成重合体であり、他が該重合体
とは熱収縮能力に差がある熱可塑性有機合成重
合体である少なくとも2つの成分を溶融し、繊
維横断面において偏心的配置となるように吐出
し、紡糸速度が4000〜8000m/分となるように
牽引し、潜在的熱捲縮性複合繊維と成し、これ
を連続フイラメントウエブとして、 (b) 該複合繊維成分のうち最も低融点である成分
の融点よりも40℃低い温度での、該複合繊維の
捲縮収縮率が20%以上であることを保ちつつ、
該温度での繊維収縮率を少なくとも2%低下せ
しめる熱処理を該連続フイラメントウエブに施
し、 (c) 該熱処理連続フイラメントウエブに、一つの
面に対して5〜100P/cm2の針密度で、貫通交
絡繊維束を生じせしめうる針深さで片面からの
みあるいは両面からニードルパンチングして、 (d) 該ニードルパンチングしたウエブに、繊維間
熱融着接合が明確化しない条件で、平均10個/
インチ以上の捲縮数を有するように該複合繊維
に捲縮を顕在化させる、 ことを特徴とする極めて柔軟な長繊維不織布の製
造法。 7 特許請求の範囲第6項の(d)項において、繊維
間熱融着接合が明確化しない捲縮の顕在化処理
を、該複合繊維横断面の表層部を形成する最も低
融点成分の融点よりも低い温度で行う長繊維不織
布の製造法。 8 特許請求の範囲第6項において、(a)項で低融
点成分が芯となり、高融点成分が鞘となる偏心鞘
心構造の複合繊維とし、(d)項の捲縮の顕在化処理
を高融点成分の軟化点未満の温度で行う繊維間熱
融着接合が存在しない長繊維不織布の製造法。 9 長繊維不織布の製造において、 (a) 少なくとも1つの成分は、繊維形成能のある
熱可塑性有機合成重合体であり、他が該重合体
とは熱収縮能力に差がある熱可塑性有機合成重
合体である少なくとも2つの成分を溶融し、繊
維横断面において偏心的配置となるように吐出
し、紡糸速度が4000〜8000m/分となるように
牽引し、潜在的熱捲縮性複合繊維と成し、これ
を連絡フイラメントウエブとして、 (b) 該複合繊維の成分のうち最も低融点である成
分の融点よりも40℃低い温度での、該複合繊維
の捲縮収縮率が20%以上であることを保ちつ
つ、該温度での繊維収縮率を少なくとも2%低
下せしめる熱処理を該連続フイラメントウエブ
に施し、 (c) 該熱処理連絡フイラメントウエブに、一つの
面に対して5〜100P/cm2の針密度で、貫通交
絡繊維束を生じせしめうる針深さで片面からの
み、あるいは両面からニードルパンチングし、 (d) 該ニードルパンチングしたウエブに、繊維間
熱融着接合が明確化しない条件で、平均10個/
インチ以上の捲縮数を有するように該複合繊維
に捲縮を顕在化させ、 (e) 該捲縮顕在下不織布に、繊維間熱融着接合が
明確化しない条件で圧縮、又は引張による整形
を行う、 ことを特徴とする極めて柔軟な長繊維不織布の製
造法。 10 特許請求の範囲第9項において、(d)項及び
(e)項の繊維間の熱融着接合が明確化しない処理
を、該複合繊維横断面の表層部を形成する最も低
融点成分の融点よりも低い温度で行う長繊維不織
布の製造法。 11 特許請求の範囲第9項において、(a)項で低
融点成分が芯となり、高融点成分が鞘となる偏心
鞘芯構造の複合繊維とし、(d)項及び(e)項の処理を
高融点成分の軟化点未満の温度で行う長繊維不織
布の製造法。
[Scope of Claims] 1. A nonwoven fabric consisting of long fibers made of eccentric composite fibers of a thermoplastic organic synthetic polymer exhibiting thermal crimpability and with visible crimp, comprising: (a) the composite fibers having an average (b) The composite fiber has a number of crimps of 10 or more per inch, (b) The composite fiber is an interlaced fiber bundle that penetrates through the thickness direction of the nonwoven fabric, and (c) The composite fiber is a penetrating entangled fiber bundle. , The part penetrated and exposed to the surface layer has a higher degree of coil-like crimp, and the pill is in the form of a pill or the pill is pressed against the surface of the nonwoven fabric, and has a steric hindrance to thread removal. A long fiber nonwoven fabric whose shape is maintained by three-dimensional entanglement. 2. Claim 1 in which there is no thermal fusion bonding between the fibers or there is a pseudo thermal fusion bond between the fibers, and the shape retention of the nonwoven fabric is substantially due to the entanglement between the fibers.
Long fiber nonwoven fabric as described in Section 1. 3. The composite fiber has an eccentric sheath-core structure in which a low melting point component serves as a core and a high melting point component serves as a sheath in the cross section of the fiber, and there is no thermal fusion bonding between the fibers. The long fiber nonwoven fabric according to item 1. 4. A patent in which the composite fibers constituting the long-fiber nonwoven fabric consist of a combination in which one component is a substantially homopolymer of polyester, polyamide, or polyolefin, and the other component is a copolymer polyester, copolyamide, or copolymer polyolefin. The long fiber nonwoven fabric according to claim 1. 5. The long fiber nonwoven fabric according to claim 1, wherein the composite fibers constituting the long fiber nonwoven fabric are composed of a combination in which one component is polyethylene terephthalate and the other component is a copolymerized polyester containing ethylene terephthalate units. . 6 In the production of long-fiber nonwoven fabrics, (a) at least one component is a thermoplastic organic synthetic polymer capable of forming fibers, and the other components are thermoplastic organic synthetic polymers having different thermal shrinkage ability from the polymer; At least two combined components are melted, discharged so that they are arranged eccentrically in the cross section of the fiber, and pulled at a spinning speed of 4000 to 8000 m/min to form a potentially heat-crimpable composite fiber. (b) The crimp shrinkage rate of the composite fiber at a temperature 40°C lower than the melting point of the component with the lowest melting point among the composite fiber components is 20% or more. While maintaining
(c) applying a heat treatment to the continuous filament web to reduce fiber shrinkage by at least 2% at the temperature; (c) penetrating the heat treated continuous filament web with a needle density of 5 to 100 P/cm 2 per side (d) The needle punched web is subjected to needle punching from only one side or both sides at a needle depth that can cause intertwined fiber bundles, and (d) an average of 10 fibers/fiber bundles are formed in the needle punched web under conditions that do not clearly form thermal fusion bonds between fibers.
1. A method for producing an extremely flexible long-fiber nonwoven fabric, comprising: making the composite fibers manifest crimps so as to have a number of crimps of an inch or more. 7 In paragraph (d) of claim 6, the crimp manifestation treatment that does not clarify the thermal fusion bonding between the fibers is defined as the melting point of the lowest melting point component forming the surface layer of the cross section of the composite fiber. A method for producing long-fiber nonwoven fabrics at a temperature lower than . 8 In claim 6, paragraph (a) is a composite fiber with an eccentric sheath-core structure in which the low melting point component serves as the core and the high melting point component serves as the sheath, and the crimp manifestation treatment in paragraph (d) is applied. A method for producing a long fiber nonwoven fabric in which there is no interfiber thermal fusion bonding performed at a temperature below the softening point of a high melting point component. 9 In the production of long-fiber nonwoven fabrics, (a) at least one component is a thermoplastic organic synthetic polymer capable of forming fibers, and the other component is a thermoplastic organic synthetic polymer having a different thermal shrinkage ability from the polymer; At least two combined components are melted, discharged so that they are arranged eccentrically in the cross section of the fiber, and pulled at a spinning speed of 4000 to 8000 m/min to form a potentially heat-crimpable composite fiber. (b) The crimp shrinkage rate of the composite fiber is 20% or more at a temperature 40°C lower than the melting point of the component with the lowest melting point among the components of the composite fiber. (c) applying a heat treatment to the heat-treated continuous filament web to reduce the fiber shrinkage rate by at least 2% at the temperature while maintaining the same temperature ; (d) needle-punching the needle-punched web from only one side or from both sides at a needle depth capable of producing penetrating entangled fiber bundles; Average 10 pieces/
(e) The nonwoven fabric under the visible crimps is shaped by compression or tension under conditions that do not make the thermal bonding between the fibers clear. A method for producing an extremely flexible long-fiber nonwoven fabric, characterized by: 10 In claim 9, paragraph (d) and
A method for producing a long-fiber nonwoven fabric in which the treatment described in item (e) that does not result in clear thermal fusion bonding between fibers is carried out at a temperature lower than the melting point of the component with the lowest melting point forming the surface layer of the cross section of the composite fiber. 11 In claim 9, paragraph (a) is a conjugate fiber with an eccentric sheath-core structure in which the low melting point component serves as the core and the high melting point component serves as the sheath, and the treatments in paragraphs (d) and (e) are applied. A method for producing long fiber nonwoven fabrics at a temperature below the softening point of the high melting point component.
JP1481780A 1980-02-12 1980-02-12 Flexible long fiber nonwoven fabric and method Granted JPS56112551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1481780A JPS56112551A (en) 1980-02-12 1980-02-12 Flexible long fiber nonwoven fabric and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1481780A JPS56112551A (en) 1980-02-12 1980-02-12 Flexible long fiber nonwoven fabric and method

Publications (2)

Publication Number Publication Date
JPS56112551A JPS56112551A (en) 1981-09-04
JPS6316504B2 true JPS6316504B2 (en) 1988-04-08

Family

ID=11871586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1481780A Granted JPS56112551A (en) 1980-02-12 1980-02-12 Flexible long fiber nonwoven fabric and method

Country Status (1)

Country Link
JP (1) JPS56112551A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151956A (en) * 1983-02-09 1984-08-30 日本バイリーン株式会社 Skin adhering sheet
JPS63282351A (en) * 1987-05-11 1988-11-18 旭化成株式会社 Bulky long fiber nonwoven fabric
JP2538602B2 (en) * 1987-08-03 1996-09-25 旭化成工業株式会社 Fiber for spunbond nonwovens
JPH01201567A (en) * 1988-01-30 1989-08-14 Asahi Chem Ind Co Ltd Production of bulky spun-bond nonwoven fabric
JP4513838B2 (en) * 1996-07-22 2010-07-28 チッソ株式会社 Long fiber nonwoven fabric and method for producing the same
JP5893234B2 (en) * 2008-11-14 2016-03-23 ダイワボウホールディングス株式会社 Cosmetic-impregnated skin-covering sheet, method for producing the same, and face mask using the same
JP5625027B2 (en) * 2012-10-24 2014-11-12 ダイワボウホールディングス株式会社 Cosmetic impregnated skin covering sheet and method for producing the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492975A (en) * 1972-05-02 1974-01-11
JPS4931967A (en) * 1972-08-03 1974-03-23
JPS4954627A (en) * 1972-09-26 1974-05-28
JPS49101669A (en) * 1973-02-02 1974-09-26
JPS5065647A (en) * 1973-10-18 1975-06-03
JPS5077665A (en) * 1973-10-30 1975-06-25
JPS5299374A (en) * 1976-02-16 1977-08-20 Dynic Corp Sheet materials
JPS53111171A (en) * 1977-03-03 1978-09-28 Chisso Corp Production of nonnwoven fabric with dimension stability

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492975A (en) * 1972-05-02 1974-01-11
JPS4931967A (en) * 1972-08-03 1974-03-23
JPS4954627A (en) * 1972-09-26 1974-05-28
JPS49101669A (en) * 1973-02-02 1974-09-26
JPS5065647A (en) * 1973-10-18 1975-06-03
JPS5077665A (en) * 1973-10-30 1975-06-25
JPS5299374A (en) * 1976-02-16 1977-08-20 Dynic Corp Sheet materials
JPS53111171A (en) * 1977-03-03 1978-09-28 Chisso Corp Production of nonnwoven fabric with dimension stability

Also Published As

Publication number Publication date
JPS56112551A (en) 1981-09-04

Similar Documents

Publication Publication Date Title
US5789328A (en) Bulky nonwoven fabric and method for producing the same
US4035219A (en) Bonding of structures
US3595731A (en) Bonded non-woven fibrous materials
US4555430A (en) Entangled nonwoven fabric made of two fibers having different lengths in which the shorter fiber is a conjugate fiber in which an exposed component thereof has a lower melting temperature than the longer fiber and method of making same
US4656081A (en) Smooth nonwoven sheet
US5124194A (en) Hot-melt-adhesive, micro-fiber-generating conjugate fibers and a woven or non-woven fabric using the same
US4310594A (en) Composite sheet structure
US3914365A (en) Methods of making network structures
EP0534863A1 (en) Bonded composite nonwoven web and process
KR100936845B1 (en) Method for Preparing High Bulk Composite Sheets
WO2009126793A1 (en) Staple fiber durable nonwoven fabrics
CA2520401A1 (en) Structurally stable flame-retardant nonwoven fabric
TW200912072A (en) Light high-strength tuft backing and method for producing the same
US4429002A (en) Bulky non-woven fabric of polybutylene terephthalate continuous filaments
US4144368A (en) Network structures having different cross-sections
JPS6316504B2 (en)
US20040255440A1 (en) Three-dimensionally imaged personal wipe
US6720278B2 (en) Method for producing a spun-bonded nonwoven web with improved abrasion resistance
JPS6037230B2 (en) Artificial leather
JP3856972B2 (en) Split type composite short fiber having heat shrinkability and short fiber nonwoven fabric using the same
JP2012007275A (en) Composite nonwoven sheet and method for manufacturing the same
JPH06212548A (en) Biodegradable latent-crimping conjugate short fiber and its nonwoven fabric
JPS63211354A (en) Composite nonwoven fabric and its production
EP0043390B1 (en) Composite sheet structure, process for its preparation and laminates comprising said structure
JPH08109567A (en) Laminated nonwoven structure and its production