WO2011007875A1 - Crimped composite fiber, and fibrous mass and textile product using the same - Google Patents

Crimped composite fiber, and fibrous mass and textile product using the same Download PDF

Info

Publication number
WO2011007875A1
WO2011007875A1 PCT/JP2010/062103 JP2010062103W WO2011007875A1 WO 2011007875 A1 WO2011007875 A1 WO 2011007875A1 JP 2010062103 W JP2010062103 W JP 2010062103W WO 2011007875 A1 WO2011007875 A1 WO 2011007875A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
component
crimp
polymer
conjugate fiber
Prior art date
Application number
PCT/JP2010/062103
Other languages
French (fr)
Japanese (ja)
Inventor
岡屋洋志
Original Assignee
ダイワボウホールディングス株式会社
ダイワボウポリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウホールディングス株式会社, ダイワボウポリテック株式会社 filed Critical ダイワボウホールディングス株式会社
Priority to US13/384,124 priority Critical patent/US20120121882A1/en
Priority to JP2011522873A priority patent/JP5436558B2/en
Priority to CN2010800322132A priority patent/CN102471945B/en
Priority to EP10799933A priority patent/EP2455516A4/en
Publication of WO2011007875A1 publication Critical patent/WO2011007875A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/50Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by treatment to produce shrinking, swelling, crimping or curling of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite

Definitions

  • the present invention mainly relates to a fiber aggregate having high elasticity and high bulk recovery property, in particular, an actual crimpable conjugate fiber suitable for a nonwoven fabric, a latent crimpable conjugate fiber, and a fiber assembly and a fiber product using the same.
  • Low melting point at least partially exposed on the fiber surface in various applications such as sanitary materials, packaging materials, non-woven fabrics used in wet tissues, filters, wipers, etc., non-woven fabrics used in hard cotton, chairs, etc., molded products
  • a heat-bonded nonwoven fabric using a heat-fusible composite fiber composed of a component and a high-melting component having a melting point higher than that of the low-melting component is used.
  • nonwoven fabrics that have excellent elasticity and bulk recovery properties, that is, bulk recovery properties in the thickness direction are increasingly required as an alternative to urethane foam.
  • Various studies have been made on composite fibers suitable for excellent non-woven fabrics.
  • the composite fiber suitable for the nonwoven fabric used in the above-mentioned applications is excellent in elasticity and shape recovery of the fiber itself. It is being considered.
  • Patent Documents 1 and 2 below propose composite fibers comprising a polyester component having a melting point of 200 ° C. or higher and a polyether ester block copolymer component having a melting point of 180 ° C. or lower, so-called elastomer component.
  • elastomer component By using an elastomer component as the sheath component, when subjected to compressive deformation, the degree of freedom of the bonded portion and the durability are improved, so that a fiber having a high bulk recovery property is obtained.
  • Patent Document 3 is composed of a first component containing a polytrimethylene terephthalate (PTT) polymer and a second component containing a polyolefin polymer, particularly polyethylene, and the center of gravity of the first component in the fiber cross section Proposed crimped conjugate fiber that has been crimped by shifting it from the center of gravity.
  • PTT polytrimethylene terephthalate
  • Patent Document 3 is composed of a first component containing a polytrimethylene terephthalate (PTT) polymer and a second component containing a polyolefin polymer, particularly polyethylene, and the center of gravity of the first component in the fiber cross section Proposed crimped conjugate fiber that has been crimped by shifting it from the center of gravity.
  • Patent Documents 4 to 5 describe a crimped conjugate fiber containing a sheath component containing polybutene-1 (hereinafter also referred to as PB-1), and excellent bulk recovery using the same and improved initial bulk recovery. Proposed non-woven fabric.
  • PB-1 polybutene-1
  • a polyester ether elastomer is used as the sheath component, and this polymer has rubber-like elasticity and a large degree of freedom for deformation of the bonding point, so that a nonwoven fabric with high bulk recovery can be obtained.
  • this polyester ether elastomer is a copolymer of hard polyester and soft ether and contains a soft component having low heat resistance, it is easily softened by heat, and the bulk of the nonwoven fabric is reduced during heat processing. happenss.
  • the composite fiber using the polyester ether elastomer as the sheath component has a problem that the initial volume when made into a nonwoven fabric is small, only a high-density nonwoven fabric is obtained, and the use is limited.
  • the non-woven fabric after being compressed in a heated state or after being repeatedly compressed has the original non-woven fabric such that the bonding points between the fibers and the fibers themselves are broken, bent, or fiber strength is reduced. In comparison, there was a problem that the nonwoven fabric hardness was greatly reduced.
  • Patent Document 3 the polymer used for the core and the fiber cross section are specified, and the crimped state is specified so as to obtain a nonwoven fabric with high bulk recovery.
  • the nonwoven fabric thickness initial volume
  • the bulk recovery property particularly the initial bulk recovery property immediately after dewetting is not sufficient, and the application is limited.
  • the composite fibers proposed in Patent Documents 4 to 5 are obtained by processing a fiber web using the composite fibers into a nonwoven fabric in which constituent fibers are thermally bonded by thermal processing, or the obtained nonwoven fabrics.
  • the so-called sheath component which occupies most of the fiber surface, is composed of polybutene-1 and polypropylene, which has a higher melting point than polybutene-1, thus increasing the apparent melting point of the sheath component.
  • the heat bonding property and the strength of the nonwoven fabric after the heat bonding are not sufficient, and the temperature condition of the heat bonding process is difficult.
  • Patent Documents 1 to 5 various studies have been made on non-woven fabrics excellent in bulk recoverability, composite fibers suitable for non-woven fabrics excellent in bulk recoverability, and non-woven fabrics using the same. Decrease in recoverability is observed, and there is a problem that fibers and non-woven fabrics suitable for applications requiring high bulk recoverability even after repeated compression, such as cushioning materials, are not obtained.
  • the present invention has high elasticity and bulk recovery, high durability when repeatedly compressed, and further high elasticity and bulk recovery when used at high temperatures.
  • a crimpable conjugate fiber, and a fiber assembly and a fiber product using the same are provided.
  • the crimped conjugate fiber of the present invention is a conjugate fiber comprising a first component and a second component, wherein the first component comprises polybutene-1 and linear low-density polyethylene, The content of the linear low-density polyethylene in the component is 2 to 25% by mass, and the second component is a polymer having a melting peak temperature higher than the melting peak temperature of polybutene-1 by 20 ° C. or a melting start temperature Includes a polymer having a temperature of 120 ° C. or higher, and when viewed from the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component deviates from the center of gravity of the composite fiber.
  • the composite fiber is characterized in that it is an actual crimp that expresses a three-dimensional crimp or a latent crimp that develops a three-dimensional crimp when heated.
  • the melting start temperature means an extrapolated melting start temperature measured by a differential scanning calorimetry (DSC) measurement method defined in JIS-K-7121.
  • the melting peak temperature means a melting peak temperature obtained from a DSC curve measured according to JIS-K-7121.
  • the fiber assembly of the present invention contains 30% by mass or more of crimped conjugate fiber, and the crimped conjugate fiber is a conjugate fiber containing a first component and a second component, wherein the first component is Polybutene-1 and linear low density polyethylene, the content of the linear low density polyethylene in the first component is 2 to 25% by mass, and the second component is a melt of polybutene-1 A polymer having a melting peak temperature higher than the peak temperature by 20 ° C. or a polymer having a melting start temperature of 120 ° C. or higher, and when viewed from the fiber cross section, the first component occupies at least 20% of the composite fiber surface.
  • the first component is Polybutene-1 and linear low density polyethylene
  • the content of the linear low density polyethylene in the first component is 2 to 25% by mass
  • the second component is a melt of polybutene-1
  • centroid position of the second component is shifted from the centroid position of the composite fiber, and the composite fiber manifests a crisp crimp that develops a steric crimp, or a latent crimp that develops a steric crimp by heating. That is And butterflies.
  • the textile product of the present invention has at least a part of the fiber assembly of the present invention, and includes hard cotton, bedding, a vehicle seat, a chair, a shoulder pad, a brassiere pad, clothing, a hygiene material, a packaging material, a wet tissue, and a filter. It is characterized by being formed into a sponge-like porous wiping material, a sheet-like wiping material or padding cotton.
  • the crimped conjugate fiber of the present invention contains polybutene-1 and linear low-density polyethylene as the first component, and has a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1 as the second component.
  • a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1 as the second component.
  • a polymer or a polymer having a melting start temperature of 120 ° C. or higher a fiber excellent in spinnability, stretchability, crimp development, and the like is obtained.
  • a composite fiber excellent in heat workability which has excellent bulk recovery properties, and can be strongly heat-bonded with each other even in heat bonding at low temperature, and this A fiber assembly and a fiber product can be obtained.
  • the nonwoven fabric using the crimped conjugate fiber of the present invention is excellent in both initial bulk and bulk recoverability, such as hard cotton such as cushioning materials, hygiene materials, packaging materials, filters, cosmetic materials, and female bras. It can be suitably used for low-density nonwoven fabric products such as pads and shoulder pads.
  • the crimped conjugate fiber of the present invention can be suitably used as stuffed cotton used in various beddings such as mattresses and comforters and various clothing items, utilizing the appropriate elasticity and resilience of the fiber itself.
  • FIG. 1 shows a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention.
  • 2A to 2C show crimped forms of the crimped conjugate fiber in one embodiment of the present invention.
  • FIG. 3 shows a form of conventional mechanical crimping.
  • FIG. 4 shows a crimped form in which wavy crimps and serrated crimps are mixed in the crimped conjugate fiber of the present invention.
  • the crimped conjugate fiber of the present invention has high elasticity and bulk recovery, high durability when repeatedly compressed, and high elasticity and bulk recovery when used at high temperatures and high durability.
  • the fiber aggregate using the crimped conjugate fiber having an actual crimp of the present invention (hereinafter also referred to as an actual crimped conjugate fiber) has an initial bulkiness.
  • the fiber assembly using the crimped conjugate fiber having latent crimp of the present invention (hereinafter also referred to as latent crimped conjugate fiber) has a latent crimp when it is heat-molded by stacking a plurality of layers. As a result, the interlaced fiber between layers is improved and the elasticity and bulk recovery are further enhanced.
  • the first component contains polybutene-1 and linear low density polyethylene.
  • the first composite component is disposed so as to occupy at least 20% of the surface of the composite fiber, so that the flexibility and shape maintaining property (return to deformation) of polybutene-1 is utilized. Fiber is obtained.
  • the first component contains linear low-density polyethylene in addition to polybutene-1, so that spinnability such as uniform fiber formation and stretchability at the time of melt spinning, and defibration of raw cotton And the raw cotton crimp expression was found to be improved. That is, when melt spinning is carried out using only polybutene-1, the viscosity of the polymer discharged from the nozzle is difficult to stabilize, and it is difficult to obtain uniform fibers.
  • Polybutene-1 has a high molecular weight and is free from molecular chains.
  • the first component contains linear low density polyethylene in addition to polybutene-1
  • problems such as poor spinnability and difficult stretchability of polybutene-1 can be solved.
  • Polybutene-1 has a high molecular weight, that is, the molecular chain constituting polybutene-1 is long and the entanglement between the molecules is large, which is considered to cause the above-described problem of difficulty in stretching.
  • the linear low density polyethylene enters between the molecular chains of the high molecular weight polybutene-1, and polybutene- Since the entanglement of the molecular chains of 1 is moderately suppressed, it is estimated that the stretchability is improved.
  • the fiber assembly using the crimped conjugate fiber obtained by using a polymer containing linear low-density polyethylene as the first component occupying most of the surface portion of the crimped conjugate fiber is as described above.
  • the linear low density polyethylene contained in the first component of the crimped conjugate fiber is composed of polybutene-1 as a main component and 2 to 25% by mass of linear low-density polyethylene added to the first component.
  • a high melting point polymer which can occur when a polymer (for example, polypropylene) having a melting point higher than that of polybutene-1 is added to polybutene-1. No longer occurs.
  • the crimpable conjugate fiber of the present invention can be thermally bonded with sufficient adhesive strength even by thermal processing at a lower temperature and in a shorter time, and the post-processing of the fiber assembly including the crimped conjugate fiber. Increases sex. Furthermore, since the linear low density polyethylene is excellent in impact resistance, the fiber assembly of the present invention in which the constituent fibers are thermally bonded by the first component containing the linear low density polyethylene in the crimped conjugate fiber of the present invention. Even if the product is used for applications in which repeated load is applied, the adhesion point between the fibers does not come off and peeling does not easily occur, and the product has excellent resistance to repeated compressive residual strain and compressive residual strain.
  • the linear low density polyethylene is not particularly limited, and for example, a copolymer with an ⁇ -olefin polymerized using a Ziegler catalyst or a metallocene catalyst can be used. From the viewpoint that the molecular weight range is narrow and the branches are uniformly distributed, it is preferable to use a copolymer with an ⁇ -olefin polymerized using a metallocene catalyst.
  • Linear low-density polyethylene polymerized using a metallocene-based catalyst is characterized by a uniform molecular weight, composition, and crystallinity distribution. From the above characteristics, linear low density polyethylene polymerized using a metallocene catalyst is easily dispersed uniformly in PB-1 even in an addition amount of 2 to 25% by mass.
  • the ⁇ -olefin is not particularly limited.
  • Examples of the copolymer with ⁇ -olefin polymerized using the metallocene catalyst include, for example, “Harmolex” (registered trademark) NJ744N, “Kernel” (registered trademark) KS560T, KC571, and Ube Maruzen Polyethylene manufactured by Nippon Polyethylene. Commercially available products such as 420SD may be used.
  • the ratio (Q value) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the linear low density polyethylene in the first component is preferably 6 or less.
  • a more preferable Q value is 2 to 5, and a particularly preferable Q value is 2.2 to 3.5.
  • the first component contains linear low density polyethylene, preferably linear low density polyethylene polymerized using a metallocene catalyst, which satisfies the above Q value range. In the crimped conjugate fiber of the present invention containing polybutene-1, stretchability is improved.
  • the first component occupying most of the fiber surface contains linear low-density polyethylene, a slip effect is exerted on the fiber surface, and the resulting crimped conjugate fiber has a crimper passing property and a desired fiber length. It is preferable because the defibration of the raw cotton after cutting into raw cotton (staple fiber) is improved.
  • the density of the above linear low density polyethylene measured according to JIS-K-7112 is preferably 0.930 g / cm 3 or less. more preferably 920 g / cm 3 or less, particularly preferably 0.915 g / cm 3 or less. Within the above range, the compatibility with PB-1 is good and the heat resistance is also high.
  • the lower limit of the density of the linear low-density polyethylene is not particularly limited, but is preferably 0.870 g / cm 3 or more, more preferably 0.880 g / cm 3 or more, and particularly preferably 0.8. It is 890 g / cm 3 or more.
  • the heat resistance of the first component constituting the crimped conjugate fiber is likely to be lowered, for example, at a temperature higher than room temperature in the range of 40 to 80 ° C. There is a risk that the bulk recovery property and the compressive residual strain resistance of the material will be reduced.
  • the flexural modulus of the linear low density polyethylene measured according to JIS-K-7171 is preferably 800 MPa or less, more preferably 20 to 650 MPa, and particularly preferably 25 to 300 MPa. Most preferably, it is 30 to 180 MPa.
  • the compatibility with PB-1 is good, the heat resistance is also high, and the resulting fiber aggregate is excellent in bulk recovery and compression residual strain resistance.
  • the flexural modulus of the linear low density polyethylene When the flexural modulus of the linear low density polyethylene is increased, the flexibility of the polymer is lost, and the elasticity of the resulting crimped conjugate fiber tends to be reduced. If it exceeds 800 MPa, there is a risk that the bulk recovery property and resistance to compressive residual strain of the fiber assembly produced using the crimped conjugate fiber obtained will decrease. Further, when the bending elastic modulus of the linear low density polyethylene is increased, the melting peak temperature of the polymer tends to be lowered. When the bending elastic modulus of the linear low density polyethylene is lower than 20 MPa, the heat resistance is decreased. , The bulk recovery property of the obtained fiber aggregate at high temperature may be lowered.
  • the linear low density polyethylene preferably has a melting peak temperature of 70 to 130 ° C. determined from a DSC curve measured according to JIS-K-7121. More preferably, it is 80 to 125 ° C, and further preferably 90 ° C to 123 ° C.
  • the melting peak temperature means a melting peak temperature obtained from a DSC curve measured according to JIS-K-7121.
  • the melting peak temperature obtained from the DSC curve is also referred to as the melting point.
  • the linear low-density polyethylene is a melt flow rate (MFR) measured at 190 ° C. according to JIS-K-7210 (measurement temperature 190 ° C., load 2.16 kgf (21.18 N)). Is preferably 1 to 30 g / 10 min. A more preferred MFR 190 is 3 to 25 g / 10 min, even more preferably 5 to 20 g / 10 min. When the MFR 190 is 1 to 30 g / 10 minutes, the heat resistance is good, the bulk recovery property at high temperature is high, and the take-up property and stretchability are good.
  • MFR melt flow rate
  • the polybutene-1 used in the present invention preferably has a melting peak temperature of 115 to 130 ° C. determined from a DSC curve measured according to JIS-K-7121. More preferably, it is 120 to 130 ° C. When the melting peak temperature is 115 to 130 ° C., the heat resistance is high, and the bulk recoverability at high temperatures is good.
  • the polybutene-1 has a melt flow rate (MFR; measurement temperature 190 ° C., load 2.16 kgf (21.18 N), hereinafter referred to as MFR 190) measured in accordance with JIS-K-7210 1-30 g. / 10 minutes is preferable.
  • MFR 190 melt flow rate
  • a more preferred MFR 190 is 3 to 25 g / 10 min, even more preferably 3 to 20 g / 10 min.
  • the polybutene-1 has a high molecular weight, so that the heat resistance is good and the bulk recovery property when heated is high, which is preferable. Further, the take-up property of the spinning and the stretchability are improved.
  • polypten-1 is a main component and is contained in an amount of 70% by mass or more based on the entire first component. From the viewpoint of good productivity, cushioning properties, and good bulk recovery under high temperature, it is preferably contained in an amount of 75 to 98% by mass, more preferably 80 to 97% by mass, and more preferably 85 to 97% by mass. It is particularly preferably contained, and most preferably contained in an amount of 87 to 96% by mass.
  • polybutene-1 is spun when polybutene-1 is blended with linear low-density polyethylene that exhibits an appropriate compatibilizing effect and the compatibilizing effect on polybutene-1 is too low. Since the properties and stretchability are not improved, the problem that it is difficult to obtain a uniform composite fiber can be solved.
  • the amount of the linear low-density polyethylene added is 2 to 25% by mass, more preferably 3 to 20% by mass, based on 100% by mass of the entire first component. It is particularly preferably 15 to 15% by mass, and most preferably 4 to 12%. Within the above range, the flow characteristics of PB-1 can be improved, stable and uniform spinning can be achieved, and stretchability can be improved.
  • the first component includes polybutene-1 and linear low-density polyethylene as described above, and may further include an ethylene-ethylenically unsaturated carboxylic acid copolymer within the range not impairing the effects of the present invention. Good. Since the ethylene-ethylenically unsaturated carboxylic acid copolymer is compatible with polybutene-1 as in the case of linear low density polyethylene, the first component is an ethylene-ethylenically unsaturated carboxylic acid copolymer. Further, by including it, spinnability such as uniform fiber formation and stretchability during melt spinning can be improved.
  • the crimpable composite fiber containing the ethylene-ethylenically unsaturated carboxylic acid copolymer as the first component is used as a fiber web or a nonwoven fabric containing the fiber.
  • heat processing such as heat bonding
  • the sheath component is thinned and heat bonded at the point where the constituent fibers are heat bonded (hereinafter also referred to as heat bonding points).
  • adheresion point thinning Since the phenomenon of point shrinkage, the so-called “adhesion point thinning” (hereinafter, simply referred to as “adhesion point thinning”) is less likely to occur, it becomes possible to firmly heat-bond the constituent fibers together, and heat with higher adhesive strength. An adhesive nonwoven fabric can be obtained.
  • the ethylenically unsaturated carboxylic acid constituting the ethylene-ethylenically unsaturated carboxylic acid copolymer used in the crimped conjugate fiber of the present invention is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, ethacrylic acid, Examples thereof include fumaric acid, maleic acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride and the like.
  • ethylene-ethylenically unsaturated carboxylic acid copolymer examples include ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA), ethylene-ethacrylic acid copolymer, ethylene -Maleic acid copolymer, ethylene-fumaric acid copolymer, ethylene-itaconic acid copolymer, ethylene-maleic anhydride copolymer, ethylene-itaconic anhydride copolymer, and the like.
  • EAA ethylene-acrylic acid copolymer
  • EEMAA ethylene-methacrylic acid copolymer
  • EAA ethylene-ethacrylic acid copolymer
  • ethylene -Maleic acid copolymer ethylene-fumaric acid copolymer
  • ethylene-itaconic acid copolymer ethylene-maleic anhydride copolymer
  • ethylene-itaconic anhydride copolymer and
  • an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, and an ethylene-maleic acid copolymer are preferable, and an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer are more preferable.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer is not limited to a copolymer composed of ethylene and ethylenically unsaturated carboxylic acid, but includes, for example, two or more kinds of components containing ethylenically unsaturated carboxylic acid in ethylene. It may be a copolymer in which other components are copolymerized, including a copolymerized terpolymer (terpolymer).
  • Examples of the monomer used as the other copolymerization component include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isopropyl acrylate, nbutyl acrylate, isobutyl acrylate, and acrylic acid.
  • Ethylenic unsaturated carboxylic acid esters such as isooctyl and other acrylic acid esters, methyl methacrylate, methacrylic acid esters such as isobutyl methacrylate, maleic acid esters such as dimethyl maleate and diethyl maleate, carbon monoxide, sulfur dioxide, etc. Is mentioned.
  • the copolymer in which ethylene, ethylenically unsaturated carboxylic acid and any other copolymerization component are copolymerized is not particularly limited.
  • ethylene, maleic anhydride, and an acrylic ester are copolymerized.
  • an ethylene-acrylate-maleic acid polymer (“Bondaine” (registered trademark) manufactured by Arkema Japan).
  • the ethylenically unsaturated carboxylic acid content in the ethylene-ethylenically unsaturated carboxylic acid copolymer is 1 to 50% by mass, preferably 1 to 29% by mass.
  • acrylic acid it is preferably 5 to 25% by mass
  • methacrylic acid it is preferably 5 to 20% by mass.
  • the content of other copolymerization components in the ethylene-ethylenically unsaturated carboxylic acid copolymer is in the range of 0 to 30% by mass, preferably 0 to 20% by mass.
  • an ionomer in which a part or all of the carboxyl group is converted into a metal salt in addition to the ethylene-ethylenically unsaturated carboxylic acid copolymer itself, an ionomer in which a part or all of the carboxyl group is converted into a metal salt.
  • the metal species constituting the ionomer include monovalent metals such as lithium, sodium, and potassium, and polyvalent metals such as magnesium, calcium, zinc, copper, cobalt, manganese, lead, and iron. Or zinc is preferable.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer may be used alone or in combination of two or more.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer is not particularly limited, but can be obtained, for example, by high-pressure radical copolymerization.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer ionomer can be obtained by ionizing the ethylene-ethylenically unsaturated carboxylic acid copolymer by a conventional method.
  • the first component in the crimped conjugate fiber of the present invention contains an ethylene-ethylenically unsaturated carboxylic acid copolymer that exhibits an appropriate compatibilizing effect with respect to polybutene-1, polybutene- It is possible to solve the problem that it is difficult to obtain a uniform composite fiber caused by the low spinnability of polybutene-1, which occurs when the effect of compatibilizing to 1 is too low. Further, a composite fiber composed of the first component mainly containing polybutene-1 produced when the effect of compatibilization with polybutene-1 is too high can be obtained. When producing a heat-bonded nonwoven fabric from the obtained composite fiber, It is possible to solve the problem of adhesion points and thinness caused by thermal processing.
  • the addition amount may be 0.5 to 20% by mass when the entire first component is 100% by mass. It is preferably 1 to 15% by mass, more preferably 3 to 10% by mass, and particularly preferably 4 to 9% by mass. If it is 0.5% by mass or more, a crimped conjugate fiber excellent in thermal adhesiveness can be obtained, and the adhesive strength between the fibers does not decrease even at a high temperature, for example, a temperature of 190 ° C. or higher. There is no adhesion point or skinnyness. Moreover, by being 20 mass% or less, fiber structures, such as a nonwoven fabric, with favorable hardness retainability (bulk recovery property) are obtained.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has an MFR190 of 3 to 60 g / 10 min measured according to JIS-K-7210.
  • a more preferred MFR 190 is 5 to 40 g / 10 min, even more preferably 5 to 30 g / 10 min.
  • MFR190 is 60 g / 10 or less, the effect which suppresses the adhesion point thinning which may arise when heat-processing to the fiber web containing the obtained crimpable conjugate fiber can be improved.
  • MFR190 is 3 g / 10min or more, it is excellent in the operativity in a spinning process and a drawing process, and it becomes easy to obtain a uniform crimpable conjugate fiber.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has a melting peak temperature determined from a DSC curve measured according to JIS-K-7121 of 60 ° C. or higher, preferably 70 ° C. or higher. Is more preferable, and 70 to 120 ° C. is even more preferable.
  • the melting peak temperature is 60 ° C. or higher, the effect of suppressing the adhesion point thinness is high, and it is difficult for the cushion performance to be reduced such as a decrease in bulk recovery property and an increase in compressive strain rate due to thermal processing.
  • the melting peak temperature is 70 to 120 ° C., the effect of suppressing the adhesion point thinness and the effect of suppressing the deterioration of the cushion performance can be exhibited more effectively.
  • the ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has a softening temperature (Vicat softening point) measured according to JIS-K-7206 of 40 ° C. or higher, more preferably 50 ° C. or higher. It is particularly preferably 50 to 100 ° C.
  • the softening temperature is 40 ° C. or higher, the effect of suppressing the adhesive point thinness is high, and the cushioning performance such as the decrease in bulk recovery property and the increase in the compressive strain rate due to thermal processing is less likely to occur.
  • the softening temperature is 50 to 100 ° C., the effect of suppressing adhesion point thinning and the effect of suppressing the deterioration of cushion performance can be exhibited better.
  • the polymer that can be further blended with the first component has a polar group such as a vinyl group, a carboxyl group, and maleic anhydride in addition to the polyolefin-based polymer other than the above-mentioned polyolefin-based polymer as long as the effects of the present invention are not impaired.
  • a polar group such as a vinyl group, a carboxyl group, and maleic anhydride
  • examples thereof include copolymer polymers with olefins, various thermoplastic elastomers such as polyolefins, styrenes, and polyesters.
  • various known additives may be added to the first component as long as they do not impair the effects of the present invention and do not affect fiber productivity, nonwoven fabric productivity, thermal adhesion, and touch.
  • the first component include other polymers, known crystal nucleating agents such as organic substances or inorganic substances (for example, calcium carbonate, talc, etc.), antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers.
  • flame retardants for example, inorganic compounds such as halogen-based, phosphorus-based, non-halogen-based, antimony trioxide, and the like
  • antibacterial agents for halogen-based, phosphorus-based, non-halogen-based, antimony trioxide, and the like
  • plasticizers plasticizers, softeners, and the like
  • the addition amount of the crystal nucleating agent is not particularly limited, but considering the productivity of the fiber, it is preferably added at a ratio of 20% by mass or less with respect to the total mass of the first component, and added at a rate of 10% by mass or less. More preferably.
  • the first component constituting the crimped conjugate fiber of the present invention has the above-mentioned characteristics, that is, contains 70% by mass or more, preferably 75% by mass or more of PB-1 as a main component of the first component, It contains 2 to 25% by mass of density polyethylene.
  • the melting point of the first component after spinning becomes a low temperature, and the phenomenon that the apparent melting point of the first component is increased is unlikely to occur when polypropylene is added to PB-1 instead of linear low density polyethylene. .
  • DSC differential scanning calorimeter
  • the crimped conjugate fiber of the present invention has a melting point (Tf1) of the first component after spinning of 140 ° C. or less, preferably 90 to 135 ° C., obtained from a DSC curve measured according to JIS-K-7121. More preferably, it is 100 to 130 ° C, particularly preferably 115 to 130 ° C, and most preferably 120 ° C to 125 ° C.
  • Tf1 of the first component after spinning is within this range, when producing a fiber assembly such as a nonwoven fabric by heat bonding, sufficient adhesive strength can be obtained at a lower temperature in a shorter time.
  • a heat-adhesive fiber assembly having a thermal adhesive property can be obtained.
  • the first component has a so-called double peak in which a plurality of melting point peaks caused by the first component appear at a temperature lower than the melting point (Tf2) after spinning of the second component, which occurs when polypropylene is added. If this is the case, there is a fear that a fiber assembly having insufficient adhesive strength at a low temperature cannot be obtained.
  • the lower limit of the melting point (Tf1) of the first component after spinning is not particularly limited, but if it is lower than 90 ° C., the heat resistance and the bulk recovery property at high temperatures may be lowered.
  • the melting point of the first component of the composite fiber after spinning has a plurality of peaks due to the first component in the heat of fusion curve, so-called double peak.
  • the shape is not preferred when performing heat bonding processing. Therefore, it easily overlaps with the melting point after spinning of PB-1, which is the main component of the first component, and the peak due to the first component is present in the heat of fusion curve.
  • a linear low density polyethylene having a single so-called single peak is preferred.
  • the second component of the crimped conjugate fiber of the present invention may be a polymer having a melting peak temperature 20 ° C. or higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher.
  • a polymer excellent in bending strength and bending elasticity is preferable.
  • polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, nylon 6, nylon 66, nylon 11, polyamides such as nylon 12, polyolefin polymers such as polypropylene and polymethylpentene, polycarbonate, polystyrene and the like.
  • a polymer When using said polymer as a 2nd component, a polymer may be used independently and may be used in combination of 2 or more type.
  • the polymer used for the second component is preferably a polyester polymer or a polyolefin polymer.
  • the crimped conjugate fiber of the present invention can be easily recycled.
  • the crimpable conjugate fiber of the present invention using the polyester-based polymer as the second component is composed of the second component constituting the vicinity of the center of the conjugate fiber and the melting point of the first component occupying most of the fiber surface.
  • the second component maintains its shape even when the composite fiber, fiber web, and nonwoven fabric are heat bonded at the temperature at which the first component is sufficiently heat bonded, so that sag due to thermal processing is unlikely to occur.
  • it is easy to control the processing temperature in the heat processing step, and it is easy to obtain a fiber assembly having high adhesive strength.
  • a conjugate fiber using a polyester polymer as the polymer constituting the second component will be described.
  • a polyester polymer having a melting peak temperature of 20 ° C. or higher than the melting peak temperature of polybutene-1, or a melting start temperature of 120 ° C. or higher.
  • the polyester polymer is not particularly limited, but a polymer excellent in bending strength and flexural elasticity is preferable. Therefore, polyethylene terephthalate (hereinafter also referred to as PET) and polytrimethylene terephthalate (hereinafter also referred to as PTT).
  • polybutylene terephthalate (hereinafter also referred to as PBT), more preferably polyethylene terephthalate or polytrimethylene terephthalate.
  • PBT polybutylene terephthalate
  • a polyester polymer is used as the second component in the crimped conjugate fiber of the present invention because it is easy to select and obtain a polymer having physical properties suitable for the use of the fiber, and the bulk recovery of the fiber is high. It is most preferable to use polyethylene terephthalate.
  • the intrinsic viscosity [ ⁇ ] of the polyester polymer is preferably 0.4 to 1.2. More preferably, it is 0.5 to 1.1. When the intrinsic viscosity is less than 0.4, the molecular weight of the polymer is too low, so that not only the spinnability is inferior, but also the fiber strength is low and the practicality is poor. If the intrinsic viscosity exceeds 1.2, the molecular weight of the polymer becomes large and the melt viscosity becomes too high, so that a single yarn breakage occurs and good spinning becomes difficult, which is not preferable. In addition, by setting the intrinsic viscosity [ ⁇ ] in the above range, a composite fiber excellent in productivity and excellent in bulk elasticity can be obtained.
  • the intrinsic viscosity [ ⁇ ] here is a value obtained by measuring with an Ostwald viscometer as an o-chlorophenol solution at 35 ° C., based on the following formula 1.
  • ⁇ r is a value obtained by dividing the viscosity at 35 ° C. in a diluted solution of a sample dissolved in o-chlorophenol having a purity of 98% or more by the concentration of the whole solvent measured at the same temperature, and C Is the solute weight value in grams per 100 ml of the solution.
  • the melting peak temperature obtained from the DSC curve of the polyester measured according to JIS-K-7121 is preferably 180 ° C to 300 ° C. More preferably, it is 200 ° C. to 270 ° C.
  • the melting peak temperature is 180 to 300 ° C.
  • the weather resistance is high, and the flexural modulus of the resulting composite fiber can be increased.
  • a composite fiber using a polyolefin polymer as the polymer constituting the second component will be described.
  • a polyolefin-based polymer having a melting peak temperature that is 20 ° C. or more higher than the melting peak temperature of polybutene-1, or a melting start temperature of 120 ° C. or more
  • the polyolefin polymer is not particularly limited, but is preferably a polypropylene (hereinafter also referred to as PP) because a polymer excellent in bending strength and bending elasticity is preferable.
  • the polypropylene is not particularly limited, and for example, within a range that does not impair the properties necessary for a homopolymer, a random copolymer, a block copolymer, or a mixture thereof, or a nonwoven fabric or cushioning material such as heat resistance and bulk recovery properties. If there is, it is possible to use polypropylene in which an elastomer component such as synthetic rubber is dispersed or mixed in polypropylene, but considering heat shrinkability, it is a homopolymer (homopolypropylene) or a block copolymer. It is preferable. In particular, homopolypropylene is advantageous in terms of bulk recovery and is preferred.
  • Examples of the random copolymer and block copolymer include a copolymer of propylene and at least one ⁇ -olefin selected from the group consisting of ethylene and an ⁇ -olefin having 4 or more carbon atoms.
  • the ⁇ -olefin having 4 or more carbon atoms is not particularly limited, and examples thereof include 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, and 4,4-dimethyl. -1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like.
  • the polyolefin polymer is particularly preferably homopolypropylene when the polyolefin polymer is used as the second component.
  • the content of homopolypropylene is 73 to 100, assuming that the entire second component is 100% by mass. % By mass, more preferably 75 to 100% by mass, and particularly preferably 85 to 100% by mass.
  • the polypropylene has a melt flow rate (MFR) measured according to JIS-K-7210 (measurement temperature 230 ° C., load 2.16 kgf (21.18 N)) Is preferably 3 to 40 g / 10 min.
  • MFR melt flow rate
  • a more preferred MFR 230 is 5 to 35 g / 10 min.
  • the MFR230 is 3 to 40 g / 10 min, the heat resistance is good, the bulk recovery property at high temperatures is high, and the take-up property and stretchability are good.
  • the ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene is preferably 2 or more. A more preferable Q value is 3 to 12.
  • the ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene in the second component is more preferable depending on the type of steric crimps that the resulting crimped conjugate fiber exhibits. A value can be selected.
  • the Q value of polypropylene in the second component is preferably 4-12. More preferably, it is ⁇ 9.
  • the Q value is preferably 3 to 5.
  • a polyolefin-based polymer such as polypropylene
  • it may further contain a thermoplastic elastomer in addition to the polyolefin-based polymer having a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1.
  • a thermoplastic elastomer in addition to the polyolefin-based polymer having a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1.
  • it has excellent bulk recovery such as cushioning materials and clothing pads, as well as constituent fibers of fiber assemblies suitable for applications that require strain resistance against repeated loading, and the elasticity, shape recovery, and lightness of the fibers themselves.
  • thermoplastic elastomer is contained in the second component that contributes to the strainability, in other words, the component existing inside more in the core-sheath type composite fiber (also called the core component in the core-sheath type composite fiber including the eccentric type) .
  • thermoplastic elastomers can be used, and styrene elastomers, olefin elastomers, ester elastomers, amide elastomers, urethane elastomers, and vinyl chloride elastomers can be used.
  • styrene elastomers olefin elastomers, ester elastomers, amide elastomers, urethane elastomers, and vinyl chloride elastomers
  • the melting peak temperature of the polybutene-1 is 20 ° C. or higher in consideration of recyclability after use.
  • the polyolefin polymer having a melting peak temperature is a polypropylene homopolymer, random copolymer, block copolymer, or a mixture thereof, and an olefin thermoplastic elastomer is used as the thermoplastic elastomer.
  • Olefin-based thermoplastic elastomers include polyolefin resins such as polyethylene and polypropylene as hard segments, and ethylene-propylene rubbers such as ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), and ethylene-propylene-diene rubber (EPDM).
  • Olefin-based thermoplastic elastomers that are commercially available are, for example, “Milastomer” (registered trademark) and “Notio” (registered trademark) manufactured by Mitsui Chemicals, Sumitomo Chemical Co., Ltd. “Esporex” (registered trademark), “Thermo Run” (registered trademark), “Zeras” (registered trademark), etc. manufactured by Mitsubishi Chemical Corporation can be used.
  • a thermoplastic elastomer such as an olefin thermoplastic elastomer is added to the second component.
  • the second component containing the polyolefin polymer has bending elasticity that is considered to be derived from the thermoplastic elastomer, and the bending tends to be insufficient with the composite fiber having only the polyolefin polymer as the second component. It is presumed that the recovery property and the repeated bending fatigue resistance are improved, and the repeated compression durability required for the cushion material and the like is improved. Furthermore, since the thermoplastic elastomer to be added is an olefin-based thermoplastic elastomer, both the first component and the second component are composed of a polyolefin-based polymer, so that the fiber assembly after use can be easily recycled.
  • the olefin thermoplastic elastomer added to the second component is an ⁇ -olefin containing an ⁇ -olefin rubber-like polymer as a soft segment.
  • An olefin-based thermoplastic elastomer is preferable.
  • the olefin thermoplastic elastomer and ⁇ -olefin thermoplastic elastomer are preferably olefin thermoplastic elastomers polymerized using a metallocene catalyst.
  • the ⁇ -olefin rubber-like polymer is not particularly limited, but for example, a copolymer of ethylene and an ⁇ -olefin having 3 to 20 carbon atoms is preferably used.
  • the ⁇ -olefin include propylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, Examples include 1-dodecene, 1-tetradecene, 1-octadecene and the like.
  • polyolefin polymers such as a polypropylene and a polypropylene
  • polypropylene For example, a homopolymer, a random copolymer, a block copolymer, or mixtures thereof can be used.
  • the random copolymer and block copolymer include a copolymer of propylene and at least one ⁇ -olefin selected from the group consisting of ethylene and an ⁇ -olefin having 4 or more carbon atoms.
  • the ⁇ -olefin having 4 or more carbon atoms is not particularly limited, and examples thereof include 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, and 4,4-dimethyl. -1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like.
  • the content of the olefin-based thermoplastic elastomer added to the second component is preferably 3-25 when the entire second component is 100% by mass. % By weight, more preferably 3 to 20% by weight, particularly preferably 5 to 15% by weight.
  • the addition of the elastomer component to the second component causes the entire second component to exhibit elasticity. The repeated compressive residual strain resistance and the compressive residual strain resistance of the fiber assembly using the compressible conjugate fiber can be enhanced.
  • the repetitive compression residual strain resistance is not adversely affected on the spinnability and stretchability of the crimped conjugate fiber, This is a crimped conjugate fiber capable of obtaining a fiber aggregate having excellent resistance to compression residual strain.
  • the density of the olefinic thermoplastic elastomer is preferably 0.8 to 1.0 g / cm 3 , and more preferably 0.85 to 0.88 g / cm 3 . If it is within the above range, it is excellent in heat resistance, and in a fiber assembly using crimped conjugate fibers, if it is the same volume, a lighter fiber assembly can be obtained, so it is preferably used for applications where weight reduction is required. It is done.
  • the Shore A hardness measured using a type A durometer is preferably 50 to 95, more preferably 60 to 90, and more preferably 65 to 85. It is particularly preferred.
  • the olefinic thermoplastic elastomer added to the second component has a well-balanced durability and heat resistance against repeated bending of nonwoven fabrics using the crimped conjugate fiber obtained by satisfying the above range. It becomes. If the Shore A hardness is less than 50, the added olefinic thermoplastic elastomer itself is too soft, so that the resulting crimped conjugate fiber and fiber aggregate are easily deformed, and the bending recovery property and bulk recovery property are poor. Can be a thing.
  • the olefinic thermoplastic elastomer to be added is too hard, so the bending elasticity resulting from the addition of the olefinic thermoplastic elastomer to the second component is not exhibited, and bending recovery is achieved. There is a tendency that the bulk recovery property and the bulk recovery property when repeatedly compressed are reduced.
  • the melting peak temperature of the olefinic thermoplastic elastomer used in the present invention is not particularly limited, heat treatment in producing a fiber assembly from the obtained crimped conjugate fiber, use of the fiber assembly, and fiber assembly
  • the melting peak temperature of the olefinic thermoplastic elastomer is preferably 70 ° C. or higher and 170 ° C. or lower. More preferably, it is 100 ° C. or higher and 160 ° C. or lower, and particularly preferably higher than the melting peak temperature of polybutene-1 contained in the first component and 160 ° C. or lower.
  • the melting peak temperature of the olefinic thermoplastic elastomer contained in the second component is 70 ° C. or higher and 170 ° C.
  • the heat resistance is high, and when obtaining a fiber aggregate from the crimped conjugate fiber obtained. Even in the heat treatment to be performed, the bulk is hardly reduced, and a bulky fiber aggregate can be easily obtained. Further, when the fiber assembly is actually used, the bulk recoverability at high temperature is good, and therefore, the crimped conjugate fiber and the fiber assembly are particularly suitable for applications requiring heat resistance.
  • the melt flow rate of the olefinic thermoplastic elastomer is not particularly limited, but is measured according to JIS-K-7210 (MFR; measurement temperature 230 ° C., load 2.16 kgf (21.18 N), In this case, it is preferably 1 to 30 g / 10 min. A more preferred MFR 230 is 3 to 20 g / 10 min, and a particularly preferred MFR 230 is 5 to 15 g / 10 min.
  • MFR230 of the olefinic thermoplastic elastomer is within the above range, the take-up property and the stretchability are improved.
  • the melting peak temperature satisfies the above range in combination with MFR230, the olefinic thermoplastic elastomer to be used has good heat resistance.
  • the crimped conjugate fiber and the fiber assembly are particularly suitable for applications requiring heat resistance.
  • thermoplastic elastomers that satisfy the above-mentioned density, Shore A hardness (Shore A hardness), melting peak temperature, and melt flow rate.
  • olefinic thermoplastic elastomers polymerized using a metallocene catalyst Is preferably used.
  • the crystal structure and amorphous structure portions in the elastomer are dispersed in a size of 300 nm to 1 ⁇ m.
  • the hard segment and the soft segment are elastomers of the above size and dispersed in the polymer, the bending elasticity of the elastomer itself and the bending elasticity and bulk recovery of fibers and nonwoven fabrics containing the elastomer are poor, and in addition, melt spinning tends to be difficult There is.
  • melt spinning tends to be difficult There is.
  • the crystal structure and amorphous structure portions in the elastomer are dispersed in a size of 5 to 50 nm.
  • the resulting crimpable conjugate fiber has high heat resistance, bulk recovery properties, and strain resistance after repeated deformation. It tends to be excellent.
  • the olefinic thermoplastic elastomer polymerized using the metallocene catalyst include “Notio” (registered trademark) manufactured by Mitsui Chemicals, Inc., but are not limited thereto.
  • the two components can be further blended with a polymer.
  • the above-mentioned second component may be added with various known additives as long as the effects of the present invention are not hindered and the fiber productivity, the nonwoven fabric productivity, the thermal adhesiveness, and the touch are not affected. Is possible.
  • Additives that can be added to the second component include known crystal nucleating agents, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, flame retardants, antibacterial agents, lubricants, plasticizers, softeners, etc. It can be mixed depending on the application.
  • FIG. 1 shows a schematic diagram of a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention.
  • the first component 1 is disposed around the second component 2, and the first component 1 occupies at least 20% of the surface of the composite fiber 10. As a result, the surface of the first component 1 is melted during thermal bonding.
  • the gravity center position 3 of the second component 2 is shifted from the gravity center position 4 of the composite fiber 10, and the ratio of the shift (hereinafter also referred to as the eccentricity ratio) is obtained by enlarging the fiber cross section of the crimped composite fiber with an electron microscope or the like.
  • the ratio of the shift hereinafter also referred to as the eccentricity ratio
  • the eccentric core-sheath type shown in FIG. As the fiber cross section in which the center of gravity position 3 of the second component 2 is deviated from the center of gravity position 4 of the composite fiber, the eccentric core-sheath type shown in FIG. Depending on the case, even a multi-core type may be used in which multi-core portions are gathered and are shifted from the center of gravity of the fiber.
  • an eccentric core-sheath fiber cross section is preferable in that desired wave shape crimps and / or spiral crimps can be easily expressed.
  • the eccentricity ratio of the eccentric core-sheath type composite fiber is preferably 5 to 50%. A more preferable eccentricity is 7 to 30%.
  • the shape of the second component 2 in the fiber cross section may be oval, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped or the like other than circular, and the shape of the composite fiber 10 in the fiber cross-section
  • an elliptical shape, a Y shape, an X shape, a well shape, a polygonal shape, a star shape, or a hollow shape may be used.
  • the first component is arranged as the sheath component of the conjugate fiber
  • the second component is arranged as the core component
  • the center of gravity of the second component When the position is an eccentric core-sheath structure shifted from the center of gravity of the composite fiber, the composite ratio (core / sheath) of the second component and the first component is preferably 8/2 to 2/8 in volume ratio. More preferably, it is 7/3 to 3/7, and even more preferably 6/4 to 4/6.
  • the second component serving as the core component mainly contributes to the bulk recovery property
  • the first component serving as the sheath component mainly contributes to the strength of the nonwoven fabric and the hardness of the nonwoven fabric.
  • the composite ratio is 8/2 to 2/8, both the strength and hardness of the nonwoven fabric and the bulk recoverability can be achieved.
  • the first component that is a sheath component is too much, the strength of the nonwoven fabric is increased, but the resulting nonwoven fabric tends to be hard and the bulk recovery is also poor.
  • the second component serving as the core component increases too much, the adhesion point decreases too much, and the strength of the nonwoven fabric tends to decrease, and the bulk recovery property tends to deteriorate.
  • FIG. 2 shows the crimped form of the crimped conjugate fiber in one embodiment of the present invention.
  • the composite fiber expresses a three-dimensional crimp means that the crimp shape in which the crimpable conjugate fiber expresses includes a wave crimp and / or a spiral crimp.
  • the corrugated crimp referred to in the present invention refers to a curved crest as shown in FIG. 2A.
  • the spiral crimp indicates that the peak portion of the crimp as shown in FIG. 2B is spirally curved. Crimps in which corrugated crimps and spiral crimps are mixed as shown in FIG.
  • a crimp in which a sharp crimp of a mechanical crimp and a wave crimp are mixed and although not shown in the figure, a sharp crimp of a mechanical crimp and a spiral crimp.
  • a sharp crimp of a mechanical crimp and a spiral crimp are included in the crimped form of the three-dimensional crimp that the crimped conjugate fiber of the present invention develops.
  • the crimpable conjugate fiber of the present invention particularly the crimping in which the wave-shaped crimp and the spiral crimp shown in FIG. 2C are mixed can satisfy both the card passing property and the initial bulk and bulk recovery properties. Is preferable.
  • a first component comprising polybutene-1 and linear low-density polyethylene, a polymer having a melting peak temperature 20 ° C. higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher.
  • a second component containing.
  • the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is displaced from the center of gravity of the composite fiber, for example, an eccentric core-sheath type composite
  • the first component and the second component are supplied to the nozzle, and the second component is melt-spun at a spinning temperature of 220 to 350 ° C., and the first component is melt-spun at a spinning temperature of 200 to 300 ° C.
  • the spinning temperature of the second component is selected according to the type of polymer. If a polyolefin polymer such as polypropylene or polymethylpentene is used, the spinning temperature is 220 ° C.
  • polyethylene terephthalate polytrimethylene terephthalate
  • polytrimethylene terephthalate poly If a polyester polymer such as butylene terephthalate is used, it is preferable to perform melt spinning at a spinning temperature of 240 to 350 ° C.
  • the first component and the second component are supplied to the eccentric core-sheath type composite nozzle at the above spinning temperature and taken up at a take-up speed of 100-1500 m / min to obtain an unstretched spun filament with a fineness of 2-120 dtex.
  • stretching is performed at a stretching temperature of 40 ° C. or higher and lower than the melting point of the first component at a stretching ratio of 1.8 times or higher.
  • a more preferable lower limit of the stretching temperature is 50 ° C. or higher.
  • a more preferable upper limit of the stretching temperature is a temperature 10 ° C. lower than the melting point of the first component.
  • the stretching temperature is less than 40 ° C., crystallization of the first component is difficult to proceed, so that thermal shrinkage tends to increase or bulk recovery properties tend to decrease. If the stretching temperature is equal to or higher than the melting point of the first component, the fibers tend to be fused.
  • a more preferable lower limit of the draw ratio is 2 times.
  • a more preferable upper limit of the draw ratio is 4 times. When the draw ratio is 1.8 times or more, the draw ratio is not too low, and it becomes easy to obtain a fiber in which the above-described wave-shaped crimp and / or spiral crimp are expressed, and the initial bulk and the rigidity of the fiber itself are obtained. However, it is not inferior in nonwoven fabric processability and bulk recoverability such as card passing property.
  • the stretching method is not particularly limited, and wet stretching is performed while being heated with a high-temperature liquid such as high-temperature hot water, dry stretching is performed while being heated in a high-temperature gas or a high-temperature metal roll, and 100 ° C. or higher. It is possible to perform a known stretching process such as steam stretching in which stretching is performed while heating the fiber under normal pressure or pressurized condition. Among these, wet stretching using warm water is preferable because productivity, economy, and the whole unstretched fiber bundle can be easily and uniformly heated. In addition, before and after the stretching, annealing may be performed in an atmosphere such as dry heat, wet heat, and steam at 90 to 120 ° C. as necessary.
  • the melting peak temperature of the polybutene-1 contained in the second component constituting the actual crimpable conjugate fiber is 20
  • Polyolefin polymers such as homopolypropylene, ethylene-propylene copolymer, and ethylene-butene-1-propylene terpolymer are polymers having a melting peak temperature higher than °C or a polymer having a melting start temperature of 120 °C or higher.
  • the stretching temperature is preferably 40 ° C. or higher and lower than the melting peak temperature of polybutene-1 contained in the first component, more preferably 50 ° C. or higher and 100 ° C. or lower, and 60 ° C.
  • the stretching temperature is 60 ° C.
  • the melting peak temperature of polybutene-1 contained in the first component is preferably not higher than the melting peak temperature of polybutene-1 contained in the first component, more preferably not lower than 70 ° C. and not higher than 100 ° C., particularly preferably not lower than 75 ° C. and not higher than 95 ° C.
  • a crimp of 5 to 25 crimps / 25 mm is applied using a known crimper such as a stuffer box type crimper.
  • a more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm.
  • the crimped shape after passing through the crimper may be a serrated crimp and / or a corrugated crimp. When the number of crimps is less than 5 pieces / 25 mm, the card passing property tends to deteriorate, and the initial bulk and bulk recoverability of the nonwoven fabric tend to deteriorate.
  • the annealing treatment is performed at a temperature at which the three-dimensional crimp is developed at a temperature at which the unstretched fiber bundle is not fused.
  • the preferred temperature range is 90 to 120 ° C. within the range of dry heat, wet heat, or steam. It is preferable to carry out the annealing treatment under the atmosphere.
  • the fiber treatment agent is applied and then crimped by a crimping machine and dried simultaneously with the annealing treatment in a dry heat atmosphere at 90 to 120 ° C., because the process can be simplified.
  • the annealing treatment is performed at 90 ° C. or higher, the dry heat shrinkage rate is not increased, and a predetermined actual crimp is easily obtained, the formation of the resulting nonwoven fabric is not disturbed, and the productivity can be improved.
  • a more preferred treatment temperature range is 90 to 115 ° C., and it is particularly preferred to carry out at 95 to 110 ° C.
  • the manifest crimpable conjugate fiber obtained by the above method mainly has at least one kind of crimp selected from a wave crimp and a spiral crimp shown in FIG.
  • It has a kind of crimp, and particularly preferably has at least one kind of crimp selected from only a wave crimp, only a spiral crimp, and a crimp in which a wave crimp and a spiral crimp are mixed.
  • Crimp expression state is preferably, at least one kind of crimp selected from a wave crimp and a spiral crimp shown in FIG.
  • the number of crimps of the above-mentioned actual crimpable composite fiber is 5/25 mm or more and 25/25 mm or less, it is possible to obtain a bulky nonwoven fabric without deteriorating card passing properties. It is possible and preferable. And it cut
  • a more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm.
  • the above-described actual crimpable conjugate fiber is manifested by manifesting at least one type of three-dimensional crimp selected from corrugated crimps and spiral crimps by manifesting crimps in the composite fiber, and by manifesting the manifest crimps. have.
  • it may be an actual crimp in which a three-dimensional crimp is completely manifested, or an actual crimp that has a slight possibility of the occurrence of a crimp (the occurrence of crimp is generated when heat is applied to the fiber). It may be.
  • heat is applied to the fibers (for example, when a temperature to be processed into a nonwoven fabric described later is applied), if the number of crimps exceeds 25/25 mm, the card passing property may be reduced. Yes, not preferred.
  • a first component comprising polybutene-1 and linear low-density polyethylene, a polymer having a melting peak temperature 20 ° C. higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher.
  • a second component containing.
  • the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is displaced from the center of gravity of the composite fiber, for example, an eccentric core-sheath type composite
  • the first component and the second component are supplied to the nozzle, and the second component is melt-spun at a spinning temperature of 220 to 350 ° C., and the first component is melt-spun at a spinning temperature of 200 to 300 ° C.
  • the spinning temperature of the second component is selected according to the type of polymer. If a polyolefin polymer such as polypropylene or polymethylpentene is used, the spinning temperature is 220 ° C.
  • polyethylene terephthalate polytrimethylene terephthalate
  • polytrimethylene terephthalate poly If a polyester polymer such as butylene terephthalate is used, it is preferable to perform melt spinning at a spinning temperature of 240 to 350 ° C.
  • the first component and the second component are supplied to the eccentric core-sheath type composite nozzle at the above spinning temperature and taken up at a take-up speed of 100-1500 m / min to obtain an unstretched spun filament with a fineness of 2-120 dtex.
  • the stretching temperature is set to 40 ° C. or higher and lower than the melting point of the first component, and the stretching process is performed at a stretch ratio of 1.5 times or more.
  • a more preferable lower limit of the stretching temperature is 50 ° C. or higher.
  • a more preferable upper limit of the stretching temperature is a temperature 10 ° C. lower than the melting point of the first component.
  • the stretching temperature is less than 40 ° C., crystallization of the first component is difficult to proceed, so that thermal shrinkage tends to increase or bulk recovery properties tend to decrease. If the stretching temperature is equal to or higher than the melting point of the first component, the fibers tend to be fused.
  • a more preferable lower limit of the draw ratio is 2 times.
  • a more preferable upper limit of the draw ratio is 4 times. When the draw ratio is 1.5 times or more, the draw ratio is not too low, and when heat-treated, there is a tendency that crimps are likely to appear, the initial bulk and the rigidity of the fiber itself are not reduced, card passing properties, etc. The nonwoven fabric processability and bulk recovery are not inferior.
  • the stretching method is not particularly limited, and wet stretching is performed while being heated with a high-temperature liquid such as high-temperature hot water, dry stretching is performed while being heated in a high-temperature gas or a high-temperature metal roll, and 100 ° C. or higher. It is possible to perform a known stretching process such as steam stretching in which stretching is performed while heating the fiber under normal pressure or pressurized condition. Among these, wet stretching using warm water is preferable because productivity, economy, and the whole unstretched fiber bundle can be easily and uniformly heated.
  • a high-temperature liquid such as high-temperature hot water
  • dry stretching is performed while being heated in a high-temperature gas or a high-temperature metal roll, and 100 ° C. or higher.
  • a known stretching process such as steam stretching in which stretching is performed while heating the fiber under normal pressure or pressurized condition.
  • wet stretching using warm water is preferable because productivity, economy, and the whole unstretched fiber bundle can be easily and uniformly heated.
  • the melting peak temperature of the polybutene-1 contained in the second component constituting the latent crimpable conjugate fiber is 20
  • Polymers having a melting peak temperature higher than °C or a polymer having a melting start temperature of 120 °C or more are polyolefins such as propylene homopolymer, ethylene-propylene copolymer and ethylene-butene-1-propylene terpolymer
  • the stretching temperature is preferably 40 ° C. or higher and lower than the melting peak temperature of polybutene-1 contained in the first component, more preferably 50 ° C. or higher and 100 ° C.
  • the melting peak temperature of the polybutene-1 contained in the second component constituting the latent crimpable conjugate fiber is 60 ° C.
  • the melting peak temperature of polybutene-1 contained in the first component is preferably not higher than the melting peak temperature of polybutene-1 contained in the first component, more preferably not lower than 70 ° C. and not higher than 100 ° C., particularly preferably not lower than 75 ° C. and not higher than 95 ° C.
  • a crimp of 5 to 25 crimps / 25 mm is applied using a known crimper such as a stuffer box type crimper.
  • a more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm. If the number of crimps is less than 5 pieces / 25 mm or the number of crimps exceeds 25 pieces / 25 mm, the card passing property may be deteriorated.
  • dry heat, wet heat, or steam at 50 to 100 ° C., preferably 60 to 90 ° C., more preferably 60 to 80 ° C., particularly preferably 60 to 75 ° C. It is preferable to carry out the annealing treatment under the atmosphere. Specifically, after applying the fiber treatment agent, crimping is performed with a crimping machine, and the drying process is performed simultaneously with the annealing process in a dry heat atmosphere of 50 to 90 ° C., because the process can be simplified. preferable.
  • the annealing temperature By setting the annealing temperature to 50 to 90 ° C., a desired heat shrinkage rate can be obtained, and a latent crimpable conjugate fiber that exhibits steric crimps when heat-treated can be obtained. Moreover, the fiber with high card passage property can be obtained.
  • the crimped conjugate fiber of the present invention that is, the actual crimped conjugate fiber or latent crimped conjugate fiber of the present invention, is dried by performing the above-mentioned annealing treatment, and then the filament is cut according to the use.
  • the fiber length to be cut is 1 to 120 mm, it is selected according to the application, and after producing the fiber web with a card machine, the nonwoven fabric is manufactured by a known nonwoven fabric manufacturing method such as air-through method, needle punch method, hydroentanglement method, etc. Is cut to a fiber length of 20 to 100 mm, preferably 30 to 90 mm, more preferably 40 to 80 mm.
  • the fiber length is preferably cut to 1 to 40 mm, preferably 1 to 30 mm, more preferably 3 to 25 mm.
  • the fiber length is preferably cut to 1 to 20 mm, preferably 1 to 10 mm, more preferably 3 to 8 mm.
  • the crimped conjugate fiber of the present invention can be used as it is without cutting the annealed filament depending on the application.
  • the crimped conjugate fiber of the present invention that is, the actual crimped conjugate fiber or the latent crimped conjugate fiber of the present invention is not particularly limited in its fineness and is used as a substitute material for urethane foam.
  • Mattresses such as cotton and bedding, seats for vehicles and various chairs, cushioning materials for clothing such as shoulder pads and bra pads, hygiene materials, packaging materials, wet tissues, filters, sponge-like porous wiping materials, sheet-like wiping Finished with fineness suitable for each use, such as various non-woven fabrics such as materials, various bedding such as comforters and mattresses that utilize the elasticity and shape recovery of composite fibers, and use as cotton padded in clothing articles Is preferably 1 to 60 dtex because it is excellent in elasticity, bulk recovery when made into a non-woven fabric, and tactile sensation.
  • a more preferable fineness range is 2 to 50 dtex, 4 to 30 dtex is particularly preferable, and 4 to 20 dtex is most preferable.
  • the fiber assembly of the present invention contains at least 30% by mass of the crimped conjugate fiber.
  • the crimped conjugate fiber is contained in an amount of 30% by mass or more, the elasticity and bulk recovery of the fiber assembly can be maintained high.
  • the fiber aggregate include a knitted fabric, a woven fabric, a nonwoven fabric, a stuffing, a pad, and a fiber web.
  • the fiber aggregate preferably contains 30 to 100% by mass of the crimped conjugate fiber and 0 to 70% by mass of fibers other than the crimped conjugate fiber.
  • the fiber other than the crimped conjugate fiber contained in the fiber assembly is not particularly limited as long as it does not hinder the performance of the crimped conjugate fiber. For example, at least 1 type of fiber chosen from a synthetic fiber, a chemical fiber, a natural fiber, and an inorganic fiber is included.
  • the production method of the fiber aggregate containing the crimped conjugate fiber of the present invention is not particularly limited, and after forming a fiber web by a known method, it becomes known such as an air-through method, a needle punch method, a hydroentanglement method, or the like.
  • the crimped conjugate fiber disclosed in Japanese Patent Application Laid-Open No. 2001-207360 and Japanese Patent Application Laid-Open No. 2002-242061 is also referred to as a ball-like cotton (fiber ball).
  • the above-mentioned ball-shaped cotton is blown into a mold and heat-treated to form a fiber aggregate having a predetermined shape.
  • a method for producing a nonwoven fabric after forming a fiber web is preferred.
  • a fiber web form which comprises the nonwoven fabric of this invention a parallel web, a semi-random web, a random web, a cross lay web, a Chris cross web, an air lay web etc. are mentioned.
  • the said fiber web exhibits a still higher effect, when a 1st component adhere
  • the fiber web may be subjected to a needle punching process or a hydroentanglement process as necessary before thermal processing.
  • the heat processing means is not particularly limited as long as the function of the crimped conjugate fiber of the present invention is sufficiently exhibited, such as a hot air through heat treatment machine, a hot air up-and-down heat treatment machine, and an infrared heat treatment machine. It is preferable to use a heat treatment machine that does not require much pressure such as wind pressure.
  • the fiber that can be blended with the fiber web using the crimped conjugate fiber of the present invention (hereinafter also referred to as mixed fiber) is not particularly limited as long as it does not lose the performance of the crimped conjugate fiber of the present invention. Not.
  • single fibers of polyester such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, polyethylene such as low density polyethylene, high density polyethylene, linear low density polyethylene
  • polypropylene a single fiber of polypropylene such as isotactic, atactic and syndiotactic polymerized using a conventional Ziegler-Natta catalyst or metallocene catalyst, or a copolymer of monomers of these polyolefins
  • a single fiber of polyolefin such as polyolefin using a metallocene catalyst (also referred to as Kaminsky catalyst) when polymerizing these polyolefins, nylon 6, nylon 66, nylon 11, nano Single fibers of polyamides such as Ron 12, mention may be made of acrylic nitrile (poly) single fibers of acrylic, polycarbonate, polyacetal, polystyrene
  • single fiber refers to a fiber composed of only one kind of polymer component.
  • the composite fiber containing at least 1 or more types of polymer component can also be used in the range which does not lose the performance of the crimpable composite fiber of this invention.
  • the composite fiber include a composite fiber obtained by combining different types of resins such as polyester, polyolefin, polyamide, engineering plastic, or resins (for example, polyethylene terephthalate and polytrimethylene terephthalate) made of the same type of different polymer components. Is mentioned.
  • the composite state is not particularly limited, and the cross-sectional shape in the fiber cross section is a core-sheath type composite fiber, an eccentric core-sheath type composite fiber, a parallel type composite fiber, and a citrus tufted resin component are alternately arranged. It may be a split type composite fiber or a sea-island type composite fiber.
  • the second component is a polyolefin polymer
  • the polymer components constituting the crimpable conjugate fiber are polyolefin polymers
  • a single fiber comprising a polyolefin polymer it is preferable from the viewpoint of the recyclability of the fiber assembly that a composite fiber in which polyolefin polymers are combined is used as a mixed fiber.
  • the crimped conjugate fiber of the present invention is excellent in thermal adhesiveness. Therefore, not only synthetic fibers using the above thermoplastic resins as raw materials, but also natural fibers such as cellulosic fibers, viscose rayon, tencel (registered) Trademark), lyocell (registered trademark), semi-synthetic fibers (also referred to as recycled fibers) such as cupra, inorganic fibers such as glass fibers, and carbon fibers exhibit thermal adhesiveness.
  • natural fibers include plant natural fibers and animal natural fibers.
  • Plant-based natural fibers include ramie, linen (flax), kenaf (marine hemp), abaca (manila hemp), heneken (sisal hemp), jute (burlap), hemp (cannabis), palm, palm, mulberry, mitsumata , Bagasse and the like.
  • animal natural fibers include silk, wool, Angola, cashmere, and mohair.
  • any of plant natural fiber and animal natural fiber can be used, but plant natural fiber is preferable because the cost required for cultivation is low.
  • the fiber web containing the crimped conjugate fiber of the present invention can be made into a bulky fiber assembly by performing heat processing even in a single layer state, but the fiber web is laminated before performing heat processing.
  • the fiber which comprises a fiber assembly is arranged in parallel with the thickness direction of a fiber assembly, in other words, is arranged in the longitudinal direction of a fiber assembly. This is because the fibers constituting the fiber assembly are arranged in parallel to the thickness direction, whereby good bulk recovery and cushioning properties can be obtained with respect to the pressure applied to the thickness direction.
  • the fibers constituting the fiber assembly are arranged in parallel to the thickness direction of the fiber assembly (arranged in the longitudinal direction of the fiber assembly).
  • the acute angle formed with the thickness direction is 45 ° or less, that is, when the fiber assembly is cut in the thickness direction and the cut surface is enlarged and observed with an optical microscope or a scanning electron microscope
  • the acute angle with the thickness direction of the fiber assembly is 45 ° or less.
  • it is more preferable that 80% or more of the total number of all the constituent fibers of the fiber assembly observed in the cut surface of a certain area is arranged in the longitudinal direction of the fiber assembly.
  • the fiber aggregate in which the fibers constituting the fiber aggregate are arranged in parallel to the thickness direction can be manufactured using a known manufacturing method.
  • the fiber web is corrugated.
  • the present invention is not limited to these, and is not limited to these.
  • the heat processing temperature of the fiber web is the wave-like crimp and / or the spiral crimp of the crimped conjugate fiber that is expressed.
  • Tm melting peak temperature of polybutene-1
  • Tm-10 melting peak temperature of polybutene-1
  • Tm + 80 melting peak temperature of the second component
  • the at least 1 resin component contained in the 1st component of the said actual crimpable composite fiber fuse
  • at least polybutene-1 of the above-described crimped conjugate fiber is melted and the constituent fibers are heat-sealed, it is possible to form a stronger intersection between the fibers and to increase the bulk recoverability. .
  • the crimped conjugate fiber contained in the fiber web is the latent crimped conjugate fiber
  • it may be set to a temperature range in which crimp is developed.
  • Tm melting peak temperature of polybutene-1
  • Tm-10 melting peak temperature of polybutene-1
  • Tm + 60 melting point of the second component
  • Tm melting peak temperature of polybutene-1
  • Tm + 50 melting point of the second component
  • the nonwoven fabric preferably has a compressive residual strain ratio of 45% or less, more preferably 35% or less, measured according to A method of JIS-K-6400-4.
  • the compressive residual strain rate indicates the degree of change in the hardness of the nonwoven fabric when heated to 70 ° C. The smaller this value, the more the deterioration of the fiber or nonwoven fabric due to heat is suppressed, and the bulk recovery property is excellent. Indicates that
  • the nonwoven fabric preferably has a repeated compression residual strain rate of 15% or less, more preferably 12% or less, measured according to JIS-K-6400-4, Method B.
  • the above-mentioned repeated compression residual strain ratio indicates the degree of change in the hardness of the nonwoven fabric when 50% compression is repeated 80,000 times. This indicates that the bulk recovery property is excellent.
  • the textile product of the present invention has at least a part of the above fiber assembly, and includes hard cotton, bedding, a vehicle seat, a chair, a shoulder pad, a bra pad, clothing, a hygiene material, a packaging material, a wet tissue, a filter, It is formed into a sponge-like porous wiping material, a sheet-like wiping material, or stuffed cotton.
  • the measurement method and evaluation method used in this example are as follows.
  • the flow cell attached to the FT-IR has an optical path length of 1 mm and an optical path diameter of 5 mm ⁇ , and the temperature is maintained at 140 ° C. throughout the measurement.
  • the molecular weight distribution is obtained using the absorbance at 2945 cm-1 obtained by FT-IR as a chromatogram. Conversion from the retention volume to the molecular weight is performed using a calibration curve prepared in advance with standard polystyrene. Standard polystyrenes used are “F380”, “F288”, “F128”, “F80”, “F40”, “F20”, “F10”, “F4”, “F1”, “A5000” manufactured by Tosoh Corporation. , “A2500”, “A1000”.
  • a calibration curve is prepared by injecting 0.4 mL of a solution dissolved in ODCB (containing 0.5 mg / mL dibutylhydroxytoluene (BHT)) so that each is 0.5 mg / mL.
  • the spinnability of the crimped conjugate fiber was evaluated according to the following criteria based on the occurrence state and frequency of yarn breakage when melt spinning for 30 minutes continuously.
  • the drawability of the crimped conjugate fiber was evaluated according to the following criteria based on the occurrence of yarn breakage during the drawing process and the passability of the stuffer box type crimper used for crimping.
  • C Productivity is very poor because yarn breakage frequently occurs and winding around the drawing tank and drawing roll occurs, or clogging frequently occurs in the stuffer box type crimper or at the discharge port.
  • the raw cotton spreadability of the crimped conjugate fiber is determined by the card processability (card passing property, nep generation status and the obtained web) when the web is collected by applying 100% by mass of each crimped conjugate fiber to a parallel card.
  • card processability card passing property, nep generation status and the obtained web
  • the following criteria were used for evaluation. A: Since the fiber easily passes through the parallel card and almost no nep is generated, a web with good formation can be obtained. B: Nep occurs slightly, but does not significantly affect the web formation. C: The card cannot be passed or the web cannot be obtained because a large amount of neps occur.
  • the crimp expression after thermal processing was obtained by applying 100% by mass of each crimpable conjugate fiber to a parallel card, collecting the web, and processing temperature at 150 ° C. with a hot air circulation type heat treatment machine. The web after being treated for 30 seconds was visually observed and evaluated according to the following criteria.
  • B Although some of the developed three-dimensional crimps have disappeared, the shape of the helical crimp and / or the wavy crimp can be determined.
  • C The developed three-dimensional crimp almost disappears and it is difficult to confirm the crimped shape.
  • the latent crimpable conjugate fiber is subjected to crimping after heat processing, and 100% by mass of each crimpable conjugate fiber is placed on a parallel card, a web is collected, and the processing temperature at 150 ° C. is processed by a hot air circulation type heat treatment machine. The web after being treated for 30 seconds was visually observed and evaluated according to the following criteria.
  • B The expression of the three-dimensional crimp is weak or the three-dimensional crimp expressed by heat has partially disappeared, but the shape of the helical crimp and / or the wavy crimp can be determined.
  • C The expression of the three-dimensional crimp is weak, or the three-dimensional crimp expressed by heat almost disappears and it is difficult to confirm the crimp shape.
  • the low-temperature peak was the melting point (Tf1) of the first component
  • the high-temperature peak was the melting point (Tf2) of the second component.
  • the polymers used in this example are as follows. (1) PET (“T200E” manufactured by Toray Industries, Inc., melting peak temperature (melting point): 255 ° C., IV value: 0.64) (2) PP-A (Nippon Polypro “SA03E”, melting peak temperature (melting point): 160 ° C., MFR230: 20 g / 10 min, Q value: 5.6) (3) PP-B (“SA01A” manufactured by Nippon Polypro Co., Ltd., melting peak temperature (melting point): 160 ° C., MFR230: 9 g / 10 min, Q value: 3.2) (4) PB-1 (“DP0401M” manufactured by Sun Allomer, melting peak temperature (melting point): 123 ° C., MFR190: 20 g / 10 min) (5) LLDPE-A (Nippon Polyethylene "Kernel” (registered trademark) "KS560T” [linear low-density polyethylene synthesized by a high-pressure method using a metal
  • Linear low density polyethylene synthesized by a gas phase method using a metallocene catalyst melting peak temperature (melting point): 118 ° C., MFR 190 ° C .: (7 g / 10 min, density: 0.918 g / cm 3 , Q value: 3.0, flexural modulus: 280 MPa) (7) LLDPE-C (“Kernel” (registered trademark) “KC571” manufactured by Nippon Polyethylene Co., Ltd.
  • LLDPE-D (“Harmolex” (registered trademark) “NJ744N” manufactured by Nippon Polyethylene Co., Ltd.
  • the IV value is the above-mentioned intrinsic viscosity
  • MFR230 is a melt flow rate measured at 230 ° C. and 21.18 N (2.16 kgf) according to JIS-K-7210
  • MFR 190 is a melt flow rate measured at 190 ° C. and 21.18 N (2.16 kgf) in accordance with JIS-K-7210.
  • Nonwoven fabric manufacturing conditions A web was collected by applying 100% by mass of each crimped conjugate fiber to a parallel card, and treated with a hot air circulation type heat treatment machine at a processing temperature of 150 ° C. for 30 seconds to obtain a nonwoven fabric having a basis weight of 500 g / m 2 . .
  • a crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-A, which was No. 5, was used.
  • Example 16 A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that only PET was used as the second component.
  • the eccentricity of the crimped conjugate fibers obtained in Examples 1 to 18 and Comparative Examples 1 to 7, spinnability during melt spinning, raw cotton defibration, raw cotton crimp development, and crimp development after heat processing Tables 1 to 4 below show the results of the properties and the initial thickness, basis weight, repeated compressive residual strain, and compressive residual strain of the nonwoven fabric. Note that the crimped conjugate fibers of Examples 1 to 4, 6 to 9, and 11 to 18 are apparently crimped conjugate fibers, and the wavy crimp or the spiral crimp shown in FIG. 2A, or the wavy crimp and the spiral. Both crimps were expressed, and the number of crimps was 12-18 / 25 mm.
  • the crimped conjugate fibers of Examples 5 and 10 become latently crimped conjugate fibers, which exhibit three-dimensional crimps by thermal processing when producing a nonwoven fabric, and show the wavy crimp and spiral shape shown in FIG. 2A. At least one of the crimps was expressed.
  • the composite fiber in which low density polyethylene (LDPE) is added to the first component does not have good openability of the raw cotton, a linear low molecular weight polymer is added to the first component mainly composed of polybutene-1.
  • LDPE low density polyethylene
  • high-density polyethylene not only spinnability and stretchability, but also raw cotton openability, crimping of raw cotton, and crimping after heat processing are all good. It can be confirmed that it is obtained.
  • the first component is a resin component containing polybutene-1 and linear low-density polyethylene
  • the second component is either a polyolefin-based polymer or a polyester-based polymer. Even in such cases, it can be confirmed from Examples 1 to 18 that the nonwoven fabric using the obtained conjugate fiber becomes a nonwoven fabric with repeated low residual compressive strain.
  • the second component constituting the inside of the conjugate fiber is not particularly limited, and a polymer having a melting peak temperature higher by 20 ° C. or more than the melting peak temperature of polybutene-1 or the start of melting A polymer having a temperature of 120 ° C. or higher and having excellent bending strength and bending elasticity can be used without being limited to polyester polymers and polyolefin polymers.
  • the composite in which 20% by mass of the linear low density polyethylene is added to the first component
  • the fiber has good spinnability, but the composite fiber with 30% by mass of linear low-density polyethylene added to the first component has extremely poor spinnability. From the comparison between Example 5 and Comparative Example 2, it can be inferred that the amount has an upper limit, and the upper limit is less than 30% by mass, preferably 25% by mass or less.
  • the crimp development properties of the obtained crimpable conjugate fibers are improved.
  • the residual compression strain was 11.5% or less, and the residual compression strain was 11.5%. It can be confirmed that the rate is greatly improved as compared with the nonwoven fabric of Comparative Example 1 of 31.5% or less.
  • the linear low-density polyethylene added to the first component is heat-bonded because the repeated compressive residual strain and compression residual strain of the nonwoven fabric containing the crimped conjugate fiber increased. It is presumed that it is preferable to add linear low-density polyethylene having a lower density and a lower flexural modulus within a range that does not affect the properties and heat resistance.
  • the conjugate fiber added with polypropylene as the first component also improved the spinnability and stretchability of PB-1, and the raw cotton It can be confirmed that a crimpable composite fiber excellent in the spreadability, the crimp expression of the raw cotton, and the crimp expression of the raw cotton after heat processing can be obtained.
  • the apparent melting point of the first component is increased because polypropylene having a higher melting point than PB-1 is added to the first component. As a result, it was confirmed that the composite fibers cannot be sufficiently thermally bonded under the conditions of the thermal bonding process.
  • the fiber aggregate using the crimped conjugate fiber of the present invention is excellent in both initial bulk and bulk recoverability, and is made of hard cotton such as cushion materials, hygiene materials, packaging materials, cosmetic materials, and women's bras. Low density non-woven fabric products such as pads and shoulder pads, and wiping materials for humans and objectives, powder or liquid cosmetic coating materials, heat insulating materials and sound absorbing materials, which generally use urethane foam and urethane sponge It is preferably used for applications.
  • the crimped conjugate fiber of the present invention is excellent in elasticity and shape recoverability, and is therefore preferably used as stuffed cotton in various beddings and clothing articles such as comforters and mattresses.
  • the crimpable conjugate fiber of the present invention in which the second component is a polyolefin polymer, which is one form of the crimped conjugate fiber of the present invention is such that all of the resin components constituting the conjugate fiber are composed of polyolefin polymers. Therefore, after being used as the above-mentioned hard cotton, stuffed cotton, low-density nonwoven fabric products, it can be easily recovered and reused as a raw material consisting of a polyolefin polymer, reused as a resin raw material, and reused as a polyolefin fiber. It is also preferably used for various fiber assembly products that require subsequent fractional collection and reuse of raw materials.

