JPH04240219A - Polyester-based heat bonding conjugate fiber - Google Patents

Polyester-based heat bonding conjugate fiber

Info

Publication number
JPH04240219A
JPH04240219A JP2262691A JP2262691A JPH04240219A JP H04240219 A JPH04240219 A JP H04240219A JP 2262691 A JP2262691 A JP 2262691A JP 2262691 A JP2262691 A JP 2262691A JP H04240219 A JPH04240219 A JP H04240219A
Authority
JP
Japan
Prior art keywords
block copolymer
component
polyester
fiber
conjugate fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2262691A
Other languages
Japanese (ja)
Other versions
JP2957290B2 (en
Inventor
Hironori Yamada
山田 裕憲
Nobuo Takahashi
信男 高橋
Makoto Yoshida
誠 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2262691A priority Critical patent/JP2957290B2/en
Publication of JPH04240219A publication Critical patent/JPH04240219A/en
Application granted granted Critical
Publication of JP2957290B2 publication Critical patent/JP2957290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain heat bonding conjugate fiber capable of simultaneously imparting excellent elasticity characteristics and shape retaining properties to a cushioning material composed of polyester fiber. CONSTITUTION:Conjugate fiber composed of a polyester component having >=200 deg.C melting point and a polyether ester block copolymer component having specific melt viscosity characteristics in which 50-80mol% of an acid component is terephthalic acid; the main glycol component is 1,4-butanediol and the amount of a copolymerized poly (alkylene oxide) glycol component is 30-50wt.%. Since thermally fused points between fibers are formed from the specific block copolymer, a cushioning material extremely improved in bonding strength and elastic recovery characteristics is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はポリエステル系熱接着性
複合繊維に関するものであり、特にポリエチレンテレフ
タレート(以下PETと称することがある)系繊維を接
着するに好適な熱接着性複合繊維に関するものである。 更に詳細には、ポリエステル繊維よりなる不織布、詰綿
等のクッション材に用いた時、優れた弾性特性(圧縮特
性、伸張特性)と形態保持性とが得られる熱接着性複合
繊維に関する。
[Field of Industrial Application] The present invention relates to polyester-based heat-adhesive conjugate fibers, and particularly to heat-adhesive conjugate fibers suitable for bonding polyethylene terephthalate (hereinafter sometimes referred to as PET)-based fibers. be. More specifically, the present invention relates to a thermoadhesive conjugate fiber that provides excellent elastic properties (compression properties, elongation properties) and shape retention when used in cushioning materials such as nonwoven fabrics and batting made of polyester fibers.

【0002】0002

【従来の技術】現在、家具及びベッドなどのクッション
材の分野では、発泡ウレタンフォームやポリエステル繊
維詰綿やポリエステル繊維を接着した樹脂綿や固綿など
が使用されている。
BACKGROUND OF THE INVENTION Currently, in the field of cushioning materials for furniture, beds, etc., urethane foam, polyester fiber batting, resin cotton bonded with polyester fibers, solid cotton, and the like are used.

【0003】しかしながら、発泡ウレタンフォームは製
造中に使用される薬品等の取り扱いが難しく、かつフロ
ンを排出するという問題がある。また得られた発泡ウレ
タンフォームの圧縮特性は圧縮初期が硬く、その後急に
沈み込むという独特の特性を示すためにクッション性が
乏しく、底突き感が大きく、通気性が乏しいために蒸れ
やすく、クッション材として好まれないことが多い。ま
たポリマーが軟らかくかつ発泡しているため、圧縮に対
する反撥性を出すには密度を高くしなければならないと
いう欠点がある。また、ポリエステル繊維詰綿では繊維
や構造が固定されていないため、使用中に形が崩れたり
、繊維が移動したり捲縮がへたったりして嵩や反撥性が
大きく低下するという欠点がある。
[0003] However, urethane foam has problems in that it is difficult to handle chemicals and the like used during manufacture, and it also emits fluorocarbons. In addition, the compression properties of the resulting urethane foam are hard at the initial stage of compression and then suddenly sink, resulting in poor cushioning properties, a strong feeling of bottoming out, and poor air permeability, making it easy to get stuffy. It is often not preferred as a material. Furthermore, since the polymer is soft and foamed, it has the disadvantage that it must have a high density in order to provide resilience against compression. In addition, because the fibers and structure of polyester fiber filling are not fixed, it has the disadvantage that its shape may collapse during use, the fibers may move, or the crimping may become flat, resulting in a significant decrease in bulk and resilience. .

【0004】一方、ポリエステル繊維を樹脂や低融点ポ
リマーで接着した樹脂綿や固綿など(例えば特開昭58
−31150号公報など)では、接着が弱い、接着部の
耐久性が低く使用中に接着が破壊され形態や反撥性が大
きく低下する、接着剤が固く成形されるためクッション
性の乏しいものしか得られないなどの欠点がある。クッ
ション性を高めるために特開昭62−102712号公
報のようにポリエステル繊維の交絡部を発泡ウレタンの
バインダーで接着したクッション材が提案されているが
、溶液型ウレタンを含浸しているので加工に斑ができや
すくかつ取り扱いも面倒である、ウレタンと繊維との接
着性が低い、バインダーの伸度が低いために交絡部が大
変形したときに破壊されやすい、耐久性が低いなどとい
う問題点がある。
On the other hand, resin cotton or hard cotton made by bonding polyester fibers with resin or low melting point polymer (for example, Japanese Patent Laid-Open No. 58
-31150, etc.), the adhesive is weak, the durability of the adhesive part is low, the adhesive breaks down during use and the form and repulsion properties are greatly reduced, and the adhesive is molded hard, so only products with poor cushioning properties can be obtained. There are disadvantages such as not being able to In order to improve cushioning properties, a cushioning material in which intertwined portions of polyester fibers are bonded with a foamed urethane binder has been proposed, as in JP-A-62-102712, but since it is impregnated with solution-type urethane, it is difficult to process. It has problems such as being prone to spots and being troublesome to handle, poor adhesion between urethane and fibers, low elongation of the binder and easy to break when intertwined parts are greatly deformed, and low durability. be.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題に鑑み、優れたクッション性を呈し、その耐久
性及び安定性に優れ、しかも通気性が高いクッション材
を簡単な工程で斑なく製造するに適したポリエステル系
熱接着性複合繊維を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the problems of the prior art described above, the present invention aims to provide a cushioning material that exhibits excellent cushioning properties, has excellent durability and stability, and is highly breathable through a simple process. The purpose of the present invention is to provide a polyester-based heat-adhesive conjugate fiber suitable for manufacturing.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記目的
を達成するために鋭意検討を行なった結果、特定の構成
成分からなり、かつ特定条件下における極限粘度及び溶
融粘度が特定範囲にある、特定のポリエーテルエステル
ブロック共重合体を熱接着性成分とするポリエステル系
熱接着性複合繊維をクッション材に適用した場合、前記
特性に優れたクッション材の得られることを見い出した
。本発明者らは、かかる知見に基づき更に重ねて検討し
た結果、本発明を完成するに至ったものである。
[Means for Solving the Problems] In order to achieve the above object, the present inventors have conducted intensive studies and found that the present invention is composed of specific constituent components and has an intrinsic viscosity and melt viscosity within a specific range under specific conditions. It has been found that when a polyester thermoadhesive conjugate fiber containing a specific polyether ester block copolymer as a thermoadhesive component is applied to a cushioning material, a cushioning material excellent in the above properties can be obtained. As a result of further studies based on this knowledge, the present inventors have completed the present invention.

