JP2007126806A - Crimping conjugate fiber and non-woven fabric using the same - Google Patents

Crimping conjugate fiber and non-woven fabric using the same Download PDF

Info

Publication number
JP2007126806A
JP2007126806A JP2006272180A JP2006272180A JP2007126806A JP 2007126806 A JP2007126806 A JP 2007126806A JP 2006272180 A JP2006272180 A JP 2006272180A JP 2006272180 A JP2006272180 A JP 2006272180A JP 2007126806 A JP2007126806 A JP 2007126806A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
component
conjugate fiber
hardness
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006272180A
Other languages
Japanese (ja)
Other versions
JP4928214B2 (en
Inventor
Hiroshi Okaya
洋志 岡屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa Boseki KK
Daiwabo Co Ltd
Daiwabo Polytec Co Ltd
Original Assignee
Daiwa Boseki KK
Daiwabo Co Ltd
Daiwabo Polytec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006272180A priority Critical patent/JP4928214B2/en
Application filed by Daiwa Boseki KK, Daiwabo Co Ltd, Daiwabo Polytec Co Ltd filed Critical Daiwa Boseki KK
Priority to CN2007800372591A priority patent/CN101522964B/en
Priority to DK07740559T priority patent/DK2083100T3/en
Priority to AT07740559T priority patent/ATE525502T1/en
Priority to EP20070740559 priority patent/EP2083100B1/en
Priority to US12/444,096 priority patent/US8268444B2/en
Priority to PCT/JP2007/057123 priority patent/WO2008041384A1/en
Priority to TW96111760A priority patent/TWI402387B/en
Publication of JP2007126806A publication Critical patent/JP2007126806A/en
Application granted granted Critical
Publication of JP4928214B2 publication Critical patent/JP4928214B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crimping conjugate fiber capable of obtaining a non-woven fabric excellent in heat resistance, showing less bulk reduction on heat-processing, and having a large initial bulk and bulk recover. <P>SOLUTION: The conjugate fiber contains a first component and second component, the first component contains 60-95 mass% polybutene-1 and 5-40 mass% polypropylene, the second component is a polymer having a melting point higher than that of the polybutene-1 by ≥20°C, the first component occupies at least 20% of the conjugate fiber surface and the position of center of gravity of the second component is deviated from the position of center of the gravity of the conjugate fiber when viewed from a cross section of the conjugate fiber, and the conjugate fiber is the crimping conjugate fiber having at least one kind of crimp selected from a wave-formed crimp and spiral crimp. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主として嵩弾性に優れる不織布に適した捲縮性複合繊維及びこれを用いた不織布に関する。   The present invention relates to a crimpable conjugate fiber suitable mainly for a nonwoven fabric excellent in bulk elasticity and a nonwoven fabric using the same.

衛生材料、包装材、ウェットティッシュ、フィルター、ワイパー等に用いられる不織布、或いは硬綿、椅子等に用いられる不織布、成形体など様々な用途において、低融点成分の少なくとも一部が繊維表面に露出し、低融点成分よりも融点が高い高融点成分からなる熱融着性複合繊維を用いた熱接着不織布が使用されており、特に、不織布の嵩弾性、すなわち厚み方向での嵩回復性に優れる繊維の要求が、発泡ウレタン代替として大きくなっている。発泡ウレタン代替として要求が大きい理由は、生産する際に使用する薬品の取り扱いが難しかったり、フロンが排出されたり、廃棄が難しい問題がある。また、得られた発泡ウレタンの特性として、圧縮の際、圧縮初期に硬く感じるという問題があったり、通気性が乏しく蒸れやすかったり、吸音性が十分でなかったり、黄変し易かったりするからである。従って、嵩回復性に優れる不織布について様々の検討がなされている。   In various applications such as sanitary materials, packaging materials, non-woven fabrics used for wet tissues, filters, wipers, etc., non-woven fabrics used for hard cotton, chairs, etc., molded products, at least a part of the low melting point component is exposed on the fiber surface. The heat-bonding nonwoven fabric using the heat-fusible composite fiber composed of the high-melting-point component having a higher melting point than the low-melting-point component is used, and in particular, the fiber is excellent in bulk elasticity of the nonwoven fabric, that is, the bulk recovery property in the thickness direction. The demand is growing as a substitute for urethane foam. The reason why there is a great demand as a substitute for urethane foam is that it is difficult to handle chemicals used in production, chlorofluorocarbons are discharged, and disposal is difficult. In addition, the properties of the urethane foam obtained include problems that it feels hard in the initial stage of compression, poor air permeability and is easily steamed, insufficient sound absorption, and easily yellowing. is there. Accordingly, various studies have been made on nonwoven fabrics having excellent bulk recovery properties.

下記引用文献1〜2は、融点が200℃以上のポリエステル成分と、融点が180℃以下のポリエーテルエステルブロック共重合体成分、いわゆるエラストマー成分とからなる複合繊維を提案している。鞘成分にエラストマー成分を使用することによって、圧縮変形を受けた際に、接着部分の自由度、及び耐久性が向上するために、嵩回復性が優れる。   The following cited references 1 and 2 propose a composite fiber composed of a polyester component having a melting point of 200 ° C. or higher and a polyether ester block copolymer component having a melting point of 180 ° C. or lower, so-called elastomer component. By using an elastomer component as the sheath component, when subjected to compression deformation, the degree of freedom of the bonded portion and the durability are improved, so that the bulk recoverability is excellent.

下記引用文献3は、ポリトリメチレンテレフタレート系ポリマーを含有する第一成分と、ポリオレフィン系ポリマーを含有する第二成分から構成され、繊維断面において第一成分の重心位置が繊維の重心位置からずれている複合繊維を提案している。第一成分に、曲げ弾性が大きく、かつ曲げ硬さの小さいポリマーを使用し、更に、繊維断面を偏心とし、捲縮形状を波形状とすることによって、嵩回復性に優れ、柔軟な、更に初期嵩の大きい不織布が得られる。
特開平4−240219号公報 特開平5−247724号公報 特開2003−3334号公報
Citation 3 below is composed of a first component containing a polytrimethylene terephthalate polymer and a second component containing a polyolefin polymer, and the center of gravity of the first component is shifted from the center of gravity of the fiber in the fiber cross section. Proposed composite fiber. As the first component, a polymer having high bending elasticity and low bending hardness is used, and further, the fiber cross section is decentered and the crimped shape is corrugated, so that the bulk recovery is excellent and flexible. A nonwoven fabric having a large initial bulk is obtained.
JP-A-4-240219 JP-A-5-247724 JP 2003-3334 A

前記引用文献1〜2では、鞘成分にポリエステルエーテルエラストマーを使用しており、このポリマーがゴム状弾性を有し、接着点の変形に対する自由度が大きいため、嵩回復性に優れる不織布を得ようとしている。しかし、このポリエステルエーテルエラストマーは硬質なポリエステルと軟質なエーテルとの共重合体であり、軟質成分を含むため、熱により柔らかくなり易く(耐熱性が低いため)、熱加工時に不織布の嵩が減少してしまう、いわゆるへたりが生じる。その結果、鞘成分にポリエステルエーテルエラストマーを使用した複合繊維は、不織布にしたときの初期嵩が小さく、高密度な不織布しか得られず、用途が限定されるという問題があった。また、熱が加わった状態で圧縮された後、あるいは繰り返し圧縮された後の不織布は、繊維同士の接着点および繊維自体が破壊されたり、折れ曲がったり、繊維強度が低下するなど、元の不織布に比べて不織布硬さが大きく低下するという問題があった。   In the cited references 1 and 2, a polyester ether elastomer is used for the sheath component, and since this polymer has rubber-like elasticity and a large degree of freedom in deformation of the adhesion point, a nonwoven fabric excellent in bulk recovery will be obtained. It is said. However, this polyester ether elastomer is a copolymer of hard polyester and soft ether, and since it contains a soft component, it is easily softened by heat (because heat resistance is low), and the bulk of the nonwoven fabric is reduced during heat processing. So-called sag occurs. As a result, the composite fiber using the polyester ether elastomer as the sheath component has a problem that the initial volume when made into a non-woven fabric is small, only a high-density non-woven fabric is obtained, and the use is limited. In addition, the nonwoven fabric after being compressed in a heated state or after being repeatedly compressed is the original nonwoven fabric such that the bonding point between the fibers and the fibers themselves are broken, bent, fiber strength is reduced, etc. In comparison, there was a problem that the nonwoven fabric hardness was greatly reduced.

前記引用文献3では、芯のポリマー、及び繊維断面を特定のものとし、且つ、捲縮状態を特定のものにすることによって、嵩回復性に優れる不織布を得ようとするものであるが、初期の不織布厚み(初期嵩)が大きいものの、嵩回復性、特に除重直後の初期嵩回復性が十分とはいえず、用途が限定されるという問題があった。   In the cited document 3, the core polymer and the fiber cross-section are specified, and the crimped state is specified, thereby obtaining a nonwoven fabric excellent in bulk recoverability. Although the nonwoven fabric has a large thickness (initial volume), the bulk recovery property, particularly the initial bulk recovery property immediately after dewetting, is not sufficient, and there is a problem that the application is limited.

したがって、従来技術では初期嵩が大きく(低密度な)、且つ、嵩回復性に優れる不織布用繊維は得られていなかった。   Therefore, in the prior art, a nonwoven fabric fiber having a large initial bulk (low density) and excellent bulk recoverability has not been obtained.

本発明は、前記従来の問題を解決するため、耐熱性に優れ、熱加工の際の嵩減少(へたり)が小さく、初期嵩の大きい不織布が得られる捲縮性複合繊維及びこれを用いた不織布を提供する。   In order to solve the above-mentioned conventional problems, the present invention uses a crimped conjugate fiber excellent in heat resistance, small in bulk reduction (sagging) during thermal processing, and capable of obtaining a nonwoven fabric having a large initial bulk, and the same. Provide a nonwoven fabric.

本発明の捲縮性複合繊維は、第一成分と第二成分を含む複合繊維であって、前記第一成分は、ポリブテン−1を60〜95質量%とポリプロピレンを5〜40質量%とを含み、前記第二成分は、ポリブテン−1の融点よりも20℃以上高い融点を有するポリマーであり、繊維断面から見たとき、前記第一成分は前記複合繊維表面の少なくとも20%を占めており、前記第二成分の重心位置は前記複合繊維の重心位置からずれており、前記複合繊維は、波形状捲縮及び螺旋状捲縮から選ばれる少なくとも一種の捲縮を有していることを特徴とする。   The crimpable conjugate fiber of the present invention is a conjugate fiber containing a first component and a second component, and the first component comprises 60 to 95% by mass of polybutene-1 and 5 to 40% by mass of polypropylene. The second component is a polymer having a melting point 20 ° C. higher than the melting point of polybutene-1, and the first component occupies at least 20% of the surface of the composite fiber when viewed from the fiber cross section. The centroid position of the second component is deviated from the centroid position of the composite fiber, and the composite fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp. And

本発明の不織布は、前記の捲縮性複合繊維を少なくとも30質量%含有させていることを特徴とする。   The nonwoven fabric of the present invention contains at least 30% by mass of the crimped conjugate fiber.

本発明の捲縮性複合繊維は、第一成分にポリブテン−1を選択し、さらにポリブテン−1(PB−1)との相溶性が高いポリプロピレン(PP)をブレンドすることにより、紡糸性及び延伸性が良好となり、特に単繊維熱収縮を小さくすることができ、初期嵩および嵩回復性に優れた不織布を得ることができる。   The crimpable conjugate fiber of the present invention is selected from polybutene-1 as the first component, and further blended with polypropylene (PP) that is highly compatible with polybutene-1 (PB-1), so that spinnability and stretching are achieved. The nonwoven fabric excellent in initial bulk and bulk recoverability can be obtained.