Abstract

Disclosed is a crimped composite fiber that comprises a first component and a second component; wherein the abovementioned first component comprises polybutene-1 and linear low-density polyethylene, the amount of linear low-density polyethylene comprised is 2-25% by mass, the abovementioned second component comprises a polymer with a peak melting temperature that is at least 20°C higher than the peak melting temperature of the polybutene-1 or a polymer with a melting initiation temperature of at least 120°C, the abovementioned first component occupies at least 20% of the surface of the composite fiber (10) when viewed from a fiber cross-section, the center of gravity of the abovementioned second component is offset from the center of gravity of the abovementioned composite fiber, and the abovementioned composite fiber is a manifested crimp exhibiting three-dimensional crimps, or is a potential crimp that will exhibit three-dimensional crimps by means of heating. As a result, crimped composite fibers, which having strong elasticity, volume recovery, and resistance in repeated compression, as well as strong elasticity, volume recovery, and resistance when being used under high heat conditions, and a fibrous mass using the same can be provided.

Description

捲縮性複合繊維、及びこれを用いた繊維集合物と繊維製品Crimpable composite fiber, and fiber assembly and fiber product using the same
 本発明は、主として弾力性と嵩回復性が高い繊維集合物、特に不織布に適した顕在捲縮性複合繊維、潜在捲縮性複合繊維、及びこれを用いた繊維集合物と繊維製品に関する。 The present invention mainly relates to a fiber aggregate having high elasticity and high bulk recovery property, in particular, an actual crimpable conjugate fiber suitable for a nonwoven fabric, a latent crimpable conjugate fiber, and a fiber assembly and a fiber product using the same.
 衛生材料、包装材、ウェットティッシュ、フィルター、ワイパーなどに用いられる不織布、或いは硬綿、椅子などに用いられる不織布、成形体など様々な用途において、少なくとも一部が繊維表面に露出している低融点成分と、低融点成分よりも融点が高い高融点成分からなる熱融着性複合繊維を用いた熱接着不織布が使用されている。特に、不織布の弾力性と嵩回復性、すなわち厚み方向での嵩回復性に優れる不織布は、発泡ウレタンの代替材料として、その要求が大きくなっており、嵩回復性に優れる不織布及び嵩回復性に優れた不織布に適した複合繊維について様々の検討がなされている。また、上記用途に使用する不織布に適した複合繊維は、繊維そのものの弾力性、形状回復性に優れるため、複合繊維そのものを掛け布団や敷き布団などの各種寝具や衣料用品に詰め綿として使用することが検討されている。 Low melting point at least partially exposed on the fiber surface in various applications such as sanitary materials, packaging materials, non-woven fabrics used in wet tissues, filters, wipers, etc., non-woven fabrics used in hard cotton, chairs, etc., molded products A heat-bonded nonwoven fabric using a heat-fusible composite fiber composed of a component and a high-melting component having a melting point higher than that of the low-melting component is used. In particular, nonwoven fabrics that have excellent elasticity and bulk recovery properties, that is, bulk recovery properties in the thickness direction, are increasingly required as an alternative to urethane foam. Various studies have been made on composite fibers suitable for excellent non-woven fabrics. In addition, the composite fiber suitable for the nonwoven fabric used in the above-mentioned applications is excellent in elasticity and shape recovery of the fiber itself. It is being considered.
 このような繊維そのものの弾力性に優れた複合繊維、また不織布などの繊維集合物にした際、優れた嵩回復性を示す熱接着性複合繊維については、これまでに数多くの検討がなされている。下記特許文献1~2は、融点が200℃以上のポリエステル成分と、融点が180℃以下のポリエーテルエステルブロック共重合体成分、いわゆるエラストマー成分とからなる複合繊維を提案している。鞘成分にエラストマー成分を使用することによって、圧縮変形を受けた際に、接着部分の自由度、及び耐久性が向上するために、嵩回復性の高い繊維が得られる。 Many studies have so far been made on the heat-adhesive conjugate fiber that exhibits excellent bulk recovery properties when it is made into a fiber aggregate such as a nonwoven fabric or a composite fiber excellent in elasticity of such a fiber itself. . Patent Documents 1 and 2 below propose composite fibers comprising a polyester component having a melting point of 200 ° C. or higher and a polyether ester block copolymer component having a melting point of 180 ° C. or lower, so-called elastomer component. By using an elastomer component as the sheath component, when subjected to compressive deformation, the degree of freedom of the bonded portion and the durability are improved, so that a fiber having a high bulk recovery property is obtained.
 特許文献3は、ポリトリメチレンテレフタレート(PTT)系ポリマーを含有する第一成分と、ポリオレフィン系ポリマー、特にポリエチレンを含有する第二成分から構成され、繊維断面において第一成分の重心位置を繊維の重心位置からずらすことで捲縮を顕在化させた、顕在捲縮性複合繊維を提案している。第一成分に曲げ弾性が大きく、かつ曲げ硬さの小さいポリマーを使用し、更に、繊維断面を偏心とし、捲縮形状を波形状としているこの顕在捲縮性複合繊維を含ませることにより、嵩回復性が高く、柔軟な、更に初期嵩の大きい不織布が得られる。 Patent Document 3 is composed of a first component containing a polytrimethylene terephthalate (PTT) polymer and a second component containing a polyolefin polymer, particularly polyethylene, and the center of gravity of the first component in the fiber cross section Proposed crimped conjugate fiber that has been crimped by shifting it from the center of gravity. By using a polymer having high bending elasticity and low bending hardness as the first component, and further including this manifest crimpable composite fiber having a fiber cross section as an eccentric shape and a crimped shape as a wave shape. A non-woven fabric having high recoverability, flexibility, and large initial bulk can be obtained.
 特許文献4~5は、ポリブテン-1(以下、PB-1とも記す。)を含む鞘成分を含有する捲縮性複合繊維及びそれを用いた嵩回復性に優れ且つ初期嵩回復性も改善された不織布を提案している。 Patent Documents 4 to 5 describe a crimped conjugate fiber containing a sheath component containing polybutene-1 (hereinafter also referred to as PB-1), and excellent bulk recovery using the same and improved initial bulk recovery. Proposed non-woven fabric.
 特許文献1~2では、鞘成分にポリエステルエーテルエラストマーを使用しており、このポリマーがゴム状弾性を有し、接着点の変形に対する自由度が大きいことを利用し、嵩回復性の高い不織布を得ようとしている。しかし、このポリエステルエーテルエラストマーは硬質なポリエステルと軟質なエーテルとの共重合体であり、耐熱性が低い軟質成分を含むため、熱により柔らかくなり易く、熱加工時に不織布の嵩が減少する、いわゆるへたりが生じる。その結果、鞘成分にポリエステルエーテルエラストマーを使用した複合繊維は、不織布にしたときの初期嵩が小さく、高密度な不織布しか得られず、用途が限定されるという問題があった。また、熱が加わった状態で圧縮された後、あるいは繰り返し圧縮された後の不織布は、繊維同士の接着点および繊維自体が破壊されたり、折れ曲がったり、繊維強度が低下するなど、元の不織布に比べて不織布硬さが大きく低下するという問題があった。 In Patent Documents 1 and 2, a polyester ether elastomer is used as the sheath component, and this polymer has rubber-like elasticity and a large degree of freedom for deformation of the bonding point, so that a nonwoven fabric with high bulk recovery can be obtained. Trying to get. However, since this polyester ether elastomer is a copolymer of hard polyester and soft ether and contains a soft component having low heat resistance, it is easily softened by heat, and the bulk of the nonwoven fabric is reduced during heat processing. Happens. As a result, the composite fiber using the polyester ether elastomer as the sheath component has a problem that the initial volume when made into a nonwoven fabric is small, only a high-density nonwoven fabric is obtained, and the use is limited. In addition, the non-woven fabric after being compressed in a heated state or after being repeatedly compressed has the original non-woven fabric such that the bonding points between the fibers and the fibers themselves are broken, bent, or fiber strength is reduced. In comparison, there was a problem that the nonwoven fabric hardness was greatly reduced.
 特許文献3では、芯に用いるポリマー及び繊維断面を特定のものとし、且つ、捲縮状態を特定のものにすることによって、嵩回復性の高い不織布を得ようとするものであるが、初期の不織布厚み(初期嵩)が大きいものの、嵩回復性、特に除重直後の初期嵩回復性が十分とはいえず、用途が限定されるという問題があった。 In Patent Document 3, the polymer used for the core and the fiber cross section are specified, and the crimped state is specified so as to obtain a nonwoven fabric with high bulk recovery. Although the nonwoven fabric thickness (initial volume) is large, there is a problem that the bulk recovery property, particularly the initial bulk recovery property immediately after dewetting is not sufficient, and the application is limited.
 また、特許文献4~5に提案されている複合繊維は、この複合繊維を使用した繊維ウェブを、熱加工により構成繊維間を熱接着させた不織布に加工する際、あるいは得られた不織布同士を熱加工して接着させる際、繊維表面の大部分を占める、いわゆる鞘成分がポリブテン-1と、ポリブテン-1よりも高融点であるポリプロピレンで構成されているため、鞘成分の見かけの融点が上昇する現象が発生し、低温での熱処理では熱接着性や熱接着後の不織布強力が十分でなく、また熱接着加工の温度条件が難しいといった問題があった。 In addition, the composite fibers proposed in Patent Documents 4 to 5 are obtained by processing a fiber web using the composite fibers into a nonwoven fabric in which constituent fibers are thermally bonded by thermal processing, or the obtained nonwoven fabrics. When bonding by thermal processing, the so-called sheath component, which occupies most of the fiber surface, is composed of polybutene-1 and polypropylene, which has a higher melting point than polybutene-1, thus increasing the apparent melting point of the sheath component. In the heat treatment at a low temperature, there is a problem that the heat bonding property and the strength of the nonwoven fabric after the heat bonding are not sufficient, and the temperature condition of the heat bonding process is difficult.
 特許文献1~5の他、嵩回復性に優れる不織布及び嵩回復性に優れた不織布に適した複合繊維やそれを用いた不織布などが種々検討されているが、荷重を繰り返し加えた際に嵩回復性の低下が見られ、クッション材など、繰り返し圧縮した後においても高い嵩回復性を必要とされる用途に対して好適な繊維及び不織布が得られていないという問題がある。 In addition to Patent Documents 1 to 5, various studies have been made on non-woven fabrics excellent in bulk recoverability, composite fibers suitable for non-woven fabrics excellent in bulk recoverability, and non-woven fabrics using the same. Decrease in recoverability is observed, and there is a problem that fibers and non-woven fabrics suitable for applications requiring high bulk recoverability even after repeated compression, such as cushioning materials, are not obtained.
特開平4-240219号公報JP-A-4-240219 特開平5-247724号公報JP-A-5-247724 特開2003-3334号公報Japanese Patent Laid-Open No. 2003-3334 特開2007-126806号公報JP 2007-126806 A 特開2008-248421号公報JP 2008-248421 A
 本発明は、上記従来の問題を解決するため、弾力性や嵩回復性、繰り返し圧縮した際における耐久性が高く、さらに高温下での使用時における弾力性、嵩回復性、その耐久性が高い捲縮性複合繊維、及びこれを用いた繊維集合物と繊維製品を提供する。 In order to solve the above-described conventional problems, the present invention has high elasticity and bulk recovery, high durability when repeatedly compressed, and further high elasticity and bulk recovery when used at high temperatures. A crimpable conjugate fiber, and a fiber assembly and a fiber product using the same are provided.
 本発明の捲縮性複合繊維は、第一成分と第二成分とを含む複合繊維であって、上記第一成分は、ポリブテン-1と、直鎖状低密度ポリエチレンとを含み、上記第一成分における直鎖状低密度ポリエチレンの含有量は、2~25質量%であり、上記第二成分は、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含み、繊維断面から見たとき、上記第一成分は上記複合繊維表面の少なくとも20%を占め、上記第二成分の重心位置は上記複合繊維の重心位置からずれており、上記複合繊維は立体捲縮を発現している顕在捲縮、又は加熱することにより立体捲縮を発現する潜在捲縮であることを特徴とする。なお、本発明において、融解開始温度とは、JIS-K-7121で規定される、示差走査熱量(DSC)測定法より測定される、補外融解開始温度を意味する。また、本発明において、融解ピーク温度とは、JIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度を意味する。 The crimped conjugate fiber of the present invention is a conjugate fiber comprising a first component and a second component, wherein the first component comprises polybutene-1 and linear low-density polyethylene, The content of the linear low-density polyethylene in the component is 2 to 25% by mass, and the second component is a polymer having a melting peak temperature higher than the melting peak temperature of polybutene-1 by 20 ° C. or a melting start temperature Includes a polymer having a temperature of 120 ° C. or higher, and when viewed from the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component deviates from the center of gravity of the composite fiber. The composite fiber is characterized in that it is an actual crimp that expresses a three-dimensional crimp or a latent crimp that develops a three-dimensional crimp when heated. In the present invention, the melting start temperature means an extrapolated melting start temperature measured by a differential scanning calorimetry (DSC) measurement method defined in JIS-K-7121. In the present invention, the melting peak temperature means a melting peak temperature obtained from a DSC curve measured according to JIS-K-7121.
 本発明の繊維集合物は、捲縮性複合繊維を30質量%以上含み、上記捲縮性複合繊維は、第一成分と第二成分とを含む複合繊維であって、上記第一成分は、ポリブテン-1と、直鎖状低密度ポリエチレンとを含み、上記第一成分における直鎖状低密度ポリエチレンの含有量は、2~25質量%であり、上記第二成分は、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含み、繊維断面から見たとき、上記第一成分は上記複合繊維表面の少なくとも20%を占め、上記第二成分の重心位置は上記複合繊維の重心位置からずれており、上記複合繊維は立体捲縮を発現している顕在捲縮、又は加熱することにより立体捲縮を発現する潜在捲縮であることを特徴とする。 The fiber assembly of the present invention contains 30% by mass or more of crimped conjugate fiber, and the crimped conjugate fiber is a conjugate fiber containing a first component and a second component, wherein the first component is Polybutene-1 and linear low density polyethylene, the content of the linear low density polyethylene in the first component is 2 to 25% by mass, and the second component is a melt of polybutene-1 A polymer having a melting peak temperature higher than the peak temperature by 20 ° C. or a polymer having a melting start temperature of 120 ° C. or higher, and when viewed from the fiber cross section, the first component occupies at least 20% of the composite fiber surface. The centroid position of the second component is shifted from the centroid position of the composite fiber, and the composite fiber manifests a crisp crimp that develops a steric crimp, or a latent crimp that develops a steric crimp by heating. That is And butterflies.
 本発明の繊維製品は、本発明の繊維集合物を少なくとも一部に有し、硬綿、寝具、車両用座席、椅子、肩パッド、ブラジャーパッド、衣料、衛生材、包装材、ウェットティッシュ、フィルター、スポンジ状の多孔質ワイピング材、シート状のワイピング材又は詰め綿に形づくられていることを特徴とする。 The textile product of the present invention has at least a part of the fiber assembly of the present invention, and includes hard cotton, bedding, a vehicle seat, a chair, a shoulder pad, a brassiere pad, clothing, a hygiene material, a packaging material, a wet tissue, and a filter. It is characterized by being formed into a sponge-like porous wiping material, a sheet-like wiping material or padding cotton.
 本発明の捲縮性複合繊維は、第一成分にポリブテン-1と直鎖状低密度ポリエチレンを含み、第二成分に上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含むことにより、紡糸性、延伸性、捲縮発現性などに優れる繊維となる。そして、本発明の捲縮性複合繊維を使用することで、嵩回復性に優れ、低温での熱接着加工でも繊維同士が強力に熱接着しうる、熱加工性に優れた複合繊維、及びこれを用いた繊維集合物と繊維製品を得ることができる。 The crimped conjugate fiber of the present invention contains polybutene-1 and linear low-density polyethylene as the first component, and has a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1 as the second component. By including a polymer or a polymer having a melting start temperature of 120 ° C. or higher, a fiber excellent in spinnability, stretchability, crimp development, and the like is obtained. And by using the crimpable conjugate fiber of the present invention, a composite fiber excellent in heat workability, which has excellent bulk recovery properties, and can be strongly heat-bonded with each other even in heat bonding at low temperature, and this A fiber assembly and a fiber product can be obtained.
 本発明の捲縮性複合繊維を用いた不織布は、初期嵩と嵩回復性とが共に優れており、クッション材などの硬綿、衛生材料、包装材、フィルター、化粧品用材料、女性のブラジャーのパッド、肩パッドなどの低密度の不織布製品に好適に使用することができる。また、本発明の捲縮性複合繊維は、繊維そのものの適度な弾力性、反発性を活かして敷き布団や掛け布団などの各種寝具や各種衣料用品に使用する詰め綿として好適に使用することができる。 The nonwoven fabric using the crimped conjugate fiber of the present invention is excellent in both initial bulk and bulk recoverability, such as hard cotton such as cushioning materials, hygiene materials, packaging materials, filters, cosmetic materials, and female bras. It can be suitably used for low-density nonwoven fabric products such as pads and shoulder pads. In addition, the crimped conjugate fiber of the present invention can be suitably used as stuffed cotton used in various beddings such as mattresses and comforters and various clothing items, utilizing the appropriate elasticity and resilience of the fiber itself.
図1は、本発明の一実施形態における捲縮性複合繊維の繊維断面を示す。FIG. 1 shows a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention. 図2A~Cは本発明の一実施形態における捲縮性複合繊維の捲縮形態を示す。2A to 2C show crimped forms of the crimped conjugate fiber in one embodiment of the present invention. 図3は、従来の機械捲縮の形態を示す。FIG. 3 shows a form of conventional mechanical crimping. 図4は、本発明の捲縮性複合繊維において波状捲縮と鋸歯状捲縮が混在した捲縮形態を示す。FIG. 4 shows a crimped form in which wavy crimps and serrated crimps are mixed in the crimped conjugate fiber of the present invention.
 本発明の捲縮性複合繊維は、弾力性や嵩回復性、繰り返し圧縮した際における耐久性が高く、さらに高温下での使用時における弾力性、嵩回復性、その耐久性が高い。特に、本発明の顕在捲縮を有する捲縮性複合繊維(以下、顕在捲縮性複合繊維とも記す。)を用いた繊維集合物は初期嵩が高くなる。また、本発明の潜在捲縮を有する捲縮性複合繊維(以下、潜在捲縮性複合繊維とも記す。)を用いた繊維集合物は、複数層重ねて加熱成形した際に、潜在捲縮が発現するため、層間の繊維の交絡性が良好となり、弾力性と嵩回復性がより一層高くなる。 The crimped conjugate fiber of the present invention has high elasticity and bulk recovery, high durability when repeatedly compressed, and high elasticity and bulk recovery when used at high temperatures and high durability. In particular, the fiber aggregate using the crimped conjugate fiber having an actual crimp of the present invention (hereinafter also referred to as an actual crimped conjugate fiber) has an initial bulkiness. In addition, the fiber assembly using the crimped conjugate fiber having latent crimp of the present invention (hereinafter also referred to as latent crimped conjugate fiber) has a latent crimp when it is heat-molded by stacking a plurality of layers. As a result, the interlaced fiber between layers is improved and the elasticity and bulk recovery are further enhanced.
 (第一成分)
 本発明の捲縮性複合繊維において、第一成分はポリブテン-1と、直鎖状低密度ポリエチレンとを含む。また、上記第一成分が上記複合繊維表面の少なくとも20%を占めるように配置されることで、ポリブテン-1が有する柔軟性、及び形状維持性(変形に対するもどり)が活かされた捲縮性複合繊維が得られる。
(First ingredient)
In the crimped conjugate fiber of the present invention, the first component contains polybutene-1 and linear low density polyethylene. In addition, the first composite component is disposed so as to occupy at least 20% of the surface of the composite fiber, so that the flexibility and shape maintaining property (return to deformation) of polybutene-1 is utilized. Fiber is obtained.
 また、本発明において、第一成分がポリブテン-1に加えて直鎖状低密度ポリエチレンを含むことにより、溶融紡糸時における均一な繊維の形成や延伸性などの可紡性、原綿の解繊性や原綿捲縮発現性などが改善されることを見出した。すなわち、ポリブテン-1のみで溶融紡糸を行うと、ノズル吐出ポリマーの粘度が安定しにくく、均一な繊維を得にくいとされており、また、ポリブテン-1は高分子量であり、分子鎖の自由度が乏しいことから延伸工程を行うことが難しく、加えて熱収縮性が非常に大きいことから、熱加工の際に繊維が収縮し、地合の良好な不織布が得られにくいとされているが、第一成分がポリブテン-1に加えて直鎖状低密度ポリエチレンを含むことで、上記のポリブテン-1が有する可紡性の悪さや難延伸性などの問題を解消し得る。ポリブテン-1は分子量が大きい、すなわち、ポリブテン-1を構成する分子鎖が長く、分子同士の絡み合いが大きいことにより、前述した延伸しにくいという問題を引き起こしていると考えられている。ここで、本発明のように、ポリマー成分がポリブテン-1に加えて直鎖状低密度ポリエチレンを含むと、直鎖状低密度ポリエチレンが高分子量のポリブテン-1の分子鎖間へ入り込み、ポリブテン-1の分子鎖同士の絡み合いを適度に抑制しているため、延伸性が向上すると推定される。加えて捲縮性複合繊維の表面部の大半を占める第一成分に直鎖状低密度ポリエチレンを含むポリマーを使用することで、得られた捲縮性複合繊維を使用した繊維集合物は、上記捲縮性複合繊維の第一成分に含まれる直鎖状低密度ポリエチレンによって優れた熱加工性(より短時間での熱処理、均一な構成繊維同士の熱接着)を示す。すなわち、捲縮性複合繊維の繊維表面の大部分を占める第一成分を、ポリブテン-1を主成分とし、直鎖状低密度ポリエチレンを第一成分の2~25質量%添加するという構成にすることで、融点がポリブテン-1よりも高いポリマー(例えばポリプロピレン)をポリブテン-1に添加した場合に発生しうる、高融点ポリマーの添加によって、第一成分の見かけの融解ピーク温度が上昇する現象が発生しなくなる。これにより、本発明の捲縮性複合繊維は、より低温、より短時間での熱加工でも十分な接着強度を有する熱接着が可能となり、上記捲縮性複合繊維を含む繊維集合物の後加工性を高めている。さらに、直鎖状低密度ポリエチレンは耐衝撃性に優れるため、本発明の捲縮性複合繊維における直鎖状低密度ポリエチレンを含む第一成分により構成繊維間を熱接着させた本発明の繊維集合物は、繰り返し加重が加えられる用途に使用しても繊維同士の接着点の外れ、剥離が発生しにくく、耐繰り返し圧縮残留歪み性、耐圧縮残留歪み性に優れたものとなる。 Further, in the present invention, the first component contains linear low-density polyethylene in addition to polybutene-1, so that spinnability such as uniform fiber formation and stretchability at the time of melt spinning, and defibration of raw cotton And the raw cotton crimp expression was found to be improved. That is, when melt spinning is carried out using only polybutene-1, the viscosity of the polymer discharged from the nozzle is difficult to stabilize, and it is difficult to obtain uniform fibers. Polybutene-1 has a high molecular weight and is free from molecular chains. However, it is difficult to perform the stretching process because it is scarce, and in addition, because the heat shrinkability is very large, the fiber shrinks during heat processing, and it is said that it is difficult to obtain a nonwoven fabric with good formation, When the first component contains linear low density polyethylene in addition to polybutene-1, problems such as poor spinnability and difficult stretchability of polybutene-1 can be solved. Polybutene-1 has a high molecular weight, that is, the molecular chain constituting polybutene-1 is long and the entanglement between the molecules is large, which is considered to cause the above-described problem of difficulty in stretching. Here, as in the present invention, when the polymer component contains linear low density polyethylene in addition to polybutene-1, the linear low density polyethylene enters between the molecular chains of the high molecular weight polybutene-1, and polybutene- Since the entanglement of the molecular chains of 1 is moderately suppressed, it is estimated that the stretchability is improved. In addition, the fiber assembly using the crimped conjugate fiber obtained by using a polymer containing linear low-density polyethylene as the first component occupying most of the surface portion of the crimped conjugate fiber is as described above. Excellent heat workability (heat treatment in a shorter time, heat bonding between uniform constituent fibers) is exhibited by the linear low density polyethylene contained in the first component of the crimped conjugate fiber. That is, the first component occupying most of the fiber surface of the crimped conjugate fiber is composed of polybutene-1 as a main component and 2 to 25% by mass of linear low-density polyethylene added to the first component. Thus, there is a phenomenon that the apparent melting peak temperature of the first component is increased by the addition of a high melting point polymer, which can occur when a polymer (for example, polypropylene) having a melting point higher than that of polybutene-1 is added to polybutene-1. No longer occurs. As a result, the crimpable conjugate fiber of the present invention can be thermally bonded with sufficient adhesive strength even by thermal processing at a lower temperature and in a shorter time, and the post-processing of the fiber assembly including the crimped conjugate fiber. Increases sex. Furthermore, since the linear low density polyethylene is excellent in impact resistance, the fiber assembly of the present invention in which the constituent fibers are thermally bonded by the first component containing the linear low density polyethylene in the crimped conjugate fiber of the present invention. Even if the product is used for applications in which repeated load is applied, the adhesion point between the fibers does not come off and peeling does not easily occur, and the product has excellent resistance to repeated compressive residual strain and compressive residual strain.
 上記直鎖状低密度ポリエチレンとしては、特に限定されず、例えばチーグラー系触媒、メタロセン系触媒を用いて重合されたα-オレフィンとの共重合体を用いることができる。分子量範囲が狭くて分岐が均一に分布しているという観点から、メタロセン触媒を用いて重合されたα-オレフィンとの共重合体を用いることが好ましい。メタロセン系触媒を用いて重合した直鎖状低密度ポリエチレンは、分子量、組成、結晶性の分布が均一であるという特徴を有している。上記の特徴から、メタロセン系触媒を用いて重合された直鎖状低密度ポリエチレンは2~25質量%という添加量であっても、PB-1内部に均一に分散しやすいため、PB-1の延伸性向上に効果を発揮すると推測される。上記α-オレフィンとしては、特に限定されないが、例えば1-ブテン、1-ヘキセン、1-オクテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどが挙げられる。上記メタロセン触媒を用いて重合されたα-オレフィンとの共重合体として、例えば日本ポリエチレン社製「ハーモレックス」(登録商標)NJ744N、「カーネル」(登録商標)KS560TやKC571、宇部丸善ポリエチレン社製420SDなどの市販ものを用いてもよい。 The linear low density polyethylene is not particularly limited, and for example, a copolymer with an α-olefin polymerized using a Ziegler catalyst or a metallocene catalyst can be used. From the viewpoint that the molecular weight range is narrow and the branches are uniformly distributed, it is preferable to use a copolymer with an α-olefin polymerized using a metallocene catalyst. Linear low-density polyethylene polymerized using a metallocene-based catalyst is characterized by a uniform molecular weight, composition, and crystallinity distribution. From the above characteristics, linear low density polyethylene polymerized using a metallocene catalyst is easily dispersed uniformly in PB-1 even in an addition amount of 2 to 25% by mass. Presumably effective in improving stretchability. The α-olefin is not particularly limited. For example, 1-butene, 1-hexene, 1-octene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4 -Dimethyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like. Examples of the copolymer with α-olefin polymerized using the metallocene catalyst include, for example, “Harmolex” (registered trademark) NJ744N, “Kernel” (registered trademark) KS560T, KC571, and Ube Maruzen Polyethylene manufactured by Nippon Polyethylene. Commercially available products such as 420SD may be used.
 上記第一成分における直鎖状低密度ポリエチレンは、重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)は、6以下であることが好ましい。より好ましいQ値は、2~5であり、特に好ましいQ値は2.2~3.5である。第一成分が直鎖状低密度ポリエチレン、好ましくは上記Q値の範囲を満たす、メタロセン触媒を用いて重合した直鎖状低密度ポリエチレンをポリブテン-1に加えてさらに含むことで、第一成分にポリブテン-1を含む本発明の捲縮性複合繊維において、延伸性が向上する。加えて、繊維表面の大半を占める第一成分が直鎖状低密度ポリエチレンを含むことで繊維表面に滑り効果が発揮され、得られる捲縮性複合繊維はクリンパー通過性や、所望の繊維長の原綿(ステープルファイバー)に切断した後の原綿解繊性が高められるので好ましい。 The ratio (Q value) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the linear low density polyethylene in the first component is preferably 6 or less. A more preferable Q value is 2 to 5, and a particularly preferable Q value is 2.2 to 3.5. In addition to polybutene-1, the first component contains linear low density polyethylene, preferably linear low density polyethylene polymerized using a metallocene catalyst, which satisfies the above Q value range. In the crimped conjugate fiber of the present invention containing polybutene-1, stretchability is improved. In addition, since the first component occupying most of the fiber surface contains linear low-density polyethylene, a slip effect is exerted on the fiber surface, and the resulting crimped conjugate fiber has a crimper passing property and a desired fiber length. It is preferable because the defibration of the raw cotton after cutting into raw cotton (staple fiber) is improved.
 また、PB-1との相溶性が良好という観点から、上記直鎖状低密度ポリエチレンのJIS-K-7112に準じて測定した密度は0.930g/cm3以下であることが好ましく、0.920g/cm3以下であることがより好ましく、0.915g/cm3以下であることが特に好ましい。上記の範囲内であれば、PB-1との相溶性も良好であり、耐熱性も高い。上記直鎖状低密度ポリエチレンの密度の下限は特に限定されないが、好ましくは0.870g/cm3以上であることが好ましく、より好ましくは0.880g/cm3以上であり、特に好ましくは0.890g/cm3以上である。上記直鎖状低密度ポリエチレンの密度が0.870g/cm3より小さいと捲縮性複合繊維を構成する第一成分の耐熱性が低下しやすく、例えば40~80℃の範囲の室温より高温での嵩回復性、耐圧縮残留ひずみ性が低下する恐れがある。 In addition, from the viewpoint of good compatibility with PB-1, the density of the above linear low density polyethylene measured according to JIS-K-7112 is preferably 0.930 g / cm 3 or less. more preferably 920 g / cm 3 or less, particularly preferably 0.915 g / cm 3 or less. Within the above range, the compatibility with PB-1 is good and the heat resistance is also high. The lower limit of the density of the linear low-density polyethylene is not particularly limited, but is preferably 0.870 g / cm 3 or more, more preferably 0.880 g / cm 3 or more, and particularly preferably 0.8. It is 890 g / cm 3 or more. When the density of the linear low-density polyethylene is less than 0.870 g / cm 3 , the heat resistance of the first component constituting the crimped conjugate fiber is likely to be lowered, for example, at a temperature higher than room temperature in the range of 40 to 80 ° C. There is a risk that the bulk recovery property and the compressive residual strain resistance of the material will be reduced.
 また、PB-1との相溶性や得られる繊維の弾力性、得られた捲縮性複合繊維を用いて作製される繊維集合物の嵩回復性や耐圧縮残留ひずみ性が良好であるという観点から、上記直鎖状低密度ポリエチレンのJIS-K-7171に準じて測定される曲げ弾性率は800MPa以下であることが好ましく、より好ましくは20~650MPaであり、特に好ましくは25~300MPaであり、最も好ましくは30~180MPaである。上記の範囲内であれば、PB-1との相溶性も良好であり、耐熱性も高く、得られる繊維集合物が嵩回復性、耐圧縮残留ひずみ性にすぐれたものとなる。上記直鎖状低密度ポリエチレンの曲げ弾性率が高くなるとポリマーのしなやかさが失われ、得られる捲縮性複合繊維の弾力性を低下させる傾向があり、直鎖状低密度ポリエチレンの曲げ弾性率が800MPaを超えると、得られた捲縮性複合繊維を用いて作製した繊維集合物の嵩回復性、耐圧縮残留ひずみ性が低下する恐れがある。また、上記直鎖状低密度ポリエチレンの曲げ弾性率が高くなるとポリマーの融解ピーク温度が低くなる傾向があり、直鎖状低密度ポリエチレンの曲げ弾性率が20MPaよりも小さくなると、耐熱性が低下し、得られる繊維集合物の高温下における嵩回復性が低下する恐れがある。 In addition, the compatibility with PB-1, the elasticity of the resulting fiber, and the viewpoint that the fiber assembly produced using the obtained crimped conjugate fiber has good bulk recovery and compression residual strain resistance Thus, the flexural modulus of the linear low density polyethylene measured according to JIS-K-7171 is preferably 800 MPa or less, more preferably 20 to 650 MPa, and particularly preferably 25 to 300 MPa. Most preferably, it is 30 to 180 MPa. Within the above range, the compatibility with PB-1 is good, the heat resistance is also high, and the resulting fiber aggregate is excellent in bulk recovery and compression residual strain resistance. When the flexural modulus of the linear low density polyethylene is increased, the flexibility of the polymer is lost, and the elasticity of the resulting crimped conjugate fiber tends to be reduced. If it exceeds 800 MPa, there is a risk that the bulk recovery property and resistance to compressive residual strain of the fiber assembly produced using the crimped conjugate fiber obtained will decrease. Further, when the bending elastic modulus of the linear low density polyethylene is increased, the melting peak temperature of the polymer tends to be lowered. When the bending elastic modulus of the linear low density polyethylene is lower than 20 MPa, the heat resistance is decreased. , The bulk recovery property of the obtained fiber aggregate at high temperature may be lowered.
 上記直鎖状低密度ポリエチレンは、JIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度が70~130℃であることが好ましい。より好ましくは、80~125℃であり、さらに好ましくは90℃~123℃である。融解ピーク温度が70~130℃であると、耐熱性が高く、高温下での嵩回復性が良好である。本発明において、融解ピーク温度とは、JIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度を意味する。また、本発明において、上記DSC曲線より求められる融解ピーク温度を融点ともいう。 The linear low density polyethylene preferably has a melting peak temperature of 70 to 130 ° C. determined from a DSC curve measured according to JIS-K-7121. More preferably, it is 80 to 125 ° C, and further preferably 90 ° C to 123 ° C. When the melting peak temperature is 70 to 130 ° C., the heat resistance is high, and the bulk recovery at high temperatures is good. In the present invention, the melting peak temperature means a melting peak temperature obtained from a DSC curve measured according to JIS-K-7121. In the present invention, the melting peak temperature obtained from the DSC curve is also referred to as the melting point.
 また、上記直鎖状低密度ポリエチレンは、JIS-K-7210に準じて、190℃で測定したメルトフローレート(MFR;測定温度190℃、荷重2.16kgf(21.18N)、以下においてMFR190と記す。)が1~30g/10分であることが好ましい。より好ましいMFR190は3~25g/10分であり、さらにより好ましくは5~20g/10分である。MFR190が1~30g/10分であると、耐熱性が良好であり、高温下での嵩回復性が高く、また、紡糸引き取り性及び延伸性が良好となる。 The linear low-density polyethylene is a melt flow rate (MFR) measured at 190 ° C. according to JIS-K-7210 (measurement temperature 190 ° C., load 2.16 kgf (21.18 N)). Is preferably 1 to 30 g / 10 min. A more preferred MFR 190 is 3 to 25 g / 10 min, even more preferably 5 to 20 g / 10 min. When the MFR 190 is 1 to 30 g / 10 minutes, the heat resistance is good, the bulk recovery property at high temperature is high, and the take-up property and stretchability are good.
 本発明に用いられるポリブテン-1は、JIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度が115~130℃であることが好ましい。より好ましくは、120~130℃である。融解ピーク温度が115~130℃であると、耐熱性が高く、高温下での嵩回復性が良好である。 The polybutene-1 used in the present invention preferably has a melting peak temperature of 115 to 130 ° C. determined from a DSC curve measured according to JIS-K-7121. More preferably, it is 120 to 130 ° C. When the melting peak temperature is 115 to 130 ° C., the heat resistance is high, and the bulk recoverability at high temperatures is good.
 また、上記ポリブテン-1は、JIS-K-7210に準じて測定したメルトフローレート(MFR;測定温度190℃、荷重2.16kgf(21.18N)、以下においてMFR190と記す。)が1~30g/10分であることが好ましい。より好ましいMFR190は3~25g/10分であり、さらにより好ましくは3~20g/10分である。MFR190が1~30g/10分であると、ポリブテン-1が高分子量となるため、耐熱性が良好であり、熱がかかったときの嵩回復性が高く、好ましい。また、紡糸引き取り性、及び延伸性が良好となる。 The polybutene-1 has a melt flow rate (MFR; measurement temperature 190 ° C., load 2.16 kgf (21.18 N), hereinafter referred to as MFR 190) measured in accordance with JIS-K-7210 1-30 g. / 10 minutes is preferable. A more preferred MFR 190 is 3 to 25 g / 10 min, even more preferably 3 to 20 g / 10 min. When the MFR 190 is 1 to 30 g / 10 min, the polybutene-1 has a high molecular weight, so that the heat resistance is good and the bulk recovery property when heated is high, which is preferable. Further, the take-up property of the spinning and the stretchability are improved.
 上記第一成分において、ポリプテン-1は、主成分であり、第一成分全体に対して70質量%以上含まれる。生産性やクッション性、及び高温下での嵩回復性が良好であるという観点から、75~98質量%含まれることが好ましく、80~97質量%含まれることがより好ましく、85~97質量%含まれることが特に好ましく、87~96質量%含まれることが最も好ましい。 In the first component, polypten-1 is a main component and is contained in an amount of 70% by mass or more based on the entire first component. From the viewpoint of good productivity, cushioning properties, and good bulk recovery under high temperature, it is preferably contained in an amount of 75 to 98% by mass, more preferably 80 to 97% by mass, and more preferably 85 to 97% by mass. It is particularly preferably contained, and most preferably contained in an amount of 87 to 96% by mass.
 上記のようにポリブテン-1に、適度な相溶化効果を発揮する直鎖状低密度ポリエチレンをブレンドすることにより、ポリブテン-1への相溶化効果が低すぎる場合に生じる、ポリブテン-1の可紡性及び延伸性が改良されないため、均一な複合繊維を得られ難くなるという問題を解決し得る。 As described above, polybutene-1 is spun when polybutene-1 is blended with linear low-density polyethylene that exhibits an appropriate compatibilizing effect and the compatibilizing effect on polybutene-1 is too low. Since the properties and stretchability are not improved, the problem that it is difficult to obtain a uniform composite fiber can be solved.
 上記第一成分において、上記直鎖状低密度ポリエチレンの添加量は、第一成分全体を100質量%とした場合2~25質量%であり、3~20質量%であることがより好ましく、3~15質量%であることが特に好ましく、4~12%であることが最も好ましい。上記の範囲内であれば、PB-1の流動特性を向上し、安定して均一な紡糸ができるうえ、延伸性も改善される。 In the first component, the amount of the linear low-density polyethylene added is 2 to 25% by mass, more preferably 3 to 20% by mass, based on 100% by mass of the entire first component. It is particularly preferably 15 to 15% by mass, and most preferably 4 to 12%. Within the above range, the flow characteristics of PB-1 can be improved, stable and uniform spinning can be achieved, and stretchability can be improved.
 上記第一成分は、上記の様にポリブテン-1及び直鎖状低密度ポリエチレンを含むほか、本発明の効果を損なわない範囲内で、さらにエチレン-エチレン性不飽和カルボン酸共重合体を含んでもよい。エチレン-エチレン性不飽和カルボン酸共重合体は直鎖状低密度ポリエチレンと同様、ポリブテン-1との相溶性を示すことから、上記第一成分がエチレン-エチレン性不飽和カルボン酸共重合体をさらに含むことにより、溶融紡糸時における均一な繊維の形成や延伸性などの可紡性が改善できる。また、上記第一成分がポリブテン-1及び直鎖状低密度ポリエチレンに加え、さらにエチレン-エチレン性不飽和カルボン酸共重合体を含む捲縮性複合繊維は、その繊維を含む繊維ウェブや不織布に対し、熱接着などの熱加工する際、高温で長時間熱加工を行っても、構成繊維同士が熱接着した点(以下、熱接着点とも記す。)において、鞘成分が薄肉化して熱接着点が縮小する現象、いわゆる「接着点やせ」(以下、単に接着点やせとも記す。)が発生しにくいことから、強固に構成繊維同士を熱接着することが可能となり、より接着強力の大きい熱接着不織布が得られ得る。 The first component includes polybutene-1 and linear low-density polyethylene as described above, and may further include an ethylene-ethylenically unsaturated carboxylic acid copolymer within the range not impairing the effects of the present invention. Good. Since the ethylene-ethylenically unsaturated carboxylic acid copolymer is compatible with polybutene-1 as in the case of linear low density polyethylene, the first component is an ethylene-ethylenically unsaturated carboxylic acid copolymer. Further, by including it, spinnability such as uniform fiber formation and stretchability during melt spinning can be improved. In addition to the polybutene-1 and the linear low-density polyethylene, the crimpable composite fiber containing the ethylene-ethylenically unsaturated carboxylic acid copolymer as the first component is used as a fiber web or a nonwoven fabric containing the fiber. On the other hand, when heat processing such as heat bonding, even if heat processing is performed at a high temperature for a long time, the sheath component is thinned and heat bonded at the point where the constituent fibers are heat bonded (hereinafter also referred to as heat bonding points). Since the phenomenon of point shrinkage, the so-called “adhesion point thinning” (hereinafter, simply referred to as “adhesion point thinning”) is less likely to occur, it becomes possible to firmly heat-bond the constituent fibers together, and heat with higher adhesive strength. An adhesive nonwoven fabric can be obtained.
 本発明の捲縮性複合繊維に用いられるエチレン-エチレン性不飽和カルボン酸共重合体を構成するエチレン性不飽和カルボン酸としては、特に限定されないが、例えば、アクリル酸、メタクリル酸、エタクリル酸、フマル酸、マレイン酸、イタコン酸、マレイン酸モノメチル、マレイン酸モノエチル、無水マレイン酸、無水イタコン酸などが挙げられる。 The ethylenically unsaturated carboxylic acid constituting the ethylene-ethylenically unsaturated carboxylic acid copolymer used in the crimped conjugate fiber of the present invention is not particularly limited, and examples thereof include acrylic acid, methacrylic acid, ethacrylic acid, Examples thereof include fumaric acid, maleic acid, itaconic acid, monomethyl maleate, monoethyl maleate, maleic anhydride, itaconic anhydride and the like.
 エチレン-エチレン性不飽和カルボン酸共重合体としては、具体的には、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)、エチレン-エタクリル酸共重合体、エチレン-マレイン酸共重合体、エチレン-フマル酸共重合体、エチレン-イタコン酸共重合体、エチレン-無水マレイン酸共重合体、エチレン-無水イタコン酸共重合体などが挙げられる。中でも、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体及びエチレン-マレイン酸共重合体が好ましく、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体がさらに好ましい。 Specific examples of the ethylene-ethylenically unsaturated carboxylic acid copolymer include ethylene-acrylic acid copolymer (EAA), ethylene-methacrylic acid copolymer (EMAA), ethylene-ethacrylic acid copolymer, ethylene -Maleic acid copolymer, ethylene-fumaric acid copolymer, ethylene-itaconic acid copolymer, ethylene-maleic anhydride copolymer, ethylene-itaconic anhydride copolymer, and the like. Among these, an ethylene-acrylic acid copolymer, an ethylene-methacrylic acid copolymer, and an ethylene-maleic acid copolymer are preferable, and an ethylene-acrylic acid copolymer and an ethylene-methacrylic acid copolymer are more preferable.
 また、上記エチレン-エチレン性不飽和カルボン酸共重合体は、エチレンとエチレン性不飽和カルボン酸からなる共重合体のみならず、例えばエチレンにエチレン性不飽和カルボン酸を含む2種類以上の成分を共重合させた3元共重合体(ターポリマー:Terpolymer)を含む、その他の成分が共重合された共重合体であってもよい。 Further, the ethylene-ethylenically unsaturated carboxylic acid copolymer is not limited to a copolymer composed of ethylene and ethylenically unsaturated carboxylic acid, but includes, for example, two or more kinds of components containing ethylenically unsaturated carboxylic acid in ethylene. It may be a copolymer in which other components are copolymerized, including a copolymerized terpolymer (terpolymer).
 上記のその他の共重合成分として用いるモノマーとしては、例えば、酢酸ビニル、プロピオン酸ビニルのようなビニルエステル、アクリル酸メチル、アクリル酸エチル、アクリル酸イソプロピル、アクリル酸nブチル、アクリル酸イソブチル、アクリル酸イソオクチルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸イソブチルなどのメタクリル酸エステル、マレイン酸ジメチル、マレイン酸ジエチルなどのマレイン酸エステルなどを含むエチレン性不飽和カルボン酸エステル、一酸化炭素、二酸化硫黄などが挙げられる。 Examples of the monomer used as the other copolymerization component include vinyl esters such as vinyl acetate and vinyl propionate, methyl acrylate, ethyl acrylate, isopropyl acrylate, nbutyl acrylate, isobutyl acrylate, and acrylic acid. Ethylenic unsaturated carboxylic acid esters such as isooctyl and other acrylic acid esters, methyl methacrylate, methacrylic acid esters such as isobutyl methacrylate, maleic acid esters such as dimethyl maleate and diethyl maleate, carbon monoxide, sulfur dioxide, etc. Is mentioned.
 エチレン、エチレン性不飽和カルボン酸及び任意のその他の共重合成分が共重合された共重合体としては、特に限定されないが、例えば、エチレンと、無水マレイン酸、及びアクリル酸エステルを共重合させたエチレン-アクリレート-マレイン酸のポリマー(アルケマ・ジャパン製「ボンダイン」(登録商標))などが挙げられる。 The copolymer in which ethylene, ethylenically unsaturated carboxylic acid and any other copolymerization component are copolymerized is not particularly limited. For example, ethylene, maleic anhydride, and an acrylic ester are copolymerized. And an ethylene-acrylate-maleic acid polymer (“Bondaine” (registered trademark) manufactured by Arkema Japan).
 上記エチレン-エチレン性不飽和カルボン酸共重合体におけるエチレン性不飽和カルボン酸含量は、1~50質量%、好ましくは1~29質量%である。特に、アクリル酸の場合は、5~25質量%であることが好ましく、メタクリル酸の場合は、5~20質量%であることが好ましい。また、上記エチレン-エチレン性不飽和カルボン酸共重合体におけるその他の共重合成分の含有量は0~30質量%、好ましくは0~20質量%の範囲である。 The ethylenically unsaturated carboxylic acid content in the ethylene-ethylenically unsaturated carboxylic acid copolymer is 1 to 50% by mass, preferably 1 to 29% by mass. In particular, in the case of acrylic acid, it is preferably 5 to 25% by mass, and in the case of methacrylic acid, it is preferably 5 to 20% by mass. Further, the content of other copolymerization components in the ethylene-ethylenically unsaturated carboxylic acid copolymer is in the range of 0 to 30% by mass, preferably 0 to 20% by mass.
 また、本発明において、エチレン-エチレン性不飽和カルボン酸共重合体として、上記エチレン-エチレン性不飽和カルボン酸共重合体そのもの以外に、そのカルボキシル基の一部又は全部を金属塩にしたアイオノマーを使用することができる。アイオノマーを構成する金属種としては、リチウム、ナトリウム、カリウムなどの一価金属、マグネシウム、カルシウム、亜鉛、銅、コバルト、マンガン、鉛、鉄などの多価金属などが挙げられるが、中でも一価金属又は亜鉛が好ましい。 In the present invention, as the ethylene-ethylenically unsaturated carboxylic acid copolymer, in addition to the ethylene-ethylenically unsaturated carboxylic acid copolymer itself, an ionomer in which a part or all of the carboxyl group is converted into a metal salt. Can be used. Examples of the metal species constituting the ionomer include monovalent metals such as lithium, sodium, and potassium, and polyvalent metals such as magnesium, calcium, zinc, copper, cobalt, manganese, lead, and iron. Or zinc is preferable.
 また、本発明において、上記のエチレン-エチレン性不飽和カルボン酸共重合体は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In the present invention, the ethylene-ethylenically unsaturated carboxylic acid copolymer may be used alone or in combination of two or more.
 上記エチレン-エチレン性不飽和カルボン酸共重合体は、特に限定されないが、例えば、高圧ラジカル共重合によって得ることができる。また、上記エチレン-エチレン性不飽和カルボン酸共重合体アイオノマーは、上記エチレン-エチレン性不飽和カルボン酸共重合体を、常法によりイオン化することによって得ることができる。 The ethylene-ethylenically unsaturated carboxylic acid copolymer is not particularly limited, but can be obtained, for example, by high-pressure radical copolymerization. The ethylene-ethylenically unsaturated carboxylic acid copolymer ionomer can be obtained by ionizing the ethylene-ethylenically unsaturated carboxylic acid copolymer by a conventional method.
 上記のように本発明の捲縮性複合繊維における第一成分が、ポリブテン-1に対し、適度な相溶化効果を発揮するエチレン-エチレン性不飽和カルボン酸共重合体を含むことで、ポリブテン-1への相溶化効果が低すぎる場合に生じる、ポリブテン-1の可紡性の低さによって生じる、均一な複合繊維を得られにくいという問題を解決し得る。また、ポリブテン-1への相溶化効果が高すぎる場合に生じる、ポリブテン-1を主に含む第一成分からなる複合繊維は得られるが、得られた複合繊維から熱接着不織布を作製する際、熱加工により接着点やせが発生するという問題を解決し得る。すなわち、ポリブテン-1に対し、適度な相溶化効果を発揮するエチレン-エチレン性不飽和カルボン酸共重合体をブレンドすることにより、それらを含む均一な複合繊維を得ることが可能となるうえ、さらに得られた複合繊維の熱接着性が改善され、ポリブテン-1の融点より高い温度下で熱加工して接着させる際に生じ得る接着点やせが解消できる。 As described above, when the first component in the crimped conjugate fiber of the present invention contains an ethylene-ethylenically unsaturated carboxylic acid copolymer that exhibits an appropriate compatibilizing effect with respect to polybutene-1, polybutene- It is possible to solve the problem that it is difficult to obtain a uniform composite fiber caused by the low spinnability of polybutene-1, which occurs when the effect of compatibilizing to 1 is too low. Further, a composite fiber composed of the first component mainly containing polybutene-1 produced when the effect of compatibilization with polybutene-1 is too high can be obtained. When producing a heat-bonded nonwoven fabric from the obtained composite fiber, It is possible to solve the problem of adhesion points and thinness caused by thermal processing. That is, by blending polybutene-1 with an ethylene-ethylenically unsaturated carboxylic acid copolymer that exhibits an appropriate compatibilizing effect, it becomes possible to obtain uniform composite fibers containing them, and The thermal adhesiveness of the obtained composite fiber is improved, and the adhesive point and thinning that may occur when bonded by thermal processing at a temperature higher than the melting point of polybutene-1 can be eliminated.