【0007】すなわち、本発明によれば、(1)融点が
200℃以上のポリエステル成分と、融点が180℃以
下のポリエーテルエステルブロック共重合体成分とから
なる複合繊維において、該ポリエーテルエステルブロッ
ク共重合体が(A)テレフタル酸を全酸成分に対して5
0〜80モル%含有する酸成分、(B)1,4−ブタン
ジオールを主とするグリコール成分、(C)平均分子量
が400〜4000のポリ(アルキレンオキシド)グリ
コール成分よりなり、該ポリエーテルエステルブロック
共重合体中の前記(C)成分の共重合量が30〜50重
量%であり、180℃における溶融粘度MV(Pois
e)及び180℃下空気中3分間保持後の極限粘度IV
が下記(I)及び(II)式を同時に満足し、     (I)4000−2500×IV<MV<10
000−2500×IV    (II)0.6<IV
<1.5[但し、MVは180℃における剪断速度10
00 sec−1での溶融粘度、IVは35℃オルソク
ロロフェノール溶液での極限粘度を示す。]かつ、該ポ
リエーテルエステルブロック共重合体成分が繊維断面周
率で40%以上を占めることを特徴とするポリエステル
系熱接着性複合繊維、及び、 (2)ポリエーテルエステルブロック共重合体の末端カ
ルボキシル基濃度が30当量/106 g以上である(
1)記載のポリエステル系熱接着性複合繊維、及び、(
3)複合繊維が芯鞘型の複合繊維である上記(1)又は
(2)記載のポリエステル系熱接着性複合繊維、が提供
される。
That is, according to the present invention, (1) in a composite fiber consisting of a polyester component having a melting point of 200°C or higher and a polyetherester block copolymer component having a melting point of 180°C or lower, the polyetherester block The copolymer contains (A) terephthalic acid in proportion to 5% of the total acid components.
The polyether ester comprises an acid component containing 0 to 80 mol%, (B) a glycol component mainly containing 1,4-butanediol, and (C) a poly(alkylene oxide) glycol component having an average molecular weight of 400 to 4000. The copolymerization amount of the component (C) in the block copolymer is 30 to 50% by weight, and the melt viscosity MV (Pois) at 180°C is
e) and intrinsic viscosity IV after being held in air at 180°C for 3 minutes
satisfies the following formulas (I) and (II) at the same time, and (I) 4000-2500×IV<MV<10
000-2500×IV (II) 0.6<IV
<1.5 [However, MV is a shear rate of 10 at 180°C
The melt viscosity at 00 sec-1 and IV indicate the intrinsic viscosity in an orthochlorophenol solution at 35°C. ] and a polyester-based heat-adhesive composite fiber characterized in that the polyether ester block copolymer component accounts for 40% or more in terms of fiber cross-sectional circumference; and (2) a terminal end of the polyether ester block copolymer. The carboxyl group concentration is 30 equivalents/106 g or more (
1) The polyester thermoadhesive composite fiber described above, and (
3) There is provided a polyester thermoadhesive conjugate fiber according to (1) or (2) above, wherein the conjugate fiber is a core-sheath type conjugate fiber.

【0008】本発明の複合繊維の一方に用いられるポリ
エステルは、融点が200℃以上であって繊維形成性を
有するものであれば特に限定する必要はないが、なかで
もポリエチレンテレフタレート、ポリブチレンテレフタ
レート、又はこれらに少量の第3成分を共重合した共重
合ポリエステルが好ましい。
The polyester used in one of the composite fibers of the present invention is not particularly limited as long as it has a melting point of 200° C. or higher and has fiber-forming properties, but polyesters such as polyethylene terephthalate, polybutylene terephthalate, Alternatively, a copolymerized polyester obtained by copolymerizing these with a small amount of a third component is preferable.

【0009】好ましく用いられる共重合成分としては、
例えばイソフタル酸、アジピン酸、セバシン酸、フタル
酸、2,6−ナフタレンジカルボン酸、5−ナトリウム
スルホイソフタル酸等のジカルボン酸成分、プロピレン
グリコール、ジエチレングリコール、ネオペンチルグリ
コール、ポリエチレングリコール、p−キシリレングリ
コール、1,4−シクロヘキサンジメタノール、5−ナ
トリウムスルホレゾルシン等のジオール成分、トリメリ
ット酸、ピロメリット酸等の多官能カルボン酸成分、p
−オキシ安息香酸、p−オキシエトキシ安息香酸等の二
官能性モノカルボン酸等を挙げることができる。
[0009] Preferably used copolymerization components include:
For example, dicarboxylic acid components such as isophthalic acid, adipic acid, sebacic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, propylene glycol, diethylene glycol, neopentyl glycol, polyethylene glycol, p-xylylene glycol , 1,4-cyclohexanedimethanol, diol components such as 5-sodium sulforesorcin, polyfunctional carboxylic acid components such as trimellitic acid and pyromellitic acid, p
Examples include difunctional monocarboxylic acids such as -oxybenzoic acid and p-oxyethoxybenzoic acid.