本発明の捲縮性複合繊維を用いた不織布は、従来のエラストマーを用いた複合繊維からなる不織布に比べて初期嵩と嵩回復性共に優れており、クッション材等の硬綿、衛生材料、包装材、フィルター、化粧品用材料、女性のブラジャーのパッド、肩パッド等の低密度の不織布製品にも使用することができる。さらに、本発明の捲縮性複合繊維を用いた不織布は、高温(例えば60〜90℃程度)での嵩回復性にも優れており、耐熱性が要求される分野、例えば車両用クッション材、床暖房用フローリングの裏打ち材等に使用することができる。   The nonwoven fabric using the crimped conjugate fiber of the present invention is superior in both initial bulk and bulk recovery compared to a nonwoven fabric made of a composite fiber using a conventional elastomer. It can also be used in low density nonwoven products such as materials, filters, cosmetic materials, women's bra pads, shoulder pads and the like. Furthermore, the nonwoven fabric using the crimped conjugate fiber of the present invention is excellent in bulk recovery at high temperatures (for example, about 60 to 90 ° C.), and is used in fields requiring heat resistance, such as vehicle cushion materials, It can be used as a backing material for flooring flooring.

本発明の捲縮性複合繊維は、第一成分(例えば、鞘の接着成分)としてポリブテン−1(PB−1)を用いる。このポリマーは比較的柔軟であるが、エラストマーのように軟質成分を含まず、耐熱性に優れるため、熱加工の際の嵩減少(へたり)が小さく、初期嵩の大きい不織布が得られる。また、PB−1は、エラストマー同様、ある程度の柔軟性、及び形状維持性(変形に対するもどり)を有するため、圧縮の際の接着点が変形し、更に変形に対する回復性に優れ、嵩回復性に優れる不織布が得られる。   The crimped conjugate fiber of the present invention uses polybutene-1 (PB-1) as the first component (for example, a sheath adhesive component). Although this polymer is relatively soft, it does not contain a soft component like an elastomer, and is excellent in heat resistance. Therefore, a bulk reduction (sagging) during heat processing is small, and a nonwoven fabric having a large initial bulk is obtained. In addition, PB-1 has a certain degree of flexibility and shape maintainability (return to deformation) like the elastomer, so that the adhesion point at the time of compression is deformed, and further excellent in recoverability against deformation and bulk recoverability. An excellent nonwoven fabric is obtained.

ところがPB−1は、高分子量であるというポリマー特性を有し、分子鎖の自由度が乏しいため、延伸で延びにくく、延伸トラブルを引き起こしやすい。また、熱収縮性が非常に大きいため、熱加工の際に繊維が収縮し、良好な不織布が得られにくい。更に、温度に対する粘度の低下の割合が、他のポリマーに比べ大きいため、特に芯ポリマーに融点の高い(例えば、ポリエステル)を使用した場合、紡糸温度を上げる必要があり、その際のノズル吐出ポリマーの粘度が安定しにくく、均一な繊維を得にくいという問題があった。また、PB−1の融点は120℃程度と比較的低いため、70℃程度の高温下で使用される場合の嵩回復性に問題があった。   However, PB-1 has a polymer characteristic that it has a high molecular weight, and has a low degree of freedom in molecular chains, so it is difficult to stretch by stretching and easily causes stretching troubles. Moreover, since the heat shrinkability is very large, the fibers shrink during heat processing, and it is difficult to obtain a good nonwoven fabric. Further, since the rate of decrease in viscosity with respect to temperature is larger than that of other polymers, it is necessary to raise the spinning temperature especially when a high melting point (for example, polyester) is used as the core polymer. There is a problem that the viscosity of the fiber is not stable and it is difficult to obtain uniform fibers. Moreover, since the melting point of PB-1 is relatively low at about 120 ° C., there was a problem in bulk recovery when used at a high temperature of about 70 ° C.

そこで、種々検討の結果、PB−1に少量のポリプロピレン(PP)を添加することによって、前記延伸性、熱収縮性、溶融粘度不安定の全てを解決することができることが判明した。   As a result of various studies, it has been found that all of the stretchability, heat shrinkability, and melt viscosity instability can be solved by adding a small amount of polypropylene (PP) to PB-1.

具体的には、複合繊維の第一成分として、ポリブテン−1を60〜95質量%と、ポリプロピレンを5〜40質量%とを混合して使用する。前記第一成分は例えば複合繊維の鞘に配置する。   Specifically, 60 to 95% by mass of polybutene-1 and 5 to 40% by mass of polypropylene are used as the first component of the composite fiber. The first component is disposed, for example, in a composite fiber sheath.

複合繊維の第二成分としては、融点が鞘よりも高いポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリプロピレン(PP)等を使用する。前記第二成分は例えば複合繊維の芯に配置する。   As the second component of the composite fiber, polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polypropylene (PP) or the like whose melting point is higher than that of the sheath is used. The second component is disposed, for example, on the core of the composite fiber.

繊維断面形状は、第二成分の重心位置が繊維の重心位置からずれている、偏心断面とし、波形状及び/又は螺旋状捲縮とする。これにより、不織布の初期嵩を大きくすることが容易となり、さらに圧縮の際スプリング効果を発揮し、嵩回復性に優れる不織布を得ることができる。   The fiber cross-sectional shape is an eccentric cross-section in which the gravity center position of the second component is shifted from the fiber gravity center position, and is a wave shape and / or a helical crimp. Thereby, it becomes easy to enlarge the initial volume of the nonwoven fabric, and further, a spring effect can be exhibited during compression, and a nonwoven fabric excellent in bulk recoverability can be obtained.

以下さらに好ましい例を説明する。まず、本発明に用いられるPB−1は、JIS−K−7121に準じて測定したDSC曲線より求められる融解ピーク温度が115〜130℃の範囲であることが好ましい。より好ましくは、120〜130℃である。融解ピーク温度が115〜130℃の範囲であると、耐熱性が高く、高温下での嵩回復性が良好である。   Hereinafter, more preferable examples will be described. First, PB-1 used in the present invention preferably has a melting peak temperature in the range of 115 to 130 ° C. determined from a DSC curve measured according to JIS-K-7121. More preferably, it is 120-130 degreeC. When the melting peak temperature is in the range of 115 to 130 ° C., the heat resistance is high, and the bulk recoverability at high temperatures is good.

前記PB−1のJIS−K−7210に準ずるメルトインデックス(MI;測定温度190℃、荷重2.16kgf(21.18N))は、1〜30g/10分の範囲であることが好ましい。より好ましいMIは3〜25g/10分であり、さらにより好ましくは3〜20g/10分である。MIが1〜30g/10分の範囲であると、PB−1の高分子量となるため、耐熱性が良好であり、温度がかかったときの嵩回復性が高く、好ましい。また、紡糸引き取り性、および延伸性が良好となる。   The melt index (MI; measurement temperature 190 ° C., load 2.16 kgf (21.18 N)) according to JIS-K-7210 of PB-1 is preferably in the range of 1 to 30 g / 10 minutes. More preferable MI is 3 to 25 g / 10 min, and even more preferable is 3 to 20 g / 10 min. When the MI is in the range of 1 to 30 g / 10 minutes, the high molecular weight of PB-1 is obtained, and therefore, heat resistance is good, and bulk recovery property when temperature is applied is preferable. Further, the take-up property of the spinning and the stretchability are improved.

前記PPの添加量の上限は、添加量が増えるにつれ、延伸性がよくなり、熱収縮性が小さく、および溶融粘度の安定性は良くなるが、入れすぎると得られる不織布が硬くなる傾向がある。また、PP添加量が多いと、ポリマーの柔軟性が悪くなり、接着点の変形自由度が小さくなるため、嵩回復性が悪くなる。また、PP添加量が増えるに従って、PB−1の結晶化速度を阻害するため、紡糸引き取り時冷却しきれず、融着糸が発生しやすくなる。従って、40質量%以下にすることが必要である。PPの添加量の下限は、5質量%である。5質量%未満であると、溶融温度に対するポリマー粘度低下防止の効果がない。また、熱収縮率防止効果も小さい。従って、ポリプロピレンの添加量は、5質量%以上40質量%以下、好ましくは、7質量%以上30質量%以下、最も好ましくは10質量%以上25質量%以下である。PB−1とPPを溶融ブレンドさせると、両ポリマーは相溶化しやすい。また、ポリブテン−1(PB−1)との相溶性が高いポリプロピレン(PP)をブレンドすることにより、紡糸性及び延伸性が良好となり、単繊維熱収縮が小さくなる。すなわち、PB−1のみでは溶融粘度が低く流動性が高すぎるため、溶融紡糸の安定性が悪いが、PPをブレンドすることにより流動特性を向上し、安定して均一な紡糸ができる。また、PB−1のみでは熱収縮が大きいため、機械捲縮付与後の110℃前後の乾燥処理時に捲縮が細かくなりすぎたり、不織布加工の際に面積収縮率が大きすぎたりし、地合いが悪く、初期嵩、および嵩回復性も悪い不織布になってしまう場合があるが、PPをブレンドすることによりこれを防止できる。また、ポリブテン−1のみでは延伸性が悪いが、PPをブレンドすることにより延伸性も改善される。これは、前述したようにポリブテン−1は分子量が大きく(つまり、分子鎖が長い)、分子同士の絡み合いが大きいため、延伸しにくいといった問題があるが、PPをブレンドすることによって、PPが高分子量のポリブテン−1分子鎖間へ入り込み、ポリブテン−1分子鎖の絡み合いを適度に抑制しているためと推定される。   The upper limit of the addition amount of PP is, as the addition amount is increased, the stretchability is improved, the heat shrinkability is small, and the stability of the melt viscosity is improved. . Moreover, when there is much PP addition amount, since the softness | flexibility of a polymer will worsen and the deformation | transformation freedom degree of an adhesion point will become small, bulk recovery property will worsen. Further, as the amount of PP added increases, the crystallization rate of PB-1 is inhibited, so that it cannot be cooled during take-up of the spinning, and a fused yarn is likely to be generated. Therefore, it is necessary to make it 40 mass% or less. The lower limit of the addition amount of PP is 5% by mass. If it is less than 5% by mass, there is no effect of preventing the polymer viscosity from decreasing with respect to the melting temperature. In addition, the effect of preventing heat shrinkage is small. Therefore, the addition amount of polypropylene is 5% by mass or more and 40% by mass or less, preferably 7% by mass or more and 30% by mass or less, and most preferably 10% by mass or more and 25% by mass or less. When PB-1 and PP are melt blended, both polymers are easily compatible. Further, by blending polypropylene (PP) having high compatibility with polybutene-1 (PB-1), spinnability and stretchability are improved, and single fiber heat shrinkage is reduced. That is, only PB-1 has a low melt viscosity and a too high fluidity, so the melt spinning stability is poor. However, blending PP improves the flow characteristics and enables stable and uniform spinning. Moreover, since the thermal shrinkage is large only with PB-1, the crimp becomes too fine at the time of drying treatment at around 110 ° C. after the mechanical crimping is imparted, or the area shrinkage rate is too large at the time of nonwoven fabric processing, and the texture is Although it may become a nonwoven fabric with bad initial volume and a bad bulk recovery property, this can be prevented by blending PP. In addition, the stretchability is poor with only polybutene-1, but the stretchability is improved by blending PP. As described above, polybutene-1 has a problem that it has a high molecular weight (that is, a long molecular chain) and a large amount of entanglement between molecules, which makes it difficult to stretch. It is estimated that the polybutene-1 molecular chain enters the molecular weight, and the entanglement of the polybutene-1 molecular chain is moderately suppressed.

前記PPは、ホモポリマー、ランダム共重合体、あるいはブロック共重合体のいずれであっても構わないが、熱収縮性を考慮すると、ホモポリマー又はブロック共重合体であることが好ましい。特に、ホモポリマーは若干風合いが硬くなる傾向にあるが、嵩回復性に有利であり、好ましい。   The PP may be a homopolymer, a random copolymer, or a block copolymer, but is preferably a homopolymer or a block copolymer in consideration of heat shrinkability. In particular, homopolymers tend to be slightly harder, but are advantageous in terms of bulk recovery and are preferred.