 上記第一成分において、エチレン-エチレン性不飽和カルボン酸共重合体を添加する場合、その添加量は、第一成分全体を100質量%とした場合、0.5~20質量%であることが好ましく、1~15質量%であることがより好ましく、3~10質量%であることがさらに好ましく、4~9質量%であることが特に好ましい。0.5質量%以上であれば、熱接着性に優れた捲縮性複合繊維が得られ、高い温度、例えば190℃以上の温度においても繊維同士の接着強力が低下せず、上記のような接着点やせも発生しない。また、20質量%以下であることにより、硬さ保持性(嵩回復性)も良好な不織布などの繊維構造物が得られる。 When the ethylene-ethylenically unsaturated carboxylic acid copolymer is added to the first component, the addition amount may be 0.5 to 20% by mass when the entire first component is 100% by mass. It is preferably 1 to 15% by mass, more preferably 3 to 10% by mass, and particularly preferably 4 to 9% by mass. If it is 0.5% by mass or more, a crimped conjugate fiber excellent in thermal adhesiveness can be obtained, and the adhesive strength between the fibers does not decrease even at a high temperature, for example, a temperature of 190 ° C. or higher. There is no adhesion point or skinnyness. Moreover, by being 20 mass% or less, fiber structures, such as a nonwoven fabric, with favorable hardness retainability (bulk recovery property) are obtained.
 また、上記エチレン-エチレン性不飽和カルボン酸共重合体は、JIS-K-7210に準じて測定したMFR190が3~60g/10分であることが好ましい。より好ましいMFR190は5~40g/10分であり、さらにより好ましくは5~30g/10分である。MFR190が60g/10以下であることにより、得られた捲縮性複合繊維を含む繊維ウェブに熱加工を施した際に生じ得る接着点やせを抑制する効果が向上し得る。また、MFR190が3g/10分以上であることにより、紡糸工程、延伸工程の際の操作性に優れ、均一な捲縮性複合繊維を得ることが容易となる。 The ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has an MFR190 of 3 to 60 g / 10 min measured according to JIS-K-7210. A more preferred MFR 190 is 5 to 40 g / 10 min, even more preferably 5 to 30 g / 10 min. When MFR190 is 60 g / 10 or less, the effect which suppresses the adhesion point thinning which may arise when heat-processing to the fiber web containing the obtained crimpable conjugate fiber can be improved. Moreover, when MFR190 is 3 g / 10min or more, it is excellent in the operativity in a spinning process and a drawing process, and it becomes easy to obtain a uniform crimpable conjugate fiber.
 また、上記エチレン-エチレン性不飽和カルボン酸共重合体は、JIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度が60℃以上であることが好ましく、70℃以上であることがより好ましく、70~120℃であることがさらにより好ましい。融解ピーク温度が60℃以上であることにより、接着点やせを抑制する効果が高く、熱加工による嵩回復性の低下や圧縮ひずみ率の増加といったクッション性能の低下が生じにくくなる。また、融解ピーク温度が70~120℃であると、接着点やせを抑制する効果やクッション性能の低下を抑制する効果などをよりよく発揮し得る。 The ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has a melting peak temperature determined from a DSC curve measured according to JIS-K-7121 of 60 ° C. or higher, preferably 70 ° C. or higher. Is more preferable, and 70 to 120 ° C. is even more preferable. When the melting peak temperature is 60 ° C. or higher, the effect of suppressing the adhesion point thinness is high, and it is difficult for the cushion performance to be reduced such as a decrease in bulk recovery property and an increase in compressive strain rate due to thermal processing. In addition, when the melting peak temperature is 70 to 120 ° C., the effect of suppressing the adhesion point thinness and the effect of suppressing the deterioration of the cushion performance can be exhibited more effectively.
 また、上記エチレン-エチレン性不飽和カルボン酸共重合体は、JIS-K-7206に準じて測定した軟化温度(ビカット軟化点)が40℃以上であることが好ましく、より好ましくは50℃以上であり、特に好ましくは50~100℃である。軟化温度が40℃以上であることにより、接着点やせを抑制する効果が高く、熱加工による嵩回復性の低下や圧縮ひずみ率の増加といったクッション性能の低下が生じにくくなる。軟化温度が50~100℃であると、接着点やせを抑制する効果やクッション性能の低下を抑制する効果をよりよく発揮し得る。 The ethylene-ethylenically unsaturated carboxylic acid copolymer preferably has a softening temperature (Vicat softening point) measured according to JIS-K-7206 of 40 ° C. or higher, more preferably 50 ° C. or higher. It is particularly preferably 50 to 100 ° C. When the softening temperature is 40 ° C. or higher, the effect of suppressing the adhesive point thinness is high, and the cushioning performance such as the decrease in bulk recovery property and the increase in the compressive strain rate due to thermal processing is less likely to occur. When the softening temperature is 50 to 100 ° C., the effect of suppressing adhesion point thinning and the effect of suppressing the deterioration of cushion performance can be exhibited better.
 第一成分にさらにブレンドできるポリマーとしては、本発明の効果を阻害しない範囲で、上記のポリオレフィン系ポリマー以外のポリオレフィン系ポリマーの他、例えば、ビニル基、カルボシキル基、無水マレイン酸など極性基を持つオレフィンなどとの共重合ポリマー、ポリオレフィン系や、スチレン系、ポリエステル系などの各種熱可塑性エラストマーなどが挙げられる。 The polymer that can be further blended with the first component has a polar group such as a vinyl group, a carboxyl group, and maleic anhydride in addition to the polyolefin-based polymer other than the above-mentioned polyolefin-based polymer as long as the effects of the present invention are not impaired. Examples thereof include copolymer polymers with olefins, various thermoplastic elastomers such as polyolefins, styrenes, and polyesters.
 また、上記第一成分には、本発明の効果を阻害せず、繊維生産性、不織布生産性、熱接着性、触感に影響を与えない範囲であれば、公知の各種添加剤を加えることが可能である。第一成分には、例えば他の重合体や、有機物あるいは無機物(例えば、炭酸カルシウム、タルク等)等の公知の結晶核剤、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤(例えばハロゲン系、リン系、ノンハロゲン系、三酸化アンチモンなどの無機化合物系等)、抗菌剤、滑剤、可塑剤、柔軟剤等を用途等に応じて混合することができる。上記添加剤として、結晶核剤を添加すると、紡糸時の繊維間融着防止効果をさらに向上させることができ、また、触感の柔らかい不織布を得ることができるという利点をもたらす。結晶核剤の添加量は特に限定されないが、繊維の生産性を考慮すると、第一成分の全体質量に対し、20質量%以下の割合で添加することが好ましく、10質量%以下の割合で添加することがより好ましい。 In addition, various known additives may be added to the first component as long as they do not impair the effects of the present invention and do not affect fiber productivity, nonwoven fabric productivity, thermal adhesion, and touch. Is possible. Examples of the first component include other polymers, known crystal nucleating agents such as organic substances or inorganic substances (for example, calcium carbonate, talc, etc.), antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers. In addition, flame retardants (for example, inorganic compounds such as halogen-based, phosphorus-based, non-halogen-based, antimony trioxide, and the like), antibacterial agents, lubricants, plasticizers, softeners, and the like can be mixed depending on applications. When a crystal nucleating agent is added as the additive, the effect of preventing fusion between fibers at the time of spinning can be further improved, and a non-woven fabric having a soft feel can be obtained. The addition amount of the crystal nucleating agent is not particularly limited, but considering the productivity of the fiber, it is preferably added at a ratio of 20% by mass or less with respect to the total mass of the first component, and added at a rate of 10% by mass or less. More preferably.
 本発明の捲縮性複合繊維を構成する第一成分は、上記の特徴、すなわち、第一成分の主成分としてPB-1を70質量%以上、好ましくは75質量%以上含み、直鎖状低密度ポリエチレンを2~25質量%含んでいる。これにより紡糸後の第一成分の融点が低い温度となり、直鎖状低密度ポリエチレンではなくポリプロピレンをPB-1に加えた場合に起こりうる、第一成分の見かけ融点が上昇する現象が発生しにくい。このことは得られた捲縮性複合繊維を用いて示差走査型熱量計(DSC)を用いた測定を行い、この測定から得られる融解熱量曲線から、紡糸後の各成分の融点を求めることから確認できる。即ち本発明の捲縮性複合繊維は、JIS-K-7121に準じて測定したDSC曲線から求められる、紡糸後の第一成分の融点(Tf1)が140℃以下、好ましくは90~135℃、より好ましくは100~130℃、特に好ましくは115~130℃、最も好ましくは120℃~125℃である。紡糸後の第一成分の融点(Tf1)がこの範囲であることで熱接着加工をして不織布などの繊維集合物を製造する際、より低温で、より短時間のうちに十分な接着強力をもった熱接着性の繊維集合物を得ることができる。紡糸後の第一成分の融点が高温になればなるほど上記の効果を得られにくくなり、紡糸後の第一成分の融点(Tf1)が140℃を超える、あるいは融解ピーク温度が高いポリオレフィン系ポリマー(例えばポリプロピレン)を添加した場合に生じる、第二成分の紡糸後の融点(Tf2)よりも低い温度で、第一成分に起因する融点のピークが複数現れる、いわゆるダブル・ピークを第一成分が有していると、低温での熱接着性に乏しく、十分な接着強力をもった繊維集合物が得られない恐れがある。紡糸後の第一成分の融点(Tf1)の下限は特に限定されないが、90℃未満となると、耐熱性、高温での嵩回復性が低下する恐れがある。また上記の通り、本発明の捲縮性複合繊維において、紡糸後の複合繊維の第一成分の融点は、融解熱量曲線に、第一成分に起因する複数のピークを有する、いわゆるダブル・ピークの形状であると、熱接着加工を行う際に好ましくない、従って、上記第一成分の主成分であるPB-1の紡糸後の融点と重なりやすく、融解熱量曲線に第一成分に起因するピークを一つだけ有する、いわゆるシングル・ピークになる直鎖状低密度ポリエチレンが好ましい。 The first component constituting the crimped conjugate fiber of the present invention has the above-mentioned characteristics, that is, contains 70% by mass or more, preferably 75% by mass or more of PB-1 as a main component of the first component, It contains 2 to 25% by mass of density polyethylene. As a result, the melting point of the first component after spinning becomes a low temperature, and the phenomenon that the apparent melting point of the first component is increased is unlikely to occur when polypropylene is added to PB-1 instead of linear low density polyethylene. . This is because the crimped conjugate fiber obtained is measured using a differential scanning calorimeter (DSC), and the melting point of each component after spinning is determined from the heat of fusion curve obtained from this measurement. I can confirm. That is, the crimped conjugate fiber of the present invention has a melting point (Tf1) of the first component after spinning of 140 ° C. or less, preferably 90 to 135 ° C., obtained from a DSC curve measured according to JIS-K-7121. More preferably, it is 100 to 130 ° C, particularly preferably 115 to 130 ° C, and most preferably 120 ° C to 125 ° C. When the melting point (Tf1) of the first component after spinning is within this range, when producing a fiber assembly such as a nonwoven fabric by heat bonding, sufficient adhesive strength can be obtained at a lower temperature in a shorter time. A heat-adhesive fiber assembly having a thermal adhesive property can be obtained. The higher the melting point of the first component after spinning, the more difficult it is to obtain the above effect, and the polyolefin polymer (the melting point (Tf1) of the first component after spinning exceeds 140 ° C. or the melting peak temperature is high). For example, the first component has a so-called double peak in which a plurality of melting point peaks caused by the first component appear at a temperature lower than the melting point (Tf2) after spinning of the second component, which occurs when polypropylene is added. If this is the case, there is a fear that a fiber assembly having insufficient adhesive strength at a low temperature cannot be obtained. The lower limit of the melting point (Tf1) of the first component after spinning is not particularly limited, but if it is lower than 90 ° C., the heat resistance and the bulk recovery property at high temperatures may be lowered. In addition, as described above, in the crimped conjugate fiber of the present invention, the melting point of the first component of the composite fiber after spinning has a plurality of peaks due to the first component in the heat of fusion curve, so-called double peak. The shape is not preferred when performing heat bonding processing. Therefore, it easily overlaps with the melting point after spinning of PB-1, which is the main component of the first component, and the peak due to the first component is present in the heat of fusion curve. A linear low density polyethylene having a single so-called single peak is preferred.
 (第二成分)
 本発明の捲縮性複合繊維の第二成分としては、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーであればよく、特に限定されないが、曲げ強さ、曲げ弾性に優れるポリマーが好ましく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸などのポリエステル系ポリマー、ナイロン6、ナイロン66,ナイロン11、ナイロン12などのポリアミド、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン系ポリマー、ポリカーボネート、ポリスチレンなどが挙げられる。第二成分として上記のポリマーを使用する際、ポリマーを単独で用いてもよく、2種以上を組み合わせて用いても良い。本発明の捲縮性複合繊維において、第二成分に使用するポリマーとしてはポリエステル系ポリマー、もしくはポリオレフィン系ポリマーが好ましい。第二成分として、ポリオレフィン系ポリマーを用い、前述したように第一成分も併せてポリオレフィン系ポリマーを用いることで、本発明の捲縮性複合繊維はリサイクルが容易なものとなる。また、第二成分として、上記ポリエステル系のポリマーを使用した本発明の捲縮性複合繊維は、複合繊維の中心付近を構成する第二成分と、繊維表面の大部分を占める第一成分の融点差が大きくなるため、第一成分が十分に熱接着する温度で複合繊維、繊維ウェブ、不織布を熱接着させても第二成分がその形状を維持するため、熱加工によるへたりが生じにくいため、熱加工工程における加工温度の管理が容易であると共に、高い接着強力を持った繊維集合物が得られやすい。
(Second component)
The second component of the crimped conjugate fiber of the present invention may be a polymer having a melting peak temperature 20 ° C. or higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher. Although not particularly limited, a polymer excellent in bending strength and bending elasticity is preferable. For example, polyester polymers such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, nylon 6, nylon 66, nylon 11, polyamides such as nylon 12, polyolefin polymers such as polypropylene and polymethylpentene, polycarbonate, polystyrene and the like. When using said polymer as a 2nd component, a polymer may be used independently and may be used in combination of 2 or more type. In the crimped conjugate fiber of the present invention, the polymer used for the second component is preferably a polyester polymer or a polyolefin polymer. By using a polyolefin-based polymer as the second component and using the polyolefin-based polymer together with the first component as described above, the crimped conjugate fiber of the present invention can be easily recycled. Further, the crimpable conjugate fiber of the present invention using the polyester-based polymer as the second component is composed of the second component constituting the vicinity of the center of the conjugate fiber and the melting point of the first component occupying most of the fiber surface. Because the difference becomes large, the second component maintains its shape even when the composite fiber, fiber web, and nonwoven fabric are heat bonded at the temperature at which the first component is sufficiently heat bonded, so that sag due to thermal processing is unlikely to occur. In addition, it is easy to control the processing temperature in the heat processing step, and it is easy to obtain a fiber assembly having high adhesive strength.
 まず、本発明の捲縮性複合繊維において、第二成分を構成するポリマーにポリエステル系ポリマーを用いた複合繊維について説明する。本発明の捲縮性複合繊維の第二成分としてポリエステル系ポリマーを用いる場合、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリエステル系ポリマー、又は融解開始温度が120℃以上であるポリエステル系ポリマーであればよく、特に限定されないが、曲げ強さ、曲げ弾性に優れるポリマーが好ましいことから、ポリエチレンテレフタレート(以下、PETとも記す。)やポリトリメチレンテレフタレート(以下、PTTとも記す。)、ポリブチレンテレフタレート(以下、PBTとも記す。)であることが好ましく、ポリエチレンテレフタレートもしくはポリトリメチレンテレフタレートであることがより好ましい。繊維の用途に適した物性を有するポリマーを選択して入手しやすく、繊維の嵩回復性が高いといった特徴から、本発明の捲縮性複合繊維において、第二成分にポリエステル系ポリマーを使用する場合、ポリエチレンテレフタレートを用いることが最も好ましい。 First, in the crimped conjugate fiber of the present invention, a conjugate fiber using a polyester polymer as the polymer constituting the second component will be described. When a polyester polymer is used as the second component of the crimped conjugate fiber of the present invention, a polyester polymer having a melting peak temperature of 20 ° C. or higher than the melting peak temperature of polybutene-1, or a melting start temperature of 120 ° C. or higher. The polyester polymer is not particularly limited, but a polymer excellent in bending strength and flexural elasticity is preferable. Therefore, polyethylene terephthalate (hereinafter also referred to as PET) and polytrimethylene terephthalate (hereinafter also referred to as PTT). And polybutylene terephthalate (hereinafter also referred to as PBT), more preferably polyethylene terephthalate or polytrimethylene terephthalate. When a polyester polymer is used as the second component in the crimped conjugate fiber of the present invention because it is easy to select and obtain a polymer having physical properties suitable for the use of the fiber, and the bulk recovery of the fiber is high. It is most preferable to use polyethylene terephthalate.
 上記ポリエステル系ポリマーの極限粘度[η]は、0.4~1.2が好ましい。より好ましくは、0.5~1.1である。極限粘度が0.4未満であると、ポリマーの分子量が低すぎるため、紡糸性に劣るだけでなく、繊維強度も低く、実用性に乏しい。極限粘度が1.2を超えると、ポリマーの分子量が大きくなって溶融粘度が高くなりすぎるため、単糸切れなどが発生し良好な紡糸が難しくなり好ましくない。また、極限粘度[η]を上記範囲とすることにより、生産性に優れ、嵩弾性に優れた複合繊維を得ることができる。ここでいう極限粘度[η]とは、35℃のo-クロロフェノール溶液として、オストワルド粘度計により測定し、下記式1に基づいて求める値である。 The intrinsic viscosity [η] of the polyester polymer is preferably 0.4 to 1.2. More preferably, it is 0.5 to 1.1. When the intrinsic viscosity is less than 0.4, the molecular weight of the polymer is too low, so that not only the spinnability is inferior, but also the fiber strength is low and the practicality is poor. If the intrinsic viscosity exceeds 1.2, the molecular weight of the polymer becomes large and the melt viscosity becomes too high, so that a single yarn breakage occurs and good spinning becomes difficult, which is not preferable. In addition, by setting the intrinsic viscosity [η] in the above range, a composite fiber excellent in productivity and excellent in bulk elasticity can be obtained. The intrinsic viscosity [η] here is a value obtained by measuring with an Ostwald viscometer as an o-chlorophenol solution at 35 ° C., based on the following formula 1.
 [数1]
Figure JPOXMLDOC01-appb-I000001
[Equation 1]
Figure JPOXMLDOC01-appb-I000001
 但し、上記式1において、ηrは純度98%以上のo-クロロフェノールで溶解した試料の希釈溶液における35℃での粘度を同一温度で測定した上記溶剤全体の濃度で除した値であり、Cは上記溶液100ml中のグラム単位による溶質重量値である。 In the above formula 1, ηr is a value obtained by dividing the viscosity at 35 ° C. in a diluted solution of a sample dissolved in o-chlorophenol having a purity of 98% or more by the concentration of the whole solvent measured at the same temperature, and C Is the solute weight value in grams per 100 ml of the solution.
 上記ポリエステルのJIS-K-7121に準じて測定したDSC曲線より求められる融解ピーク温度は180℃~300℃であることが好ましい。より好ましくは200℃~270℃である。融解ピーク温度が180~300℃であると、耐候性が高く、得られる複合繊維の曲げ弾性率を高くすることができる。 The melting peak temperature obtained from the DSC curve of the polyester measured according to JIS-K-7121 is preferably 180 ° C to 300 ° C. More preferably, it is 200 ° C. to 270 ° C. When the melting peak temperature is 180 to 300 ° C., the weather resistance is high, and the flexural modulus of the resulting composite fiber can be increased.
 次に、本発明の捲縮性複合繊維において、第二成分を構成するポリマーに、ポリオレフィン系ポリマーを用いた複合繊維について説明する。本発明の捲縮性複合繊維の第二成分としてポリオレフィン系ポリマーを用いる場合、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリオレフィン系ポリマー、又は融解開始温度が120℃以上であるポリオレフィン系ポリマーであればよく、特に限定されないが、曲げ強さ、曲げ弾性に優れるポリマーが好ましいことから、ポリプロピレン(以下、PPとも記す。)であることが好ましい。上記ポリプロピレンは、特に限定されず、例えばホモポリマー、ランダム共重合体、ブロック共重合体、又はそれらの混合物や、耐熱性、嵩回復性などの不織布やクッション材に必要な特性を損なわない範囲であれば、ポリプロピレンに合成ゴムのようなエラストマー成分が分散、あるいは混合されているポリプロピレンを使用しても構わないが、熱収縮性を考慮すると、ホモポリマー(ホモポリプロピレン)又はブロック共重合体であることが好ましい。特に、ホモポリプロピレンは嵩回復性に有利であり、好ましい。上記ランダム共重合体、ブロック共重合体としては、例えば、プロピレンと、エチレン及び炭素数4以上のα-オレフィンからなる群から選ばれる少なくとも一種のα-オレフィンとの共重合体が挙げられる。上記炭素数4以上のα-オレフィンとしては、特に限定されないが、例えば、1-ブテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどが挙げられる。中でも、嵩回復性の観点から、プロピレンホモポリマー、エチレン-プロピレン共重合体、エチレン-ブテン-1-プロピレン三元共重合体からなる群から選択される一種であることが好ましく、得られる捲縮性複合繊維の耐熱性、使用後のリサイクル性及び経済性(製造コスト)を考慮すると、第二成分にポリオレフィン系ポリマーを使用する場合、ポリオレフィン系ポリマーはホモポリプロピレンが特に好ましい。また、嵩回復性の観点から、ポリプロピレンのホモポリマー、ランダム共重合体、ブロック共重合体の混合物を用いる場合、第二成分全体を100質量%とすると、ホモポリプロピレンの含有量は、73~100質量%であり、75~100質量%であることがより好ましく、85~100質量%であることが特に好ましい。 Next, in the crimped composite fiber of the present invention, a composite fiber using a polyolefin polymer as the polymer constituting the second component will be described. When a polyolefin-based polymer is used as the second component of the crimped conjugate fiber of the present invention, a polyolefin-based polymer having a melting peak temperature that is 20 ° C. or more higher than the melting peak temperature of polybutene-1, or a melting start temperature of 120 ° C. or more The polyolefin polymer is not particularly limited, but is preferably a polypropylene (hereinafter also referred to as PP) because a polymer excellent in bending strength and bending elasticity is preferable. The polypropylene is not particularly limited, and for example, within a range that does not impair the properties necessary for a homopolymer, a random copolymer, a block copolymer, or a mixture thereof, or a nonwoven fabric or cushioning material such as heat resistance and bulk recovery properties. If there is, it is possible to use polypropylene in which an elastomer component such as synthetic rubber is dispersed or mixed in polypropylene, but considering heat shrinkability, it is a homopolymer (homopolypropylene) or a block copolymer. It is preferable. In particular, homopolypropylene is advantageous in terms of bulk recovery and is preferred. Examples of the random copolymer and block copolymer include a copolymer of propylene and at least one α-olefin selected from the group consisting of ethylene and an α-olefin having 4 or more carbon atoms. The α-olefin having 4 or more carbon atoms is not particularly limited, and examples thereof include 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, and 4,4-dimethyl. -1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like. Among these, from the viewpoint of bulk recovery, it is preferably a kind selected from the group consisting of a propylene homopolymer, an ethylene-propylene copolymer, and an ethylene-butene-1-propylene terpolymer, and the resulting crimp In view of the heat resistance, recyclability after use and economical efficiency (manufacturing cost), the polyolefin polymer is particularly preferably homopolypropylene when the polyolefin polymer is used as the second component. From the viewpoint of bulk recovery, when using a mixture of polypropylene homopolymer, random copolymer, and block copolymer, the content of homopolypropylene is 73 to 100, assuming that the entire second component is 100% by mass. % By mass, more preferably 75 to 100% by mass, and particularly preferably 85 to 100% by mass.
 上記第二成分にポリプロピレンを使用する際、上記ポリプロピレンは、JIS-K-7210に準じて測定したメルトフローレート(MFR;測定温度230℃、荷重2.16kgf(21.18N)、以下においてMFR230と記す。)が3~40g/10分であることが好ましい。より好ましいMFR230は、5~35g/10分である。MFR230が3~40g/10分であると、耐熱性が良好であり、高温下での嵩回復性が高く、また、紡糸引き取り性、及び延伸性が良好となる。 When polypropylene is used as the second component, the polypropylene has a melt flow rate (MFR) measured according to JIS-K-7210 (measurement temperature 230 ° C., load 2.16 kgf (21.18 N)) Is preferably 3 to 40 g / 10 min. A more preferred MFR 230 is 5 to 35 g / 10 min. When the MFR230 is 3 to 40 g / 10 min, the heat resistance is good, the bulk recovery property at high temperatures is high, and the take-up property and stretchability are good.
 上記第二成分にポリプロピレンを使用する際、上記ポリプロピレンの重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)は、2以上であることが好ましい。より好ましいQ値は、3~12である。そして、上記第二成分におけるポリプロピレンの重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値)は、得られる捲縮性複合繊維が発現する立体捲縮の種類によって、より好ましい値を選定することができる。例えば捲縮性複合繊維に立体捲縮が顕在化している顕在捲縮性複合繊維を得ようとする場合には、上記第二成分におけるポリプロピレンのQ値は4~12であることが好ましく、5~9であることが、より好ましい。加熱することにより立体捲縮を発現する潜在捲縮性複合繊維を得ようとする場合には、Q値は3~5であることが好ましい。 When using polypropylene as the second component, the ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene is preferably 2 or more. A more preferable Q value is 3 to 12. The ratio (Q value) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the polypropylene in the second component is more preferable depending on the type of steric crimps that the resulting crimped conjugate fiber exhibits. A value can be selected. For example, when trying to obtain an actual crimpable conjugate fiber in which steric crimp is manifested in the crimpable conjugate fiber, the Q value of polypropylene in the second component is preferably 4-12. More preferably, it is ˜9. When it is intended to obtain a latent crimpable conjugate fiber that expresses steric crimps by heating, the Q value is preferably 3 to 5.
 上記第二成分としてポリプロピレンなどのポリオレフィン系ポリマーを使用する際、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリオレフィン系ポリマーに加えて熱可塑性エラストマーをさらに含んでもよい。すなわち、クッション材や衣料用パッドなどの優れた嵩回復性や、繰り返し加重に対する耐歪み性が求められる用途に適する繊維集合物の構成繊維や、繊維そのものの弾力性、形状回復性、軽量性を求められる掛け布団や敷き布団などの各種寝具や衣料用品に詰め綿として用いられる捲縮性複合繊維において、捲縮性複合繊維そのものや捲縮性複合繊維を含む繊維集合物の硬さや嵩回復性、耐歪み性に寄与する第二成分、言い換えるならば、芯鞘型複合繊維においてより内側に存在する成分(偏心型も含む芯鞘型複合繊維では芯成分ともいう)に熱可塑性エラストマーを含むことが好ましい。熱可塑性エラストマーとしては、公知のものが使用でき、スチレン系エラストマー、オレフィン系エラストマー、エステル系エラストマー、アミド系エラストマー、ウレタン系エラストマー、塩化ビニル系エラストマーが使用できる。この中で、本発明の捲縮性複合繊維において、第二成分にポリオレフィン系ポリマーを使用する場合は、使用後のリサイクル性を考慮すると、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリオレフィン系ポリマーをポリプロピレンのホモポリマー、ランダム共重合体、ブロック共重合体、又はそれらの混合物とし、上記熱可塑性エラストマーとしてオレフィン系熱可塑性エラストマーを用いることが好ましい。オレフィン系熱可塑性エラストマーは、ポリエチレンやポリプロピレンを始めとするポリオレフィン樹脂をハードセグメントとし、エチレン-プロピレンゴム(EPM)、エチレン-ブテンゴム(EBM)、エチレン-プロピレン-ジエンゴム(EPDM)などのエチレンプロピレン系ゴムをソフトセグメントとした熱可塑性エラストマーであり、市販されているオレフィン系熱可塑性エラストマーとしては、例えば三井化学株式会社製「ミラストマー」(登録商標)や「ノティオ」(登録商標)、住友化学株式会社製「エスポレックス」(登録商標)、三菱化学株式会社製「サーモラン」(登録商標)や「ゼラス」(登録商標)などを用いることができる。本発明の捲縮性複合繊維において、捲縮性複合繊維を構成する第二成分をポリオレフィン系ポリマーとした場合、上記第二成分にオレフィン系熱可塑性エラストマーをはじめとする熱可塑性エラストマーを適量添加することで、熱可塑性エラストマーに由来すると考えられる曲げ弾力性をポリオレフィン系ポリマーを含む上記第二成分が持つようになり、上記第二成分をポリオレフィン系ポリマーのみとした複合繊維では不十分になりやすい曲げ回復性や耐繰り返し曲げ疲労性が向上し、クッション材などに求められる繰り返し圧縮耐久性が向上すると推測される。さらに、添加する熱可塑性エラストマーをオレフィン系熱可塑性エラストマーとすることで第一成分、第二成分共にポリオレフィン系ポリマーで構成されるため、使用後の繊維集合物のリサイクルが容易となる。 When a polyolefin-based polymer such as polypropylene is used as the second component, it may further contain a thermoplastic elastomer in addition to the polyolefin-based polymer having a melting peak temperature that is 20 ° C. higher than the melting peak temperature of the polybutene-1. In other words, it has excellent bulk recovery such as cushioning materials and clothing pads, as well as constituent fibers of fiber assemblies suitable for applications that require strain resistance against repeated loading, and the elasticity, shape recovery, and lightness of the fibers themselves. For crimped conjugate fibers used as cotton in various bedding and clothing items such as comforters and mattresses, the hardness, bulk recovery and resistance of the crimped conjugate fibers themselves and the fiber aggregates containing crimped conjugate fibers It is preferable that a thermoplastic elastomer is contained in the second component that contributes to the strainability, in other words, the component existing inside more in the core-sheath type composite fiber (also called the core component in the core-sheath type composite fiber including the eccentric type) . Known thermoplastic elastomers can be used, and styrene elastomers, olefin elastomers, ester elastomers, amide elastomers, urethane elastomers, and vinyl chloride elastomers can be used. Among these, in the crimped conjugate fiber of the present invention, when a polyolefin-based polymer is used as the second component, the melting peak temperature of the polybutene-1 is 20 ° C. or higher in consideration of recyclability after use. Preferably, the polyolefin polymer having a melting peak temperature is a polypropylene homopolymer, random copolymer, block copolymer, or a mixture thereof, and an olefin thermoplastic elastomer is used as the thermoplastic elastomer. Olefin-based thermoplastic elastomers include polyolefin resins such as polyethylene and polypropylene as hard segments, and ethylene-propylene rubbers such as ethylene-propylene rubber (EPM), ethylene-butene rubber (EBM), and ethylene-propylene-diene rubber (EPDM). Olefin-based thermoplastic elastomers that are commercially available are, for example, “Milastomer” (registered trademark) and “Notio” (registered trademark) manufactured by Mitsui Chemicals, Sumitomo Chemical Co., Ltd. “Esporex” (registered trademark), “Thermo Run” (registered trademark), “Zeras” (registered trademark), etc. manufactured by Mitsubishi Chemical Corporation can be used. In the crimped conjugate fiber of the present invention, when the second component constituting the crimped conjugate fiber is a polyolefin polymer, an appropriate amount of a thermoplastic elastomer such as an olefin thermoplastic elastomer is added to the second component. Therefore, the second component containing the polyolefin polymer has bending elasticity that is considered to be derived from the thermoplastic elastomer, and the bending tends to be insufficient with the composite fiber having only the polyolefin polymer as the second component. It is presumed that the recovery property and the repeated bending fatigue resistance are improved, and the repeated compression durability required for the cushion material and the like is improved. Furthermore, since the thermoplastic elastomer to be added is an olefin-based thermoplastic elastomer, both the first component and the second component are composed of a polyolefin-based polymer, so that the fiber assembly after use can be easily recycled.
 本発明の捲縮性複合繊維において、第二成分をポリオレフィン系ポリマーとする場合、上記第二成分に添加するオレフィン系熱可塑性エラストマーは、ソフトセグメントとしてα-オレフィン系ゴム状重合体を含むα-オレフィン系熱可塑性エラストマーであることが好ましい。また、上記オレフィン系熱可塑性エラストマー及びα-オレフィン系熱可塑性エラストマーは、メタロセン触媒を用いて重合されたオレフィン系熱可塑性エラストマーであることが好ましい。 In the crimped conjugate fiber of the present invention, when the second component is a polyolefin polymer, the olefin thermoplastic elastomer added to the second component is an α-olefin containing an α-olefin rubber-like polymer as a soft segment. An olefin-based thermoplastic elastomer is preferable. The olefin thermoplastic elastomer and α-olefin thermoplastic elastomer are preferably olefin thermoplastic elastomers polymerized using a metallocene catalyst.
 上記α-オレフィン系ゴム状重合体としては、特に限定されないが、例えば、エチレンと炭素数が3~20のα-オレフィンとの共重合体を用いることが好ましい。上記α-オレフィンとしては、例えばプロピレン、1-ブテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどが挙げられる。上記オレフィン系熱可塑性エラストマーに含まれるハードセグメントとしては、特に限定されないが、例えば、ポリプロピレン、ポリプロピレンなどのポリオレフィン系ポリマーを用いることができる。上記ポリプロピレンとしては、特に限定されず、例えばホモポリマー、ランダム共重合体、ブロック共重合体、又はそれらの混合物を用いることができる。上記ランダム共重合体、ブロック共重合体としては、例えば、プロピレンと、エチレン及び炭素数4以上のα-オレフィンからなる群から選ばれる少なくとも一種のα-オレフィンとの共重合体が挙げられる。上記炭素数4以上のα-オレフィンとしては、特に限定されないが、例えば、1-ブテン、1-ペンテン、3,3-ジメチル-1-ブテン、4-メチル-1-ペンテン、4,4-ジメチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセンなどが挙げられる。 The α-olefin rubber-like polymer is not particularly limited, but for example, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms is preferably used. Examples of the α-olefin include propylene, 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, 4,4-dimethyl-1-pentene, 1-decene, Examples include 1-dodecene, 1-tetradecene, 1-octadecene and the like. Although it does not specifically limit as a hard segment contained in the said olefin type thermoplastic elastomer, For example, polyolefin polymers, such as a polypropylene and a polypropylene, can be used. It does not specifically limit as said polypropylene, For example, a homopolymer, a random copolymer, a block copolymer, or mixtures thereof can be used. Examples of the random copolymer and block copolymer include a copolymer of propylene and at least one α-olefin selected from the group consisting of ethylene and an α-olefin having 4 or more carbon atoms. The α-olefin having 4 or more carbon atoms is not particularly limited, and examples thereof include 1-butene, 1-pentene, 3,3-dimethyl-1-butene, 4-methyl-1-pentene, and 4,4-dimethyl. -1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene and the like.
 上記第二成分としてポリプロピレンなどのポリオレフィン系ポリマーを使用する際、第二成分に添加する上記オレフィン系熱可塑性エラストマーの含有量は、第二成分全体を100質量%とした場合、好ましくは3~25質量%であり、より好ましくは3~20質量%、特に好ましくは5~15質量%である。上記第二成分において、上記オレフィン系熱可塑性エラストマーの含有量が3質量%以上であると第二成分にエラストマー成分を添加したことにより第二成分全体が弾性を示すようになり、本発明の捲縮性複合繊維を使用した繊維集合物の耐繰り返し圧縮残留歪み性、耐圧縮残留歪み性を高めることができる。上記第二成分において、上記オレフィン系熱可塑性エラストマーの含有量が25質量%以下であると、捲縮性複合繊維の可紡性、延伸性に悪影響を与えることなく、耐繰り返し圧縮残留歪み性、耐圧縮残留歪み性に優れた繊維集合物を得られる捲縮性複合繊維となる。 When a polyolefin-based polymer such as polypropylene is used as the second component, the content of the olefin-based thermoplastic elastomer added to the second component is preferably 3-25 when the entire second component is 100% by mass. % By weight, more preferably 3 to 20% by weight, particularly preferably 5 to 15% by weight. In the second component, when the content of the olefinic thermoplastic elastomer is 3% by mass or more, the addition of the elastomer component to the second component causes the entire second component to exhibit elasticity. The repeated compressive residual strain resistance and the compressive residual strain resistance of the fiber assembly using the compressible conjugate fiber can be enhanced. In the second component, if the content of the olefinic thermoplastic elastomer is 25% by mass or less, the repetitive compression residual strain resistance is not adversely affected on the spinnability and stretchability of the crimped conjugate fiber, This is a crimped conjugate fiber capable of obtaining a fiber aggregate having excellent resistance to compression residual strain.
 上記オレフィン系熱可塑性エラストマーの密度は、0.8~1.0g/cm3であることが好ましく、0.85~0.88g/cm3であることがより好ましい。上記範囲内であれば耐熱性に優れ、また捲縮性複合繊維を用いた繊維集合物において、同じ体積であればより軽量の繊維集合物が得られるため、軽量化が求められる用途に好ましく用いられる。 The density of the olefinic thermoplastic elastomer is preferably 0.8 to 1.0 g / cm 3 , and more preferably 0.85 to 0.88 g / cm 3 . If it is within the above range, it is excellent in heat resistance, and in a fiber assembly using crimped conjugate fibers, if it is the same volume, a lighter fiber assembly can be obtained, so it is preferably used for applications where weight reduction is required. It is done.
 上記オレフィン系熱可塑性エラストマーのASTM D 2240に準じ、タイプAデュロメータを用いて測定されるショアA硬さが50~95であることが好ましく、60~90であることがより好ましく、65~85であることが特に好ましい。第二成分に添加するオレフィン系熱可塑性エラストマーのショアA硬さが上記範囲を満たすことで、得られる捲縮性複合繊維を使用した不織布の繰り返し曲げに対する耐久性や耐熱性がバランスのとれたものとなる。ショアA硬さが50未満であると、添加するオレフィン系熱可塑性エラストマーそのものが柔らかすぎるため、得られる捲縮性複合繊維及び繊維集合物が変形しやすくなり、曲げ回復性や嵩回復性の乏しいものとなり得る。また、ショアA硬さが95を超えると添加するオレフィン系熱可塑性エラストマーが硬すぎるため、上記第二成分にオレフィン系熱可塑性エラストマーを添加したことに起因する曲げ弾力性が発揮されず、曲げ回復性や繰り返し圧縮した際の嵩回復性が低下する傾向がある。 According to ASTM D 2240 of the olefinic thermoplastic elastomer, the Shore A hardness measured using a type A durometer is preferably 50 to 95, more preferably 60 to 90, and more preferably 65 to 85. It is particularly preferred. The olefinic thermoplastic elastomer added to the second component has a well-balanced durability and heat resistance against repeated bending of nonwoven fabrics using the crimped conjugate fiber obtained by satisfying the above range. It becomes. If the Shore A hardness is less than 50, the added olefinic thermoplastic elastomer itself is too soft, so that the resulting crimped conjugate fiber and fiber aggregate are easily deformed, and the bending recovery property and bulk recovery property are poor. Can be a thing. Also, if the Shore A hardness exceeds 95, the olefinic thermoplastic elastomer to be added is too hard, so the bending elasticity resulting from the addition of the olefinic thermoplastic elastomer to the second component is not exhibited, and bending recovery is achieved. There is a tendency that the bulk recovery property and the bulk recovery property when repeatedly compressed are reduced.
 本発明に用いられる、上記オレフィン系熱可塑性エラストマーの融解ピーク温度は特に限定されないが、得られる捲縮性複合繊維から繊維集合物を製造する際の熱処理、また繊維集合物の用途及び繊維集合物の耐熱性を考慮すると、上記オレフィン系熱可塑性エラストマーの融解ピーク温度は、70℃以上、170℃以下であることが好ましい。より好ましくは、100℃以上、160℃以下であり、第一成分に含まれるポリブテン-1の融解ピーク温度以上、160℃以下であることが特に好ましい。第二成分に含まれる上記オレフィン系熱可塑性エラストマーの融解ピーク温度が、70℃以上、170℃以下であると、耐熱性が高く、得られた捲縮性複合繊維から繊維集合物を得る際に行う熱処理においても嵩が減少しにくく、嵩高な繊維集合物が容易に得られる。また、繊維集合物を実際に使用する際、高温下での嵩回復性が良好であることから、耐熱性が求められる用途に特に適した捲縮性複合繊維、及び繊維集合物となる。 Although the melting peak temperature of the olefinic thermoplastic elastomer used in the present invention is not particularly limited, heat treatment in producing a fiber assembly from the obtained crimped conjugate fiber, use of the fiber assembly, and fiber assembly In view of the heat resistance, the melting peak temperature of the olefinic thermoplastic elastomer is preferably 70 ° C. or higher and 170 ° C. or lower. More preferably, it is 100 ° C. or higher and 160 ° C. or lower, and particularly preferably higher than the melting peak temperature of polybutene-1 contained in the first component and 160 ° C. or lower. When the melting peak temperature of the olefinic thermoplastic elastomer contained in the second component is 70 ° C. or higher and 170 ° C. or lower, the heat resistance is high, and when obtaining a fiber aggregate from the crimped conjugate fiber obtained. Even in the heat treatment to be performed, the bulk is hardly reduced, and a bulky fiber aggregate can be easily obtained. Further, when the fiber assembly is actually used, the bulk recoverability at high temperature is good, and therefore, the crimped conjugate fiber and the fiber assembly are particularly suitable for applications requiring heat resistance.
 また、上記オレフィン系熱可塑性エラストマーのメルトフローレートは特に限定されないが、JIS-K-7210に準じて測定したメルトフローレート(MFR;測定温度230℃、荷重2.16kgf(21.18N)、以下においてMFR230と記す。)が1~30g/10分であることが好ましい。より好ましいMFR230は3~20g/10分であり、特に好ましいMFR230は5~15g/10分である。オレフィン系熱可塑性エラストマーのMFR230が上記の範囲内であることにより紡糸引き取り性、及び延伸性が良好となる。そして、MFR230と併せて融解ピーク温度も上記範囲を満たすことで、使用するオレフィン系熱可塑性エラストマーは耐熱性が良好なものとなるため、得られる捲縮性複合繊維から繊維集合物を得る際に行う熱処理においても嵩が減少しにくく、嵩高な繊維集合物が容易に得られる。また、繊維集合物を実際に使用する際、高温下での嵩回復性が良好であることから、耐熱性が求められる用途に特に適した捲縮性複合繊維、及び繊維集合物となる。 The melt flow rate of the olefinic thermoplastic elastomer is not particularly limited, but is measured according to JIS-K-7210 (MFR; measurement temperature 230 ° C., load 2.16 kgf (21.18 N), In this case, it is preferably 1 to 30 g / 10 min. A more preferred MFR 230 is 3 to 20 g / 10 min, and a particularly preferred MFR 230 is 5 to 15 g / 10 min. When the MFR230 of the olefinic thermoplastic elastomer is within the above range, the take-up property and the stretchability are improved. When the melting peak temperature satisfies the above range in combination with MFR230, the olefinic thermoplastic elastomer to be used has good heat resistance. Therefore, when obtaining a fiber aggregate from the crimped conjugate fiber obtained. Even in the heat treatment to be performed, the bulk is hardly reduced, and a bulky fiber aggregate can be easily obtained. Further, when the fiber assembly is actually used, the bulk recoverability at high temperature is good, and therefore, the crimped conjugate fiber and the fiber assembly are particularly suitable for applications requiring heat resistance.
 上記密度、ショアA硬さ(ショアA硬度)、融解ピーク温度、メルトフローレートを満たすオレフィン系熱可塑性エラストマーは種々存在するが、この中でもメタロセン触媒を使用して重合された、オレフィン系熱可塑性エラストマーを使用することが好ましい。メタロセン触媒を使用しないで重合したオレフィン系熱可塑性エラストマーであるとエラストマー中の結晶構造及び非晶構造の部分が300nm~1μmの大きさで分散する。このハードセグメントとソフトセグメントが上記サイズでポリマー中に分散したエラストマーであるとエラストマー自体の曲げ弾性や、上記エラストマーを含む繊維及び不織布の曲げ弾性や嵩回復性が乏しく、加えて溶融紡糸が難しい傾向がある。これに対しメタロセン触媒を使用して重合したオレフィン系熱可塑性エラストマーは、エラストマー中の結晶構造及び非晶構造の部分が5~50nmのサイズで分散している。上記構造のエラストマーを捲縮性複合繊維における第二成分(芯成分)に添加することで、得られる捲縮性複合繊維は耐熱性に富み、嵩回復性や繰り返し変形させた後の耐歪み性に優れたものとなりやすい。上記のメタロセン触媒を使用して重合したオレフィン系熱可塑性エラストマーとしては、例えば三井化学株式会社製「ノティオ」(登録商標)などを挙げることができるがこれに制限されるものではない。 There are various olefinic thermoplastic elastomers that satisfy the above-mentioned density, Shore A hardness (Shore A hardness), melting peak temperature, and melt flow rate. Among them, olefinic thermoplastic elastomers polymerized using a metallocene catalyst. Is preferably used. In the case of an olefinic thermoplastic elastomer polymerized without using a metallocene catalyst, the crystal structure and amorphous structure portions in the elastomer are dispersed in a size of 300 nm to 1 μm. If the hard segment and the soft segment are elastomers of the above size and dispersed in the polymer, the bending elasticity of the elastomer itself and the bending elasticity and bulk recovery of fibers and nonwoven fabrics containing the elastomer are poor, and in addition, melt spinning tends to be difficult There is. In contrast, in an olefinic thermoplastic elastomer polymerized using a metallocene catalyst, the crystal structure and amorphous structure portions in the elastomer are dispersed in a size of 5 to 50 nm. By adding an elastomer having the above structure to the second component (core component) of the crimpable conjugate fiber, the resulting crimpable conjugate fiber has high heat resistance, bulk recovery properties, and strain resistance after repeated deformation. It tends to be excellent. Examples of the olefinic thermoplastic elastomer polymerized using the metallocene catalyst include “Notio” (registered trademark) manufactured by Mitsui Chemicals, Inc., but are not limited thereto.
 上記第二成分の主成分としてポリエステル系ポリマーを用いた場合、また上記第二成分の主成分としてポリオレフィン系ポリマーを用いた場合のいずれの場合においても、本発明の効果を阻害しない範囲で、第二成分にはさらにポリマーをブレンドすることができる。加えて、上記第二成分も、本発明の効果が阻害されず、繊維生産性、不織布生産性、熱接着性、触感に影響を与えない範囲であれば、公知の各種添加剤を加えることが可能である。第二成分に添加できる添加剤としては、公知の結晶核剤、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤等を用途等に応じて混合することができる。 In any case where a polyester-based polymer is used as the main component of the second component and a polyolefin-based polymer is used as the main component of the second component, The two components can be further blended with a polymer. In addition, the above-mentioned second component may be added with various known additives as long as the effects of the present invention are not hindered and the fiber productivity, the nonwoven fabric productivity, the thermal adhesiveness, and the touch are not affected. Is possible. Additives that can be added to the second component include known crystal nucleating agents, antistatic agents, pigments, matting agents, heat stabilizers, light stabilizers, flame retardants, antibacterial agents, lubricants, plasticizers, softeners, etc. It can be mixed depending on the application.
 本発明の捲縮性複合繊維において、第二成分の重心位置は複合繊維の重心位置からずれている。図1に本発明の一実施形態における捲縮性複合繊維の繊維断面の模式図を示す。第二成分2の周囲に第一成分1が配置され、第一成分1が複合繊維10表面の少なくとも20%を占めている。これにより第一成分1は熱接着時に表面が溶融する。第二成分2の重心位置3は複合繊維10の重心位置4からずれており、ずれの割合(以下、偏心率とも記す。)は、上記捲縮性複合繊維の繊維断面を電子顕微鏡などで拡大撮影し、第二成分2の重心位置3をC1とし、複合繊維10の重心位置4をCfとし、複合繊維10の半径5をrfとしたとき、下記式2で示す数値をいう。 In the crimped conjugate fiber of the present invention, the position of the center of gravity of the second component is shifted from the position of the center of gravity of the composite fiber. FIG. 1 shows a schematic diagram of a fiber cross section of a crimped conjugate fiber according to an embodiment of the present invention. The first component 1 is disposed around the second component 2, and the first component 1 occupies at least 20% of the surface of the composite fiber 10. As a result, the surface of the first component 1 is melted during thermal bonding. The gravity center position 3 of the second component 2 is shifted from the gravity center position 4 of the composite fiber 10, and the ratio of the shift (hereinafter also referred to as the eccentricity ratio) is obtained by enlarging the fiber cross section of the crimped composite fiber with an electron microscope or the like. When the image is taken and the center of gravity position 3 of the second component 2 is C1, the center of gravity position 4 of the conjugate fiber 10 is Cf, and the radius 5 of the conjugate fiber 10 is rf, the numerical value shown by the following formula 2 is used.
  [数2]
Figure JPOXMLDOC01-appb-I000002
[Equation 2]
Figure JPOXMLDOC01-appb-I000002
 第二成分2の重心位置3が複合繊維の重心位置4からずれている繊維断面としては、図1に示す偏心芯鞘型、又は並列型であることが好ましい形態である。場合によっては、多芯型であっても多芯部分が集合して繊維の重心位置からずれて存在しているものでも可能である。特に、偏心芯鞘型の繊維断面であると、容易に所望の波形状捲縮及び/又は螺旋状捲縮を発現させることができる点で好ましい。偏心芯鞘型複合繊維の偏心率は、5~50%であることが好ましい。より好ましい偏心率は、7~30%である。また、第二成分2の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形であってもよく、複合繊維10の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形、又は中空形であってもよい。 As the fiber cross section in which the center of gravity position 3 of the second component 2 is deviated from the center of gravity position 4 of the composite fiber, the eccentric core-sheath type shown in FIG. Depending on the case, even a multi-core type may be used in which multi-core portions are gathered and are shifted from the center of gravity of the fiber. In particular, an eccentric core-sheath fiber cross section is preferable in that desired wave shape crimps and / or spiral crimps can be easily expressed. The eccentricity ratio of the eccentric core-sheath type composite fiber is preferably 5 to 50%. A more preferable eccentricity is 7 to 30%. Further, the shape of the second component 2 in the fiber cross section may be oval, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped or the like other than circular, and the shape of the composite fiber 10 in the fiber cross-section In addition to the circular shape, an elliptical shape, a Y shape, an X shape, a well shape, a polygonal shape, a star shape, or a hollow shape may be used.