【0010】また、本発明の複合繊維を構成するもう一
つの成分であるポリエーテルエステルブロック共重合体
は、該共重合体の全酸成分に対する共重合割合(全酸成
分に対するモル%で示す)としてテレフタル酸を50〜
80モル%含むものが用いられる。テレフタル酸以外の
酸成分としては、イソフタル酸、フタル酸、アジピン酸
、セバシン酸、アゼライン酸、ドデカン二酸、2,6−
ナフタレンジカルボン酸、5−ナトリウムスルホイソフ
タル酸、1,4−シクロヘキサンジカルボン酸等が好ま
しく用いられる。
[0010] Furthermore, the polyether ester block copolymer, which is another component constituting the composite fiber of the present invention, has a copolymerization ratio of the copolymer to the total acid components (expressed in mol% relative to the total acid components). Terephthalic acid as 50 ~
The one containing 80 mol% is used. Acid components other than terephthalic acid include isophthalic acid, phthalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, 2,6-
Naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, 1,4-cyclohexanedicarboxylic acid, etc. are preferably used.

【0011】また本発明で用いられるポリエーテルエス
テルブロック共重合体は、1,4−ブタンジオールを主
たるグリコール成分とする。なおここでいう「主たる」
とは、全グリコール成分の80モル%以上が1,4−ブ
タンジオールであって、20モル%以下の範囲内では他
種グリコール成分が共重合されていてもよいことをいう
。好ましく用いられる共重合グリコール成分としては、
エチレングリコール、トリメチレングリコール、1,5
−ペンタンジオール、1,6−ヘキサンジオール、ジエ
チレングリコール、1,4−シクロヘキサンジオール、
1,4−シクロヘキサンジメタノール等を挙げることが
できる。
The polyether ester block copolymer used in the present invention has 1,4-butanediol as its main glycol component. Note that the "main" here
This means that 80 mol% or more of all glycol components is 1,4-butanediol, and other types of glycol components may be copolymerized within a range of 20 mol% or less. Preferably used copolymerized glycol components include:
Ethylene glycol, trimethylene glycol, 1,5
-pentanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanediol,
Examples include 1,4-cyclohexanedimethanol.

【0012】さらに本発明で用いられるポリエーテルエ
ステルブロック共重合体は、平均分子量が400〜40
00のポリ(アルキレンオキシド)グリコール成分を3
0〜50重量%含むものである。平均分子量が400未
満の場合には、得られるブロック共重合体のブロック性
が低下して弾性回復性能が不充分となるし、一方400
0を越える場合には、ポリ(アルキレンオキシド)グリ
コール成分の共重合性が低下して生成ポリマーの相分離
が激しくなり、弾性回復性能が不充分となるため好まし
くない。また、共重合量が30重量%未満の場合には、
該複合繊維を加熱接着処理してクッション材等に成形し
ても本発明の目的とする弾性特性の良好なものは得られ
ず、一方50重量%を越える場合には、ブロック共重合
体の力学的特性及び耐熱性、耐光性等の耐久性が低下す
るため好ましくない。
Furthermore, the polyether ester block copolymer used in the present invention has an average molecular weight of 400 to 40
00 poly(alkylene oxide) glycol component to 3
It contains 0 to 50% by weight. If the average molecular weight is less than 400, the blocking properties of the resulting block copolymer will be reduced and the elastic recovery performance will be insufficient;
If it exceeds 0, the copolymerizability of the poly(alkylene oxide) glycol component decreases, resulting in severe phase separation of the resulting polymer, resulting in insufficient elastic recovery performance, which is not preferred. In addition, if the copolymerization amount is less than 30% by weight,
Even if the composite fiber is heated and bonded and molded into a cushioning material, etc., it will not be possible to obtain the good elastic properties that are the object of the present invention. This is undesirable because it reduces physical properties and durability such as heat resistance and light resistance.

【0013】好ましく用いられるポリ(アルキレンオキ
シド)グリコールとしては、ポリエチレングリコール、
ポリ(プロピレンオキシド)グリコール、ポリ(テトラ
メチレンオキシド)グリコール等があげられ、特にポリ
(テトラメチレンオキシド)グリコールの単独重合体が
好ましい。さらには、前記単独重合体を構成する反復単
体の2種以上がランダム又はブロック状に共重合したラ
ンダム共重合体またはブロック共重合体を使用してもよ
く、また前記単独重合体又は共重合体の2種以上が混合
された混合重合体を使用してもよい。
Preferably used poly(alkylene oxide) glycols include polyethylene glycol,
Examples include poly(propylene oxide) glycol, poly(tetramethylene oxide) glycol, and a homopolymer of poly(tetramethylene oxide) glycol is particularly preferred. Furthermore, a random copolymer or a block copolymer in which two or more types of repeating monomers constituting the homopolymer are randomly or block-copolymerized may be used; You may use the mixed polymer which mixed two or more types of these.

【0014】本発明の複合繊維に用いられるポリエーテ
ルエステルブロック共重合体は上記の組成条件を満足す
る必要があるが、さらなる本発明者らの検討によれば、
複合繊維製造時の工程安定性、及び弾性特性、熱接着性
等の品質を確保するために、さらに共重合体の融点、溶
融粘度及び極限粘度をも適切な範囲内にすることが肝要
であることを見い出した。
The polyether ester block copolymer used in the composite fiber of the present invention must satisfy the above compositional conditions, and according to further studies by the present inventors,
In order to ensure process stability during composite fiber production and quality such as elastic properties and thermal adhesion, it is also important to keep the melting point, melt viscosity, and intrinsic viscosity of the copolymer within appropriate ranges. I discovered that.

【0015】すなわち、本発明にかかるポリエーテルエ
ステルブロック共重合体は、融点が180℃以下のもの
が用いられる。融点が180℃を越える場合には、本発
明の複合繊維から不織布、クッション材等を製造する時
の熱処理温度を180℃以上にしなければならず、この
熱処理時に該ブロック共重合体の熱分解が起って得られ
る不織布、クッション材等の力学的特性が低下してしま
うことになる。
That is, the polyether ester block copolymer according to the present invention has a melting point of 180° C. or lower. If the melting point exceeds 180°C, the heat treatment temperature when manufacturing nonwoven fabrics, cushioning materials, etc. from the composite fiber of the present invention must be set to 180°C or higher, and thermal decomposition of the block copolymer may occur during this heat treatment. As a result, the mechanical properties of the resulting nonwoven fabric, cushioning material, etc. will deteriorate.