前記PPにおける重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)は、6以下であることが好ましい。より好ましいQ値は、2〜5である。Q値を6以下、つまり分子量分布が小さいと、高分子量のPPの含有量が少なくなるため、PPがPB−1の分子鎖間に入り込み易くなり、その結果熱収縮を小さくすることができる。   The ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the PP is preferably 6 or less. A more preferable Q value is 2 to 5. When the Q value is 6 or less, that is, the molecular weight distribution is small, the content of high molecular weight PP is reduced, so that PP easily enters between the molecular chains of PB-1, and as a result, thermal shrinkage can be reduced.

前記PPの添加量と、PPのQ値とは、添加量/Q値比が2.3以上であることが好ましい。より好ましくは2.4以上であり、最も好ましくは2.5以上である。PP添加量/Q値比は、PPがPB−1の分子鎖間への入り込みやすさを示す指標であり、繊維の収縮性に影響を及ぼす指標である。PP添加量/Q値が2.3以上であると、PPの添加量が大きいか、Q値が小さいということを意味し、嵩回復性はPB−1の添加量に依存するので、その双方の値のバランスを調整することにより、繊維の収縮を抑制するとともに、嵩回復性を高くすることができる。例えば、PPの添加量が少ない場合はPB−1分子鎖間へ十分な量のPPが入り込むので、繊維の収縮が小さくなる傾向にある。また、PPのQ値が小さい場合もPB−1の分子鎖間に入り込み易くなり、やはり繊維の収縮が小さくなる傾向にある。一方、添加量/Q値比の上限は特に限定されないが、繊維の収縮抑制と嵩回復性を考慮すると、10以下であることが好ましい。   The addition amount of PP and the Q value of PP preferably have an addition amount / Q value ratio of 2.3 or more. More preferably, it is 2.4 or more, and most preferably 2.5 or more. The PP addition amount / Q value ratio is an index that indicates the ease with which PP enters between the molecular chains of PB-1, and is an index that affects the contractility of the fiber. When the PP addition amount / Q value is 2.3 or more, it means that the PP addition amount is large or the Q value is small, and the bulk recoverability depends on the addition amount of PB-1, and both of them. By adjusting the balance of the values, the shrinkage of the fibers can be suppressed and the bulk recoverability can be increased. For example, when the amount of PP added is small, a sufficient amount of PP enters between the PB-1 molecular chains, so that the shrinkage of the fiber tends to be small. Also, when the Q value of PP is small, it tends to enter between the molecular chains of PB-1, and the shrinkage of the fiber tends to be small. On the other hand, the upper limit of the addition amount / Q value ratio is not particularly limited, but is preferably 10 or less in consideration of suppression of shrinkage and bulk recovery of the fiber.

前記PPにおけるJIS−K−7210に準ずるメルトフローレート(MFR;測定温度230℃、荷重2.16kgf(21.18N))は、5〜30g/10分の範囲であることが好ましい。より好ましいMFRは、6〜25g/10分の範囲である。MFRが5〜30g/10分の範囲であると、PB−1の溶融粘度の低下を抑制することができ、PPがPB−1の分子鎖間に入り込むのに適度な分子量であるので、その結果均一な繊維が得られ、熱収縮を小さくすることができる。   The melt flow rate (MFR; measurement temperature 230 ° C., load 2.16 kgf (21.18 N)) according to JIS-K-7210 in the PP is preferably in the range of 5 to 30 g / 10 minutes. A more preferred MFR is in the range of 6-25 g / 10 min. When the MFR is in the range of 5 to 30 g / 10 minutes, the decrease in the melt viscosity of PB-1 can be suppressed, and since PP has an appropriate molecular weight for entering between the molecular chains of PB-1, As a result, uniform fibers can be obtained and thermal shrinkage can be reduced.

第一成分にさらにブレンドできるポリマーとしては、嵩高性及び嵩回復性を阻害しない範囲で、例えば、ビニル基、カルボシキル基、無水マレイン酸等極性基を持つオレフィン等との共重合ポリマー、スチレン系等のエラストマーなどが挙げられる。   As a polymer that can be further blended with the first component, for example, a copolymer polymer with an olefin having a polar group such as a vinyl group, a carboxyl group, or maleic anhydride, a styrene type, etc. And other elastomers.

第二成分は、曲げ強さ、曲げ弾性に優れるポリマーが好ましく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等のポリエステル、ナイロン6、ナイロン66,ナイロン11、ナイロン12等のポリアミド、ポリプロピレン、ポリカーボネート、ポリスチレンなどが挙げられる。特に、ポリエステルが好ましい。最も好ましくは、ポリトリメチレンテレフタレート(PTT)である。   The second component is preferably a polymer excellent in flexural strength and flexural elasticity, for example, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid or other polyester, nylon 6, nylon 66, nylon 11, Examples thereof include polyamide such as nylon 12, polypropylene, polycarbonate, polystyrene and the like. Polyester is particularly preferable. Most preferred is polytrimethylene terephthalate (PTT).

本発明で好ましく用いられるPTTは、PTTホモ樹脂、下記に示すPTT共重合樹脂、あるいはPTTと他のポリエステル系樹脂とのブレンドであってもよく、捲縮性複合繊維としたときの乾熱収縮率を低く抑えて、所望の波形状捲縮及び/又は螺旋状捲縮を得られる範囲で、イソフタル酸、コハク酸、アジピン酸等の酸成分や、1,4ブタンジオール、1,6ヘキサンジオール等のグリコール成分、ポリテトラメチレングリコール、ポリオキシメチレングリコール等が10質量%以下共重合されていてもよいし、PET、PBTなど他のポリエステル系樹脂を50質量%以下でブレンドしてもよい。前記共重合成分は、10質量%を超えると、曲げ弾性率が小さくなるため好ましくない。一方、他のポリエステル系樹脂のブレンド率が50質量%を超えると、ブレンドした他のポリエステル系樹脂の性質に近づくため好ましくない。   The PTT preferably used in the present invention may be a PTT homo resin, a PTT copolymer resin shown below, or a blend of PTT and another polyester resin, and dry heat shrinkage when a crimped conjugate fiber is used. Within a range where the desired wave shape crimp and / or spiral crimp can be obtained while keeping the rate low, acid components such as isophthalic acid, succinic acid, adipic acid, 1,4 butanediol, 1,6 hexanediol The glycol component such as polytetramethylene glycol, polyoxymethylene glycol and the like may be copolymerized in an amount of 10% by mass or less, and other polyester resins such as PET and PBT may be blended in an amount of 50% by mass or less. If the copolymerization component exceeds 10% by mass, the flexural modulus becomes small, which is not preferable. On the other hand, if the blend ratio of the other polyester resin exceeds 50% by mass, it approaches the properties of the other polyester resin blended, which is not preferable.

前記PTTの極限粘度[η]は、0.4〜1.2が好ましい。より好ましくは、0.5〜1.1である。極限粘度[η]を上記範囲とすることにより、生産性に優れ、嵩弾性に優れた複合繊維を得ることができる。ここでいう極限粘度[η]とは、35℃のo−クロロフェノール溶液として、オストワルド粘度計により測定した、下記式(数1)に基づいて求められる値である。   The intrinsic viscosity [η] of the PTT is preferably 0.4 to 1.2. More preferably, it is 0.5 to 1.1. By setting the intrinsic viscosity [η] within the above range, a composite fiber having excellent productivity and excellent bulk elasticity can be obtained. The intrinsic viscosity [η] referred to here is a value determined based on the following formula (Equation 1) measured with an Ostwald viscometer as an o-chlorophenol solution at 35 ° C.

Figure 2007126806
Figure 2007126806

(ただし、ηr:純度98%以上のo−クロロフェノールで溶解した試料の希釈溶液における35℃での粘度を同一温度で測定した上記溶剤全体の濃度で除した値。C:上記溶液100ml中のグラム単位による溶質重量値。)
極限粘度が0.4未満であると、樹脂の分子量が低すぎるため、紡糸性に劣るだけでなく、繊維強度も低く、実用性に乏しい。極限粘度が1.2を超えると、樹脂の分子量が大きくなって溶融粘度が高くなりすぎるため、単糸切れ等が発生し良好な紡糸が難しくなり好ましくない。
(However, ηr: a value obtained by dividing the viscosity at 35 ° C. in a diluted solution of a sample dissolved in o-chlorophenol having a purity of 98% or more by the concentration of the whole solvent measured at the same temperature. C: in 100 ml of the solution) Solute weight value in grams.)
When the intrinsic viscosity is less than 0.4, the molecular weight of the resin is too low, so that not only the spinnability is inferior, but also the fiber strength is low and the practicality is poor. When the intrinsic viscosity exceeds 1.2, the molecular weight of the resin is increased and the melt viscosity becomes too high, so that single yarn breakage or the like occurs, and good spinning becomes difficult, which is not preferable.

前記PTTのJIS−K−7121に準じて測定したDSC曲線より求められる融解ピーク温度は180℃〜240℃であることが好ましい。より好ましくは200℃〜235℃である。融解ピーク温度が180〜240℃の範囲であると、耐候性が高く、得られる複合繊維の曲げ弾性率を高くすることができる。   It is preferable that the melting peak temperature calculated | required from the DSC curve measured according to JIS-K-7121 of the said PTT is 180 degreeC-240 degreeC. More preferably, it is 200 degreeC-235 degreeC. When the melting peak temperature is in the range of 180 to 240 ° C., the weather resistance is high, and the flexural modulus of the resulting composite fiber can be increased.

また、前記PTTには、必要に応じて各種の添加剤、例えば、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤、結晶核剤などを本発明の目的及び効果を損なわない範囲で用途等に応じて混合することができる。   The PTT contains various additives as necessary, for example, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, flame retardants, antibacterial agents, lubricants, plasticizers, softeners, Antioxidants, ultraviolet absorbers, crystal nucleating agents, and the like can be mixed depending on the application and the like within a range not impairing the object and effect of the present invention.

複合比(芯/鞘)は、8/2〜4/6(容積比)が好ましい。より好ましくは7/3〜45/55、最も好ましくは6/4〜5/5である。芯成分は、主として嵩回復性に寄与し、鞘成分は、主として不織布強力および不織布の硬さに寄与する。その複合比が8/2〜4/6であると、不織布強力および硬さと、嵩回復性を両立することができる。複合比は、鞘リッチになると、不織布強力は上がるが、得られる不織布が硬くなったり、嵩回復も悪くなる傾向になる。一方、芯リッチになりすぎると接着点が少なくなりすぎ、不織布強力が小さくなったり、これも嵩回復性も悪くなる傾向となる。   The composite ratio (core / sheath) is preferably 8/2 to 4/6 (volume ratio). More preferably, it is 7/3 to 45/55, and most preferably 6/4 to 5/5. The core component mainly contributes to the bulk recovery property, and the sheath component mainly contributes to the strength of the nonwoven fabric and the hardness of the nonwoven fabric. When the composite ratio is 8/2 to 4/6, the strength and hardness of the nonwoven fabric and the bulk recoverability can be compatible. When the composite ratio becomes rich in the sheath, the strength of the nonwoven fabric increases, but the resulting nonwoven fabric tends to become harder and the bulk recovery also worsens. On the other hand, if the core becomes too rich, the number of adhesion points becomes too small and the strength of the nonwoven fabric becomes small, and this also tends to deteriorate the bulk recovery.