 本発明の捲縮性複合繊維が、図1に示すような、繊維断面において、第一成分が複合繊維の鞘成分として配置され、第二成分が芯成分として配置され、かつ第二成分の重心位置は複合繊維の重心位置からずれた偏心芯鞘構造である場合、第二成分と第一成分の複合比(芯/鞘)は、容積比で8/2~2/8が好ましい。より好ましくは7/3~3/7、さらにより好ましくは6/4~4/6である。芯成分となる第二成分は、主として嵩回復性に寄与し、鞘成分となる第一成分は、主として不織布強力及び不織布の硬さに寄与する。その複合比が8/2~2/8であると、不織布強力及び硬さと、嵩回復性を両立することができる。鞘成分となる第一成分が多くなりすぎると、不織布強力は上がるが、得られる不織布が硬くなったり、嵩回復も悪くなったりする傾向になる。一方、芯成分となる第二成分が多くなりすぎると接着点が少なくなりすぎ、不織布強力が小さくなったり、嵩回復性も悪くなったりする傾向となる。 In the crimped conjugate fiber of the present invention, as shown in FIG. 1, in the fiber cross section, the first component is arranged as the sheath component of the conjugate fiber, the second component is arranged as the core component, and the center of gravity of the second component When the position is an eccentric core-sheath structure shifted from the center of gravity of the composite fiber, the composite ratio (core / sheath) of the second component and the first component is preferably 8/2 to 2/8 in volume ratio. More preferably, it is 7/3 to 3/7, and even more preferably 6/4 to 4/6. The second component serving as the core component mainly contributes to the bulk recovery property, and the first component serving as the sheath component mainly contributes to the strength of the nonwoven fabric and the hardness of the nonwoven fabric. When the composite ratio is 8/2 to 2/8, both the strength and hardness of the nonwoven fabric and the bulk recoverability can be achieved. When the first component that is a sheath component is too much, the strength of the nonwoven fabric is increased, but the resulting nonwoven fabric tends to be hard and the bulk recovery is also poor. On the other hand, if the second component serving as the core component increases too much, the adhesion point decreases too much, and the strength of the nonwoven fabric tends to decrease, and the bulk recovery property tends to deteriorate.
 図2に本発明の一実施形態における捲縮性複合繊維の捲縮形態を示す。本発明において、「複合繊維が立体捲縮を発現している」とは、捲縮性複合繊維が発現している捲縮形状が波形状捲縮及び/又は螺旋状捲縮を含むことをいう。本発明でいう波形状捲縮とは、図2Aに示すような捲縮の山部が湾曲したものを示す。また、螺旋状捲縮とは、図2Bに示すような捲縮の山部が螺旋状に湾曲したものを示す。図2Cに示すような波形状捲縮と螺旋状捲縮とが混在した捲縮も本発明の捲縮性複合繊維が発現する立体捲縮の捲縮形態に含まれる。図3に示すような通常の機械捲縮の場合は、捲縮の山が鋭角である、いわゆる鋸歯状捲縮のままであり、不織布としたときの初期嵩を大きくすることが困難となる傾向がある。さらに、圧縮に対する面弾性、いわゆるスプリング効果に劣り、特に十分な初期嵩回復性が得られない傾向がある。なお、図4に示すような、機械捲縮の鋭角な捲縮と波形状捲縮とが混在した捲縮、また図に示していないが、機械捲縮の鋭角な捲縮と螺旋状捲縮とが混在した捲縮も本発明の捲縮性複合繊維が発現する立体捲縮の捲縮形態に含まれる。 FIG. 2 shows the crimped form of the crimped conjugate fiber in one embodiment of the present invention. In the present invention, “the composite fiber expresses a three-dimensional crimp” means that the crimp shape in which the crimpable conjugate fiber expresses includes a wave crimp and / or a spiral crimp. . The corrugated crimp referred to in the present invention refers to a curved crest as shown in FIG. 2A. In addition, the spiral crimp indicates that the peak portion of the crimp as shown in FIG. 2B is spirally curved. Crimps in which corrugated crimps and spiral crimps are mixed as shown in FIG. 2C are also included in the crimped form of the three-dimensional crimps that the crimped conjugate fiber of the present invention exhibits. In the case of a normal mechanical crimp as shown in FIG. 3, the so-called serrated crimp with a sharp crest is a tendency to make it difficult to increase the initial bulk when made into a nonwoven fabric. There is. Furthermore, the surface elasticity against compression, that is, the so-called spring effect is inferior, and there is a tendency that particularly sufficient initial bulk recovery is not obtained. In addition, as shown in FIG. 4, a crimp in which a sharp crimp of a mechanical crimp and a wave crimp are mixed, and although not shown in the figure, a sharp crimp of a mechanical crimp and a spiral crimp. Are included in the crimped form of the three-dimensional crimp that the crimped conjugate fiber of the present invention develops.
 本発明の捲縮性複合繊維においては、特に図2Cに示す波形状捲縮と螺旋状捲縮とが混在した捲縮であることが、カード通過性と初期嵩及び嵩回復性を両立できる点で好ましい。 In the crimpable conjugate fiber of the present invention, particularly the crimping in which the wave-shaped crimp and the spiral crimp shown in FIG. 2C are mixed can satisfy both the card passing property and the initial bulk and bulk recovery properties. Is preferable.
 以下、本発明の捲縮性複合繊維の製造方法について説明する。 Hereinafter, a method for producing the crimped conjugate fiber of the present invention will be described.
 第一に、本発明の捲縮性複合繊維の一形態である、顕在捲縮性複合繊維の製造方法について説明する。 First, the manufacturing method of the actual crimpable conjugate fiber which is one form of the crimped conjugate fiber of the present invention will be described.
 まず、ポリブテン-1と直鎖状低密度ポリエチレンを含む第一成分と、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含む第二成分を準備する。次に、繊維断面において第一成分は複合繊維表面の少なくとも20%を占め、かつ第二成分の重心位置は複合繊維の重心位置からずれるように配置された複合型ノズル、例えば偏心芯鞘型複合ノズルに第一成分及び第二成分を供給し、第二成分を紡糸温度220~350℃、第一成分を紡糸温度200~300℃で溶融紡糸する。第二成分の紡糸温度は、ポリマーの種類によって選択され、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン系ポリマーを使用する場合であれば紡糸温度は220℃~330℃、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系ポリマーを使用する場合であれば、紡糸温度は240~350℃で溶融紡糸をすることが好ましい。 First, a first component comprising polybutene-1 and linear low-density polyethylene, a polymer having a melting peak temperature 20 ° C. higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher. Prepare a second component containing. Next, in the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is displaced from the center of gravity of the composite fiber, for example, an eccentric core-sheath type composite The first component and the second component are supplied to the nozzle, and the second component is melt-spun at a spinning temperature of 220 to 350 ° C., and the first component is melt-spun at a spinning temperature of 200 to 300 ° C. The spinning temperature of the second component is selected according to the type of polymer. If a polyolefin polymer such as polypropylene or polymethylpentene is used, the spinning temperature is 220 ° C. to 330 ° C., polyethylene terephthalate, polytrimethylene terephthalate, poly If a polyester polymer such as butylene terephthalate is used, it is preferable to perform melt spinning at a spinning temperature of 240 to 350 ° C.
 上記の紡糸温度にて偏心芯鞘型複合ノズルに第一成分及び第二成分を供給し、引取速度100~1500m/minで引き取り、繊度が2~120dtexである未延伸状態の紡糸フィラメントを得る。次に、延伸温度を40℃以上、第一成分の融点未満の温度にし、延伸倍率1.8倍以上で延伸処理する。より好ましい延伸温度の下限は、50℃以上である。より好ましい延伸温度の上限は、第一成分の融点より10℃低い温度である。延伸温度が40℃未満であると、第一成分の結晶化が進みにくいため、熱収縮が大きくなったり、嵩回復性が小さくなったりする傾向がある。延伸温度が第一成分の融点以上であると、繊維同士が融着する傾向がある。より好ましい延伸倍率の下限は、2倍である。より好ましい延伸倍率の上限は、4倍である。延伸倍率が1.8倍以上であると、延伸倍率が低すぎず、上述の波形状捲縮及び/又は螺旋状捲縮が発現した繊維を得ることが容易となり、初期嵩及び繊維自体の剛性も小さくならず、カード通過性などの不織布工程性や嵩回復性も劣らない。延伸方法は特に限定されず、高温の熱水などの高温の液体で加熱しながら延伸を行う湿式延伸、高温の気体中又は高温の金属ロールなどで加熱しながら延伸を行う乾式延伸、100℃以上の水蒸気を常圧若しくは加圧状態にして繊維を加熱しながら延伸を行う水蒸気延伸などの公知の延伸処理を行うことができる。この中でも生産性、経済性、また、未延伸繊維束全体を容易にかつ均一に加熱できることから、温水を使用した湿式延伸が好ましい。また、上記延伸時の前後において必要に応じて90~120℃の乾熱、湿熱、蒸熱などの雰囲気下でアニーリング処理をしてもよい。 The first component and the second component are supplied to the eccentric core-sheath type composite nozzle at the above spinning temperature and taken up at a take-up speed of 100-1500 m / min to obtain an unstretched spun filament with a fineness of 2-120 dtex. Next, stretching is performed at a stretching temperature of 40 ° C. or higher and lower than the melting point of the first component at a stretching ratio of 1.8 times or higher. A more preferable lower limit of the stretching temperature is 50 ° C. or higher. A more preferable upper limit of the stretching temperature is a temperature 10 ° C. lower than the melting point of the first component. If the stretching temperature is less than 40 ° C., crystallization of the first component is difficult to proceed, so that thermal shrinkage tends to increase or bulk recovery properties tend to decrease. If the stretching temperature is equal to or higher than the melting point of the first component, the fibers tend to be fused. A more preferable lower limit of the draw ratio is 2 times. A more preferable upper limit of the draw ratio is 4 times. When the draw ratio is 1.8 times or more, the draw ratio is not too low, and it becomes easy to obtain a fiber in which the above-described wave-shaped crimp and / or spiral crimp are expressed, and the initial bulk and the rigidity of the fiber itself are obtained. However, it is not inferior in nonwoven fabric processability and bulk recoverability such as card passing property. The stretching method is not particularly limited, and wet stretching is performed while being heated with a high-temperature liquid such as high-temperature hot water, dry stretching is performed while being heated in a high-temperature gas or a high-temperature metal roll, and 100 ° C. or higher. It is possible to perform a known stretching process such as steam stretching in which stretching is performed while heating the fiber under normal pressure or pressurized condition. Among these, wet stretching using warm water is preferable because productivity, economy, and the whole unstretched fiber bundle can be easily and uniformly heated. In addition, before and after the stretching, annealing may be performed in an atmosphere such as dry heat, wet heat, and steam at 90 to 120 ° C. as necessary.
 本発明の捲縮性複合繊維の一形態である顕在捲縮性複合繊維において、上記顕在捲縮性複合繊維を構成する上記第二成分に含まれる、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー、又は融解開始温度が120℃以上であるポリマーが、ホモポリプロピレン、エチレン-プロピレン共重合体及びエチレン-ブテン-1-プロピレン三元共重合体などのポリオレフィン系ポリマーである場合、延伸温度は40℃以上上記第一成分に含まれるポリブテン-1の融解ピーク温度以下であることが好ましく、50℃以上100℃以下がより好ましく、60℃以上90℃以下であることが特に好ましい。一方、本発明の捲縮性複合繊維の一形態である顕在捲縮性複合繊維において、上記顕在捲縮性複合繊維を構成する上記第二成分に含まれる、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー、又は融解開始温度が120℃以上であるポリマーが、ポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系ポリマーである場合、延伸温度は60℃以上上記第一成分に含まれるポリブテン-1の融解ピーク温度以下であることが好ましく、70℃以上100℃以下がより好ましく、75℃以上95℃以下であることが特に好ましい。 In the actual crimpable conjugate fiber, which is one form of the crimpable conjugate fiber of the present invention, the melting peak temperature of the polybutene-1 contained in the second component constituting the actual crimpable conjugate fiber is 20 Polyolefin polymers such as homopolypropylene, ethylene-propylene copolymer, and ethylene-butene-1-propylene terpolymer are polymers having a melting peak temperature higher than ℃ or a polymer having a melting start temperature of 120 ℃ or higher. The stretching temperature is preferably 40 ° C. or higher and lower than the melting peak temperature of polybutene-1 contained in the first component, more preferably 50 ° C. or higher and 100 ° C. or lower, and 60 ° C. or higher and 90 ° C. or lower. Is particularly preferred. On the other hand, in the actual crimpable conjugate fiber that is one form of the crimpable conjugate fiber of the present invention, from the melting peak temperature of the polybutene-1 contained in the second component constituting the actual crimpable conjugate fiber. When the polymer having a melting peak temperature higher than 20 ° C. or the polymer having a melting start temperature of 120 ° C. or higher is a polyester polymer such as polyethylene terephthalate, polytrimethylene terephthalate, or polybutylene terephthalate, the stretching temperature is 60 ° C. As described above, it is preferably not higher than the melting peak temperature of polybutene-1 contained in the first component, more preferably not lower than 70 ° C. and not higher than 100 ° C., particularly preferably not lower than 75 ° C. and not higher than 95 ° C.
 次いで、必要に応じて繊維処理剤を付与する前又は後に、スタッファボックス式捲縮機など公知の捲縮機を用いて捲縮数5~25個/25mmの捲縮を付与する。より好ましい捲縮数は8~20個/25mm、特に好ましい捲縮数は10~18個/25mmである。捲縮機を通過した後の捲縮形状は、鋸歯状捲縮及び/又は波形状捲縮であるとよい。捲縮数が5個/25mm未満であると、カード通過性が低下すると共に、不織布の初期嵩や嵩回復性が悪くなる傾向がある。一方、捲縮数が25個/25mmを超えると、捲縮数が多すぎるためにカード通過性が低下し、不織布の地合が悪くなるだけでなく、不織布の初期嵩も小さくなる傾向がある。 Next, before or after applying the fiber treatment agent as necessary, a crimp of 5 to 25 crimps / 25 mm is applied using a known crimper such as a stuffer box type crimper. A more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm. The crimped shape after passing through the crimper may be a serrated crimp and / or a corrugated crimp. When the number of crimps is less than 5 pieces / 25 mm, the card passing property tends to deteriorate, and the initial bulk and bulk recoverability of the nonwoven fabric tend to deteriorate. On the other hand, when the number of crimps exceeds 25 pieces / 25 mm, the number of crimps is too large, so the card passing property is lowered, and not only the formation of the nonwoven fabric is deteriorated, but also the initial volume of the nonwoven fabric tends to be reduced. .
 さらに、上記捲縮機にて捲縮を付与した後、未延伸繊維束に融着の発生しない温度で立体捲縮が発現する温度にてアニーリング処理をするのが好ましい。本発明の捲縮性複合繊維であって、第一成分がポリブテン-1を含むポリマーからなる複合繊維であれば、好ましい温度範囲として90~120℃の範囲内で、乾熱、湿熱、又は蒸熱の雰囲気下でアニーリング処理をするのが好ましい。具体的には、繊維処理剤を付与した後に捲縮機にて捲縮を付与し、90~120℃の乾熱雰囲気下でアニーリング処理と同時に乾燥処理することが、工程を簡略化できて好ましい。90℃以上でアニーリング処理をすると、乾熱収縮率が大きくならず、所定の顕在捲縮が得られやすく、得られる不織布の地合も乱れず、生産性も向上できる。上記アニーリング処理において、より好ましい処理温度の範囲は90~115℃であり、95~110℃で行うことが特に好ましい。 Further, it is preferable that after the crimping is performed by the above-described crimping machine, the annealing treatment is performed at a temperature at which the three-dimensional crimp is developed at a temperature at which the unstretched fiber bundle is not fused. In the crimped conjugate fiber of the present invention, if the first component is a conjugate fiber made of a polymer containing polybutene-1, the preferred temperature range is 90 to 120 ° C. within the range of dry heat, wet heat, or steam. It is preferable to carry out the annealing treatment under the atmosphere. Specifically, it is preferable that the fiber treatment agent is applied and then crimped by a crimping machine and dried simultaneously with the annealing treatment in a dry heat atmosphere at 90 to 120 ° C., because the process can be simplified. . When the annealing treatment is performed at 90 ° C. or higher, the dry heat shrinkage rate is not increased, and a predetermined actual crimp is easily obtained, the formation of the resulting nonwoven fabric is not disturbed, and the productivity can be improved. In the annealing treatment, a more preferred treatment temperature range is 90 to 115 ° C., and it is particularly preferred to carry out at 95 to 110 ° C.
 上記方法により得られた顕在捲縮性複合繊維は、主として、図2に示す、波形状捲縮と螺旋状捲縮から選ばれる少なくとも一種の捲縮を有する。好ましくは、波形状捲縮のみ、螺旋状捲縮のみ、波形状捲縮と螺旋状捲縮とが混在した捲縮及び波形状捲縮と鋸歯状捲縮とが混在した捲縮から選ばれる少なくとも一種の捲縮を有し、特に好ましくは、波形状捲縮のみ、螺旋状捲縮のみ及び波形状捲縮と螺旋状捲縮とが混在した捲縮から選ばれる少なくとも一種の捲縮を有した捲縮発現状態である。また、上記顕在捲縮性複合繊維の捲縮数は、捲縮数が5個/25mm以上、25個/25mm以下であるので、カード通過性を低下させることなく、嵩高な不織布を得ることができ、好ましい。そして、所望の繊維長に切断されて、顕在捲縮性複合繊維が得られる。より好ましい捲縮数は、8~20個/25mmであり、特に好ましい捲縮数は10~18個/25mmである。 The manifest crimpable conjugate fiber obtained by the above method mainly has at least one kind of crimp selected from a wave crimp and a spiral crimp shown in FIG. Preferably, at least one selected from a wave crimp, a spiral crimp only, a crimp mixed with a wave crimp and a spiral crimp, and a crimp combined with a wave crimp and a serrated crimp. It has a kind of crimp, and particularly preferably has at least one kind of crimp selected from only a wave crimp, only a spiral crimp, and a crimp in which a wave crimp and a spiral crimp are mixed. Crimp expression state. Moreover, since the number of crimps of the above-mentioned actual crimpable composite fiber is 5/25 mm or more and 25/25 mm or less, it is possible to obtain a bulky nonwoven fabric without deteriorating card passing properties. It is possible and preferable. And it cut | disconnects to desired fiber length, and an actual crimpable composite fiber is obtained. A more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm.
 また、上記顕在捲縮性複合繊維は、複合繊維に捲縮が発現して波形状捲縮と螺旋状捲縮から選ばれる少なくとも一種の立体捲縮を発現し、顕在化することで顕在捲縮を有している。繊維の状態では、完全に立体捲縮が発現した顕在捲縮としてもよいし、少し捲縮の発現の可能性(繊維に熱を加えたときに捲縮発現を生じる)を残した顕在捲縮であってもよい。ただし、繊維に熱を加えたとき(例えば、後述する不織布に加工する温度を加えたとき)に捲縮数が25個/25mmを超えるほど捲縮が発現すると、カード通過性が低下することがあり、好ましくない。 In addition, the above-described actual crimpable conjugate fiber is manifested by manifesting at least one type of three-dimensional crimp selected from corrugated crimps and spiral crimps by manifesting crimps in the composite fiber, and by manifesting the manifest crimps. have. In the fiber state, it may be an actual crimp in which a three-dimensional crimp is completely manifested, or an actual crimp that has a slight possibility of the occurrence of a crimp (the occurrence of crimp is generated when heat is applied to the fiber). It may be. However, when heat is applied to the fibers (for example, when a temperature to be processed into a nonwoven fabric described later is applied), if the number of crimps exceeds 25/25 mm, the card passing property may be reduced. Yes, not preferred.
 次に、本発明の捲縮性複合繊維の他の一形態である、潜在捲縮性複合繊維の製造方法について説明する。 Next, a method for producing a latent crimpable conjugate fiber, which is another embodiment of the crimpable conjugate fiber of the present invention, will be described.
 まず、ポリブテン-1と直鎖状低密度ポリエチレンを含む第一成分と、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含む第二成分を準備する。次に、繊維断面において第一成分は複合繊維表面の少なくとも20%を占め、かつ第二成分の重心位置は複合繊維の重心位置からずれるように配置された複合型ノズル、例えば偏心芯鞘型複合ノズルに第一成分及び第二成分を供給し、第二成分を紡糸温度220~350℃、第一成分を紡糸温度200~300℃で溶融紡糸する。第二成分の紡糸温度は、ポリマーの種類によって選択され、ポリプロピレン、ポリメチルペンテンなどのポリオレフィン系ポリマーを使用する場合であれば紡糸温度は220℃~330℃、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系ポリマーを使用する場合であれば、紡糸温度は240~350℃で溶融紡糸をすることが好ましい。 First, a first component comprising polybutene-1 and linear low-density polyethylene, a polymer having a melting peak temperature 20 ° C. higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or higher. Prepare a second component containing. Next, in the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is displaced from the center of gravity of the composite fiber, for example, an eccentric core-sheath type composite The first component and the second component are supplied to the nozzle, and the second component is melt-spun at a spinning temperature of 220 to 350 ° C., and the first component is melt-spun at a spinning temperature of 200 to 300 ° C. The spinning temperature of the second component is selected according to the type of polymer. If a polyolefin polymer such as polypropylene or polymethylpentene is used, the spinning temperature is 220 ° C. to 330 ° C., polyethylene terephthalate, polytrimethylene terephthalate, poly If a polyester polymer such as butylene terephthalate is used, it is preferable to perform melt spinning at a spinning temperature of 240 to 350 ° C.
 上記の紡糸温度にて偏心芯鞘型複合ノズルに第一成分及び第二成分を供給し、引取速度100~1500m/minで引き取り、繊度が2~120dtexである未延伸状態の紡糸フィラメントを得る。次に、延伸温度を40℃以上、第一成分の融点未満の温度にし、延伸倍率1.5倍以上で延伸処理をする。より好ましい延伸温度の下限は、50℃以上である。より好ましい延伸温度の上限は、第一成分の融点より10℃低い温度である。延伸温度が40℃未満であると、第一成分の結晶化が進みにくいため、熱収縮が大きくなったり、嵩回復性が小さくなったりする傾向がある。延伸温度が第一成分の融点以上であると、繊維同士が融着する傾向がある。より好ましい延伸倍率の下限は、2倍である。より好ましい延伸倍率の上限は、4倍である。延伸倍率が1.5倍以上であると、延伸倍率が低すぎず、熱処理したとき、捲縮が発現しやすい傾向にあり、初期嵩が及び繊維自体の剛性も小さくならず、カード通過性などの不織布工程性や嵩回復性も劣らない。延伸方法は特に限定されず、高温の熱水などの高温の液体で加熱しながら延伸を行う湿式延伸、高温の気体中又は高温の金属ロールなどで加熱しながら延伸を行う乾式延伸、100℃以上の水蒸気を常圧若しくは加圧状態にして繊維を加熱しながら延伸を行う水蒸気延伸などの公知の延伸処理を行うことができる。この中でも生産性、経済性、また、未延伸繊維束全体を容易にかつ均一に加熱できることから、温水を使用した湿式延伸が好ましい。 The first component and the second component are supplied to the eccentric core-sheath type composite nozzle at the above spinning temperature and taken up at a take-up speed of 100-1500 m / min to obtain an unstretched spun filament with a fineness of 2-120 dtex. Next, the stretching temperature is set to 40 ° C. or higher and lower than the melting point of the first component, and the stretching process is performed at a stretch ratio of 1.5 times or more. A more preferable lower limit of the stretching temperature is 50 ° C. or higher. A more preferable upper limit of the stretching temperature is a temperature 10 ° C. lower than the melting point of the first component. If the stretching temperature is less than 40 ° C., crystallization of the first component is difficult to proceed, so that thermal shrinkage tends to increase or bulk recovery properties tend to decrease. If the stretching temperature is equal to or higher than the melting point of the first component, the fibers tend to be fused. A more preferable lower limit of the draw ratio is 2 times. A more preferable upper limit of the draw ratio is 4 times. When the draw ratio is 1.5 times or more, the draw ratio is not too low, and when heat-treated, there is a tendency that crimps are likely to appear, the initial bulk and the rigidity of the fiber itself are not reduced, card passing properties, etc. The nonwoven fabric processability and bulk recovery are not inferior. The stretching method is not particularly limited, and wet stretching is performed while being heated with a high-temperature liquid such as high-temperature hot water, dry stretching is performed while being heated in a high-temperature gas or a high-temperature metal roll, and 100 ° C. or higher. It is possible to perform a known stretching process such as steam stretching in which stretching is performed while heating the fiber under normal pressure or pressurized condition. Among these, wet stretching using warm water is preferable because productivity, economy, and the whole unstretched fiber bundle can be easily and uniformly heated.
 本発明の捲縮性複合繊維の一形態である潜在捲縮性複合繊維において、上記潜在捲縮性複合繊維を構成する上記第二成分に含まれる、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー、又は融解開始温度が120℃以上であるポリマーが、プロピレンホモポリマー、エチレン-プロピレン共重合体及びエチレン-ブテン-1-プロピレン三元共重合体などのポリオレフィン系ポリマーである場合、延伸温度は40℃以上上記第一成分に含まれるポリブテン-1の融解ピーク温度以下であることが好ましく、50℃以上100℃以下がより好ましく、60℃以上90℃以下であることが特に好ましい。一方、本発明の捲縮性複合繊維の一形態である潜在捲縮性複合繊維において、上記潜在捲縮性複合繊維を構成する上記第二成分に含まれる、上記ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー、又は融解開始温度が120℃以上であるポリマーが、ポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系ポリマーである場合、延伸温度は60℃以上上記第一成分に含まれるポリブテン-1の融解ピーク温度以下であることが好ましく、70℃以上100℃以下がより好ましく、75℃以上95℃以下であることが特に好ましい。 In the latent crimpable conjugate fiber, which is one form of the crimpable conjugate fiber of the present invention, the melting peak temperature of the polybutene-1 contained in the second component constituting the latent crimpable conjugate fiber is 20 Polymers having a melting peak temperature higher than ℃ or a polymer having a melting start temperature of 120 ℃ or more are polyolefins such as propylene homopolymer, ethylene-propylene copolymer and ethylene-butene-1-propylene terpolymer In the case of a polymer, the stretching temperature is preferably 40 ° C. or higher and lower than the melting peak temperature of polybutene-1 contained in the first component, more preferably 50 ° C. or higher and 100 ° C. or lower, and 60 ° C. or higher and 90 ° C. or lower. It is particularly preferred. On the other hand, in the latent crimpable conjugate fiber which is one form of the crimpable conjugate fiber of the present invention, the melting peak temperature of the polybutene-1 contained in the second component constituting the latent crimpable conjugate fiber. When the polymer having a melting peak temperature higher than 20 ° C. or the polymer having a melting start temperature of 120 ° C. or higher is a polyester polymer such as polyethylene terephthalate, polytrimethylene terephthalate, or polybutylene terephthalate, the stretching temperature is 60 ° C. As described above, it is preferably not higher than the melting peak temperature of polybutene-1 contained in the first component, more preferably not lower than 70 ° C. and not higher than 100 ° C., particularly preferably not lower than 75 ° C. and not higher than 95 ° C.
 次いで、必要に応じて繊維処理剤を付与する前又は後に、スタッファボックス式捲縮機など公知の捲縮機を用いて捲縮数5~25個/25mmの捲縮を付与する。より好ましい捲縮数は8~20個/25mm、特に好ましい捲縮数は10~18個/25mmである。捲縮数が5個/25mm未満、又は捲縮数が25個/25mmを超えるとカード通過性が低下する恐れがある。 Next, before or after applying the fiber treatment agent as necessary, a crimp of 5 to 25 crimps / 25 mm is applied using a known crimper such as a stuffer box type crimper. A more preferable number of crimps is 8 to 20 pieces / 25 mm, and a particularly preferable number of crimps is 10 to 18 pieces / 25 mm. If the number of crimps is less than 5 pieces / 25 mm or the number of crimps exceeds 25 pieces / 25 mm, the card passing property may be deteriorated.
 さらに、上記捲縮機にて捲縮を付与した後、50~100℃、好ましくは60~90℃、より好ましくは60~80℃、特に好ましくは60~75℃の乾熱、湿熱、又は蒸熱の雰囲気下でアニーリング処理をするのが好ましい。具体的には、繊維処理剤を付与した後に捲縮機にて捲縮を付与し、50~90℃の乾熱雰囲気下でアニーリング処理と同時に乾燥処理をすることが、工程を簡略化できることから好ましい。アニーリング温度を50~90℃にすることで、所望の熱収縮率が得られ、熱処理したときに立体捲縮が発現する潜在捲縮性複合繊維を得ることができる。またカード通過性も高い繊維を得ることができる。 Further, after applying the crimp with the above crimper, dry heat, wet heat, or steam at 50 to 100 ° C., preferably 60 to 90 ° C., more preferably 60 to 80 ° C., particularly preferably 60 to 75 ° C. It is preferable to carry out the annealing treatment under the atmosphere. Specifically, after applying the fiber treatment agent, crimping is performed with a crimping machine, and the drying process is performed simultaneously with the annealing process in a dry heat atmosphere of 50 to 90 ° C., because the process can be simplified. preferable. By setting the annealing temperature to 50 to 90 ° C., a desired heat shrinkage rate can be obtained, and a latent crimpable conjugate fiber that exhibits steric crimps when heat-treated can be obtained. Moreover, the fiber with high card passage property can be obtained.
 本発明の捲縮性複合繊維、すなわち本発明の顕在捲縮性複合繊維または潜在捲縮性複合繊維は、上記アニーリング処理を行って乾燥させた後、フィラメントを用途に応じて切断する。切断する繊維長は1~120mmであるが、用途によって選択され、カード機にて繊維ウェブを製造した後エアスルー法、ニードルパンチ法、水流交絡法など、公知となっている不織布の製造方法で不織布を製造するのであれば、繊維長20~100mm、好ましくは30~90mm、より好ましくは40~80mmに切断する。空気開繊する、いわゆるエアーレイド法で繊維ウェブを製造する方法で不織布を製造するのであれば、繊維長は1~40mm、好ましくは1~30mm、より好ましくは3~25mmに切断することが好ましい。また抄紙法で湿式不織布を製造するのであれば、繊維長は1~20mm、好ましくは1~10mm、より好ましくは3~8mmに切断することが好ましい。また、本発明の捲縮性複合繊維は、用途によってはアニーリング処理後のフィラメントを切断せず、フィラメントのまま使用することも可能である。 The crimped conjugate fiber of the present invention, that is, the actual crimped conjugate fiber or latent crimped conjugate fiber of the present invention, is dried by performing the above-mentioned annealing treatment, and then the filament is cut according to the use. Although the fiber length to be cut is 1 to 120 mm, it is selected according to the application, and after producing the fiber web with a card machine, the nonwoven fabric is manufactured by a known nonwoven fabric manufacturing method such as air-through method, needle punch method, hydroentanglement method, etc. Is cut to a fiber length of 20 to 100 mm, preferably 30 to 90 mm, more preferably 40 to 80 mm. If the nonwoven fabric is produced by a method of producing a fiber web by the so-called air raid method that opens the air, the fiber length is preferably cut to 1 to 40 mm, preferably 1 to 30 mm, more preferably 3 to 25 mm. . If a wet nonwoven fabric is produced by a papermaking method, the fiber length is preferably cut to 1 to 20 mm, preferably 1 to 10 mm, more preferably 3 to 8 mm. In addition, the crimped conjugate fiber of the present invention can be used as it is without cutting the annealed filament depending on the application.
 本発明の捲縮性複合繊維、すなわち本発明の顕在捲縮性複合繊維または潜在捲縮性複合繊維は、特にその繊度が限定されず、使用される用途、例えば発泡ウレタンの代替材料となる硬綿や寝具などのマットレス、車両用座席や各種椅子用、肩パッドやブラジャーパッドなど衣料用のクッション材、衛生材料、包装材、ウェットティッシュ、フィルター、スポンジ状の多孔質ワイピング材、シート状のワイピング材などの各種不織布の用途、また複合繊維そのものの弾力性、形状回復性を活かした掛け布団や敷き布団などの各種寝具や衣料用品に詰め綿としての用途など、それぞれの用途に適した繊度に仕上げられるが、1~60dtexであると弾力性、不織布にしたときの嵩回復性、および触感に優れることから好ましい。より好ましい繊度の範囲は2~50dtexであり、4~30dtexが特に好ましく、4~20dtexが最も好ましい。 The crimped conjugate fiber of the present invention, that is, the actual crimped conjugate fiber or the latent crimped conjugate fiber of the present invention is not particularly limited in its fineness and is used as a substitute material for urethane foam. Mattresses such as cotton and bedding, seats for vehicles and various chairs, cushioning materials for clothing such as shoulder pads and bra pads, hygiene materials, packaging materials, wet tissues, filters, sponge-like porous wiping materials, sheet-like wiping Finished with fineness suitable for each use, such as various non-woven fabrics such as materials, various bedding such as comforters and mattresses that utilize the elasticity and shape recovery of composite fibers, and use as cotton padded in clothing articles Is preferably 1 to 60 dtex because it is excellent in elasticity, bulk recovery when made into a non-woven fabric, and tactile sensation. A more preferable fineness range is 2 to 50 dtex, 4 to 30 dtex is particularly preferable, and 4 to 20 dtex is most preferable.
 本発明の繊維集合物は、上記捲縮性複合繊維を少なくとも30質量%含有する。上記捲縮性複合繊維を30質量%以上含有すると、繊維集合物の弾力性と嵩回復性などを高く維持できる。上記繊維集合物としては、編物、織物、不織布、詰め物、パッド及び繊維ウェブなどが挙げられる。上記繊維集合物は、上記捲縮性複合繊維を30~100質量%、上記捲縮性複合繊維以外の他の繊維を0~70質量%含有することが好ましい。上記繊維集合物に含まれる上記捲縮性複合繊維以外の他の繊維としては、上記捲縮性複合繊維の性能を阻害しないものであればよく、特に限定されない。例えば、合成繊維、化学繊維、天然繊維及び無機繊維から選ばれる少なくとも一種の繊維を含む。 The fiber assembly of the present invention contains at least 30% by mass of the crimped conjugate fiber. When the crimped conjugate fiber is contained in an amount of 30% by mass or more, the elasticity and bulk recovery of the fiber assembly can be maintained high. Examples of the fiber aggregate include a knitted fabric, a woven fabric, a nonwoven fabric, a stuffing, a pad, and a fiber web. The fiber aggregate preferably contains 30 to 100% by mass of the crimped conjugate fiber and 0 to 70% by mass of fibers other than the crimped conjugate fiber. The fiber other than the crimped conjugate fiber contained in the fiber assembly is not particularly limited as long as it does not hinder the performance of the crimped conjugate fiber. For example, at least 1 type of fiber chosen from a synthetic fiber, a chemical fiber, a natural fiber, and an inorganic fiber is included.
 本発明の捲縮性複合繊維を含む繊維集合物は、その製造方法が特に限定されず、公知の方法によって繊維ウェブを形成した後、エアスルー法、ニードルパンチ法、水流交絡法など、公知となっている不織布の製造方法で不織布にすることができるほか、特開2001-207360号公報や特開2002-242061号公報に開示される、捲縮性複合繊維を玉状綿(ファイバーボールとも称す。)とし、上記玉状綿を型枠内に吹き込み、熱処理を施すことで所定の形状を有する繊維集合物とすることもできるが、繊維ウェブを形成した後、不織布にする製造方法が好ましい。本発明の不織布を構成する繊維ウェブ形態としては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスレイウェブ、クリスクロスウェブ、エアレイウェブなどが挙げられる。上記繊維ウェブは、熱処理により第一成分が接着することにより、さらに高い効果を発揮する。そして、上記繊維ウェブは熱加工前に必要に応じて、ニードルパンチ処理又は水流交絡処理が施されてもよい。熱加工の手段としては、特に限定されないが、本発明の捲縮性複合繊維の機能を十分に発揮させるのであればよく、熱風貫通式熱処理機、熱風上下吹き付け式熱処理機、赤外線式熱処理機など、風圧などの圧力があまりかからない熱処理機を用いることが好ましい。 The production method of the fiber aggregate containing the crimped conjugate fiber of the present invention is not particularly limited, and after forming a fiber web by a known method, it becomes known such as an air-through method, a needle punch method, a hydroentanglement method, or the like. The crimped conjugate fiber disclosed in Japanese Patent Application Laid-Open No. 2001-207360 and Japanese Patent Application Laid-Open No. 2002-242061 is also referred to as a ball-like cotton (fiber ball). The above-mentioned ball-shaped cotton is blown into a mold and heat-treated to form a fiber aggregate having a predetermined shape. However, a method for producing a nonwoven fabric after forming a fiber web is preferred. As a fiber web form which comprises the nonwoven fabric of this invention, a parallel web, a semi-random web, a random web, a cross lay web, a Chris cross web, an air lay web etc. are mentioned. The said fiber web exhibits a still higher effect, when a 1st component adhere | attaches by heat processing. The fiber web may be subjected to a needle punching process or a hydroentanglement process as necessary before thermal processing. The heat processing means is not particularly limited as long as the function of the crimped conjugate fiber of the present invention is sufficiently exhibited, such as a hot air through heat treatment machine, a hot air up-and-down heat treatment machine, and an infrared heat treatment machine. It is preferable to use a heat treatment machine that does not require much pressure such as wind pressure.
 また、本発明の捲縮性複合繊維を使用した繊維ウェブに混綿できる繊維(以下、混合繊維とも記す。)は本発明の捲縮性複合繊維の性能を失わないものであればよく、特に限定されない。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネートなどのポリエステルの単一繊維、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどのポリエチレンの単一繊維、通常のチーグラ・ナッタ触媒やメタロセン触媒を使用して重合されるアイソタクチック、アタクチック、シンジオタクチックなどのポリプロピレンの単一繊維、若しくはこれらのポリオレフィンのモノマー同士の共重合ポリマー、又はこれらのポリオレフィンを重合する際にメタロセン触媒(カミンスキー触媒ともいう)を使用したポリオレフィンなどのポリオレフィンの単一繊維、ナイロン6、ナイロン66,ナイロン11、ナイロン12などのポリアミドの単一繊維、アクリルニトリルからなる(ポリ)アクリルの単一繊維、ポリカーボネート、ポリアセタール、ポリスチレン、環状ポリオレフィンなどのエンジニアリング・プラスチックの単一繊維を挙げることができる。ここで、「単一繊維」とは、一種のポリマー成分のみからなる繊維をいう。また、上記混合繊維としては、本発明の捲縮性複合繊維の性能を失わない範囲で、少なくとも一種以上のポリマー成分を含む複合繊維を用いることもできる。上記複合繊維としては、例えば、ポリエステル、ポリオレフィン、ポリアミド、エンジニアリング・プラスチックの異なる種類の樹脂、又は同一の種類の異なるポリマー成分からなる樹脂(例えばポリエチレンテレフタレートとポリトリメチレンテレフタレート)同士を複合した複合繊維が挙げられる。上記複合繊維において、その複合状態は特に限定されず、繊維断面において断面形状が芯鞘型複合繊維、偏心芯鞘型複合繊維、並列型複合繊維、柑橘類の房状の樹脂成分が交互に配置されている分割型複合繊維や海島型複合繊維であってもよい。本発明の捲縮性複合繊維において、第二成分をポリオレフィン系ポリマーとしている場合、捲縮性複合繊維を構成するポリマー成分のほとんどがポリオレフィン系ポリマーであることから、ポリオレフィン系ポリマーからなる単一繊維やポリオレフィン系ポリマー同士を複合した複合繊維を混合繊維として用いると、繊維集合物のリサイクル性の観点から好ましい。 Further, the fiber that can be blended with the fiber web using the crimped conjugate fiber of the present invention (hereinafter also referred to as mixed fiber) is not particularly limited as long as it does not lose the performance of the crimped conjugate fiber of the present invention. Not. For example, single fibers of polyester such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, polylactic acid, polybutylene succinate, polyethylene such as low density polyethylene, high density polyethylene, linear low density polyethylene A single fiber of polypropylene, a single fiber of polypropylene such as isotactic, atactic and syndiotactic polymerized using a conventional Ziegler-Natta catalyst or metallocene catalyst, or a copolymer of monomers of these polyolefins, Or a single fiber of polyolefin such as polyolefin using a metallocene catalyst (also referred to as Kaminsky catalyst) when polymerizing these polyolefins, nylon 6, nylon 66, nylon 11, nano Single fibers of polyamides such as Ron 12, mention may be made of acrylic nitrile (poly) single fibers of acrylic, polycarbonate, polyacetal, polystyrene, a single fiber of engineering plastics, such as cyclic polyolefin. Here, “single fiber” refers to a fiber composed of only one kind of polymer component. Moreover, as said mixed fiber, the composite fiber containing at least 1 or more types of polymer component can also be used in the range which does not lose the performance of the crimpable composite fiber of this invention. Examples of the composite fiber include a composite fiber obtained by combining different types of resins such as polyester, polyolefin, polyamide, engineering plastic, or resins (for example, polyethylene terephthalate and polytrimethylene terephthalate) made of the same type of different polymer components. Is mentioned. In the above-mentioned composite fiber, the composite state is not particularly limited, and the cross-sectional shape in the fiber cross section is a core-sheath type composite fiber, an eccentric core-sheath type composite fiber, a parallel type composite fiber, and a citrus tufted resin component are alternately arranged. It may be a split type composite fiber or a sea-island type composite fiber. In the crimpable conjugate fiber of the present invention, when the second component is a polyolefin polymer, since most of the polymer components constituting the crimpable conjugate fiber are polyolefin polymers, a single fiber comprising a polyolefin polymer In addition, it is preferable from the viewpoint of the recyclability of the fiber assembly that a composite fiber in which polyolefin polymers are combined is used as a mixed fiber.
 また、本発明の捲縮性複合繊維は熱接着性に優れるため、上記の熱可塑性樹脂を原料とした合成繊維のみならず、セルロース系繊維を初めとする天然繊維、ビスコースレーヨン、テンセル(登録商標)、リヨセル(登録商標)、キュプラなどの半合成繊維(再生繊維ともいう)、ガラス繊維などの無機繊維、炭素繊維とも熱接着性を示す。上記天然繊維としては、植物性天然繊維及び動物性天然繊維が挙げられる。植物性天然繊維としてはラミー(苧麻)、リネン(亜麻)、ケナフ(洋麻)、アバカ(マニラ麻)、ヘネケン(サイザル麻)、ジュート(黄麻)、ヘンプ(大麻)、ヤシ、パーム、コウゾ、ミツマタ、バガス等が挙げられる。また、動物性天然繊維としては、絹、羊毛、アンゴラ、カシミア、モヘヤ等が挙げられる。本発明の捲縮性複合繊維に混綿する繊維として、植物性天然繊維及び動物性天然繊維のいずれの繊維も使用できるが、栽培に要するコストが安価であるため植物性天然繊維が好ましい。 In addition, the crimped conjugate fiber of the present invention is excellent in thermal adhesiveness. Therefore, not only synthetic fibers using the above thermoplastic resins as raw materials, but also natural fibers such as cellulosic fibers, viscose rayon, tencel (registered) Trademark), lyocell (registered trademark), semi-synthetic fibers (also referred to as recycled fibers) such as cupra, inorganic fibers such as glass fibers, and carbon fibers exhibit thermal adhesiveness. Examples of the natural fibers include plant natural fibers and animal natural fibers. Plant-based natural fibers include ramie, linen (flax), kenaf (marine hemp), abaca (manila hemp), heneken (sisal hemp), jute (burlap), hemp (cannabis), palm, palm, mulberry, mitsumata , Bagasse and the like. Examples of animal natural fibers include silk, wool, Angola, cashmere, and mohair. As the fiber blended with the crimped conjugate fiber of the present invention, any of plant natural fiber and animal natural fiber can be used, but plant natural fiber is preferable because the cost required for cultivation is low.
 本発明の捲縮性複合繊維を含む繊維ウェブは単層状態のままでも熱加工を行うことで、嵩高な繊維集合物とすることができるが、熱加工を行う前に繊維ウェブを積層した積層ウェブ、又は熱加工後に繊維集合物を積層して繊維集合物の積層体とすることで、より優れた嵩高性を有する繊維集合物が容易に得られる。また、上記繊維集合物において、繊維集合物を構成する繊維が繊維集合物の厚み方向に平行に配列、言い換えれば、繊維集合物の縦方向に配列していることが好ましい。上記繊維集合物を構成する繊維が厚み方向に対して平行に配列することで、厚み方向に対して加えられる圧力に対して良好な嵩回復性、クッション性が得られるためである。本発明において、繊維集合物を構成する繊維が繊維集合物の厚み方向に平行に配列(繊維集合物の縦方向に配列)しているとは、上記繊維集合物の構成繊維が、繊維集合物の厚み方向となす鋭角が45°以下であること、すなわち繊維集合物を厚さ方向に切断し切断面を光学顕微鏡、走査型電子顕微鏡で拡大して観察した際、繊維集合物の構成繊維と繊維集合物の厚み方向となす鋭角が45°以下であることを指す。そして、一定面積の切断面において観察される、上記繊維集合物の全構成繊維の合計本数の80%以上が繊維集合物の縦方向に配列していることがより好ましい。上記のように、繊維集合物を構成する繊維が厚さ方向に対して平行に配列している繊維集合物としては公知の製造方法を用いて製造することができ、例えば、繊維ウェブを波型に成型し、長さ方向に圧縮しながら熱接着させた、いわゆるストルート(Strute)不織布が挙げられるが、これらに限定されるものではない。 The fiber web containing the crimped conjugate fiber of the present invention can be made into a bulky fiber assembly by performing heat processing even in a single layer state, but the fiber web is laminated before performing heat processing. By laminating the fiber assembly after the web or heat processing to obtain a laminate of the fiber assembly, a fiber assembly having more excellent bulkiness can be easily obtained. Moreover, in the said fiber assembly, it is preferable that the fiber which comprises a fiber assembly is arranged in parallel with the thickness direction of a fiber assembly, in other words, is arranged in the longitudinal direction of a fiber assembly. This is because the fibers constituting the fiber assembly are arranged in parallel to the thickness direction, whereby good bulk recovery and cushioning properties can be obtained with respect to the pressure applied to the thickness direction. In the present invention, the fibers constituting the fiber assembly are arranged in parallel to the thickness direction of the fiber assembly (arranged in the longitudinal direction of the fiber assembly). When the acute angle formed with the thickness direction is 45 ° or less, that is, when the fiber assembly is cut in the thickness direction and the cut surface is enlarged and observed with an optical microscope or a scanning electron microscope, The acute angle with the thickness direction of the fiber assembly is 45 ° or less. And it is more preferable that 80% or more of the total number of all the constituent fibers of the fiber assembly observed in the cut surface of a certain area is arranged in the longitudinal direction of the fiber assembly. As described above, the fiber aggregate in which the fibers constituting the fiber aggregate are arranged in parallel to the thickness direction can be manufactured using a known manufacturing method. For example, the fiber web is corrugated. However, the present invention is not limited to these, and is not limited to these.
 繊維ウェブの熱加工温度は、繊維ウェブに含まれる上記捲縮性複合繊維が上記顕在捲縮性複合繊維の場合、発現している捲縮性複合繊維の波形状捲縮及び/又は螺旋状捲縮が熱加工時に消失しない温度範囲に設定すればよく、例えば、ポリブテン-1の融解ピーク温度をTmとしたとき、Tm-10(℃)~第二成分の融解ピーク温度未満、好ましくはTm-10(℃)~Tm+80(℃)であり、特に好ましくはTm(℃)~Tm+50(℃)あり、最も好ましくは130~160℃である。熱加工により、上記顕在捲縮性複合繊維の第一成分に含まれる少なくとも1つの樹脂成分が溶融して、構成繊維同士が熱融着する。特に、上記顕在捲縮性複合繊維の少なくともポリブテン-1を溶融させて、構成繊維同士を熱融着させると、より強固な繊維同士の交点を形成することができ、嵩回復性が高くなり好ましい。 When the crimped conjugate fiber contained in the fiber web is the actual crimped conjugate fiber, the heat processing temperature of the fiber web is the wave-like crimp and / or the spiral crimp of the crimped conjugate fiber that is expressed. For example, when the melting peak temperature of polybutene-1 is Tm, Tm-10 (° C.) to less than the melting peak temperature of the second component, preferably Tm— 10 (° C.) to Tm + 80 (° C.), particularly preferably Tm (° C.) to Tm + 50 (° C.), and most preferably 130 to 160 ° C. By heat processing, the at least 1 resin component contained in the 1st component of the said actual crimpable composite fiber fuse | melts, and constituent fibers are heat-seal | fused. In particular, when at least polybutene-1 of the above-described crimped conjugate fiber is melted and the constituent fibers are heat-sealed, it is possible to form a stronger intersection between the fibers and to increase the bulk recoverability. .
 繊維ウェブに含まれる上記捲縮性複合繊維が上記潜在捲縮性複合繊維の場合、捲縮が発現する温度範囲に設定すればよく、例えば、ポリブテン-1の融解ピーク温度をTmとしたとき、Tm-10(℃)~第二成分の融点未満、好ましくは、Tm-10(℃)~Tm+60(℃)であり、特に好ましくはTm(℃)~Tm+50(℃)あり、最も好ましくは130~160℃の範囲で設定することが好ましい。熱加工により、上記潜在捲縮性複合繊維の第一成分に含まれる少なくとも1つの樹脂成分が溶融して、構成繊維同士が熱融着する。特に、上記潜在捲縮性複合繊維の少なくともポリブテン-1を溶融させて、構成繊維同士を熱融着させると、より強固な繊維同士の交点を形成することができ、嵩回復性が高くなり好ましい。 When the crimped conjugate fiber contained in the fiber web is the latent crimped conjugate fiber, it may be set to a temperature range in which crimp is developed. For example, when the melting peak temperature of polybutene-1 is Tm, Tm-10 (° C.) to less than the melting point of the second component, preferably Tm-10 (° C.) to Tm + 60 (° C.), particularly preferably Tm (° C.) to Tm + 50 (° C.), most preferably 130 to It is preferable to set in the range of 160 ° C. By thermal processing, at least one resin component contained in the first component of the latent crimpable conjugate fiber is melted, and the constituent fibers are thermally fused. In particular, when at least polybutene-1 of the latent crimpable conjugate fiber is melted and the constituent fibers are heat-sealed, it is possible to form a stronger intersection between the fibers and to increase the bulk recoverability. .
 また、上記不織布は、JIS-K-6400-4のA法に準じて測定する圧縮残留歪み率が45%以下であることが好ましく、35%以下であることがより好ましい。上記の圧縮残留歪み率は、70℃に加熱した場合の不織布の硬さの変化度合を示すものであり、この値が小さいほど、熱による繊維又は不織布の劣化が抑制され、嵩回復性が優れていることを示す。 Further, the nonwoven fabric preferably has a compressive residual strain ratio of 45% or less, more preferably 35% or less, measured according to A method of JIS-K-6400-4. The compressive residual strain rate indicates the degree of change in the hardness of the nonwoven fabric when heated to 70 ° C. The smaller this value, the more the deterioration of the fiber or nonwoven fabric due to heat is suppressed, and the bulk recovery property is excellent. Indicates that