【0016】また、本発明で用いるブロック共重合体は
、180℃における溶融粘度MV(剪断速度1000 
sec−1で測定)及び180℃空気中3分間保持後の
極限粘度IVが、下記(I)及び(II)式を満足する
必要がある。
Further, the block copolymer used in the present invention has a melt viscosity MV at 180°C (shear rate 1000
sec-1) and the intrinsic viscosity IV after being held in air at 180° C. for 3 minutes must satisfy the following formulas (I) and (II).

【0017】     (I)4000−2500×IV<MV<10
000−2500×IV    (II)0.6<IV
<1.5IVが0.6以下では、最終的に得られる不織
布、クッション材等の力学的性能に劣り、一方1.5以
上では、ブロック共重合体の流動性が低下して熱処理時
の接着が不充分となるだけでなく、熱処理温度も高く設
定する必要があるためブロック共重合体が熱分解して弾
性特性が低下することにもなる。
(I) 4000-2500×IV<MV<10
000-2500×IV (II) 0.6<IV
<1.5 If IV is less than 0.6, the mechanical performance of the final nonwoven fabric or cushioning material will be inferior, while if it is more than 1.5, the fluidity of the block copolymer will decrease, resulting in poor adhesion during heat treatment. Not only is this insufficient, but the heat treatment temperature also needs to be set high, resulting in thermal decomposition of the block copolymer and deterioration of its elastic properties.

【0018】また180℃、剪断速度1000 sec
−1における溶融粘度MVが4000−2500×IV
以下の場合には、複合繊維を製造する際紡糸時に断糸す
る等紡糸調子が悪化するし、また、他繊維等と混合した
繊維集合体を加熱処理しても接着部で流動が起って接着
力が低下し、弾性特性及び力学的特性が不充分となる。 一方、10000−2500×IVを越える場合には、
加熱処理時の流動性が低下しすぎるため、繊維間の接着
が充分起らず、結果として弾性特性、力学的特性共に不
充分なものとなるので好ましくない。
[0018] Also, 180°C, shear rate 1000 sec
Melt viscosity MV at -1 is 4000-2500×IV
In the following cases, when producing composite fibers, the spinning condition deteriorates, such as breakage during spinning, and even if the fiber aggregate mixed with other fibers is heat-treated, flow occurs at the bonded part. The adhesive strength is reduced and the elastic and mechanical properties are insufficient. On the other hand, if it exceeds 10000-2500×IV,
Since the fluidity during heat treatment is too low, sufficient adhesion between the fibers does not occur, resulting in insufficient elastic properties and mechanical properties, which is not preferable.

【0019】本発明においては、さらにブロック共重合
体の末端カルボキシル基濃度(CV)を30当量/10
6 g以上とすることが好ましく、かくすることにより
繊維間の接着力が向上して不織布、クッション材等の弾
性特性は一層向上する。
In the present invention, the terminal carboxyl group concentration (CV) of the block copolymer is further adjusted to 30 equivalents/10
It is preferable that the amount is 6 g or more, thereby improving the adhesive strength between fibers and further improving the elastic properties of nonwoven fabrics, cushioning materials, etc.

【0020】以上に詳述したポリエーテルエステルブロ
ック共重合体は、従来周知の、通常の共重合ポリエステ
ルの製造法にならって製造することができる。具体的に
は、テレフタル酸成分、テレフタル酸以外のジカルボン
酸成分と、1,4−ブタンジオールを主とするグリコー
ル成分、及びポリ(アルキレンオキシド)グリコールを
反応器にいれ、触媒の存在下又は不存在下でエステル交
換反応あるいはエステル化反応を行ない、次いで触媒の
存在下高真空で重縮合反応を行ない、所望の重合度まで
上げる方法である。
The polyether ester block copolymer described in detail above can be produced in accordance with conventionally well-known methods for producing ordinary copolyester polyesters. Specifically, a terephthalic acid component, a dicarboxylic acid component other than terephthalic acid, a glycol component mainly consisting of 1,4-butanediol, and poly(alkylene oxide) glycol are placed in a reactor, and the mixture is heated in the presence of a catalyst or in the absence of a catalyst. In this method, a transesterification reaction or an esterification reaction is carried out in the presence of a catalyst, and then a polycondensation reaction is carried out in a high vacuum in the presence of a catalyst to increase the degree of polymerization to a desired degree.

【0021】本発明においては、該ブロック共重合体の
融点Tm、180℃における溶融粘度MV、180℃3
分保持後の極限粘度IV及び末端カルボキシル基濃度を
前述の範囲に設定するために、上記重合反応条件を適宜
設定し、製糸方法によるブロック共重合体の物性変化の
割合が考慮された物性のものにする必要がある。
In the present invention, the melting point Tm of the block copolymer, melt viscosity MV at 180°C, 180°C3
In order to set the intrinsic viscosity IV and the terminal carboxyl group concentration after the minute retention within the above range, the above polymerization reaction conditions were appropriately set, and the physical properties of the block copolymer were taken into account, taking into account the rate of change in physical properties of the block copolymer due to the spinning method. It is necessary to

【0022】例えば、極限粘度は、重合時間、重合温度
、攪拌速度、触媒の種類、触媒の添加量等に依存し、重
合時間を長く、重合温度を高く、攪拌速度を速く、触媒
添加量を多くするほど、極限粘度は大きくすることがで
き、180℃空気中3分保持後の極限粘度も大きくなる
For example, the intrinsic viscosity depends on the polymerization time, polymerization temperature, stirring speed, type of catalyst, amount of catalyst added, etc. As the amount increases, the intrinsic viscosity can be increased, and the intrinsic viscosity after being held in air at 180° C. for 3 minutes also increases.

【0023】溶融粘度MVは、ブロック共重合体の極限
粘度、ブロック共重合体を構成する成分の種類、ポリ(
アルキレンオキシド)グリコールの分子量及び共重合量
、その他安定剤、酸化防止剤等の添加剤の種類及び添加
量、あるいはブロック共重合体の融点Tm等に依存する
もので、極限粘度を高くする程、ポリ(アルキレンオキ
シド)グリコールの共重合量を減らす程、添加剤の量を
増やす程、あるいは融点を高くする程、一般にMVは大
きくすることができる。
Melt viscosity MV is determined by the intrinsic viscosity of the block copolymer, the type of components constituting the block copolymer, the poly(
It depends on the molecular weight and copolymerization amount of glycol (alkylene oxide), the type and amount of other additives such as stabilizers and antioxidants, or the melting point Tm of the block copolymer. In general, the MV can be increased by reducing the amount of copolymerized poly(alkylene oxide) glycol, increasing the amount of additives, or increasing the melting point.