本発明においては、第二成分の重心位置は複合繊維の重心位置からずれている。図1に本発明の一実施形態における捲縮性複合繊維の繊維断面を示す。第二成分(2)の周囲に第一成分(1)が配置され、第一成分(1)が複合繊維(10)表面の少なくとも20%を占めている。これにより第一成分(1)は熱接着時に表面が溶融する。第二成分(2)の重心位置(3)は複合繊維(10)の重心位置(4)からずれており、ずれの割合(以下、偏心率と記載する場合がある。)は、複合繊維の繊維断面を電子顕微鏡などで拡大撮影し、第二成分(2)の重心位置(3)をC1とし、複合繊維(10)の重心位置(4)をCfとし、複合繊維(10)の半径(5)をrfとしたとき、下記式(数2)で示す数値をいう。   In the present invention, the position of the center of gravity of the second component is shifted from the position of the center of gravity of the composite fiber. FIG. 1 shows a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention. The first component (1) is disposed around the second component (2), and the first component (1) occupies at least 20% of the surface of the composite fiber (10). Thereby, the surface of the first component (1) is melted at the time of thermal bonding. The centroid position (3) of the second component (2) is deviated from the centroid position (4) of the composite fiber (10), and the rate of deviation (hereinafter sometimes referred to as eccentricity) is that of the composite fiber. The cross section of the fiber is magnified with an electron microscope or the like, the center of gravity (3) of the second component (2) is C1, the center of gravity (4) of the composite fiber (10) is Cf, and the radius of the composite fiber (10) ( When 5) is rf, it is a numerical value represented by the following formula (Formula 2).

Figure 2007126806
Figure 2007126806

第二成分(2)の重心位置(3)が繊維の重心位置(4)からずれている繊維断面としては、図1に示す偏心芯鞘型、あるいは並列型であることが好ましい形態である。場合によっては、多芯型であっても多芯部分が集合して繊維の重心位置からずれて存在しているものでも可能である。特に、偏心芯鞘型の繊維断面であると、容易に所望の波形状捲縮及び/又は螺旋状捲縮を発現させることができる点で好ましい。偏心芯鞘型複合繊維の偏心率は、5〜50%であることが好ましい。より好ましい偏心率は、7〜30%である。また、第二成分の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形であってもよく、複合繊維(10)の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形、あるいは中空形であってもよい。   The cross section of the fiber in which the center of gravity (3) of the second component (2) is deviated from the center of gravity (4) of the fiber is preferably an eccentric core-sheath type shown in FIG. Depending on the case, even a multi-core type may be used in which multi-core portions are gathered and are shifted from the center of gravity of the fiber. In particular, the eccentric core-sheath fiber cross section is preferable in that desired wave shape crimps and / or spiral crimps can be easily expressed. The eccentricity ratio of the eccentric core-sheath composite fiber is preferably 5 to 50%. A more preferable eccentricity is 7 to 30%. In addition to the circular shape, the shape of the second component in the fiber cross section may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or the like, and in the fiber cross-section of the composite fiber (10). The form may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or hollow, as well as circular.

図2に本発明の一実施形態における捲縮性複合繊維の捲縮形態を示す。本発明でいう波形状捲縮とは、図2Aに示すような捲縮の山部が湾曲したものを示す。螺旋状捲縮とは、図2Bに示すような捲縮の山部が螺旋状に湾曲したものを示す。図2Cに示すような波形状捲縮と螺旋状捲縮とが混在した捲縮も本発明に含まれる。図3に示すような通常の機械捲縮の場合は、捲縮の山が鋭角である、いわゆる鋸歯状捲縮のままであると、不織布としたときの初期嵩を大きくすることができない。さらに、圧縮に対する面弾性、いわゆるスプリング効果に劣り、特に十分な初期嵩回復性が得られない。また、図4に示すように機械捲縮の鋭角な捲縮と、図2Aに示す波形状捲縮が混在した捲縮も本発明に含まれる。   FIG. 2 shows the crimped form of the crimped conjugate fiber in one embodiment of the present invention. The corrugated crimp referred to in the present invention refers to a curved crest as shown in FIG. 2A. Spiral crimp refers to a crimped crest as shown in FIG. 2B. A crimp in which a wave shape crimp and a spiral crimp as shown in FIG. 2C are mixed is also included in the present invention. In the case of ordinary mechanical crimping as shown in FIG. 3, the initial bulk when the nonwoven fabric is formed cannot be increased if the so-called serrated crimp is a sharp crest. Furthermore, it is inferior to the surface elasticity against compression, the so-called spring effect, and in particular, sufficient initial bulk recovery is not obtained. Further, the present invention also includes a crimp in which the sharp crimp of the mechanical crimp as shown in FIG. 4 and the corrugated crimp shown in FIG. 2A are mixed.

本発明においては、特に図2Cに示す波形状捲縮と螺旋状捲縮とが混在した捲縮であることが、カード通過性と初期嵩および嵩回復性を両立できる点で好ましい。   In the present invention, it is particularly preferable that the wave shape crimp and the spiral crimp shown in FIG. 2C are mixed in that both the card passing property and the initial bulk and bulk recovery properties can be achieved.

次に、本発明の捲縮性複合繊維の製造方法について説明する。前記捲縮性複合繊維は、以下のように製造することができる。まず、ポリブテン−1を60〜95質量%とポリプロピレンを5〜40質量%とを含む第一成分と、ポリブテン−1の融点よりも20℃以上高い融点を有するポリマーである第二成分として、繊維断面において第一成分が繊維表面の少なくとも20%を占め、第二成分の重心位置が繊維の重心位置からずれるように配置された複合型ノズル、例えば偏心芯鞘型複合ノズルを用いて、第二成分を紡糸温度240〜330℃、第一成分を紡糸温度200〜300℃で溶融紡糸し、引取速度100〜1500m/minで引き取り、紡糸フィラメントを得る。次いで、延伸温度を第二成分のガラス転移点以上、第一成分の融点未満の温度で、延伸倍率1.8倍以上で延伸処理を施す。より好ましい延伸温度の下限は、第二成分のガラス転移点より10℃高い温度である。より好ましい延伸温度の上限は、90℃である。延伸温度が第二成分のガラス転移点未満であると、第一成分の結晶化が進みにくいため、熱収縮が大きくなったり、嵩回復性が小さくなる傾向がある。延伸温度が第一成分の融点以上であると、繊維同士が融着するからである。より好ましい延伸倍率の下限は、2倍である。より好ましい延伸倍率の上限は、4倍である。延伸倍率が1.8倍未満であると、延伸倍率が低すぎるため、波形状捲縮および/または螺旋状捲縮が発現した繊維を得ることが難しく、初期嵩が小さくなるだけでなく、繊維自体の剛性も小さくなりため、カード通過性などの不織布工程性に劣ったり、嵩回復性も劣る傾向がある。また、このとき前記延伸時の前後において必要に応じて90〜115℃の乾熱、湿熱、蒸熱等の雰囲気下でアニーリング処理を施してもよい。   Next, the manufacturing method of the crimped conjugate fiber of this invention is demonstrated. The crimped conjugate fiber can be produced as follows. First, as a first component containing 60 to 95% by mass of polybutene-1 and 5 to 40% by mass of polypropylene, and a second component that is a polymer having a melting point 20 ° C. higher than the melting point of polybutene-1, In the cross section, the first component occupies at least 20% of the fiber surface, and the second component uses a composite nozzle arranged such that the center of gravity of the second component deviates from the center of gravity of the fiber, such as an eccentric core-sheath composite nozzle. The components are melt-spun at a spinning temperature of 240 to 330 ° C. and the first component is spun at a spinning temperature of 200 to 300 ° C. and taken up at a take-up speed of 100 to 1500 m / min to obtain a spun filament. Next, the stretching process is performed at a stretching temperature of not less than the glass transition point of the second component and less than the melting point of the first component at a stretching ratio of 1.8 times or more. A more preferable lower limit of the stretching temperature is a temperature 10 ° C. higher than the glass transition point of the second component. A more preferable upper limit of the stretching temperature is 90 ° C. If the stretching temperature is lower than the glass transition point of the second component, the crystallization of the first component is difficult to proceed, so that thermal shrinkage tends to increase or the bulk recovery property tends to decrease. This is because the fibers are fused when the stretching temperature is equal to or higher than the melting point of the first component. A more preferable lower limit of the draw ratio is 2 times. A more preferable upper limit of the draw ratio is 4 times. If the draw ratio is less than 1.8 times, the draw ratio is too low, so it is difficult to obtain a fiber in which corrugated crimps and / or spiral crimps are expressed, and not only the initial bulk is reduced, but also the fibers Since its own rigidity is also reduced, it tends to be inferior in non-woven fabric processability such as card passage property and in bulk recovery. Moreover, you may perform an annealing process in atmospheres, such as 90-115 degreeC dry heat, wet heat, and steam, before and after the said extending | stretching at this time as needed.

次いで、必要に応じて繊維処理剤を付与する前または後に、スタッファボックス式捲縮機など公知の捲縮機を用いて捲縮数5個/25mm以上、25個/25mm以下の捲縮を付与する。捲縮機を通過した後の捲縮形状は、鋸歯状捲縮及び/又は波形状捲縮であるとよい。捲縮数が5個/25mm未満であると、カード通過性が低下すると共に、不織布の初期嵩や嵩回復性が悪くなる傾向がある。一方、捲縮数が25個/25mmを超えると、捲縮数が多すぎるためにカード通過性が低下し、不織布の地合が悪くなるだけでなく、不織布の初期嵩も小さくなる恐れがある。   Next, before or after applying the fiber treatment agent as necessary, a known crimping machine such as a stuffer box type crimping machine is used to perform crimping of 5 pieces / 25 mm or more and 25 pieces / 25 mm or less. Give. The crimped shape after passing through the crimper may be a serrated crimp and / or a corrugated crimp. When the number of crimps is less than 5 pieces / 25 mm, the card passing property tends to deteriorate, and the initial bulk and bulk recoverability of the nonwoven fabric tend to deteriorate. On the other hand, if the number of crimps exceeds 25 pieces / 25 mm, the number of crimps is too large, so the card passing property is lowered, and not only the formation of the nonwoven fabric is deteriorated, but also the initial volume of the nonwoven fabric may be reduced. .

さらに、前記捲縮機にて捲縮を付与した後、90〜115℃の乾熱、湿熱、あるいは蒸熱の雰囲気下でアニーリング処理を施すとよい。具体的には、繊維処理剤を付与した後に捲縮機にて捲縮を付与し、90〜115℃の乾熱雰囲気下でアニーリング処理と同時に乾燥処理を施すことが、工程を簡略化することができ、好ましい。アニーリング処理が90℃未満であると、乾熱収縮率が大きくなる傾向であり、得られる不織布の地合が乱れたり、生産性が低下したりする恐れがある。   Further, after the crimp is applied by the crimper, an annealing treatment may be performed in an atmosphere of dry heat, wet heat, or steam at 90 to 115 ° C. Specifically, after applying the fiber treating agent, crimping is performed with a crimping machine, and the drying process is performed simultaneously with the annealing process in a dry heat atmosphere at 90 to 115 ° C., thereby simplifying the process. This is preferable. When the annealing treatment is less than 90 ° C., the dry heat shrinkage tends to increase, and the formation of the resulting nonwoven fabric may be disturbed or the productivity may be lowered.

上記方法により得られた複合繊維は、主として、図2に示すような捲縮数5個/25mm以上、25個/25mm以下の波形状捲縮と螺旋状捲縮から選ばれる少なくとも一種の捲縮を有するので、後述するカード工程性を低下させることなく、嵩高な不織布を得ることができ、好ましい。そして、所望の繊維長に切断されて、捲縮性複合繊維が得られる。より好ましい捲縮数は、10〜20個/25mmである。   The composite fiber obtained by the above method is mainly composed of at least one crimp selected from wave crimps and spiral crimps having a crimp number of 5/25 mm or more and 25/25 mm or less as shown in FIG. Therefore, a bulky nonwoven fabric can be obtained without deteriorating card processability described later, which is preferable. And it cut | disconnects to desired fiber length, and a crimpable conjugate fiber is obtained. A more preferable number of crimps is 10-20 pieces / 25 mm.