 また、上記不織布は、JIS-K-6400-4のB法に準じて測定する繰り返し圧縮残留歪み率が15%以下であることが好ましく、12%以下であることがより好ましい。上記の繰り返し圧縮残留歪み率は、50%圧縮を8万回繰り返した場合の不織布の硬さの変化の度合を示すものであり、この値が小さいほど、圧縮による繊維又は不織布の劣化が抑制され、嵩回復性が優れていることを示す。 Further, the nonwoven fabric preferably has a repeated compression residual strain rate of 15% or less, more preferably 12% or less, measured according to JIS-K-6400-4, Method B. The above-mentioned repeated compression residual strain ratio indicates the degree of change in the hardness of the nonwoven fabric when 50% compression is repeated 80,000 times. This indicates that the bulk recovery property is excellent.
 本発明の繊維製品は、上記繊維集合物を少なくとも一部に有して、硬綿、寝具、車両用座席、椅子、肩パッド、ブラジャーパッド、衣料、衛生材、包装材、ウェットティッシュ、フィルター、スポンジ状の多孔質ワイピング材、シート状のワイピング材又は詰め綿に形づくられている。 The textile product of the present invention has at least a part of the above fiber assembly, and includes hard cotton, bedding, a vehicle seat, a chair, a shoulder pad, a bra pad, clothing, a hygiene material, a packaging material, a wet tissue, a filter, It is formed into a sponge-like porous wiping material, a sheet-like wiping material, or stuffed cotton.
 以下実施例により、本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されない。 Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.
 本実施例で用いた測定方法及び評価方法は、以下のとおりである。 The measurement method and evaluation method used in this example are as follows.
 (Q値)
 I.使用する分析装置
(i)クロス分別装置 ダイヤインスツルメンツ社製「CFC T-100」(以下、CFCと記す)
(ii)フーリエ変換型赤外線吸収スペクトル分析(FT-IR)、パーキンエルマー社製 「1760X」
CFCの検出器として取り付けられていた波長固定型の赤外分光光度計を取り外して代わりにFT-IRを接続し、このFT-IRを検出器として使用する。CFCから溶出した溶液の出口からFT-IRまでの間のトランスファーラインは1mの長さとし、測定の間を通じて140℃に温度保持する。FT-IRに取り付けたフローセルは光路長1mm、光路直径5mmφのものを用い、測定の間を通じて140℃に温度保持する。
(iii)ゲルパーミエーションクロマトグラフィー(GPC)
 CFC後段部分のGPCカラムは、昭和電工社製「AD806MS」を3本直列に接続して使用する。
(Q value)
I. Analytical device to be used (i) Cross sorter “CFC T-100” (hereinafter referred to as CFC) manufactured by Dia Instruments Co., Ltd.
(Ii) Fourier transform infrared absorption spectrum analysis (FT-IR), “1760X” manufactured by PerkinElmer
The fixed wavelength infrared spectrophotometer attached as a CFC detector is removed and an FT-IR is connected instead, and this FT-IR is used as a detector. The transfer line from the outlet of the solution eluted from the CFC to the FT-IR is 1 m long, and the temperature is maintained at 140 ° C. throughout the measurement. The flow cell attached to the FT-IR has an optical path length of 1 mm and an optical path diameter of 5 mmφ, and the temperature is maintained at 140 ° C. throughout the measurement.
(Iii) Gel permeation chromatography (GPC)
For the GPC column at the rear stage of the CFC, three “AD806MS” manufactured by Showa Denko KK are connected in series.
 II.CFCの測定条件
(i)溶媒:オルトジクロルベンゼン(ODCB)
(ii)サンプル濃度:1mg/mL
(iii)注入量:0.4mL
(iv)カラム温度:140℃
(v)溶媒流速:1mL/分
II. CFC measurement conditions (i) Solvent: orthodichlorobenzene (ODCB)
(Ii) Sample concentration: 1 mg / mL
(Iii) Injection volume: 0.4 mL
(Iv) Column temperature: 140 ° C
(V) Solvent flow rate: 1 mL / min
 III.FT-IRの測定条件
 CFC後段のGPCから試料溶液の溶出が開始した後、以下の条件でFT-IR測定を行い、GPC-IRデータを採取する。
(i)検出器:MCT
(ii)分解能:8cm-1
(iii)測定間隔:0.2分(12秒)
(iv)一測定当たりの積算回数:15回
III. Measurement conditions for FT-IR After elution of the sample solution from GPC at the latter stage of the CFC starts, FT-IR measurement is performed under the following conditions to collect GPC-IR data.
(I) Detector: MCT
(Ii) Resolution: 8 cm-1
(Iii) Measurement interval: 0.2 minutes (12 seconds)
(Iv) Integration count per measurement: 15 times
 IV.測定結果の後処理と解析
 分子量分布は、FT-IRによって得られる2945cm-1の吸光度をクロマトグラムとして使用して求める。保持容量から分子量への換算は、予め作成しておいた標準ポリスチレンによる検量線を用いて行う。使用する標準ポリスチレンは何れも東ソー社製の「F380」、「F288」、「F128」、「F80」、「F40」、「F20」、「F10」、「F4」、「F1」、「A5000」、「A2500」、「A1000」である。各々が0.5mg/mLとなるようにODCB(0.5mg/mLのジブチルヒドロキシトルエン(BHT)を含む)に溶解した溶液を0.4mL注入して較正曲線を作成する。較正曲線は最小二乗法で近似して得られる三次式を用いる。分子量への換算は森定雄著「サイズ排除クロマトグラフィー」(共立出版)を参考に汎用較正曲線を用いる。その際使用する粘度式([η]=K×Mα)には以下の数値を用いる。
(i)標準ポリスチレンを使用する較正曲線作成時
 K=0.000138、α=0.70
(ii)ポリプロピレンのサンプル測定時
 K=0.000103、α=0.78
IV. Post-processing and analysis of measurement results The molecular weight distribution is obtained using the absorbance at 2945 cm-1 obtained by FT-IR as a chromatogram. Conversion from the retention volume to the molecular weight is performed using a calibration curve prepared in advance with standard polystyrene. Standard polystyrenes used are “F380”, “F288”, “F128”, “F80”, “F40”, “F20”, “F10”, “F4”, “F1”, “A5000” manufactured by Tosoh Corporation. , “A2500”, “A1000”. A calibration curve is prepared by injecting 0.4 mL of a solution dissolved in ODCB (containing 0.5 mg / mL dibutylhydroxytoluene (BHT)) so that each is 0.5 mg / mL. The calibration curve uses a cubic equation obtained by approximation by the least square method. Conversion to molecular weight uses a general-purpose calibration curve with reference to “Size Exclusion Chromatography” written by Sadao Mori (Kyoritsu Shuppan). The following numerical values are used for the viscosity equation ([η] = K × Mα) used at that time.
(I) Calibration curve using standard polystyrene K = 0.000138, α = 0.70
(Ii) Polypropylene sample measurement: K = 0.000103, α = 0.78
 なお、上記においてはGPC(ゲルパーミエーションクロマトグラフィー)により測定するが、別の機種により測定する場合は、2005年度プラスチック成形材料商取引便覧(化学工業日報社、2004年8月30日発行)に記載のように、日本ポリプロ社製「MG03B」と同時に測定し、MG03Bが3.5を示すときの値をブランク条件とし、条件を調整して測定することもできる。 In the above, it is measured by GPC (Gel Permeation Chromatography), but when measured by another model, it is described in 2005 Plastic Molding Material Commerce Manual (Chemical Industry Daily, published on August 30, 2004). As described above, measurement can be performed simultaneously with “MG03B” manufactured by Nippon Polypro Co., Ltd., and the value when MG03B indicates 3.5 can be used as the blank condition, and the measurement can be performed by adjusting the condition.
 (溶融紡糸時の可紡性)
 捲縮性複合繊維の可紡性を、30分連続して溶融紡糸した際の糸切れの発生状況、発生頻度に基づいて、以下の基準で評価した。
A:連続溶融紡糸30分間で糸切れ回数は0~2回であり、可紡性が良好。
B:連続溶融紡糸30分間で糸切れ回数は3~5回であるが、工程上問題ない。
C:連続溶融紡糸30分間で糸切れ回数が6回以上、若しくは糸切れが多発し紡糸不可。
(Spinnability during melt spinning)
The spinnability of the crimped conjugate fiber was evaluated according to the following criteria based on the occurrence state and frequency of yarn breakage when melt spinning for 30 minutes continuously.
A: The number of yarn breaks is 0 to 2 in 30 minutes of continuous melt spinning, and the spinnability is good.
B: The number of yarn breaks is 3-5 times in 30 minutes of continuous melt spinning, but there is no problem in the process.
C: The number of yarn breakage is 6 times or more in 30 minutes of continuous melt spinning, or yarn breakage occurs frequently and spinning is impossible.
 (延伸性)
 捲縮性複合繊維の延伸性を、延伸工程時における糸切れの発生状況及び捲縮賦与に使用したスタッファボックス式捲縮機の通過性に基づいて、以下の基準で評価した。
A:延伸工程において糸切れはほとんど発生せず、スタッファボックス式捲縮機も容易に通過するため、生産上全く問題ない。
B:延伸工程において、糸切れ又はスタッファボックス式捲縮機における詰まりが発生するものの、生産上問題ない。
C:糸切れが多発し延伸槽、延伸ロールへの巻き付きが発生する、又はスタッファボックス式捲縮機内部若しくは排出口において詰まりが頻発するため生産性が非常に悪い。
(Extensible)
The drawability of the crimped conjugate fiber was evaluated according to the following criteria based on the occurrence of yarn breakage during the drawing process and the passability of the stuffer box type crimper used for crimping.
A: Yarn breakage hardly occurs in the drawing process, and the stuffer box type crimper passes easily, so there is no problem in production.
B: In the drawing process, thread breakage or clogging in the stuffer box type crimping machine occurs, but there is no problem in production.
C: Productivity is very poor because yarn breakage frequently occurs and winding around the drawing tank and drawing roll occurs, or clogging frequently occurs in the stuffer box type crimper or at the discharge port.
 (原綿解繊性)
 捲縮性複合繊維の原綿開繊性を、各捲縮性複合繊維100質量%をパラレルカードに掛けてウェブを採取した際のカード工程性(カード通過性、ネップ発生状況及び得られたウェブの地合)に基づいて、以下の基準で評価した。
A:繊維がパラレルカードを容易に通過し、ネップもほとんど発生しないため、地合が良好なウェブを得られる。
B:ネップが若干発生するが、ウェブの地合にそれほど影響ない。
C:カード通過性が悪い、若しくはネップが大量に発生するためウェブが得られない。
(Raw cotton defibration)
The raw cotton spreadability of the crimped conjugate fiber is determined by the card processability (card passing property, nep generation status and the obtained web) when the web is collected by applying 100% by mass of each crimped conjugate fiber to a parallel card. The following criteria were used for evaluation.
A: Since the fiber easily passes through the parallel card and almost no nep is generated, a web with good formation can be obtained.
B: Nep occurs slightly, but does not significantly affect the web formation.
C: The card cannot be passed or the web cannot be obtained because a large amount of neps occur.
 (顕在捲縮性複合繊維の原綿捲縮発現性)
 顕在捲縮性複合繊維の原綿捲縮発現性を、乾燥工程(100℃、15分でのアニーリング及び乾燥工程)終了後のトウを目視にて観察し、以下の基準で評価した。
A:立体捲縮が発現し、螺旋状捲縮及び/又は波状捲縮の形状確認が容易である。
B:立体捲縮が発現しているが、螺旋状捲縮及び/又は波状捲縮の形状判断がやや難しく、鋸歯状捲縮も混在している。
C:機械捲縮(鋸歯状捲縮)、立体捲縮(螺旋状捲縮及び/又は波状捲縮)のいずれも確認できず、大部分の捲縮が消失している。
(Development of raw cotton crimp of the actual crimpable composite fiber)
The tow after the completion of the drying process (100 ° C., 15 minutes annealing and drying process) was visually observed and evaluated by the following criteria for the raw cotton crimp expression of the actual crimpable conjugate fiber.
A: A three-dimensional crimp appears and it is easy to confirm the shape of a spiral crimp and / or a wavy crimp.
B: Although three-dimensional crimps are manifested, it is somewhat difficult to determine the shape of spiral crimps and / or wavy crimps, and serrated crimps are also mixed.
C: Neither mechanical crimp (sawtooth crimp) nor solid crimp (spiral crimp and / or wavy crimp) can be confirmed, and most of the crimp disappears.
 (潜在捲縮性複合繊維の原綿捲縮発現性)
 潜在捲縮性複合繊維の原綿捲縮発現性を、乾燥工程(100℃、15分でのアニーリング及び乾燥工程)終了後のトウを目視にて観察し、以下の基準で評価した。
A:スタッファボックス式捲縮機にて賦与した機械捲縮が消失しておらず、鋸歯状の形状確認が容易である。
B:スタッファボックス式捲縮機にて賦与した機械捲縮がやや消失し、鋸歯状の形状が見られない部分が存在する。
C:機械捲縮(鋸歯状捲縮)、立体捲縮(螺旋状捲縮及び/又は波状捲縮)のいずれも確認できず、大部分の捲縮が消失している。
(Generation of raw cotton crimp of latent crimpable composite fiber)
The tow after the completion of the drying process (100 ° C., 15 minutes annealing and drying process) was visually observed and evaluated based on the following criteria for the raw cotton crimp expression of the latent crimpable conjugate fiber.
A: The mechanical crimp applied by the stuffer box type crimping machine is not lost, and the sawtooth shape can be easily confirmed.
B: The mechanical crimp applied by the stuffer box type crimper is slightly lost, and there is a portion where a saw-tooth shape is not seen.
C: Neither mechanical crimp (sawtooth crimp) nor solid crimp (spiral crimp and / or wavy crimp) can be confirmed, and most of the crimp disappears.
 (顕在捲縮性複合繊維の熱加工後捲縮発現性)
 顕在捲縮性複合繊維の熱加工後捲縮発現性を、各捲縮性複合繊維100質量%をパラレルカードに掛けてウェブを採取し、熱風循環式の熱処理機により、150℃での加工温度で30秒間処理した後のウェブを目視にて観察し、以下の基準で評価した。
A:発現した立体捲縮が消失せず、螺旋状捲縮及び/又は波状捲縮の形状確認が容易。
B:発現した立体捲縮が一部消失しているが、螺旋状捲縮及び/又は波状捲縮の形状判断は可能。
C:発現した立体捲縮がほぼ消失し、捲縮形状の確認が困難である。
(Crimp expression after thermal processing of actual crimpable composite fiber)
After the thermal processing of the actual crimpable conjugate fiber, the crimp expression after thermal processing was obtained by applying 100% by mass of each crimpable conjugate fiber to a parallel card, collecting the web, and processing temperature at 150 ° C. with a hot air circulation type heat treatment machine. The web after being treated for 30 seconds was visually observed and evaluated according to the following criteria.
A: The developed three-dimensional crimp does not disappear, and it is easy to confirm the shape of the spiral crimp and / or the wavy crimp.
B: Although some of the developed three-dimensional crimps have disappeared, the shape of the helical crimp and / or the wavy crimp can be determined.
C: The developed three-dimensional crimp almost disappears and it is difficult to confirm the crimped shape.
 (潜在捲縮性複合繊維の熱加工後捲縮発現性)
 潜在捲縮性複合繊維の熱加工後捲縮発現性を、各捲縮性複合繊維100質量%をパラレルカードに掛けてウェブを採取し、熱風循環式の熱処理機により、150℃での加工温度で30秒間処理した後のウェブを目視にて観察し、以下の基準で評価した。
A:熱処理により立体捲縮が発現し、螺旋状捲縮及び/又は波状捲縮の形状確認が容易。
B:立体捲縮の発現性が弱い、又は熱により発現した立体捲縮が一部消失しているが、螺旋状捲縮及び/又は波状捲縮の形状判断は可能。
C:立体捲縮の発現性が弱い、又は熱により発現した立体捲縮がほとんど消失し、捲縮形状の確認が困難。
(Crimp expression after thermal processing of latent crimpable composite fiber)
The latent crimpable conjugate fiber is subjected to crimping after heat processing, and 100% by mass of each crimpable conjugate fiber is placed on a parallel card, a web is collected, and the processing temperature at 150 ° C. is processed by a hot air circulation type heat treatment machine. The web after being treated for 30 seconds was visually observed and evaluated according to the following criteria.
A: A three-dimensional crimp is developed by heat treatment, and it is easy to confirm the shape of a spiral crimp and / or a wavy crimp.
B: The expression of the three-dimensional crimp is weak or the three-dimensional crimp expressed by heat has partially disappeared, but the shape of the helical crimp and / or the wavy crimp can be determined.
C: The expression of the three-dimensional crimp is weak, or the three-dimensional crimp expressed by heat almost disappears and it is difficult to confirm the crimp shape.
 (紡糸後の各成分の融点(Tf1、Tf2)の測定)
 セイコー(株)製DSCを使用し、サンプル量を3.2mgとして、10℃/minの昇温スピードで常温から200℃(ただしポリエステル系ポリマーを第二成分とする場合には300℃)まで昇温した後、40℃まで10℃/minの降温スピードで冷却して、得られた融解熱量曲線から紡糸後の第一成分の融点Tf1、および紡糸後の第二成分の融点Tf2を求めた。紡糸後の融点について、ピークが2箇所現れた場合、低温側のピークを第一成分の融点(Tf1)とし、高温側のピークを第二成分の融点(Tf2)とした。なお、紡糸後の融点を測定する際、ピークが3箇所以上現れた場合、最後のピーク、即ち、最も高温側のピークのみを第二成分の融点(Tf2)とし、残りのピークは全て、第一成分を構成する各ポリマーにおける、紡糸後の融点(Tf1)とした。
(Measurement of melting point (Tf1, Tf2) of each component after spinning)
Using DSC manufactured by Seiko Co., Ltd., increasing the sample amount to 3.2 mg and increasing the temperature from room temperature to 200 ° C. (300 ° C. when a polyester polymer is used as the second component) at a temperature increase rate of 10 ° C./min. After warming, the mixture was cooled to 40 ° C. at a rate of temperature decrease of 10 ° C./min, and the melting point Tf1 of the first component after spinning and the melting point Tf2 of the second component after spinning were determined from the obtained heat of fusion curve. Regarding the melting point after spinning, when two peaks appeared, the low-temperature peak was the melting point (Tf1) of the first component, and the high-temperature peak was the melting point (Tf2) of the second component. When measuring the melting point after spinning, when three or more peaks appear, only the last peak, that is, the peak on the highest temperature side is set as the melting point (Tf2) of the second component, and the remaining peaks are all The melting point (Tf1) after spinning in each polymer constituting one component was used.
 (圧縮残留歪み率)
 JIS-K-6400-4のA法に準じ、温度70℃±1℃、圧縮率50%にて22時間圧縮後の歪み率を測定し、圧縮残留歪み率とした。なお、厚みの測定はいずれも試験片の厚み方向に対して力を加えない無荷重下で測定し、測定にはJIS-B-7516に規定される金属製直尺を用いた。
(Compressive residual strain rate)
In accordance with method A of JIS-K-6400-4, the strain rate after compression for 22 hours at a temperature of 70 ° C. ± 1 ° C. and a compression rate of 50% was measured to obtain a compression residual strain rate. The thickness was measured under no load without applying force in the thickness direction of the test piece, and a metal linear scale defined in JIS-B-7516 was used for the measurement.
 (繰り返し圧縮残留歪み率)
 JIS-K-6400-4のB法に準じ、23℃、圧縮率50%にて8万回圧縮後の歪み率を測定し、繰り返し圧縮残留歪み率とした。なお、厚みの測定はいずれも試験片の厚み方向に対して力を加えない無荷重下で測定し、測定にはJIS-B-7516に規定される金属製直尺を用いた。
(Repeated compression residual strain rate)
According to the method B of JIS-K-6400-4, the strain rate after 80,000 compressions was measured at 23 ° C. and a compression rate of 50%, and was set as a repeated compression residual strain rate. The thickness was measured under no load without applying force in the thickness direction of the test piece, and a metal linear scale defined in JIS-B-7516 was used for the measurement.
 本実施例で用いたポリマーは以下のとおりである。
(1)PET(東レ(株)製「T200E」、融解ピーク温度(融点):255℃、IV値:0.64)
(2)PP-A(日本ポリプロ社製「SA03E」、融解ピーク温度(融点):160℃、MFR230:20g/10分、Q値:5.6)
(3)PP-B(日本ポリプロ社製「SA01A」、融解ピーク温度(融点):160℃、MFR230:9g/10分、Q値:3.2)
(4)PB-1(サンアロマー社製「DP0401M」、融解ピーク温度(融点):123℃、MFR190:20g/10分)
(5)LLDPE-A(日本ポリエチレン社製「カーネル」(登録商標)「KS560T」[メタロセン触媒を使用し、高圧法にて合成した直鎖状低密度ポリエチレン]、融解ピーク温度(融点):90℃、MFR190:16.5g/10分、密度:0.898g/cm3、Q値:2.5、曲げ弾性率:62MPa)
(6)LLDPE-B(宇部丸善ポリエチレン社製「420SD」[メタロセン触媒を使用し、気相法にて合成した直鎖状低密度ポリエチレン]、融解ピーク温度(融点):118℃、MFR190℃:7g/10分、密度:0.918g/cm3、Q値:3.0、曲げ弾性率:280MPa)
(7)LLDPE-C(日本ポリエチレン社製「カーネル」(登録商標)「KC571」[メタロセン触媒を使用し、高圧法にて合成した直鎖状低密度ポリエチレン]、融解ピーク温度(融点):100℃、MFR190:12g/10分、密度:0.907g/cm3、Q値:2.2、曲げ弾性率:110MPa)
(8)LLDPE-D(日本ポリエチレン社製「ハーモレックス」(登録商標)「NJ744N」[メタロセン触媒を使用し気相法にて合成した直鎖状低密度ポリエチレン]、融解ピーク温度(融点):120℃、MFR190:12g/10分、密度:0.911g/cm3、Q値:2.5、曲げ弾性率:120MPa)
(9)LLDPE-E(宇部丸善ポリエチレン社製「631J」[メタロセン触媒を使用し気相法にて合成した直鎖状低密度ポリエチレン]、融解ピーク温度(融点):121℃、MFR190:20g/10分、密度:0.931g/cm3、Q値:2.9、曲げ弾性率:600MPa)
(10)LDPE(日本ポリエチレン社製「LJ802」、融解ピーク温度(融点):106℃、MFR190:22g/10分、密度:0.918g/cm3
(11)PPR-1(ポリプロピレン系熱可塑性エラストマー、三井化学社製「ノティオ」(登録商標)「2070」[メタロセン触媒にて合成したオレフィン系熱可塑性エラストマー]、融解ピーク温度(融点):138℃、ショアA硬度(ASTM D 2240):75、MFR230:6g/10分、密度0.867g/cm3
(12)PPR-2(ポリオレフィン系熱可塑性エラストマー、Basell社製「Adflex V109F」、融解ピーク温度(融点):143℃、ショアD硬度(ASTM D 2240):41、MFR230:12g/10分、密度0.880g/cm3
(13)BP(ブテン-プロピレン共重合体、サンアロマー社製「5C37F」、融解ピーク温度(融点):132℃、MFR230:6g/10分)
(14)EMAA(三井デュポン社製「ニュクレル」(登録商標)「AN4213C」、密度:0.940g/cm3、融解ピーク温度(融点):88℃、MFR190:10g/10分)
The polymers used in this example are as follows.
(1) PET (“T200E” manufactured by Toray Industries, Inc., melting peak temperature (melting point): 255 ° C., IV value: 0.64)
(2) PP-A (Nippon Polypro “SA03E”, melting peak temperature (melting point): 160 ° C., MFR230: 20 g / 10 min, Q value: 5.6)
(3) PP-B (“SA01A” manufactured by Nippon Polypro Co., Ltd., melting peak temperature (melting point): 160 ° C., MFR230: 9 g / 10 min, Q value: 3.2)
(4) PB-1 (“DP0401M” manufactured by Sun Allomer, melting peak temperature (melting point): 123 ° C., MFR190: 20 g / 10 min)
(5) LLDPE-A (Nippon Polyethylene "Kernel" (registered trademark) "KS560T" [linear low-density polyethylene synthesized by a high-pressure method using a metallocene catalyst), melting peak temperature (melting point): 90 C, MFR190: 16.5 g / 10 min, density: 0.898 g / cm 3 , Q value: 2.5, flexural modulus: 62 MPa)
(6) LLDPE-B (“420SD” manufactured by Ube Maruzen Polyethylene Co., Ltd. [Linear low density polyethylene synthesized by a gas phase method using a metallocene catalyst], melting peak temperature (melting point): 118 ° C., MFR 190 ° C .: (7 g / 10 min, density: 0.918 g / cm 3 , Q value: 3.0, flexural modulus: 280 MPa)
(7) LLDPE-C (“Kernel” (registered trademark) “KC571” manufactured by Nippon Polyethylene Co., Ltd. [Linear low-density polyethylene synthesized by a high-pressure method using a metallocene catalyst], melting peak temperature (melting point): 100 (° C., MFR 190: 12 g / 10 min, density: 0.907 g / cm 3 , Q value: 2.2, flexural modulus: 110 MPa)
(8) LLDPE-D (“Harmolex” (registered trademark) “NJ744N” manufactured by Nippon Polyethylene Co., Ltd. [Linear low density polyethylene synthesized by gas phase method using metallocene catalyst], melting peak temperature (melting point): 120 ° C., MFR 190: 12 g / 10 min, density: 0.911 g / cm 3 , Q value: 2.5, flexural modulus: 120 MPa)
(9) LLDPE-E (“631J” manufactured by Ube Maruzen Polyethylene Co., Ltd. [Linear low density polyethylene synthesized by a gas phase method using a metallocene catalyst], melting peak temperature (melting point): 121 ° C., MFR 190: 20 g / 10 minutes, density: 0.931 g / cm 3 , Q value: 2.9, flexural modulus: 600 MPa)
(10) LDPE (“LJ802” manufactured by Nippon Polyethylene Co., Ltd., melting peak temperature (melting point): 106 ° C., MFR 190: 22 g / 10 min, density: 0.918 g / cm 3 )
(11) PPR-1 (polypropylene-based thermoplastic elastomer, “Notio” (registered trademark) “2070” manufactured by Mitsui Chemicals, Inc., an olefin-based thermoplastic elastomer synthesized with a metallocene catalyst), melting peak temperature (melting point): 138 ° C. , Shore A hardness (ASTM D 2240): 75, MFR230: 6 g / 10 min, density 0.867 g / cm 3 )
(12) PPR-2 (polyolefin-based thermoplastic elastomer, “Adflex V109F” manufactured by Basell, melting peak temperature (melting point): 143 ° C., Shore D hardness (ASTM D 2240): 41, MFR230: 12 g / 10 min, density 0.880 g / cm 3 )
(13) BP (butene-propylene copolymer, “5C37F” manufactured by Sun Allomer, melting peak temperature (melting point): 132 ° C., MFR230: 6 g / 10 min)
(14) EMAA (“Nuclele” (registered trademark) “AN4213C” manufactured by Mitsui DuPont, density: 0.940 g / cm 3 , melting peak temperature (melting point): 88 ° C., MFR 190: 10 g / 10 min)
 上記において、IV値は上述した極限粘度であり、MFR230はJIS-K-7210に準じて、230℃、21.18N(2.16kgf)で測定したメルトフローレートである。また、MFR190はJIS-K-7210に準じて、190℃、21.18N(2.16kgf)で測定したメルトフローレートである。 In the above, the IV value is the above-mentioned intrinsic viscosity, and MFR230 is a melt flow rate measured at 230 ° C. and 21.18 N (2.16 kgf) according to JIS-K-7210. MFR 190 is a melt flow rate measured at 190 ° C. and 21.18 N (2.16 kgf) in accordance with JIS-K-7210.
 以下、捲縮性複合繊維の製造条件を説明する。
(A)押し出し温度:第二成分を300℃、第一成分を250℃、ノズル口金温度を270℃とした。
(B)引き取り速度:500m/min
(C)ノズル孔数:600ホール
(D)複合比:芯/鞘=55/45(容積比)
(E)未延伸繊度:10dtex
(F)延伸温度:湿式80℃
(G)延伸倍率:2.3倍
(H)捲縮:12~16個/25mm
(I)アニーリング温度(乾燥温度)、時間:100℃、15分
(J)製品繊度(単繊維):6.0dtex
(K)繊維長:51mm
Hereinafter, the manufacturing conditions of the crimped conjugate fiber will be described.
(A) Extrusion temperature: The second component was 300 ° C., the first component was 250 ° C., and the nozzle cap temperature was 270 ° C.
(B) Take-up speed: 500 m / min
(C) Number of nozzle holes: 600 holes (D) Composite ratio: Core / sheath = 55/45 (volume ratio)
(E) Unstretched fineness: 10 dtex
(F) Stretching temperature: wet 80 ° C
(G) Stretch ratio: 2.3 times (H) Crimp: 12-16 pieces / 25 mm
(I) Annealing temperature (drying temperature), time: 100 ° C., 15 minutes (J) Product fineness (single fiber): 6.0 dtex
(K) Fiber length: 51 mm
 (不織布の製造条件)
 各捲縮性複合繊維100質量%をパラレルカードに掛けてウェブを採取し、熱風循環式の熱処理機により、150℃での加工温度で30秒間処理して、目付け500g/m2の不織布とした。
(Nonwoven fabric manufacturing conditions)
A web was collected by applying 100% by mass of each crimped conjugate fiber to a parallel card, and treated with a hot air circulation type heat treatment machine at a processing temperature of 150 ° C. for 30 seconds to obtain a nonwoven fabric having a basis weight of 500 g / m 2 . .
 (実施例1)
 第二成分として、PP-Aのみを用い、第一成分として質量比がPB-1/LLDPE-A=92/8であるPB-1とLLDPE-Aの混合物を用いて、上記の捲縮性複合繊維の製造条件にて、捲縮性複合繊維を作製した。次いで、得られた捲縮性複合繊維を用いて、上記の不織布の製造条件にて、不織布を作製した。
Example 1
Using only PP-A as the second component and using a mixture of PB-1 and LLDPE-A having a mass ratio of PB-1 / LLDPE-A = 92/8 as the first component, A crimped conjugate fiber was produced under the production conditions of the conjugate fiber. Subsequently, using the crimped conjugate fiber obtained, a nonwoven fabric was produced under the above-described nonwoven fabric production conditions.
 (実施例2)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-A=97/3であるPB-1とLLDPE-Aの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 2)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-A = 97 / A crimped conjugate fiber and a non-woven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-A, No. 3, was used.
(実施例3)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-A=95/5であるPB-1とLLDPE-Aの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 3)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-A = 95 / was used as the first component. A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-A, which was No. 5, was used.
 (実施例4)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
Example 4
As the second component, a crimped conjugate fiber and a PPR-1 are prepared in the same manner as in Example 1 except that a mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used. A nonwoven fabric was prepared.
 (実施例5)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-A=80/20であるPB-1とLLDPE-Aの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 5)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-A = 80 / A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-A, which was 20, was used.
 (実施例6)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-B=92/8であるPB-1とLLDPE-Bの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 6)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-B = 92 / A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-B, which was No. 8, was used.
 (実施例7)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-C=92/8であるPB-1とLLDPE-Cの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 7)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-C = 92 / A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that the mixture of PB-1 and LLDPE-C, which was No. 8, was used.
 (実施例8)
 第二成分として、質量比がPP-A/PPR-1=95/5であるPP-AとPPR-1の混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 8)
As the second component, a crimped conjugate fiber and a PPR-1 were prepared in the same manner as in Example 1 except that a mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 95/5 was used. A nonwoven fabric was prepared.
 (実施例9)
 第二成分として、質量比がPP-A/PPR-1=75/25であるPP-AとPPR-1の混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
Example 9
As the second component, a crimped conjugate fiber and a PPR-1 were prepared in the same manner as in Example 1 except that a mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 75/25 was used. A nonwoven fabric was prepared.
 (実施例10)
 第二成分として、質量比がPP-B/PPR-1=85/15であるPP-BとPPR-1の混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 10)
As the second component, a crimped conjugate fiber and a crimped conjugate fiber were obtained in the same manner as in Example 1 except that a mixture of PP-B and PPR-1 having a mass ratio of PP-B / PPR-1 = 85/15 was used. A nonwoven fabric was prepared.
 (実施例11)
 第二成分として、質量比がPP-A/PPR-2=85/15であるPP-AとPPR-2の混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 11)
As the second component, a crimped conjugate fiber and a PPR-2 were prepared in the same manner as in Example 1 except that a mixture of PP-A and PPR-2 having a mass ratio of PP-A / PPR-2 = 85/15 was used. A nonwoven fabric was prepared.
 (実施例12)
 第一成分として質量比がPB-1/LLDPE-D=92/8であるPB-1とLLDPE-Dの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 12)
A crimped conjugate fiber and non-woven fabric in the same manner as in Example 1, except that a mixture of PB-1 and LLDPE-D having a mass ratio of PB-1 / LLDPE-D = 92/8 was used as the first component. Was made.
 (実施例13)
 第一成分として質量比がPB-1/LLDPE-E=92/8であるPB-1とLLDPE-Eの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 13)
A crimped conjugate fiber and a non-woven fabric are produced in the same manner as in Example 1 except that a mixture of PB-1 and LLDPE-E having a mass ratio of PB-1 / LLDPE-E = 92/8 is used as the first component. Was made.
 (実施例14)
 第一成分として質量比がPB-1/LLDPE-D/EMAA=90/5/5であるPB-1とLLDPE-DとEMAAの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 14)
As in Example 1, except that a mixture of PB-1, LLDPE-D and EMAA having a mass ratio of PB-1 / LLDPE-D / EMAA = 90/5/5 was used as the first component, A compressible conjugate fiber and a nonwoven fabric were produced.
 (実施例15)
 第二成分として、PETのみを用い、第一成分として質量比がPB-1/LLDPE-D=92/8である、PB-1とLLDPE-Dの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 15)
Example 1 except that only PET was used as the second component, and a mixture of PB-1 and LLDPE-D having a mass ratio of PB-1 / LLDPE-D = 92/8 was used as the first component. Similarly, crimped conjugate fibers and nonwoven fabrics were produced.
 (実施例16)
 第二成分として、PETのみを用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 16)
A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that only PET was used as the second component.
 (実施例17)
 第二成分として、PETのみを用い、第一成分として質量比がPB-1/LLDPE-D/EMAA=90/5/5である、PB-1とLLDPE-DとEMAAの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 17)
Other than using only PET as the second component and using a mixture of PB-1, LLDPE-D and EMAA as the first component with a mass ratio of PB-1 / LLDPE-D / EMAA = 90/5/5 Produced crimpable conjugate fibers and nonwoven fabric in the same manner as in Example 1.
 (実施例18)
 第二成分として、PETのみを用い、第一成分として質量比がPB-1/LLDPE-A/EMAA=90/5/5である、PB-1とLLDPE-AとEMAAの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Example 18)
Other than using only PET as the second component, and using a mixture of PB-1, LLDPE-A and EMAA with a mass ratio of PB-1 / LLDPE-A / EMAA = 90/5/5 as the first component Produced crimpable conjugate fibers and nonwoven fabric in the same manner as in Example 1.
 (比較例1)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分としてPB-1のみを用いたこと以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Comparative Example 1)
Example 2 A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and only PB-1 was used as the first component. In the same manner as in Example 1, crimped conjugate fibers and nonwoven fabrics were produced.
 (比較例2)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LLDPE-A=70/30であるPB-1とLLDPE-Aの混合物を用いたこと以外は、実施例1と同様にして、捲縮性複合繊維の作製を試みたが、可紡性が悪く、紡糸ノズル直下での糸切れが多発したため、紡糸フィラメントが作製できなかった。
(Comparative Example 2)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / LLDPE-A = 70 / Except for using a mixture of PB-1 and LLDPE-A, which was 30, an attempt was made to produce a crimped conjugate fiber in the same manner as in Example 1. However, the spinnability was poor, and the spinnability was low. Since yarn breakage occurred frequently, a spun filament could not be produced.
 (比較例3)
 第二成分として、質量比がPP-A/PPR-1=99/1であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/LDPE=90/10であるPB-1とLDPEの混合物を用いたこと以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Comparative Example 3)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 99/1 was used as the second component, and a mass ratio of PB-1 / LDPE = 90/10 was used as the first component. A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that a certain mixture of PB-1 and LDPE was used.
 (比較例4)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/EMAA=94/6であるPB-1とEMAAの混合物を用いたこと以外は、実施例1と同様にして、捲縮性複合繊維及び不織布の作製を試みたが、紡糸フィラメントの延伸性が悪かった。加えて不織布にするために熱加工した後の捲縮発現性が悪く、クッション性のよい熱接着不織布が作製できなかった。
(Comparative Example 4)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / EMAA = 94/6 was used as the first component. Except for using a mixture of PB-1 and EMAA, an attempt was made to produce crimped conjugate fibers and nonwoven fabrics in the same manner as in Example 1, but the drawability of the spun filaments was poor. In addition, the crimp development after heat processing to make a nonwoven fabric was poor, and a heat-bonding nonwoven fabric with good cushioning properties could not be produced.
 (比較例5)
 第二成分として、質量比がPP-A/PPR-1=85/15であるPP-AとPPR-1の混合物を用い、第一成分として質量比がPB-1/BP=85/15であるPB-1とBPの混合物を用いたこと以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Comparative Example 5)
A mixture of PP-A and PPR-1 having a mass ratio of PP-A / PPR-1 = 85/15 was used as the second component, and a mass ratio of PB-1 / BP = 85/15 was used as the first component. A crimped conjugate fiber and a nonwoven fabric were produced in the same manner as in Example 1 except that a certain mixture of PB-1 and BP was used.
 (比較例6)
 第二成分として、PETのみを用い、第一成分として質量比がPB-1/PP-A/EMAA=85/10/5である、PB-1とPP-AとEMAAの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布の作製を試みた。紡糸性、延伸性、捲縮発現性の高い複合繊維が得られたが、150℃での熱接着加工では構成繊維間が十分に熱接着しなかったため、熱接着不織布が得られなかった。
(Comparative Example 6)
Except for using only PET as the second component and using a mixture of PB-1, PP-A and EMAA as the first component, the mass ratio of PB-1 / PP-A / EMAA = 85/10/5 Tried to produce crimped conjugate fibers and nonwoven fabric in the same manner as in Example 1. A composite fiber having high spinnability, stretchability, and crimp development was obtained. However, a heat-bonding nonwoven fabric was not obtained because heat-bonding at 150 ° C. did not sufficiently heat-bond the constituent fibers.
 (比較例7)
 第二成分として、PETのみを用い、第一成分として質量比がPB-1/EMAA=92/8であるPB-1とEMAAの混合物を用いた以外は、実施例1と同様にして、捲縮性複合繊維及び不織布を作製した。
(Comparative Example 7)
In the same manner as in Example 1, except that only PET was used as the second component and a mixture of PB-1 and EMAA having a mass ratio of PB-1 / EMAA = 92/8 was used as the first component. A compressible conjugate fiber and a nonwoven fabric were produced.
 得られた実施例1~18及び比較例1~7の捲縮性複合繊維の偏芯率、溶融紡糸時の可紡性、原綿解繊性、原綿捲縮発現性及び熱加工後捲縮発現性の結果、及び不織布の初期厚み、目付け、繰り返し圧縮残留歪み、圧縮残留歪みを下記表1~表4に示した。なお、実施例1~4、6~9、11~18の捲縮性複合繊維は顕在捲縮性の複合繊維となり、図2Aに示す波状捲縮または螺旋状捲縮、もしくは波状捲縮と螺旋状捲縮の両方を発現しており、その捲縮数は12~18個/25mm であった。また、実施例5、10の捲縮性複合繊維は潜在捲縮性の複合繊維となり、不織布を作製する際の熱加工により、立体捲縮を発現し、図2Aに示す波状捲縮や螺旋状捲縮の少なくとも一方を発現していた。 The eccentricity of the crimped conjugate fibers obtained in Examples 1 to 18 and Comparative Examples 1 to 7, spinnability during melt spinning, raw cotton defibration, raw cotton crimp development, and crimp development after heat processing Tables 1 to 4 below show the results of the properties and the initial thickness, basis weight, repeated compressive residual strain, and compressive residual strain of the nonwoven fabric. Note that the crimped conjugate fibers of Examples 1 to 4, 6 to 9, and 11 to 18 are apparently crimped conjugate fibers, and the wavy crimp or the spiral crimp shown in FIG. 2A, or the wavy crimp and the spiral. Both crimps were expressed, and the number of crimps was 12-18 / 25 mm. In addition, the crimped conjugate fibers of Examples 5 and 10 become latently crimped conjugate fibers, which exhibit three-dimensional crimps by thermal processing when producing a nonwoven fabric, and show the wavy crimp and spiral shape shown in FIG. 2A. At least one of the crimps was expressed.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~3の実施例1~18と表4の比較例1~7を比較すると、第一成分にPB-1を含む捲縮性複合繊維において、上記PB-1に直鎖状低密度ポリエチレンを添加することでPB-1の延伸性、原綿解繊性、原綿の捲縮発現性といった特性が向上する効果が確認できた。これは表4の比較例1、4、5、7に示す、第一成分がPB-1のみからなる複合繊維や、PB-1に直鎖状低密度ポリエチレン以外のポリマーを添加した複合繊維では延伸性が低い(評価B)のに対し、すべての実施例において延伸性が良好(評価A)であることから確認できる。また、低密度ポリエチレン(LDPE)を第一成分に添加した複合繊維は原綿の開繊性が良好でないことから、ポリブテン-1を主成分とする第一成分に添加するポリマーとして、直鎖状低密度ポリエチレンを添加することで、可紡性、延伸性だけでなく原綿開繊性、原綿の捲縮発現性、熱加工後の捲縮発現性の全ての特性が良好な捲縮性複合繊維が得られることが確認できる。 When Examples 1 to 18 in Tables 1 to 3 and Comparative Examples 1 to 7 in Table 4 are compared, in the crimped conjugate fiber containing PB-1 as the first component, linear low density polyethylene is added to PB-1. As a result, it was confirmed that the properties of PB-1 such as stretchability, raw cotton defibration, and crimping of raw cotton were improved. This is shown in Comparative Examples 1, 4, 5, and 7 in Table 4 for composite fibers in which the first component is composed only of PB-1, or composite fibers in which a polymer other than linear low-density polyethylene is added to PB-1. It can be confirmed that the stretchability is low (Evaluation A) in all Examples, whereas the stretchability is low (Evaluation B). In addition, since the composite fiber in which low density polyethylene (LDPE) is added to the first component does not have good openability of the raw cotton, a linear low molecular weight polymer is added to the first component mainly composed of polybutene-1. By adding high-density polyethylene, not only spinnability and stretchability, but also raw cotton openability, crimping of raw cotton, and crimping after heat processing are all good. It can be confirmed that it is obtained.
 本発明の捲縮性複合繊維において、第一成分を、ポリブテン-1と、直鎖状低密度ポリエチレンとを含む樹脂成分にすることで、第二成分がポリオレフィン系ポリマー及びポリエステル系ポリマーのいずれであっても、得られた複合繊維を用いた不織布が繰り返し圧縮残留歪みの低い不織布となることが実施例1~18より確認できる。従って、本発明の捲縮性複合繊維において、複合繊維の内側を構成する第二成分は特に限定されず、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーであり、曲げ強さ、曲げ弾性に優れるポリマーであればポリエステル系ポリマーやポリオレフィン系ポリマーに限定されることなく使用できると考えられる。 In the crimped conjugate fiber of the present invention, the first component is a resin component containing polybutene-1 and linear low-density polyethylene, and the second component is either a polyolefin-based polymer or a polyester-based polymer. Even in such cases, it can be confirmed from Examples 1 to 18 that the nonwoven fabric using the obtained conjugate fiber becomes a nonwoven fabric with repeated low residual compressive strain. Accordingly, in the crimped conjugate fiber of the present invention, the second component constituting the inside of the conjugate fiber is not particularly limited, and a polymer having a melting peak temperature higher by 20 ° C. or more than the melting peak temperature of polybutene-1 or the start of melting A polymer having a temperature of 120 ° C. or higher and having excellent bending strength and bending elasticity can be used without being limited to polyester polymers and polyolefin polymers.
 第一成分にPB-1を含む捲縮性複合繊維において、上記第一成分に直鎖状低密度ポリエチレンを添加する際、直鎖状低密度ポリエチレンを第一成分に対し20質量%添加した複合繊維は可紡性が良好であるのに対し、直鎖状低密度ポリエチレンを第一成分に対し30質量%添加した複合繊維は可紡性が極端に悪いため、直鎖状低密度ポリエチレンの添加量には上限があり、その上限となる添加量は30質量%未満、好ましくは25質量%以下であることが実施例5と比較例2の比較から推察できる。 In the crimped conjugate fiber containing PB-1 as the first component, when the linear low density polyethylene is added to the first component, the composite in which 20% by mass of the linear low density polyethylene is added to the first component The fiber has good spinnability, but the composite fiber with 30% by mass of linear low-density polyethylene added to the first component has extremely poor spinnability. From the comparison between Example 5 and Comparative Example 2, it can be inferred that the amount has an upper limit, and the upper limit is less than 30% by mass, preferably 25% by mass or less.
 実施例1~18の捲縮性複合繊維では得られた捲縮性複合繊維の捲縮発現性、捲縮性複合繊維を用いた不織布の耐繰り返し圧縮残留歪み性、耐圧縮残留歪み性の向上が確認でき、特に実施例2~4、7~9、11、12、14の捲縮性複合繊維、及びそれを用いた不織布では、繰り返し圧縮残留歪み率が11.5%以下、圧縮残留歪み率が31.5%以下と、比較例1の不織布と比較して大きく向上していることが確認できる。実施例2~4、7~9、11、12、14と実施例6、13を比較すると、実施例6、13の比較的密度が高く、曲げ弾性率の高い直鎖状低密度ポリエチレンを使用した捲縮性複合繊維を含む不織布の繰り返し圧縮残留歪みや圧縮残留歪みが大きくなることから、本発明の捲縮性複合繊維において、第一成分に添加する直鎖状低密度ポリエチレンは、熱接着性、および耐熱性に影響が出ない範囲で、より密度が低く、曲げ弾性率の低い直鎖状低密度ポリエチレンを添加することが好ましいと推察される。 In the crimpable conjugate fibers of Examples 1 to 18, the crimp development properties of the obtained crimpable conjugate fibers, the resistance to repeated compression residual strain and the compression residual strain resistance of the nonwoven fabric using the crimpable conjugate fibers are improved. In particular, in the crimped conjugate fibers of Examples 2 to 4, 7 to 9, 11, 12, and 14 and the nonwoven fabric using the same, the residual compression strain was 11.5% or less, and the residual compression strain was 11.5%. It can be confirmed that the rate is greatly improved as compared with the nonwoven fabric of Comparative Example 1 of 31.5% or less. When Examples 2 to 4, 7 to 9, 11, 12, and 14 are compared with Examples 6 and 13, linear low density polyethylene having relatively high density and high flexural modulus is used in Examples 6 and 13. In the crimped conjugate fiber of the present invention, the linear low-density polyethylene added to the first component is heat-bonded because the repeated compressive residual strain and compression residual strain of the nonwoven fabric containing the crimped conjugate fiber increased. It is presumed that it is preferable to add linear low-density polyethylene having a lower density and a lower flexural modulus within a range that does not affect the properties and heat resistance.
 比較例6に示すように、第一成分にPB-1を含む捲縮性複合繊維において、第一成分にポリプロピレンを添加した複合繊維もPB-1の可紡性、延伸性が向上し、原綿開繊性、原綿の捲縮発現性、熱加工後における原綿の捲縮発現性に優れた捲縮性複合繊維が得られることが確認できる。しかし、比較例6に示す捲縮性複合繊維は、第一成分にPB-1よりも融点の高いポリプロピレンを添加しているため、第一成分の見掛けの融点が上昇している。この結果、この熱接着加工の条件では複合繊維同士が十分に熱接着できないことが確認できた。従って、実施例1~18と比較例6、特に実施例1、6、7、12、13と比較例6の、紡糸後の第一成分の融点(Tf1)を比較することで、より低温での熱接着加工、また、より短時間で接着強力の高い熱加工を行うのであれば、第一成分にPB-1を含む捲縮性複合繊維において、第一成分に直鎖状低密度ポリエチレンを添加することが最適であることが確認できる。 As shown in Comparative Example 6, in the crimpable conjugate fiber containing PB-1 as the first component, the conjugate fiber added with polypropylene as the first component also improved the spinnability and stretchability of PB-1, and the raw cotton It can be confirmed that a crimpable composite fiber excellent in the spreadability, the crimp expression of the raw cotton, and the crimp expression of the raw cotton after heat processing can be obtained. However, in the crimped conjugate fiber shown in Comparative Example 6, the apparent melting point of the first component is increased because polypropylene having a higher melting point than PB-1 is added to the first component. As a result, it was confirmed that the composite fibers cannot be sufficiently thermally bonded under the conditions of the thermal bonding process. Therefore, by comparing the melting point (Tf1) of the first component after spinning in Examples 1 to 18 and Comparative Example 6, especially Examples 1, 6, 7, 12, 13 and Comparative Example 6, In the crimpable conjugate fiber containing PB-1 as the first component, linear low-density polyethylene is used as the first component. It can be confirmed that the addition is optimal.
 本発明の捲縮性複合繊維を用いた繊維集合物は、初期嵩と嵩回復性とが共に優れており、クッション材などの硬綿、衛生材料、包装材、化粧品用材料、女性のブラジャーのパッド、肩パッドなどの低密度の不織布製品、また一般的にウレタンフォームやウレタンスポンジが使用されている、対人及び対物のワイピング材や、粉末又は液状の化粧料塗布材、断熱材や吸音材といった用途に好ましく使用される。また、本発明の捲縮性複合繊維は、弾力性、形状回復性に優れるため、掛け布団や敷き布団などの各種寝具や衣料用品に詰め綿として好ましく使用される。また、本発明の捲縮性複合繊維の一形態である、第二成分をポリオレフィン系ポリマーとした本発明の捲縮性複合繊維は、複合繊維を構成する樹脂成分がすべてポリオレフィン系ポリマーで構成されるため、上記硬綿、詰め綿、低密度の不織布製品として使用した後、ポリオレフィン系ポリマーからなる原料としての回収、樹脂原料への再利用、ポリオレフィン系繊維としての再利用が容易であり、使用後の分別回収、原料の再利用が求められる各種繊維集合物製品にも好ましく用いられる。 The fiber aggregate using the crimped conjugate fiber of the present invention is excellent in both initial bulk and bulk recoverability, and is made of hard cotton such as cushion materials, hygiene materials, packaging materials, cosmetic materials, and women's bras. Low density non-woven fabric products such as pads and shoulder pads, and wiping materials for humans and objectives, powder or liquid cosmetic coating materials, heat insulating materials and sound absorbing materials, which generally use urethane foam and urethane sponge It is preferably used for applications. In addition, the crimped conjugate fiber of the present invention is excellent in elasticity and shape recoverability, and is therefore preferably used as stuffed cotton in various beddings and clothing articles such as comforters and mattresses. In addition, the crimpable conjugate fiber of the present invention in which the second component is a polyolefin polymer, which is one form of the crimped conjugate fiber of the present invention, is such that all of the resin components constituting the conjugate fiber are composed of polyolefin polymers. Therefore, after being used as the above-mentioned hard cotton, stuffed cotton, low-density nonwoven fabric products, it can be easily recovered and reused as a raw material consisting of a polyolefin polymer, reused as a resin raw material, and reused as a polyolefin fiber. It is also preferably used for various fiber assembly products that require subsequent fractional collection and reuse of raw materials.
1 第一成分
2 第二成分
3 第二成分の重心位置
4 複合繊維の重心位置
5 複合繊維の半径
10 複合繊維
DESCRIPTION OF SYMBOLS 1 1st component 2 2nd component 3 The gravity center position 4 of a 2nd component The gravity center position 5 of a composite fiber Radius 10 of a composite fiber Composite fiber