【0024】またブロック共重合体の融点は、該ブロッ
ク共重合体を構成するポリエステルセグメントの組成及
び共重合割合並びにポリ(アルキレンオキシド)グリコ
ールの平均分子量に依存するもので、ポリエステルセグ
メントの割合を増やし、テレフタル酸以外のジカルボン
酸成分を減らし、あるいはポリ(アルキレンオキシド)
グリコールの平均分子量を大きくする程、融点は高くす
ることができる。
The melting point of the block copolymer depends on the composition and copolymerization ratio of the polyester segments constituting the block copolymer, as well as the average molecular weight of the poly(alkylene oxide) glycol. , reduce dicarboxylic acid components other than terephthalic acid, or reduce poly(alkylene oxide) components.
The higher the average molecular weight of the glycol, the higher the melting point.

【0025】さらに末端カルボキシル基濃度CVは、重
合時間、重合温度、触媒の種類及び添加量、ブロック共
重合体の極限粘度等に依存する。重合時間が長く、重合
温度が高い程、一般にCVは大きくすることができる。
Furthermore, the terminal carboxyl group concentration CV depends on the polymerization time, polymerization temperature, type and amount of catalyst added, intrinsic viscosity of the block copolymer, etc. Generally, the longer the polymerization time and the higher the polymerization temperature, the larger the CV can be.

【0026】したがって、上記重合条件及び組成等を、
適宜変更組み合わせればよいのである。
[0026] Therefore, the above polymerization conditions and composition, etc.
All you have to do is change and combine them as appropriate.

【0027】本発明にかかる上述のポリエーテルエステ
ルブロック共重合体には、通常のポリエステルと同じく
、艶消剤、顔料(例えばカーボンブラック等)、酸化防
止剤(例えばヒンダードフェノール系化合物、ヒンダー
ドアミン系化合物等)、紫外線吸収剤(例えばベンゾフ
ェノン系化合物、ベンゾトリアゾール系化合物、サシレ
ート系化合物等)、架橋剤(イソシアネト化合物等)等
を含んでいても何らさしつかえない。
The above-mentioned polyether ester block copolymer according to the present invention contains matting agents, pigments (for example, carbon black, etc.), antioxidants (for example, hindered phenol compounds, hindered amine compounds), as well as ordinary polyesters. There is no problem in including a UV absorber (for example, a benzophenone compound, a benzotriazole compound, a sacylate compound, etc.), a crosslinking agent (isocyanate compound, etc.), etc.

【0028】本発明のポリエステル系熱接着性複合繊維
は、以上に説明した融点が200℃以上のポリエステル
成分と、180℃以下のポリエーテルエステルブロック
共重合体成分とを複合紡糸したものである。この場合、
複合比率は特に限定されないが、複合繊維横断面の全周
長に対するブロック共重合体成分の占める割合、すなわ
ち繊維断面周率が40%以上であることが好ましく、例
えばサイドバイサイドのバイメタル型、芯鞘型又はそれ
を偏心させた偏心芯鞘型等の複合繊維を例示することが
できる。なかでも偏心芯鞘型複合繊維は、熱処理等によ
って容易に捲縮を発現させることができるので、カード
工程通過性が向上し好ましい。
The polyester heat-adhesive conjugate fiber of the present invention is obtained by composite spinning the above-described polyester component having a melting point of 200°C or higher and a polyetherester block copolymer component having a melting point of 180°C or lower. in this case,
Although the composite ratio is not particularly limited, it is preferable that the proportion of the block copolymer component to the total circumference of the composite fiber cross section, that is, the fiber cross-sectional circumference, is 40% or more, such as side-by-side bimetal type, core-sheath type. Alternatively, an eccentric core-sheath type conjugate fiber can be exemplified. Among these, eccentric core-sheath type composite fibers are preferred because they can be easily crimped by heat treatment or the like, and therefore can be easily passed through the carding process.

【0029】さらに、本発明の熱接着性複合繊維は、1
.5倍以上延伸された繊維であることが好ましい。延伸
を受けた繊維により構成したクッション材は、延伸され
ていない繊維を用いたクッション材に比べて弾力性に優
れ、へたりもすくない。この理由は明らかでないが、延
伸された繊維が弛緩状態で熱処理される過程で、ブロッ
ク共重合体成分の非晶部の緩和が起ってより弾性特性に
優れたポリマー構造になり、その構造がクッション材等
に成形した後も維持されるためと推定される。
Furthermore, the heat-adhesive composite fiber of the present invention has 1
.. Preferably, the fibers are drawn five times or more. A cushioning material made of stretched fibers has superior elasticity and is less likely to sag than a cushioning material made of unstretched fibers. The reason for this is not clear, but when the drawn fibers are heat-treated in a relaxed state, the amorphous part of the block copolymer component is relaxed, resulting in a polymer structure with better elastic properties. It is presumed that this is because it is maintained even after being molded into a cushioning material or the like.

【0030】また、本発明の複合繊維は収縮率の低いこ
とが望ましく、熱セットされたものであることが好まし
い。すなわち、収縮率が高いと熱接着加工時に著しく収
縮してしまい、繊維間の熱接着効率が低下して得られる
クッション材の反撥性が低下するだけでなく、極めて風
合の硬いものとなる。
[0030] Furthermore, the conjugate fiber of the present invention desirably has a low shrinkage rate, and is preferably heat-set. That is, if the shrinkage rate is high, it will shrink significantly during thermal bonding processing, which will reduce the efficiency of thermal bonding between fibers, resulting in not only a decrease in the resilience of the resulting cushion material but also an extremely hard texture.

【0031】本発明の複合繊維は、単独で不織布、クッ
ション材等の繊維集合体にしてもよいが、該複合繊維を
20重量%以上含む他繊維との混合集合体にしてもよい
。なかでも、混合繊維として、ポリエチレンテレフタレ
ート、ポリブチレンテレフタレート等のポリエステルか
らなる繊維を用いる場合には、本発明の複合繊維同士だ
けでなく該混合繊維と複合繊維との間の熱接着性も良好
であり、力学的特性及び弾性特性共に優れたクッション
材等の繊維集合体を得ることができる。
The conjugate fiber of the present invention may be used alone as a fiber aggregate for nonwoven fabrics, cushioning materials, etc., but it may also be used as a mixed aggregate with other fibers containing 20% by weight or more of the conjugate fiber. In particular, when fibers made of polyester such as polyethylene terephthalate and polybutylene terephthalate are used as the mixed fibers, the thermal adhesion not only between the composite fibers of the present invention but also between the mixed fibers and the composite fibers is good. Therefore, it is possible to obtain fiber aggregates such as cushioning materials that have excellent mechanical properties and elastic properties.