また、本発明の捲縮性複合繊維は、波形状捲縮と螺旋状捲縮から選ばれる少なくとも一種の捲縮を有しており、言い換えれば複合繊維に捲縮が発現して顕在捲縮をなしている。繊維の状態では、完全に捲縮が発現して顕在捲縮としてもよいし、少し捲縮の発現しろ(繊維に熱を加えたときに捲縮発現を生じる)を残した顕在捲縮であってもよい。ただし、繊維に熱を加えたとき(例えば、後述する不織布に加工する温度を加えたとき)に捲縮数が25個/25mmを超えるほど捲縮が発現すると、初期嵩及び嵩回復性が低下するため、好ましくない。   Further, the crimped conjugate fiber of the present invention has at least one kind of crimp selected from corrugated crimps and spiral crimps. There is no. In the fiber state, the crimp may be completely manifested and manifested as a crimp, or may be a manifest crimp that leaves a slight occurrence of crimp (causes the appearance of crimp when the fiber is heated). May be. However, when crimps are developed so that the number of crimps exceeds 25/25 mm when heat is applied to the fibers (for example, when a temperature to be processed into a nonwoven fabric described later is applied), the initial bulk and bulk recovery properties are reduced. Therefore, it is not preferable.

本発明の捲縮性複合繊維におけるJIS L 1015に準じて下記の条件で測定される乾熱収縮率は、5%以下であることが好ましい。より好ましい乾熱収縮率は、3%以下である。乾熱収縮率が5%を超えると、熱処理して不織布とする際に、収縮を伴って不織布自体が収縮を引き起こし、不織布工程性および不織布の地合いの悪化を引き起こす。また、熱収縮に伴って捲縮が過剰に発現する恐れがあり、捲縮数が多くなりすぎたりして、不織布の初期嵩や、嵩回復性が悪くなる傾向がある。なお、本発明の捲縮性複合繊維の乾熱収縮率は、JIS L 1015に準じて、初荷重0.45mN/dtex(50mg/de)、温度120℃で15分間乾熱処理して収縮率を測定した。   The dry heat shrinkage rate measured under the following conditions in accordance with JIS L 1015 in the crimped conjugate fiber of the present invention is preferably 5% or less. A more preferable dry heat shrinkage rate is 3% or less. When the dry heat shrinkage rate exceeds 5%, when the non-woven fabric is heat-treated, the non-woven fabric itself shrinks with the shrinkage, and the non-woven fabric processability and the non-woven fabric texture are deteriorated. Moreover, there is a possibility that crimps may be excessively developed with heat shrinkage, and the number of crimps is excessively increased, so that the initial volume and bulk recoverability of the nonwoven fabric tend to be deteriorated. Incidentally, the dry heat shrinkage of the crimped conjugate fiber of the present invention is determined according to JIS L 1015 by performing a dry heat treatment for 15 minutes at an initial load of 0.45 mN / dtex (50 mg / de) and a temperature of 120 ° C. It was measured.

本発明の不織布を構成する繊維ウェブ形態としては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスレイウェブ、クリスクロスウェブ、エアレイウェブなどが挙げられる。前記繊維ウェブは、熱処理により第一成分が接着することにより、さらに高い効果を発揮する。そして、前記繊維ウェブは熱処理前に必要に応じて、ニードルパンチ処理あるいは水流交絡処理が施されてもよい。熱処理の手段としては、特に限定はされないが、本発明の捲縮性複合繊維の機能を十分に発揮させるのであれば、熱風貫通式熱処理機、熱風上下吹き付け式熱処理機、赤外線式熱処理機など風圧など圧力のあまりかからない熱処理機を用いることが好ましい。また、熱処理温度としては、捲縮性複合繊維の波形状捲縮及び/又は螺旋状捲縮が下記の形状となる温度範囲に設定すればよく、例えば、PB−1の融解ピーク温度をTmとしたとき、Tm−10(℃)〜PPの融解ピーク温度+10(℃)の範囲で設定することが好ましい。特に、前記捲縮性複合繊維の少なくともPB−1を溶融させて、構成する繊維同士を熱融着させると、より強固な繊維同士の交点を形成することができ、嵩回復性が高くなり好ましい。さらには、PPの融解ピーク温度±5℃の温度で熱融着させることが最も好ましい。   Examples of the fiber web form constituting the nonwoven fabric of the present invention include a parallel web, a semi-random web, a random web, a cross lay web, a Chris cross web, and an air lay web. The said fiber web exhibits a still higher effect, when the 1st component adhere | attaches by heat processing. The fiber web may be subjected to needle punching treatment or hydroentanglement treatment as necessary before heat treatment. The heat treatment means is not particularly limited, but if the function of the crimped conjugate fiber of the present invention is sufficiently exhibited, a hot air penetration heat treatment machine, a hot air up-and-down heat treatment machine, an infrared heat treatment machine, etc. It is preferable to use a heat treatment machine that does not require much pressure. The heat treatment temperature may be set to a temperature range in which the crimped and / or helical crimps of the crimpable composite fiber have the following shape. For example, the melting peak temperature of PB-1 is Tm. It is preferable to set in the range of Tm-10 (° C) to the melting peak temperature of PP + 10 (° C). In particular, when at least PB-1 of the crimped conjugate fiber is melted and the constituent fibers are heat-sealed, an intersection of stronger fibers can be formed, and the bulk recoverability is increased, which is preferable. . Further, it is most preferable to perform heat fusion at a melting peak temperature of PP of ± 5 ° C.

前記不織布は、25℃において、下記の測定により得られる初期嵩回復率が60%以上、かつ長期嵩回復率が85%以上を満たすことが好ましい。より好ましい初期嵩回復率は、65%以上、かつ長期嵩回復率は85%以上である。   The nonwoven fabric preferably has an initial bulk recovery rate of 60% or more and a long-term bulk recovery rate of 85% or more obtained at 25 ° C. by the following measurement. A more preferable initial bulk recovery rate is 65% or more, and a long-term bulk recovery rate is 85% or more.

[嵩回復率]
合計の目付が約1000g/m2となるように10cm角に切断した不織布を必要枚数重ね合わせて初期合計厚み(To)を測定し、重ね合わせた不織布の上に10cm角で9.8kPa荷重の重りを載せて25℃雰囲気下で24時間荷重を掛け、24時間後荷重を取り除き、除重直後の重ね合わせた不織布の合計厚み(T1)、及び除重24時間後の合計厚み(T2)を測定し、不織布の嵩回復率を下記式にて算出し、それぞれ初期嵩回復率、長期嵩回復率とする。
[Bulk recovery rate]
The required number of non-woven fabrics cut into 10 cm squares so that the total basis weight is about 1000 g / m 2 is overlapped to measure the initial total thickness (To), and a 9.8 kPa load is applied at 10 cm squares on the overlapped non-woven fabrics. A weight was applied for 24 hours under an atmosphere of 25 ° C., the load was removed after 24 hours, and the total thickness (T 1 ) of the laminated nonwoven fabric immediately after dewetting, and the total thickness (T 2 ) after 24 hours dewetting. ) And the bulk recovery rate of the nonwoven fabric is calculated according to the following formulas, which are the initial bulk recovery rate and the long-term bulk recovery rate, respectively.

初期嵩回復率(%)=(T1/T0)×100
長期嵩回復率(%)=(T2/T0)×100
Initial bulk recovery rate (%) = (T 1 / T 0 ) × 100
Long-term bulk recovery rate (%) = (T 2 / T 0 ) × 100

初期嵩回復率が60%以上、および長期嵩回復率が85%以上を満たす不織布は、クッション材、車両用等の内装材、ブラジャー等のパッド材などの繰り返し厚み方向に圧力の加わる用途、ウレタン発泡体に置き換わる用途に好適である。   Non-woven fabric satisfying an initial bulk recovery rate of 60% or more and a long-term bulk recovery rate of 85% or more is an application in which pressure is repeatedly applied in the thickness direction, such as cushioning materials, interior materials for vehicles, pad materials such as brassieres, urethane, etc. It is suitable for applications that replace foam.

前記不織布は、ニードルパンチにより交絡されている不織布であり、JIS−K−6401−5.4(硬さ試験)に準じて測定される不織布の硬さH0(N)とし、JIS−K−6401−5.5(圧縮残留ひずみ試験)に準じて測定される圧縮残留ひずみ試験をした後の前記硬さ試験での不織布の硬さH1(N)としたとき、下記式で示される加熱硬さ保持率は、90%以上であることが好ましい。より好ましい加熱硬さ保持率は、100%以上であり、さらにより好ましくは105%以上である。前記加熱硬さ保持率は、70℃に加熱される前後で不織布の硬さが変化する度合いを示す指標であり、この値が大きいほど、熱による繊維あるいは不織布自体の劣化が抑制されていることを示す。 The non-woven fabric is a non-woven fabric entangled by a needle punch, and has a non-woven fabric hardness H 0 (N) measured according to JIS-K-6401-5.4 (hardness test). When the hardness H 1 (N) of the nonwoven fabric in the hardness test after the compression residual strain test measured according to 6401-5.5 (compression residual strain test) is used, the heating represented by the following formula The hardness retention is preferably 90% or more. A more preferable heating hardness retention is 100% or more, and even more preferably 105% or more. The heating hardness retention rate is an index indicating the degree of change in the hardness of the nonwoven fabric before and after being heated to 70 ° C., and the larger the value, the more the deterioration of the fiber or the nonwoven fabric itself due to heat is suppressed. Indicates.

加熱硬さ保持率(%)=(H1/H0)×100 Heat hardness retention rate (%) = (H 1 / H 0 ) × 100

前記不織布は、ニードルパンチにより交絡されている不織布であり、JIS−K−6401−5.4(硬さ試験)に準じて測定される不織布の硬さH0(N)とし、JIS−K−6401−5.6(繰り返し圧縮残留ひずみ試験)に準じて測定される繰り返し圧縮残留ひずみ試験をした後の前記硬さ試験での不織布の硬さH2(N)としたとき、下記式で示される耐久硬さ保持率は、90%以上であることが好ましい。より好ましい耐久硬さ保持率は、100%以上である。前記耐久硬さ保持率は、50%圧縮を8万回繰り返す前後で不織布の硬さが変化する度合いを示す指標であり、この値が大きいほど、圧縮による繊維あるいは不織布自体の劣化が抑制されていることを示す。 The non-woven fabric is a non-woven fabric entangled by a needle punch, and has a non-woven fabric hardness H 0 (N) measured according to JIS-K-6401-5.4 (hardness test). When the hardness H 2 (N) of the nonwoven fabric in the hardness test after a repeated compression residual strain test measured according to 6401-5.6 (repeated compression residual strain test) is shown by the following formula: The durable hardness retention is preferably 90% or more. A more preferable durable hardness retention is 100% or more. The durable hardness retention is an index indicating the degree of change in the hardness of the nonwoven fabric before and after repeating 50% compression 80,000 times. The larger this value, the more the degradation of the fiber or nonwoven fabric itself due to compression is suppressed. Indicates that

耐久硬さ保持率(%)=(H2/H0)×100 Durability hardness retention (%) = (H 2 / H 0 ) × 100

前記加熱硬さ保持率及び/又は前記耐久硬さ保持率を満足するニードルパンチ不織布としては、前記捲縮性複合繊維の少なくともPB−1を溶融させて、好ましくはPB−1及びPPを溶融させて繊維交点を接着させることにより得ることができる。   As the needle punched nonwoven fabric satisfying the heating hardness retention rate and / or the durable hardness retention rate, at least PB-1 of the crimped conjugate fiber is melted, preferably PB-1 and PP are melted. It can be obtained by bonding the fiber intersections.