Claims (11)

  1.  第一成分と第二成分とを含む複合繊維であって、
     前記第一成分は、ポリブテン-1と、直鎖状低密度ポリエチレンとを含み、
     前記第一成分における直鎖状低密度ポリエチレンの含有量は、2~25質量%であり、
     前記第二成分は、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含み、
     繊維断面から見たとき、前記第一成分は前記複合繊維表面の少なくとも20%を占め、前記第二成分の重心位置は前記複合繊維の重心位置からずれており、
     前記複合繊維は立体捲縮を発現している顕在捲縮、又は加熱することにより立体捲縮を発現する潜在捲縮であることを特徴とする捲縮性複合繊維。
    A composite fiber comprising a first component and a second component,
    The first component includes polybutene-1 and linear low density polyethylene,
    The content of the linear low density polyethylene in the first component is 2 to 25% by mass,
    The second component includes a polymer having a melting peak temperature of 20 ° C. or more higher than the melting peak temperature of polybutene-1, or a polymer having a melting start temperature of 120 ° C. or more.
    When viewed from the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is deviated from the center of gravity of the composite fiber
    The crimped conjugate fiber, wherein the conjugate fiber is an actual crimp that exhibits a three-dimensional crimp or a latent crimp that exhibits a three-dimensional crimp when heated.
  2.  前記立体捲縮は、波形状捲縮及び螺旋状捲縮から選ばれる少なくとも一種の立体捲縮である請求項1に記載の捲縮性複合繊維。 The crimped conjugate fiber according to claim 1, wherein the three-dimensional crimp is at least one kind of three-dimensional crimp selected from a wave crimp and a spiral crimp.
  3.  前記直鎖状低密度ポリエチレンは、メタロセン触媒を用いて重合されたα-オレフィンとの共重合体である請求項1または2に記載の捲縮性複合繊維。 The crimped conjugate fiber according to claim 1 or 2, wherein the linear low density polyethylene is a copolymer with an α-olefin polymerized using a metallocene catalyst.
  4.  前記直鎖状低密度ポリエチレンは、JIS-K-7121に準じて測定したDSCより求められる融解ピーク温度が80~130℃であり、JIS-K-7112に準じて測定した密度が0.88~0.92g/cm3である請求項1~3のいずれかに記載の捲縮性複合繊維。 The linear low density polyethylene has a melting peak temperature determined by DSC measured according to JIS-K-7121 of 80 to 130 ° C., and a density measured according to JIS-K-7112 of 0.88 to The crimped conjugate fiber according to any one of claims 1 to 3, which is 0.92 g / cm 3 .
  5.  前記直鎖状低密度ポリエチレンは、JIS-K-7171に準じて測定される曲げ弾性率が20~300MPaである請求項1~4のいずれかに記載の捲縮性複合繊維。 The crimped conjugate fiber according to any one of claims 1 to 4, wherein the linear low-density polyethylene has a flexural modulus of 20 to 300 MPa measured according to JIS-K-7171.
  6.  前記第二成分に含まれる、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーは、ポリオレフィン系ポリマーである請求項1~5のいずれかに記載の捲縮性複合繊維。 The polymer having a melting peak temperature of 20 ° C. or more higher than the melting peak temperature of polybutene-1 contained in the second component or a polymer having a melting start temperature of 120 ° C. or more is a polyolefin-based polymer. The crimpable conjugate fiber according to any one of the above.
  7.  前記第二成分に含まれるポリオレフィン系ポリマーが、ホモポリプロピレンであり、前記第二成分に含まれるホモポリプロピレンは、第二成分全体を100質量%とした場合、75~100質量%である請求項6に記載の捲縮性複合繊維。 The polyolefin polymer contained in the second component is homopolypropylene, and the homopolypropylene contained in the second component is 75 to 100% by mass when the entire second component is 100% by mass. The crimpable conjugate fiber described in 1.
  8.  前記第二成分に含まれる、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーは、ポリエステル系ポリマーである請求項1~5のいずれかに記載の捲縮性複合繊維。 The polymer having a melting peak temperature of 20 ° C. or more higher than the melting peak temperature of polybutene-1 or a polymer having a melting start temperature of 120 ° C. or more contained in the second component is a polyester polymer. The crimpable conjugate fiber according to any one of the above.
  9.  捲縮性複合繊維を30質量%以上含み、
     前記捲縮性複合繊維は、第一成分と第二成分とを含む複合繊維であって、
     前記第一成分は、ポリブテン-1と、直鎖状低密度ポリエチレンとを含み、
     前記第一成分における直鎖状低密度ポリエチレンの含有量は、2~25質量%であり、
     前記第二成分は、ポリブテン-1の融解ピーク温度よりも20℃以上高い融解ピーク温度を有するポリマー又は融解開始温度が120℃以上であるポリマーを含み、
     繊維断面から見たとき、前記第一成分は前記複合繊維表面の少なくとも20%を占め、前記第二成分の重心位置は前記複合繊維の重心位置からずれており、
     前記複合繊維は立体捲縮を発現している顕在捲縮、又は加熱することにより立体捲縮を発現する潜在捲縮であることを特徴とする繊維集合物。
    Containing 30% by mass or more of crimped conjugate fiber,
    The crimped conjugate fiber is a conjugate fiber containing a first component and a second component,
    The first component includes polybutene-1 and linear low density polyethylene,
    The content of the linear low density polyethylene in the first component is 2 to 25% by mass,
    The second component includes a polymer having a melting peak temperature of 20 ° C. or more higher than the melting peak temperature of polybutene-1, or a polymer having a melting start temperature of 120 ° C. or more.
    When viewed from the fiber cross section, the first component occupies at least 20% of the surface of the composite fiber, and the center of gravity of the second component is deviated from the center of gravity of the composite fiber
    The fiber assembly is characterized in that the composite fiber is an actual crimp that exhibits a three-dimensional crimp or a latent crimp that exhibits a three-dimensional crimp when heated.
  10.  前記繊維集合物は、前記捲縮性複合繊維の他に、合成繊維、化学繊維、天然繊維及び無機繊維から選ばれる少なくとも一種の繊維を0~70質量%含む請求項9に記載の繊維集合物。 The fiber assembly according to claim 9, wherein the fiber assembly includes 0 to 70% by mass of at least one fiber selected from a synthetic fiber, a chemical fiber, a natural fiber, and an inorganic fiber in addition to the crimped conjugate fiber. .
  11.  請求項9又は10に記載の繊維集合物を少なくとも一部に有して、硬綿、寝具、車両用座席、椅子、肩パッド、ブラジャーパッド、衣料、衛生材、包装材、ウェットティッシュ、フィルター、スポンジ状の多孔質ワイピング材、シート状のワイピング材又は詰め綿に形づくられていることを特徴とする繊維製品。 It has at least a part of the fiber assembly according to claim 9 or 10, hard cotton, bedding, vehicle seat, chair, shoulder pad, brassiere pad, clothing, hygiene material, packaging material, wet tissue, filter, A textile product characterized by being formed into a sponge-like porous wiping material, a sheet-like wiping material, or stuffed cotton.
PCT/JP2010/062103 2009-07-17 2010-07-16 Crimped composite fiber, and fibrous mass and textile product using the same WO2011007875A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/384,124 US20120121882A1 (en) 2009-07-17 2010-07-16 Crimped composite fiber, and fibrous mass and testile product using the same
JP2011522873A JP5436558B2 (en) 2009-07-17 2010-07-16 Crimpable composite fiber, and fiber assembly and fiber product using the same
CN2010800322132A CN102471945B (en) 2009-07-17 2010-07-16 Crimped composite fiber, and fibrous mass and textile product using same
EP10799933A EP2455516A4 (en) 2009-07-17 2010-07-16 Crimped composite fiber, and fibrous mass and textile product using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009168773 2009-07-17
JP2009-168773 2009-07-17