【0032】なお、本発明の複合繊維を含有する繊維集
合体を加熱処理して融着一体化するには、ブロック共重
合体の融点より20〜80℃高い程度であって、複合繊
維を構成するポリエステル成分及び繊維集合体に混合さ
れている他繊維の融点より低い温度で処理すればよい。 この加工温度が低すぎると、交絡部にうまく溶融ポリマ
ーが流れて結合するということができなくなり、繊維の
交絡部を熱融着一体化する数が減ってクッション材の繊
維集合体の反撥性が低下する。またこの加工温度が高す
ぎるとブロック共重合体の熱による変質がおき、弾性の
乏しい物や変色の著しいものになる。
[0032] In order to heat-treat the fiber aggregate containing the composite fibers of the present invention to fuse and integrate them, the temperature must be 20 to 80°C higher than the melting point of the block copolymer, and the temperature must be 20 to 80°C higher than the melting point of the block copolymer. The treatment may be performed at a temperature lower than the melting point of the polyester component and other fibers mixed in the fiber aggregate. If this processing temperature is too low, the molten polymer will not be able to properly flow and bond to the intertwined parts, and the number of intertwined parts of the fibers to be integrated by heat fusion will decrease, reducing the repulsion of the fiber aggregate of the cushioning material. descend. Furthermore, if the processing temperature is too high, the block copolymer will be altered by heat, resulting in a product with poor elasticity and significant discoloration.

【0033】[0033]

【発明の効果】本発明のポリエステル系熱接着性複合繊
維からなる繊維集合体は、加熱によって繊維間が熱融着
されるが、この融着点は特定の性能を有するポリエーテ
ルエステルブロック共重合体から形成されるため、繊維
集合体の強度及び弾性特性(変形回復性)等の特性が極
めて優れているといった特徴を有する。とりわけ、通常
のポリエステル短繊維と混合してクッション材となした
場合、従来多用されている発泡ウレタンフォームに比べ
、圧縮における初期の硬さがない、反撥性が大きく圧縮
量にほぼ比例して大きくなるため底突き感が極めて少な
い、密度が低く通気性がよいため蒸れる心配もない、と
いった優れた特性を有するものが得られる。また、繊維
間の接着性も良好なため、変形時の接着部が破壊され難
く、かつ変形しやすいが回復性も良好であるといった特
性を有し、その繰り返し圧縮に対する耐久性はウレタン
の耐久性なみである。
Effects of the Invention In the fiber aggregate made of the polyester heat-adhesive conjugate fiber of the present invention, the fibers are thermally fused by heating, and this fusion point is a polyether ester block copolymer having specific performance. Since it is formed from coalescence, the fiber aggregate has extremely excellent properties such as strength and elasticity (deformation recovery). In particular, when mixed with regular polyester short fibers to make a cushioning material, compared to the conventionally widely used urethane foam, there is no initial hardness when compressed, and the resilience is large and increases almost in proportion to the amount of compression. Therefore, it is possible to obtain a product with excellent properties such as extremely little feeling of bottoming out, and low density and good breathability, so there is no need to worry about stuffiness. In addition, since the adhesion between fibers is good, the bonded part is difficult to break when deformed, and although it is easy to deform, it has good recovery properties, and its durability against repeated compression is the same as that of urethane. It's normal.

【0034】また、これらの繊維集合体を製造するに際
しては、ウェブを形成したのち熱処理するだけの簡単か
つ短い工程で、容易に均一なものが得られる。しかも繊
維の混率、構成あるいは繊維集合体の密度を変えること
によって、厚み方向・平面方向共に任意にその硬さを変
えることができる。
[0034] Furthermore, when producing these fiber aggregates, uniform fiber aggregates can be easily obtained through a simple and short process of forming a web and then subjecting it to heat treatment. Furthermore, by changing the blending ratio of the fibers, the composition, or the density of the fiber aggregate, the hardness can be arbitrarily changed in both the thickness direction and the plane direction.

【0035】したがって、本発明の複合繊維を用いてな
るクッション材は、クッション性、耐久性、安定性に優
れ、通気性が高く蒸れにくく、加工のムラが出来にくく
、加工での多様化も図りやすいクッション材であり、そ
の利用範囲は、各種のクッション材、例えば家具、ベッ
ド、寝具、座席のクッションなどに好適である。
[0035] Therefore, the cushioning material made using the composite fiber of the present invention has excellent cushioning properties, durability, and stability, has high breathability, is resistant to stuffiness, is resistant to uneven processing, and can be processed in a variety of ways. It is a cushioning material that is easy to use, and its range of uses is suitable for various cushioning materials, such as furniture, beds, bedding, seat cushions, etc.

【0036】[0036]