以下実施例により、本発明をさらに具体的に説明する。
(1)ポリマー
PTT(シェル社製「CORTERRA9200」融解ピーク温度(mp)228℃、IV値0.92)
PET(東レ社製「T200E」、mp255℃、IV値0.64)
PP−1(日本ポリプロ社製「SA03E」、mp160℃、MFR20、Q値5.6)
PP−2(日本ポリプロ社製「SA03B」、mp160℃、MFR30、Q値3.6)
PP−3(日本ポリプロ社製「SA01A」、mp160℃、MFR9、Q値3.2)
PP−4(プライムポリマー社製「CJ700」、mp160℃、MFR7、Q値6.5)
PB−1a(サンアロマー社製「PB0400」、mp123℃、MI20)
PB−1b(サンアロマー社製「DP0401M」、mp123℃、MI15)
PBTエラストマー(東レ・デュポン社製「ハイトレル4047H-36」、mp160℃)
HDPE(日本ポリエチレン社製「HE481」、mp130℃、MI12)
鞘成分のブレンド比は、表に記載した。
Hereinafter, the present invention will be described more specifically with reference to examples.
(1) Polymer PTT ("CORTERRA9200" manufactured by Shell, melting peak temperature (mp) 228 ° C, IV value 0.92)
PET (“T200E” manufactured by Toray Industries Inc., mp 255 ° C., IV value 0.64)
PP-1 (Nippon Polypro "SA03E", mp 160 ° C, MFR 20, Q value 5.6)
PP-2 (“SA03B” manufactured by Nippon Polypro Co., Ltd., mp 160 ° C., MFR30, Q value 3.6)
PP-3 (Nippon Polypro "SA01A", mp160 ° C, MFR9, Q value 3.2)
PP-4 ("CJ700" manufactured by Prime Polymer Co., Ltd., mp160 ° C, MFR7, Q value 6.5)
PB-1a (“PB0400” manufactured by Sun Allomer, mp 123 ° C., MI20)
PB-1b (“DP0401M” manufactured by Sun Allomer, mp 123 ° C., MI15)
PBT elastomer ("Hytrel 4047H-36" manufactured by Toray DuPont, mp160 ° C)
HDPE (Nippon Polyethylene “HE481”, mp 130 ° C., MI12)
The blend ratio of the sheath component is listed in the table.

前記において、IVは前記極限粘度である。MFRはJIS K 7210に準じて、230℃、21.18N(2.16kgf)で測定されるメルトフローレートである。また、MIはJIS K 7210に準じて、190℃、21.18N(2.16kgf)で測定されるポリマーのメルトインデックスである。   In the above, IV is the intrinsic viscosity. MFR is a melt flow rate measured at 230 ° C. and 21.18 N (2.16 kgf) according to JIS K 7210. MI is a melt index of a polymer measured at 190 ° C. and 21.18 N (2.16 kgf) according to JIS K 7210.

なおQ値は、次の条件で測定した。   The Q value was measured under the following conditions.

I.使用する分析装置
(i)クロス分別装置
ダイヤインスツルメンツ社製CFC T−100(CFCと略す)
(ii)フーリエ変換型赤外線吸収スペクトル分析
FT−IR、パーキンエルマー社製 1760X
CFCの検出器として取り付けられていた波長固定型の赤外分光光度計を取り外して代わりにFT−IRを接続し、このFT−IRを検出器として使用する。CFCから溶出した溶液の出口からFT−IRまでの間のトランスファーラインは1mの長さとし、測定の間を通じて140℃に温度保持する。FT−IRに取り付けたフローセルは光路長1mm、光路直径5mmφのものを用い、測定の間を通じて140℃に温度保持する。
(iii)ゲルパーミエーションクロマトグラフィー(GPC)
CFC後段部分のGPCカラムは、昭和電工社製AD806MSを3本直列に接続して使用する。
I. Analytical device to be used (i) Cross sorter CFC T-100 (abbreviated as CFC) manufactured by Dia Instruments
(Ii) Fourier transform infrared absorption spectrum analysis FT-IR, Perkin Elmer 1760X
A fixed wavelength infrared spectrophotometer attached as a CFC detector is removed and an FT-IR is connected instead, and this FT-IR is used as a detector. The transfer line from the outlet of the solution eluted from the CFC to the FT-IR is 1 m long, and the temperature is maintained at 140 ° C. throughout the measurement. The flow cell attached to the FT-IR has an optical path length of 1 mm and an optical path diameter of 5 mmφ, and the temperature is maintained at 140 ° C. throughout the measurement.
(Iii) Gel permeation chromatography (GPC)
The GPC column in the latter part of the CFC is used by connecting three AD806MS manufactured by Showa Denko KK in series.

II.CFCの測定条件
(i)溶媒:オルトジクロルベンゼン(ODCB)
(ii)サンプル濃度:1mg/mL
(iii)注入量:0.4mL
(iv)カラム温度:140℃
(v)溶媒流速:1mL/分
II. CFC measurement conditions (i) Solvent: Orthodichlorobenzene (ODCB)
(Ii) Sample concentration: 1 mg / mL
(Iii) Injection volume: 0.4 mL
(Iv) Column temperature: 140 ° C
(V) Solvent flow rate: 1 mL / min

III.FT−IRの測定条件
CFC後段のGPCから試料溶液の溶出が開始した後、以下の条件でFT−IR測定を行い、GPC−IRデータを採取する。
(i)検出器:MCT
(ii)分解能:8cm-1
(iii)測定間隔:0.2分(12秒)
(iv)一測定当たりの積算回数:15回
III. Measurement conditions of FT-IR After elution of the sample solution starts from GPC at the latter stage of the CFC, FT-IR measurement is performed under the following conditions to collect GPC-IR data.
(I) Detector: MCT
(Ii) Resolution: 8 cm -1
(Iii) Measurement interval: 0.2 minutes (12 seconds)
(Iv) Number of integrations per measurement: 15 times

IV.測定結果の後処理と解析
分子量分布は、FT−IRによって得られる2945cm-1の吸光度をクロマトグラムとして使用して求める。保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは何れも東ソー(株)製の以下の銘柄である。F380、F288、F128、F80、F40、F20、F10、F4、F1、A5000、A2500、A1000。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのBHTを含む)に溶解した溶液を0.4mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式を用いる。分子量への換算は森定雄著「サイズ排除クロマトグラフィー」(共立出版)を参考に汎用較正曲線を用いる。その際使用する粘度式([η]=K×Mα)には以下の数値を用いる。
(i)標準ポリスチレンを使用する較正曲線作成時
K=0.000138、α=0.70
(ii)ポリプロピレンのサンプル測定時
K=0.000103、α=0.78
なお、上記GPC(ゲルパーミエーションクロマトグラフィー)により測定するが、別の機種により測定したとき、2005年度プラスチック成形材料商取引便覧(化学工業日報社、2004年8月30日発行)に記載の、日本ポリプロ社製「MG03B」と同時に測定し、MG03Bが3.5を示すときの値をブランク条件とし、条件を調整して測定することもできる。
(2)押し出し温度:芯成分ポリマー(PTT)を280℃、鞘成分ポリマーを250℃、ノズル口金温度を270℃とした。
(3)ノズル孔数:600ホール
(4)複合比:芯/鞘=55/45(容積比)
(5)未延伸繊度:8dtex
(6)延伸温度:湿式70℃
(7)延伸倍率:2.3倍
(8)捲縮:12〜15個/25mm
(9)アニーリング温度(乾燥温度):110℃×15分
(10)製品繊度×繊維長:4.4dtex×51mm
(11)不織布製造条件
IV. Post-processing and analysis of measurement results The molecular weight distribution is obtained using the absorbance at 2945 cm −1 obtained by FT-IR as a chromatogram. Conversion from the retention volume to the molecular weight is performed using a calibration curve prepared in advance with standard polystyrene. Standard polystyrenes used are the following brands manufactured by Tosoh Corporation. F380, F288, F128, F80, F40, F20, F10, F4, F1, A5000, A2500, A1000. A calibration curve is created by injecting 0.4 mL of a solution dissolved in ODCB (containing 0.5 mg / mL BHT) so that each is 0.5 mg / mL. The calibration curve uses a cubic equation obtained by approximation by the least square method. Conversion to molecular weight uses a general-purpose calibration curve with reference to “Size Exclusion Chromatography” written by Sadao Mori (Kyoritsu Shuppan). The following numerical values are used for the viscosity equation ([η] = K × Mα) used at that time.
(I) When creating a calibration curve using standard polystyrene K = 0.000138, α = 0.70
(Ii) At the time of measuring a sample of polypropylene K = 0.00103, α = 0.78
In addition, although it measures by said GPC (gel permeation chromatography), when it measures by another model, it is Japan described in 2005 plastic molding material commerce manual (Chemical Industry Daily, published on August 30, 2004). It can be measured at the same time as “MG03B” manufactured by Polypro Co., Ltd., with the value when MG03B shows 3.5 as the blank condition, and the condition can be adjusted.
(2) Extrusion temperature: The core component polymer (PTT) was 280 ° C., the sheath component polymer was 250 ° C., and the nozzle cap temperature was 270 ° C.
(3) Number of nozzle holes: 600 holes (4) Composite ratio: Core / sheath = 55/45 (volume ratio)
(5) Unstretched fineness: 8 dtex
(6) Stretching temperature: wet 70 ° C
(7) Stretch ratio: 2.3 times (8) Crimp: 12-15 pieces / 25 mm
(9) Annealing temperature (drying temperature): 110 ° C. × 15 minutes (10) Product fineness × Fiber length: 4.4 dtex × 51 mm
(11) Nonwoven fabric manufacturing conditions

各捲縮性複合繊維100質量%をパラレルカードに掛けウェブを採取し、熱風循環式の熱処理機を用い、表1〜3に示す加工温度で30秒間熱処理して鞘成分を熱融着させ、目付約100g/m2の不織布とした。 100% by mass of each crimpable conjugate fiber is put on a parallel card, and a web is collected. Using a hot air circulation type heat treatment machine, heat treatment is performed for 30 seconds at the processing temperature shown in Tables 1 to 3, and the sheath component is heat-sealed. A nonwoven fabric having a basis weight of about 100 g / m 2 was obtained.

(12)各測定方法
[乾熱収縮率]JIS L 1015に準じて測定する。初荷重0.45mN/dtex(50mg/de)、温度120℃で15分間乾熱処理して収縮率を測定する。
[面積収縮率]熱加工前のカードウェブを縦:100mm、横:100mmに切断し、所定の温度にて熱加工した際の、面積減少率を測定する。
[25℃嵩回復率]合計の目付が約1000g/m2となるように100mm角に切断した不織布を必要枚数準備し、重ね合わせて無荷重下で初期厚み(To)を測定する。重ね合わせた不織布の上に100mm角、9.8kPa荷重の重りを乗せて、25℃で24時間荷重を掛け、24時間後荷重を取り除き、除重直後の重ね合わせた不織布の厚み(T1)、及び除重24時間後の厚み(T2)を測定し、不織布の嵩回復率を下記式により算出する。
(12) Each measuring method [dry heat shrinkage] Measured according to JIS L 1015. The shrinkage is measured by dry heat treatment at an initial load of 0.45 mN / dtex (50 mg / de) and a temperature of 120 ° C. for 15 minutes.
[Area Shrinkage Ratio] The card web before thermal processing is cut into a length of 100 mm and a width of 100 mm, and the area reduction rate is measured when the card web is thermally processed at a predetermined temperature.
[25 ° C. bulk recovery rate] Prepare the required number of non-woven fabrics cut to 100 mm square so that the total basis weight is about 1000 g / m 2 , superimpose them, and measure the initial thickness (To) under no load. Place the weight of 100 mm square and 9.8 kPa load on the laminated nonwoven fabric, apply the load at 25 ° C. for 24 hours, remove the load after 24 hours, and the thickness of the laminated nonwoven fabric immediately after dewetting (T 1 ) , And the thickness (T 2 ) after 24 hours of dewetting, and the bulk recovery rate of the nonwoven fabric is calculated by the following formula.