Publications (1)

Publication Number Publication Date
WO2011007875A1 true WO2011007875A1 (en) 2011-01-20

Family

ID=43449485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062103 WO2011007875A1 (en) 2009-07-17 2010-07-16 Crimped composite fiber, and fibrous mass and textile product using the same

Country Status (5)

Country Link
US (1) US20120121882A1 (en)
EP (1) EP2455516A4 (en)
JP (1) JP5436558B2 (en)
CN (1) CN102471945B (en)
WO (1) WO2011007875A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052153A (en) * 2011-09-05 2013-03-21 Hakugen:Kk Mask
JP2015155586A (en) * 2014-02-21 2015-08-27 ダイワボウホールディングス株式会社 Granulated wool and padding material using the same, and bed/bedding or clothing including the padding material
JP2016186134A (en) * 2015-03-27 2016-10-27 ダイワボウホールディングス株式会社 Composite fiber, nonwoven fabric, and sheet for absorbent article
JP2017179621A (en) * 2016-03-28 2017-10-05 ダイワボウホールディングス株式会社 Latent crimpable composite fiber and manufacturing method therefor, conjugate fiber and nonwoven fabric
JP2017226944A (en) * 2016-06-24 2017-12-28 ダイワボウホールディングス株式会社 Granular cotton compact and manufacturing method thereof
JP2018509529A (en) * 2015-01-21 2018-04-05 プリマロフト,インコーポレイテッド Transition resistant batting having stretchability, method for producing the batting, and article containing the batting
JP2019090154A (en) * 2019-01-25 2019-06-13 ダイワボウホールディングス株式会社 Composite fiber, nonwoven fabric, and sheet for absorbent article
US10590576B2 (en) 2014-07-04 2020-03-17 Panefri Industrial Co., Ltd. Steric net-like fiber aggregation
JP2021011675A (en) * 2015-03-30 2021-02-04 ダイワボウホールディングス株式会社 Composite fiber and inner cotton
WO2022044892A1 (en) * 2020-08-27 2022-03-03 出光興産株式会社 Nonwoven fabric comprising crimped fibers

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103866422A (en) * 2012-12-13 2014-06-18 罗莱家纺股份有限公司 Polymer fiber with high heat shrinkage and preparation method thereof
US20160167334A1 (en) 2014-11-06 2016-06-16 The Procter & Gamble Company Crimped Fiber Spunbond Nonwoven Webs/Laminates
CA2967001A1 (en) 2014-11-06 2016-05-12 The Procter & Gamble Company Patterned apertured webs, laminates, and methods for making the same
JP2016141926A (en) * 2015-02-02 2016-08-08 新光合成繊維股▲ふん▼有限公司 Twin component composite fiber having high crimpability, composite yarn and fabric
ITUB20155124A1 (en) * 2015-10-21 2017-04-21 Imbotex Srl THERMAL PADDING PARTICULARLY FOR TECHNICAL CLOTHING FOR OUTDOOR ACTIVITIES
CN105648654A (en) * 2015-12-29 2016-06-08 江苏苏博特新材料股份有限公司 Polyoxy methylene fiber needle-punched non-woven geotechnical cloth and manufacturing method thereof
CN108476559B (en) * 2016-01-25 2021-04-09 株式会社电装 Heater device
TW201739603A (en) 2016-01-27 2017-11-16 歐拓管理股份公司 Sound absorbing liner for the engine bay of a vehicle and sound absorbing trim part having the same
JP7098274B2 (en) * 2016-03-23 2022-07-11 株式会社イノアックコーポレーション Cosmetic holder and cosmetic container in which it is stored
WO2017164248A1 (en) * 2016-03-23 2017-09-28 株式会社イノアックコーポレーション Cosmetic holding body and cosmetic container housing same
EP4335420A2 (en) 2017-02-16 2024-03-13 The Procter & Gamble Company Absorbent articles with substrates having repeating patterns of apertures comprising a plurality of repeat units
AR117125A1 (en) * 2018-11-20 2021-07-14 Dow Global Technologies Llc MANUFACTURING METHOD OF CURLED FIBERS AND NON-WOVEN BANDS HAVING SUCH FIBERS
AR117108A1 (en) * 2018-11-20 2021-07-14 Dow Global Technologies Llc WAVY MULTICOMPONENT FIBERS
KR20200123570A (en) * 2019-04-22 2020-10-30 현대자동차주식회사 Under cover for automobile having high elasticity and strength and method for manufacturing the same
WO2023114355A1 (en) * 2021-12-17 2023-06-22 Kimberly-Clark Worldwide, Inc. Nonwoven webs made from multicomponent filaments and process for forming nonwoven webs

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167313A (en) * 1989-11-25 1991-07-19 Daiwabou Kurieito Kk Conjugated yarn and nonwoven fabric thereof
JPH0418121A (en) * 1990-05-02 1992-01-22 Chisso Corp Hot-melt fiber
JPH04240219A (en) 1991-01-24 1992-08-27 Teijin Ltd Polyester-based heat bonding conjugate fiber
JPH05247724A (en) 1992-02-26 1993-09-24 Toyobo Co Ltd Heat-bondable fiber
JP2001207360A (en) 2000-01-27 2001-08-03 Nippon Ester Co Ltd Ball-like wadding and fiber structure
JP2002242061A (en) 2001-02-15 2002-08-28 Nippon Ester Co Ltd Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure
JP2003003334A (en) 2001-06-22 2003-01-08 Daiwabo Co Ltd Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same
JP2007126806A (en) 2005-10-03 2007-05-24 Daiwabo Co Ltd Crimping conjugate fiber and non-woven fabric using the same
WO2008041384A1 (en) * 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
JP2008248421A (en) 2007-03-30 2008-10-16 Daiwabo Co Ltd Latently crimping composite fiber and fibrous mass using the same
JP2008274473A (en) * 2007-04-27 2008-11-13 Daiwabo Co Ltd Spontaneously crimping conjugate fiber and fiber aggregate using the same
JP2010059585A (en) * 2008-09-05 2010-03-18 Daiwabo Holdings Co Ltd Crimped conjugate fiber, and fiber structure using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0248598B1 (en) * 1986-05-31 1992-10-21 Unitika Ltd. Polyolefin-type nonwoven fabric and method of producing the same
US5512358A (en) * 1993-09-22 1996-04-30 Kimberly-Clark Corporation Multi-component polymeric strands including a butene polymer and nonwoven fabric and articles made therewith
US6274237B1 (en) * 1999-05-21 2001-08-14 Chisso Corporation Potentially crimpable composite fiber and a non-woven fabric using the same
DE60234210D1 (en) * 2001-11-30 2009-12-10 Teijin Ltd MACHINE-RIBBED SYNTHETIC FIBER WITH LATEN THREE-DIMENSIONAL INCREASING CAPACITY AND METHOD FOR THE PRODUCTION THEREOF
DE10244778B4 (en) * 2002-09-26 2006-06-14 Trevira Gmbh Eccentric polyester-polyethylene bicomponent fiber
JP3995697B2 (en) * 2003-08-28 2007-10-24 大和紡績株式会社 Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP4468208B2 (en) * 2005-02-25 2010-05-26 ダイワボウホールディングス株式会社 Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP5037964B2 (en) * 2007-02-13 2012-10-03 Esファイバービジョンズ株式会社 Wet non-woven fabric
JP5233053B2 (en) * 2008-05-19 2013-07-10 Esファイバービジョンズ株式会社 Composite fiber for producing air laid nonwoven fabric and method for producing high density air laid nonwoven fabric

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03167313A (en) * 1989-11-25 1991-07-19 Daiwabou Kurieito Kk Conjugated yarn and nonwoven fabric thereof
JPH0418121A (en) * 1990-05-02 1992-01-22 Chisso Corp Hot-melt fiber
JPH04240219A (en) 1991-01-24 1992-08-27 Teijin Ltd Polyester-based heat bonding conjugate fiber
JPH05247724A (en) 1992-02-26 1993-09-24 Toyobo Co Ltd Heat-bondable fiber
JP2001207360A (en) 2000-01-27 2001-08-03 Nippon Ester Co Ltd Ball-like wadding and fiber structure
JP2002242061A (en) 2001-02-15 2002-08-28 Nippon Ester Co Ltd Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure
JP2003003334A (en) 2001-06-22 2003-01-08 Daiwabo Co Ltd Crimped conjugate fiber, method for manufacturing the same and nonwoven fabric using the same
JP2007126806A (en) 2005-10-03 2007-05-24 Daiwabo Co Ltd Crimping conjugate fiber and non-woven fabric using the same
WO2008041384A1 (en) * 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
JP2008248421A (en) 2007-03-30 2008-10-16 Daiwabo Co Ltd Latently crimping composite fiber and fibrous mass using the same
JP2008274473A (en) * 2007-04-27 2008-11-13 Daiwabo Co Ltd Spontaneously crimping conjugate fiber and fiber aggregate using the same
JP2010059585A (en) * 2008-09-05 2010-03-18 Daiwabo Holdings Co Ltd Crimped conjugate fiber, and fiber structure using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"2005 Catalogue for Commercial Transaction of Plastic Molding Materials", 30 August 2004, CHEMICAL DAILY CO., LTD.
See also references of EP2455516A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052153A (en) * 2011-09-05 2013-03-21 Hakugen:Kk Mask
JP2015155586A (en) * 2014-02-21 2015-08-27 ダイワボウホールディングス株式会社 Granulated wool and padding material using the same, and bed/bedding or clothing including the padding material
US10590576B2 (en) 2014-07-04 2020-03-17 Panefri Industrial Co., Ltd. Steric net-like fiber aggregation
JP2018509529A (en) * 2015-01-21 2018-04-05 プリマロフト,インコーポレイテッド Transition resistant batting having stretchability, method for producing the batting, and article containing the batting
JP2016186134A (en) * 2015-03-27 2016-10-27 ダイワボウホールディングス株式会社 Composite fiber, nonwoven fabric, and sheet for absorbent article
JP2021011675A (en) * 2015-03-30 2021-02-04 ダイワボウホールディングス株式会社 Composite fiber and inner cotton
JP7112632B2 (en) 2015-03-30 2022-08-04 大和紡績株式会社 Composite fibers and batting
JP2017179621A (en) * 2016-03-28 2017-10-05 ダイワボウホールディングス株式会社 Latent crimpable composite fiber and manufacturing method therefor, conjugate fiber and nonwoven fabric
JP2017226944A (en) * 2016-06-24 2017-12-28 ダイワボウホールディングス株式会社 Granular cotton compact and manufacturing method thereof
JP2019090154A (en) * 2019-01-25 2019-06-13 ダイワボウホールディングス株式会社 Composite fiber, nonwoven fabric, and sheet for absorbent article
WO2022044892A1 (en) * 2020-08-27 2022-03-03 出光興産株式会社 Nonwoven fabric comprising crimped fibers

Also Published As

Publication number Publication date
US20120121882A1 (en) 2012-05-17
CN102471945B (en) 2013-12-18
JPWO2011007875A1 (en) 2012-12-27
CN102471945A (en) 2012-05-23
EP2455516A1 (en) 2012-05-23
JP5436558B2 (en) 2014-03-05
EP2455516A4 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP5436558B2 (en) Crimpable composite fiber, and fiber assembly and fiber product using the same
TWI402387B (en) A crimped composite fiber and a fiber aggregate using the same
JP3995697B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
US20100261399A1 (en) Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
JP4468208B2 (en) Latent crimped conjugate fiber, method for producing the same, fiber assembly, and nonwoven fabric
JP5320197B2 (en) Crimpable composite fiber and fiber assembly using the same
JP6110089B2 (en) Nonwoven fabric and cushion material using the same
JP4928214B2 (en) Crimpable composite fiber and non-woven fabric using the same
JP5004632B2 (en) Latent crimped composite fiber and fiber assembly using the same
JP2008179939A (en) Crimped conjugated fiber, method for production thereof, and nonwoven fabric using the crimped conjugated fiber
JP5102723B2 (en) Crimpable composite fiber and fiber structure using the same
JP5418936B2 (en) Realized crimpable composite fiber and fiber assembly using the same
JP5416244B2 (en) Latent crimped composite fiber and fiber assembly using the same
JP3790460B2 (en) Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same
JP4379127B2 (en) Thermal adhesive composite fiber, method for producing the same, and fiber molded body using the composite fiber
JP6342536B2 (en) Nonwoven fabric and cushion material using the same
JP6101012B2 (en) Divisible uneven composite fiber and non-woven fabric using the same
JP3790459B2 (en) Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same
JP3951147B2 (en) Long fiber nonwoven fabric
JP6054091B2 (en) Cushion material and composite short fiber for cushion material
JP5619467B2 (en) Latent concavo-convex sheath-core composite fiber and nonwoven fabric using the same
JP5416197B2 (en) Crimpable composite fiber and non-woven fabric using the same
WO1996021759A1 (en) Conjugated fiber and fiber structure containing the same
JP2002173830A (en) Heat adhesive conjugated fiber, method of producing the same and formed fiber product using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032213.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10799933

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011522873

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13384124

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010799933

Country of ref document: EP