【実施例】以下実施例をあげて本発明を具体的に説明す
る。実施例において、「部」は全て重量部を示す。なお
実施例における評価は、下記方法によって測定した。 1.極限粘度(IV) オルソクロロフェノール溶媒中、35℃で測定した。 2.融点(Tm) Du  Pont社製、熱示差分析計990型を使用し
、昇温速度20℃/分で測定し、融解ピーク温度を求め
た。 3.溶融粘度(MV) 温度180℃、剪断速度10〜10000 sec−1
の範囲でみかけの溶融粘度(MV)を測定し、剪断速度
1000 sec−1の溶融粘度(MV)を算出した。 4.末端カルボキシル基濃度(CV) ポリマー0.1gを10mlベンジルアルコールで溶解
し、10mlのクロロホルムを加えた後、水酸化ナトリ
ウム−ベンジルアルコールで滴定する。指示薬としてフ
ェノールレッドを使用する。 5.クッション材の圧縮弾力性と圧縮耐久性の測定平板
状に成型された密度0.035g/cm3 、厚み5c
mのクッション材を断面積20cm2 の平坦な下面を
有する円柱ロッドで1cm圧縮しその応力(初期応力)
)を測定した。測定後800g/cm2 の荷重で10
秒間圧縮したのち除重して5秒間放置の繰り返しで36
0回圧縮・放置を繰り返し、24時間後再び圧縮応力を
測定した。この初期応力に対する繰り返し圧縮後の応力
の比率%をクッション材の圧縮耐久性とした。
[Examples] The present invention will be specifically explained below with reference to Examples. In the examples, all "parts" indicate parts by weight. Note that evaluations in Examples were measured by the following method. 1. Intrinsic viscosity (IV) Measured at 35°C in orthochlorophenol solvent. 2. Melting point (Tm) The melting peak temperature was determined using a thermal differential analyzer model 990 manufactured by Du Pont at a heating rate of 20° C./min. 3. Melt viscosity (MV) Temperature 180°C, shear rate 10-10000 sec-1
The apparent melt viscosity (MV) was measured in the range of 1,000 sec-1, and the melt viscosity (MV) at a shear rate of 1000 sec-1 was calculated. 4. Terminal carboxyl group concentration (CV) 0.1 g of polymer is dissolved in 10 ml of benzyl alcohol, 10 ml of chloroform is added, and then titrated with sodium hydroxide-benzyl alcohol. Use phenol red as an indicator. 5. Measurement of compression elasticity and compression durability of cushioning material Molded into a flat plate, density 0.035g/cm3, thickness 5cm
m cushioning material is compressed by 1 cm using a cylindrical rod with a cross-sectional area of 20 cm2 and a flat bottom surface, and its stress (initial stress) is
) was measured. 10 with a load of 800g/cm2 after measurement
After compressing for seconds, unloading and leaving it for 5 seconds, it becomes 36
Compression and standing were repeated 0 times, and the compressive stress was measured again 24 hours later. The ratio of the stress after repeated compression to this initial stress (%) was defined as the compression durability of the cushioning material.

【0037】[0037]

【実施例1〜6、比較例1〜8】ジメチルテレフタレー
ト117.1部、(表1)記載のポリテトラメチレング
リコール、添加剤、触媒、及び1,4−ブタンジオール
(酸成分の1.4モル倍)を反応器に仕込み、内温19
0℃でエステル交換反応を行なった。理論量の約80%
のメタノールが留出した後、昇温、減圧による重縮合反
応を開始した。重縮合反応は徐々に減圧しながら行い、
1mmHg以下の真空に到達後(表1)記載の内温、時
間の反応を行った。
[Examples 1 to 6, Comparative Examples 1 to 8] 117.1 parts of dimethyl terephthalate, the polytetramethylene glycol listed in Table 1, additives, catalysts, and 1,4-butanediol (1.4 parts of the acid component) (mole times) into the reactor, and the internal temperature was 19
The transesterification reaction was carried out at 0°C. Approximately 80% of the theoretical amount
After methanol was distilled off, the polycondensation reaction was started by raising the temperature and reducing the pressure. The polycondensation reaction is carried out while gradually reducing the pressure.
After reaching a vacuum of 1 mmHg or less, the reaction was carried out at the internal temperature and time described in Table 1.

【0038】生成したポリエーテルエステルブロック共
重合体をペレット化した。
The polyether ester block copolymer produced was pelletized.

【0039】このポリエーテルエステルブロック共重合
体を鞘に、ポリエチレンテレフタレートを芯に、芯/鞘
の重量比で50/50になるように常法により紡糸した
。なおこの複合繊維は、偏心芯鞘型複合繊維である。 この繊維を2.0倍に延伸し64mmに切断した後95
℃の温水で熱処理し、低収縮化と捲縮発現をさせ乾燥後
、油剤を付与した。なおここで得られた複合短繊維の単
糸繊度は6デニールである。
This polyether ester block copolymer was used as a sheath and polyethylene terephthalate was used as a core, and the fibers were spun in a conventional manner so that the core/sheath weight ratio was 50/50. Note that this composite fiber is an eccentric core-sheath type composite fiber. After stretching this fiber 2.0 times and cutting it into 64 mm, 95
It was heat-treated with warm water at ℃ to reduce shrinkage and develop crimp, and after drying, an oil agent was applied. Note that the single fiber fineness of the composite short fibers obtained here is 6 denier.

【0040】このポリエーテルエステルブロック共重合
体を含む複合短繊維40%と、常法により得られた単糸
繊度6デニール、繊維長64mmの中空断面ポリエチレ
ンテレフタレート短繊維60%とをカードにより混綿し
ウェッブ(ウェッブ嵩120cm3 /g)を得た。こ
のウェッブを重ね、厚み5cm密度0.035g/cm
3 になるように平板型の型にいれ200℃で10分間
熱処理をし、平板型のクッション材を得た。得られたク
ッション材の特性を(表2)に示す。
[0040] 40% of composite short fibers containing this polyether ester block copolymer and 60% of hollow cross-section polyethylene terephthalate short fibers having a single filament fineness of 6 denier and a fiber length of 64 mm obtained by a conventional method were mixed using a card. A web (web volume 120 cm3/g) was obtained. Layer this web to a thickness of 5cm and a density of 0.035g/cm.
3 and heat-treated at 200° C. for 10 minutes to obtain a flat cushion material. The properties of the obtained cushioning material are shown in (Table 2).

【0041】[0041]

【表1】[Table 1]

【0042】[0042]

【表2】[Table 2]

【0043】[0043]

【表3】[Table 3]

【0044】[0044]