初期嵩回復率(%)=(T1/T0)×100
長期嵩回復率(%)=(T2/T0)×100
Initial bulk recovery rate (%) = (T 1 / T 0 ) × 100
Long-term bulk recovery rate (%) = (T 2 / T 0 ) × 100

厚みの測定は、何れも無荷重下とする。
[70℃嵩回復率]温度を70℃とし、荷重を掛ける時間を4時間とした以外は上記と同じとした。
[見掛け密度]JIS K 6401 5.3(見掛け密度試験)に準じて測定した。
[硬さ]JIS K 6401 5.4(硬さ試験)に準じて測定した。
[圧縮残留ひずみ]JIS−K−6401−5.5(圧縮残留ひずみ試験)に準じて測定した。
[繰り返し圧縮残留ひずみ]JIS−K−6401−5.6(繰り返し圧縮残留ひずみ試験)に準じて測定した。
All thickness measurements shall be under no load.
[70 ° C. Bulk Recovery] Same as above except that the temperature was 70 ° C. and the load was applied for 4 hours.
[Apparent density] Measured according to JIS K 6401 5.3 (apparent density test).
[Hardness] Measured according to JIS K 6401 5.4 (hardness test).
[Compressive residual strain] Measured according to JIS-K-6401-5.5 (Compressive residual strain test).
[Repetitive compressive residual strain] Measured according to JIS-K-6401-5.6 (repetitive compressive residual strain test).

[実施例1〜7、比較例1〜7]
各条件と得られた結果を表1〜3に示す。なお、実施例2,4,6及び比較例6については、比較例7の初期厚みに合わせるために、厚みが10枚重ねて30mmとなるように1枚1枚をネットで厚みを調整しながら熱風加工した。
[Examples 1-7, Comparative Examples 1-7]
Each condition and the obtained result are shown in Tables 1-3. In addition, about Example 2, 4, 6 and the comparative example 6, in order to match with the initial thickness of the comparative example 7, while adjusting the thickness with the net | network one sheet so that it may be 30 mm in thickness by overlapping 10 sheets Hot air processed.

Figure 2007126806
Figure 2007126806

Figure 2007126806
Figure 2007126806

Figure 2007126806
Figure 2007126806

以上の結果から明らかなとおり、本発明の実施例1〜7は比較例5〜7に比べて、同一目付けで初期厚みが厚く、初期嵩回復率も長期嵩回復率も高かった。実施例3〜7は、波形状捲縮と螺旋状捲縮が混在しており、実施例1〜2に比べて、単繊維乾熱収縮率及び不織布面積収縮率が低く、不織布の初期厚みが厚く、初期嵩回復率及長期嵩回復率が高かった。これは、第二成分(芯成分)にポリトリメチレンテレフタレートを使用したからと推定される。   As is clear from the above results, Examples 1 to 7 of the present invention had the same basis weight and a larger initial thickness, and the initial bulk recovery rate and the long-term bulk recovery rate were higher than those of Comparative Examples 5 to 7. In Examples 3 to 7, corrugated crimps and spiral crimps are mixed, and compared with Examples 1 and 2, the single fiber dry heat shrinkage rate and the nonwoven fabric area shrinkage rate are low, and the initial thickness of the nonwoven fabric is low. It was thick and had high initial bulk recovery rate and long-term bulk recovery rate. This is presumably because polytrimethylene terephthalate was used as the second component (core component).

一方、比較例1〜4は、ポリブテン−1が95質量%を超えるため、捲縮数が25個/25mmを超えて顕在捲縮化していた。その結果、単繊維乾熱収縮率及び不織布面積収縮率が大きく、安定して不織布を作製することができなかった。また、比較例1〜4は、ポリプロピレンが5質量%未満であったため、溶融紡糸時の樹脂粘度が小さくなりすぎて均一な偏心芯鞘断面の繊維が得られなかった。さらに、延伸可能最大倍率がいずれも2.7倍以下であり、延伸性に劣っていた。   On the other hand, in Comparative Examples 1-4, since polybutene-1 exceeded 95 mass%, the number of crimps exceeded 25 pieces / 25mm, and it was crimped clearly. As a result, the single fiber dry heat shrinkage ratio and the nonwoven fabric area shrinkage ratio were large, and the nonwoven fabric could not be produced stably. In Comparative Examples 1 to 4, since the polypropylene was less than 5% by mass, the resin viscosity at the time of melt spinning became too small to obtain a fiber having a uniform eccentric core-sheath cross section. Further, the maximum stretchable ratio was 2.7 times or less, and the stretchability was inferior.

比較例5〜6は、実施例に比べて初期厚みは高いものの、初期嵩回復率が低くなった。   In Comparative Examples 5 to 6, although the initial thickness was higher than that of the Example, the initial bulk recovery rate was low.

比較例7は、鞘成分にPBTエラストマーを使用しているため、捲縮発現が小さく、また、実施例に比べて単繊維乾熱収縮率及び不織布面積収縮率が若干大きいため、不織布にしたときの初期厚みが30mmまでしか上がらず、厚みが低い不織布であった。   Since Comparative Example 7 uses a PBT elastomer for the sheath component, the expression of crimp is small, and the single fiber dry heat shrinkage rate and the nonwoven fabric area shrinkage rate are slightly larger than those of the Example, so that the nonwoven fabric is used. This was a nonwoven fabric with an initial thickness of only 30 mm and a low thickness.

[実施例8〜15]
表4に記載の条件で、実施例8〜11の捲縮性複合繊維を作製した。得られた結果を表4に示す。また、実施例10および比較例7で得られた捲縮性複合繊維100質量%をパラレルカードに掛け、クロスレイヤーを用いてクロスレイウェブを作製した。次いで、クロスレイウェブに、フォスターニードル社製円錐ブレードを用いて、針深度5mm、表5に示すペネ数(表裏とも)でニードルパンチ処理を施した。得られたニードルパンチ不織布を熱風循環式の熱処理機を用い、表5に示す加工温度で30秒間熱処理して鞘成分を熱融着させ、不織布とした。得られた不織布の硬さ、圧縮残留ひずみ、加熱硬さ保持率、繰り返し圧縮残留ひずみ、および耐久硬さ保持率を測定した結果を表5に示す。
[Examples 8 to 15]
Under the conditions described in Table 4, crimped conjugate fibers of Examples 8 to 11 were produced. Table 4 shows the obtained results. Further, 100% by mass of the crimped conjugate fiber obtained in Example 10 and Comparative Example 7 was put on a parallel card, and a cross lay web was produced using a cross layer. Next, needle punching was performed on the cross lay web using a cone blade manufactured by Foster Needle Co., Ltd. with a needle depth of 5 mm and the number of penets shown in Table 5 (both front and back). The obtained needle punched nonwoven fabric was heat-treated at a processing temperature shown in Table 5 for 30 seconds using a hot-air circulating heat treatment machine to heat-sheath the sheath component to obtain a nonwoven fabric. Table 5 shows the results of measuring the hardness, compression residual strain, heating hardness retention, repeated compression residual strain, and durable hardness retention of the obtained nonwoven fabric.

Figure 2007126806
Figure 2007126806

表4の結果から明らかなように、本発明の実施例8〜15はいずれも同一目付で初期厚みが大きく、初期嵩回復率も長期嵩回復率も高かった。中でも、実施例12、13は樹脂2に添加したPPのQ値、MFRが小さく、及びPP添加量/Q値比が大きかったため、単繊維の乾熱収縮率および不織布面積収縮率ともに極めて小さいものであった。   As is clear from the results in Table 4, Examples 8 to 15 of the present invention all had the same basis weight and large initial thickness, and both the initial bulk recovery rate and the long-term bulk recovery rate were high. Among them, in Examples 12 and 13, since the Q value and MFR of PP added to the resin 2 were small, and the PP addition amount / Q value ratio was large, both the dry heat shrinkage rate and the nonwoven fabric area shrinkage rate of single fibers were extremely small. Met.

Figure 2007126806
Figure 2007126806

表5の結果から明らかなように本発明のニードルパンチ不織布は、加熱硬さ保持率、耐久硬さ保持率共に90%以上という結果であった。これは加熱圧縮、繰り返し圧縮の何れにおいても、繊維同士の接着点および繊維自体が破壊されたり、折れ曲がったり、繊維強度が低下していないと推定できる。一方、比較例7の不織布は、加熱硬さ保持率が84%、耐久硬さ保持率が74%と低く、70℃の加熱時の圧縮、および80000回の繰り返し圧縮により不織布硬さが減少しており、耐熱性および耐久性に劣るものであった。   As is clear from the results in Table 5, the needle punched nonwoven fabric of the present invention had a heat hardness retention rate and a durable hardness retention rate of 90% or more. It can be presumed that the bonding point between the fibers and the fibers themselves are not broken, bent, or the fiber strength is not lowered in both heat compression and repeated compression. On the other hand, the nonwoven fabric of Comparative Example 7 has a heat hardness retention rate as low as 84% and a durable hardness retention rate as low as 74%, and the nonwoven fabric hardness decreases due to compression when heated at 70 ° C. and repeated compression of 80000 times. It was inferior in heat resistance and durability.

図1は本発明の一実施形態における捲縮性複合繊維の繊維断面を示す。FIG. 1 shows a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention. 図2A〜Cは、本発明の一実施形態における捲縮性複合繊維の捲縮形態を示す。2A to 2C show crimped forms of the crimped conjugate fiber in one embodiment of the present invention. 図3は従来の機械捲縮の形態を示す。FIG. 3 shows a form of conventional mechanical crimping. 図4は本発明の別の実施形態における捲縮性複合繊維の捲縮形態を示すFIG. 4 shows the crimped form of the crimped conjugate fiber according to another embodiment of the present invention.

符号の説明Explanation of symbols

1 第一成分
2 第二成分
3 第二成分の重心位置
4 複合繊維の重心位置
5 複合繊維の半径
10 複合繊維
DESCRIPTION OF SYMBOLS 1 1st component 2 2nd component 3 The gravity center position 4 of a 2nd component The gravity center position 5 of a composite fiber Radius 10 of a composite fiber Composite fiber

Claims (11)