【表4】[Table 4]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】融点が200℃以上のポリエステル成分と
、融点が180℃以下のポリエーテルエステルブロック
共重合体成分とからなる複合繊維において、該ポリエー
テルエステルブロック共重合体が(A)テレフタル酸を
全酸成分に対して50〜80モル%含有する酸成分、(
B)1,4−ブタンジオールを主とするグリコール成分
、(C)平均分子量が400〜4000のポリ(アルキ
レンオキシド)グリコール成分よりなり、該ポリエーテ
ルエステルブロック共重合体中の前記(C)成分の共重
合量が30〜50重量%であり、180℃における溶融
粘度MV(Poise)及び180℃下空気中3分間保
持後の極限粘度IVが下記(I)及び(II)式を同時
に満足し、     (I)4000−2500×IV<MV<10
000−2500×IV    (II)0.6<IV
<1.5[但し、MVは180℃における剪断速度10
00 sec−1での溶融粘度、IVは35℃オルソク
ロロフェノール溶液での極限粘度を示す。]かつ、該ポ
リエーテルエステルブロック共重合体成分が繊維断面周
率で40%以上を占めることを特徴とするポリエステル
系熱接着性複合繊維。
Claim 1: A composite fiber comprising a polyester component having a melting point of 200°C or higher and a polyetherester block copolymer component having a melting point of 180°C or lower, wherein the polyetherester block copolymer comprises (A) terephthalic acid. An acid component containing 50 to 80 mol% of the total acid component, (
B) a glycol component mainly consisting of 1,4-butanediol, (C) a poly(alkylene oxide) glycol component having an average molecular weight of 400 to 4000, and the (C) component in the polyether ester block copolymer. The amount of copolymerization is 30 to 50% by weight, and the melt viscosity MV (Poise) at 180°C and the intrinsic viscosity IV after being held in air at 180°C for 3 minutes simultaneously satisfy the following formulas (I) and (II). , (I)4000-2500×IV<MV<10
000-2500×IV (II) 0.6<IV
<1.5 [However, MV is a shear rate of 10 at 180°C
The melt viscosity at 00 sec-1 and IV indicate the intrinsic viscosity in an orthochlorophenol solution at 35°C. ] A polyester thermoadhesive composite fiber characterized in that the polyether ester block copolymer component accounts for 40% or more in fiber cross-sectional circumference.
【請求項2】ポリエーテルエステルブロック共重合体の
末端カルボキシル基濃度が30当量/106 g以上で
ある請求項1記載のポリエステル系熱接着性複合繊維。
2. The polyester thermoadhesive conjugate fiber according to claim 1, wherein the polyether ester block copolymer has a terminal carboxyl group concentration of 30 equivalents/10 6 g or more.
【請求項3】複合繊維が芯鞘型の複合繊維である請求項
1又は2記載のポリエステル系熱接着性複合繊維。
3. The polyester thermoadhesive conjugate fiber according to claim 1 or 2, wherein the conjugate fiber is a core-sheath type conjugate fiber.
JP2262691A 1991-01-24 1991-01-24 Cushioning material Expired - Lifetime JP2957290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2262691A JP2957290B2 (en) 1991-01-24 1991-01-24 Cushioning material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2262691A JP2957290B2 (en) 1991-01-24 1991-01-24 Cushioning material

Publications (2)

Publication Number Publication Date
JPH04240219A true JPH04240219A (en) 1992-08-27
JP2957290B2 JP2957290B2 (en) 1999-10-04

Family

ID=12088041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2262691A Expired - Lifetime JP2957290B2 (en) 1991-01-24 1991-01-24 Cushioning material

Country Status (1)

Country Link
JP (1) JP2957290B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603853A1 (en) * 1992-12-22 1994-06-29 Toyo Boseki Kabushiki Kaisha Structured fiber material and its production
US5677057A (en) * 1995-12-25 1997-10-14 Teijin Limited Heat-bonding conjugated fibers and highly elastic fiber balls comprising the same
US6372343B1 (en) 2000-01-07 2002-04-16 Teijin Limited Crimped polyester fiber and fibrous structure comprising the same
WO2008041384A1 (en) 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
JP2016534784A (en) * 2013-07-10 2016-11-10 コリア インスティチュート オブ インダストリアル テクノロジー Cushion material for automobile interior
JP2020193415A (en) * 2019-05-29 2020-12-03 ユニチカ株式会社 Multifilament yarn and thermoforming method of fiber product using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603853A1 (en) * 1992-12-22 1994-06-29 Toyo Boseki Kabushiki Kaisha Structured fiber material and its production
US5462793A (en) * 1992-12-22 1995-10-31 Toyo Boseki Kabushiki Kaisha Structured fiber material comprised of composite fibers coiled around crimped short fibers
US5593525A (en) * 1992-12-22 1997-01-14 Toyo Boseki Kabushiki Kaisha Process of making structured fiber material
US5677057A (en) * 1995-12-25 1997-10-14 Teijin Limited Heat-bonding conjugated fibers and highly elastic fiber balls comprising the same
US5858528A (en) * 1995-12-25 1999-01-12 Teijin Limited Heat-bonding conjugated fibers and highly elastic fiber balls comprising the same
US6372343B1 (en) 2000-01-07 2002-04-16 Teijin Limited Crimped polyester fiber and fibrous structure comprising the same
WO2008041384A1 (en) 2006-10-03 2008-04-10 Daiwabo Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
US8268444B2 (en) 2006-10-03 2012-09-18 Daiwabo Holdings Co., Ltd. Crimping composite fiber and fibrous mass comprising the same
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
JP2016534784A (en) * 2013-07-10 2016-11-10 コリア インスティチュート オブ インダストリアル テクノロジー Cushion material for automobile interior
JP2020193415A (en) * 2019-05-29 2020-12-03 ユニチカ株式会社 Multifilament yarn and thermoforming method of fiber product using the same

Also Published As

Publication number Publication date
JP2957290B2 (en) 1999-10-04

Similar Documents

Publication Publication Date Title
KR100698003B1 (en) Crimped polyester fiber and fibrous structure comprising the same
EP2772576B1 (en) Fibrous Network Structure Having Excellent Compression Durability
US5183708A (en) Cushion structure and process for producing the same
EP3064628B1 (en) Fibrous network structure having excellent compression durability
JP4376408B2 (en) Fiber structure
JPH04240219A (en) Polyester-based heat bonding conjugate fiber
JP2957327B2 (en) Cushioning material
JP4043492B2 (en) Hard cotton structure with improved settling resistance
JP4330750B2 (en) Thermal adhesive composite fiber and fiber structure comprising the same
JP4018836B2 (en) Polyester-based heat-adhesive conjugate fiber and fiber structure comprising the same
JP3157393B2 (en) Fiber molded high elastic cushioning material
JP4298110B2 (en) Thermal adhesive composite fiber and fiber structure comprising the same
JP2000345457A (en) Production of fiber ball
JP3193577B2 (en) Polyester composite fiber
JPH08209452A (en) Polyester heat-fusing conjugated fiber and cushion structure
JP2005068579A (en) Heat bonding conjugate fiber and fiber structure
JP3600699B2 (en) Polyester-based heat-adhesive conjugate fiber
JP3935776B2 (en) Cushion structure manufacturing method
JP2024130540A (en) Fiber Structure
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JPH09228216A (en) Fiber formed product and its production
JPH11200221A (en) Nonwoven fabric structure with improved shock-absorbing performance
JPH11107049A (en) Thermally adhesive conjugate polyester fiber
JPH11172532A (en) Elastic filament excellent in durability and its production
JP3747654B2 (en) Thermal bonding fiber and cushioning material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 12