第一成分と第二成分を含む複合繊維であって、
前記第一成分は、ポリブテン−1を60〜95質量%とポリプロピレンを5〜40質量%とを含み、
前記第二成分は、ポリブテン−1の融点よりも20℃以上高い融点を有するポリマーであり、
繊維断面から見たとき、前記第一成分は前記複合繊維表面の少なくとも20%を占めており、前記第二成分の重心位置は前記複合繊維の重心位置からずれており、
前記複合繊維は、波形状捲縮及び螺旋状捲縮から選ばれる少なくとも一種の捲縮を有していることを特徴とする捲縮性複合繊維。
A composite fiber comprising a first component and a second component,
The first component includes 60 to 95% by weight of polybutene-1 and 5 to 40% by weight of polypropylene,
The second component is a polymer having a melting point higher by 20 ° C. than the melting point of polybutene-1,
When viewed from the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is deviated from the center of gravity of the composite fiber,
The crimped conjugate fiber, wherein the conjugate fiber has at least one kind of crimp selected from wave-shaped crimps and spiral crimps.
前記第二成分がポリエステルである請求項1に記載の捲縮性複合繊維。   The crimpable conjugate fiber according to claim 1, wherein the second component is polyester. 前記ポリエステルがポリトリメチレンテレフタレートである請求項2に記載の捲縮性複合繊維。   The crimpable conjugate fiber according to claim 2, wherein the polyester is polytrimethylene terephthalate. 前記ポリブテン−1は、JIS−K−7121に準じて測定したDSC曲線より求められる融解ピーク温度が115〜130℃であり、JIS−K−7210に準ずるメルトインデックス(MI;測定温度190℃、荷重2.16kgf(21.18N))が1〜30g/10分の範囲である請求項1〜3のいずれかに記載の捲縮性複合繊維。   The polybutene-1 has a melting peak temperature determined from a DSC curve measured according to JIS-K-7121 of 115 to 130 ° C., and a melt index (MI; measurement temperature 190 ° C., load) according to JIS-K-7210. The crimpable conjugate fiber according to any one of claims 1 to 3, wherein 2.16 kgf (21.18 N)) is in the range of 1 to 30 g / 10 minutes. 前記ポリプロピレンは、重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)が6以下である請求項1〜4のいずれかに記載の捲縮性複合繊維。   The crimped conjugate fiber according to any one of claims 1 to 4, wherein the polypropylene has a ratio (Q value) of a weight average molecular weight (Mw) to a number average molecular weight (Mn) of 6 or less. 前記ポリプロピレンは、JIS−K−7210に準ずるメルトフローレート(MFR;測定温度230℃、荷重2.16kgf(21.18N))が5〜30g/10分の範囲である請求項1〜5のいずれかに記載の捲縮性複合繊維。   The polypropylene has a melt flow rate (MFR; measurement temperature 230 ° C, load 2.16 kgf (21.18 N)) according to JIS-K-7210 in the range of 5 to 30 g / 10 min. The crimpable conjugate fiber according to any one of the above. 請求項1〜6のいずれかに記載の捲縮性複合繊維を少なくとも30質量%含有する不織布。   A nonwoven fabric containing at least 30% by mass of the crimped conjugate fiber according to any one of claims 1 to 6. 前記捲縮性複合繊維の少なくともポリブテン−1が溶融して、構成する繊維同士が熱融着されている請求項7に記載の不織布。   The nonwoven fabric according to claim 7, wherein at least polybutene-1 of the crimped conjugate fiber is melted and the constituent fibers are heat-sealed. 前記不織布は、25℃において、下記の測定により得られる初期嵩回復率が60%以上、かつ長期嵩回復率が85%以上を満たす請求項7または8に記載の不織布。
[嵩回復率]
合計の目付が約1000g/m2となるように10cm角に切断した不織布を必要枚数重ね合わせて初期合計厚み(To)を測定し、重ね合わせた不織布の上に10cm角で9.8kPa荷重の重りを載せて25℃雰囲気下で24時間荷重を掛け、24時間後荷重を取り除き、除重直後の重ね合わせた不織布の合計厚み(T1)、及び除重24時間後の合計厚み(T2)を測定し、不織布の嵩回復率を下記式にて算出し、それぞれ初期嵩回復率、長期嵩回復率とする。
初期嵩回復率(%)=(T1/T0)×100
長期嵩回復率(%)=(T2/T0)×100
The nonwoven fabric according to claim 7 or 8, wherein the nonwoven fabric satisfies an initial bulk recovery rate of 60% or more and a long-term bulk recovery rate of 85% or more obtained at 25 ° C by the following measurement.
[Bulk recovery rate]
The required number of non-woven fabrics cut into 10 cm squares so that the total basis weight is about 1000 g / m 2 is overlapped to measure the initial total thickness (To), and a 9.8 kPa load is applied at 10 cm squares on the overlapped non-woven fabrics. A weight was applied for 24 hours under an atmosphere of 25 ° C., the load was removed after 24 hours, and the total thickness (T 1 ) of the laminated nonwoven fabric immediately after dewetting, and the total thickness (T 2 ) after 24 hours dewetting. ) And the bulk recovery rate of the nonwoven fabric is calculated according to the following formulas, which are the initial bulk recovery rate and the long-term bulk recovery rate, respectively.
Initial bulk recovery rate (%) = (T 1 / T 0 ) × 100
Long-term bulk recovery rate (%) = (T 2 / T 0 ) × 100
前記不織布がニードルパンチにより交絡されている不織布であり、
JIS−K−6401−5.4(硬さ試験)に準じて測定される不織布の硬さH0(N)とし、
JIS−K−6401−5.5(圧縮残留ひずみ試験)に準じて測定される圧縮残留ひずみ試験をした後の前記硬さ試験での不織布の硬さH1(N)としたとき、
下記式で示される加熱硬さ保持率は、90%以上である請求項7または8に記載の不織布。
加熱硬さ保持率(%)=(H1/H0)×100
The nonwoven fabric is a nonwoven fabric entangled by a needle punch,
The non-woven fabric hardness H 0 (N) measured in accordance with JIS-K-6401-5.4 (hardness test),
When the hardness H 1 (N) of the nonwoven fabric in the hardness test after the compression residual strain test measured according to JIS-K-6401-5.5 (compression residual strain test) is obtained,
The nonwoven fabric according to claim 7 or 8, wherein the heat hardness retention represented by the following formula is 90% or more.
Heat hardness retention rate (%) = (H 1 / H 0 ) × 100
前記不織布がニードルパンチにより交絡されている不織布であり、
JIS−K−6401−5.4(硬さ試験)に準じて測定される不織布の硬さH0(N)とし、
JIS−K−6401−5.6(繰り返し圧縮残留ひずみ試験)に準じて測定される繰り返し圧縮残留ひずみ試験をした後の前記硬さ試験での不織布の硬さH2(N)としたとき、
下記式で示される耐久硬さ保持率は、90%以上である請求項7または8に記載の不織布。
耐久硬さ保持率(%)=(H2/H0)×100
The nonwoven fabric is a nonwoven fabric entangled by a needle punch,
The non-woven fabric hardness H 0 (N) measured in accordance with JIS-K-6401-5.4 (hardness test),
When the hardness H 2 (N) of the nonwoven fabric in the hardness test after a repeated compression residual strain test measured according to JIS-K-6401-5.6 (repeated compression residual strain test)
The nonwoven fabric according to claim 7 or 8, wherein a durable hardness retention represented by the following formula is 90% or more.
Durability hardness retention (%) = (H 2 / H 0 ) × 100
JP2006272180A 2005-10-03 2006-10-03 Crimpable composite fiber and non-woven fabric using the same Expired - Fee Related JP4928214B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006272180A JP4928214B2 (en) 2005-10-03 2006-10-03 Crimpable composite fiber and non-woven fabric using the same
DK07740559T DK2083100T3 (en) 2006-10-03 2007-03-30 Composite ripple fiber and fiber pulp comprising this
AT07740559T ATE525502T1 (en) 2006-10-03 2007-03-30 METHOD FOR CRIMPING COMPOSITE FIBER AND FIBER MASS CONTAINING SAME
EP20070740559 EP2083100B1 (en) 2006-10-03 2007-03-30 Crimping composite fiber and fibrous mass comprising the same
CN2007800372591A CN101522964B (en) 2006-10-03 2007-03-30 Crimping conjugate fiber and fiber assembly using the composite fiber
US12/444,096 US8268444B2 (en) 2006-10-03 2007-03-30 Crimping composite fiber and fibrous mass comprising the same
PCT/JP2007/057123 WO2008041384A1 (en) 2006-10-03 2007-03-30 Crimping composite fiber and fibrous mass comprising the same
TW96111760A TWI402387B (en) 2006-10-03 2007-04-03 A crimped composite fiber and a fiber aggregate using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005290236 2005-10-03
JP2005290236 2005-10-03
JP2006272180A JP4928214B2 (en) 2005-10-03 2006-10-03 Crimpable composite fiber and non-woven fabric using the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011276845A Division JP5416197B2 (en) 2005-10-03 2011-12-19 Crimpable composite fiber and non-woven fabric using the same

Publications (2)

Publication Number Publication Date
JP2007126806A true JP2007126806A (en) 2007-05-24
JP4928214B2 JP4928214B2 (en) 2012-05-09

Family

ID=38149673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006272180A Expired - Fee Related JP4928214B2 (en) 2005-10-03 2006-10-03 Crimpable composite fiber and non-woven fabric using the same

Country Status (1)

Country Link
JP (1) JP4928214B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059585A (en) * 2008-09-05 2010-03-18 Daiwabo Holdings Co Ltd Crimped conjugate fiber, and fiber structure using the same
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
JP2011021300A (en) * 2009-07-17 2011-02-03 Daiwabo Holdings Co Ltd Crimping composite fiber and fibrous mass comprising the same
JP2011047077A (en) * 2009-08-27 2011-03-10 Es Fibervisions Co Ltd Thermal bonding conjugate fiber and nonwoven fabric using the same
JP2017106159A (en) * 2017-03-09 2017-06-15 ダイワボウホールディングス株式会社 Nonwoven fabric and cushioning material using the same
CN114622344A (en) * 2021-11-04 2022-06-14 浙江安顺化纤有限公司 Dry preparation method of non-woven fabric and application of non-woven fabric in facial mask

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101669A (en) * 1973-02-02 1974-09-26
JPH05179511A (en) * 1991-12-27 1993-07-20 Daiwabo Create Kk Thermally adhesive conjugate fiber, fiber assembly therefrom and fiber assembly provided with electret nature
JPH05195399A (en) * 1992-01-22 1993-08-03 Daiwabo Create Kk Heat bondable conjugate fiber, its fiber assembly and electreted fiber assembly
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49101669A (en) * 1973-02-02 1974-09-26
JPH05179511A (en) * 1991-12-27 1993-07-20 Daiwabo Create Kk Thermally adhesive conjugate fiber, fiber assembly therefrom and fiber assembly provided with electret nature
JPH05195399A (en) * 1992-01-22 1993-08-03 Daiwabo Create Kk Heat bondable conjugate fiber, its fiber assembly and electreted fiber assembly
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010059585A (en) * 2008-09-05 2010-03-18 Daiwabo Holdings Co Ltd Crimped conjugate fiber, and fiber structure using the same
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
JP2011021300A (en) * 2009-07-17 2011-02-03 Daiwabo Holdings Co Ltd Crimping composite fiber and fibrous mass comprising the same
JP2011047077A (en) * 2009-08-27 2011-03-10 Es Fibervisions Co Ltd Thermal bonding conjugate fiber and nonwoven fabric using the same
US10100441B2 (en) 2009-08-27 2018-10-16 Es Fibervisions Co., Ltd. Thermal bonding conjugate fiber and nonwoven fabric using the same
JP2017106159A (en) * 2017-03-09 2017-06-15 ダイワボウホールディングス株式会社 Nonwoven fabric and cushioning material using the same
CN114622344A (en) * 2021-11-04 2022-06-14 浙江安顺化纤有限公司 Dry preparation method of non-woven fabric and application of non-woven fabric in facial mask
CN114622344B (en) * 2021-11-04 2023-08-25 浙江安顺化纤有限公司 Dry preparation method of non-woven fabric and application of non-woven fabric in mask

Also Published As

Publication number Publication date
JP4928214B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
TWI402387B (en) A crimped composite fiber and a fiber aggregate using the same
JP5436558B2 (en) Crimpable composite fiber, and fiber assembly and fiber product using the same
KR101259968B1 (en) Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
JP4104299B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
JP4928214B2 (en) Crimpable composite fiber and non-woven fabric using the same
JP2006316399A (en) Thermally adhesive conjugated fiber and its production method, and nonwoven fabric using the same
JP2013011051A (en) Polylactic acid-based composite fiber, nonwoven fabric and cushioning material using the same and method for manufacturing the same
JP4589417B2 (en) Crimpable composite fiber, method for producing the same, and nonwoven fabric using the same
JP5199537B2 (en) Polylactic acid based composite fiber and nonwoven fabric and cushion material using the same
JP5004632B2 (en) Latent crimped composite fiber and fiber assembly using the same
JP6110089B2 (en) Nonwoven fabric and cushion material using the same
JP5320197B2 (en) Crimpable composite fiber and fiber assembly using the same
JP5418936B2 (en) Realized crimpable composite fiber and fiber assembly using the same
JP5416244B2 (en) Latent crimped composite fiber and fiber assembly using the same
JP5102723B2 (en) Crimpable composite fiber and fiber structure using the same
JP5416197B2 (en) Crimpable composite fiber and non-woven fabric using the same
JP6342536B2 (en) Nonwoven fabric and cushion material using the same
JP3567892B2 (en) Thermo-adhesive conjugate fiber, non-woven fabric and molded article using the same
JP5619467B2 (en) Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2017125267A (en) Fiber structure and method of manufacturing the same, and conjugate fiber structure and cushioning material for vehicle
JP6054091B2 (en) Cushion material and composite short fiber for cushion material
JP2002173830A (en) Heat adhesive conjugated fiber, method of producing the same and formed fiber product using the same
JPH06184826A (en) Polyester-based heat bonding conjugate fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees