JP4043492B2 - Hard cotton structure with improved settling resistance - Google Patents

Hard cotton structure with improved settling resistance Download PDF

Info

Publication number
JP4043492B2
JP4043492B2 JP2006046787A JP2006046787A JP4043492B2 JP 4043492 B2 JP4043492 B2 JP 4043492B2 JP 2006046787 A JP2006046787 A JP 2006046787A JP 2006046787 A JP2006046787 A JP 2006046787A JP 4043492 B2 JP4043492 B2 JP 4043492B2
Authority
JP
Japan
Prior art keywords
polyester
fiber
inelastic
short fibers
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006046787A
Other languages
Japanese (ja)
Other versions
JP2006207110A (en
Inventor
健二 馬場
民男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006046787A priority Critical patent/JP4043492B2/en
Publication of JP2006207110A publication Critical patent/JP2006207110A/en
Application granted granted Critical
Publication of JP4043492B2 publication Critical patent/JP4043492B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は硬綿構造体(ここで、硬綿構造体とは非弾性の捲縮短繊維をマトリックスとし、非弾性の熱接着性短繊維をバインダー成分とした繊維構造体のことをいう。)に関し、更に詳しくは、従来の硬綿構造体に比べ、硬綿構造体の構造に剛直性(いわゆる硬さ)があり、へたりにくく、底つき感のないポリエステル繊維からなる硬綿構造体に関する。   The present invention relates to a hard cotton structure (herein, a hard cotton structure refers to a fiber structure having inelastic crimped short fibers as a matrix and inelastic heat-adhesive short fibers as a binder component). More specifically, the present invention relates to a hard cotton structure made of polyester fiber which has a rigidity (so-called hardness) in the structure of the hard cotton structure compared to a conventional hard cotton structure, is difficult to sag, and does not have a feeling of bottoming.

ポリエステル等の合成繊維よりなる硬綿構造体は枕やクッション、敷布団などの芯材などとして一般に広く利用されつつある。
この理由として、これまで汎用されてきた木綿は嵩高性や耐ヘタリ性(嵩べり)などの点で劣っており、かつウェッブ成型時や製品を使用している時に綿ぼこりが発生したり、吸水過剰による細菌の繁殖など環境衛生上良くないことなどが理由として挙げられる。
Hard cotton structures made of synthetic fibers such as polyester are being widely used as core materials such as pillows, cushions, and mattresses.
For this reason, cotton that has been widely used so far is inferior in terms of bulkiness and sag resistance (bulk), etc., and cotton dust occurs when web molding and products are used, The reason is that it is not good for environmental hygiene, such as bacterial growth due to excessive water absorption.

上記の素材に対して合成繊維からなる硬綿構造体、とりわけポリエステルからなる硬綿構造体は、その欠点である吸湿性、吸汗性を解消するため繊維表面に親水性表面処理剤を付与したり天然繊維にない機能を付与したりする等、様々な改良がなされてきており、徐々に利用されるようになってきた(例えば特許文献1及び2参照。)。   The hard cotton structure made of synthetic fibers, especially the hard cotton structure made of polyester for the above materials, may be given a hydrophilic surface treatment agent on the fiber surface in order to eliminate the hygroscopic and sweat-absorbing properties. Various improvements have been made, such as imparting functions not found in natural fibers, and they have gradually been used (see, for example, Patent Documents 1 and 2).

一般に、硬綿構造体として必要とされる要求特性として耐ヘタリ性がある。本発明において、ヘタリとは硬綿構造体に長期間荷重、または繰り返し荷重を掛けたあと嵩高性、反撥弾性力、圧縮弾性等の特性が低下する現象を意味し、硬綿構造体製品の優劣を示す重要な性能の一つとして知られている。そもそも合成繊維からなる硬綿構造体とはマトリックスとなる合成繊維とバインダーとなる非弾性熱接着性繊維の混綿ウェッブを熱処理し繊維相互の交差点にて融着固定させた3次元構造体であり、天然繊維等の単なる繊維集合体と比べて耐ヘタリ性は優れている。   Generally, there is a settling resistance as a required characteristic required for a hard cotton structure. In the present invention, “settlement” means a phenomenon in which characteristics such as bulkiness, rebound resilience, and compression elasticity are lowered after a long-term load or repeated load is applied to the hard cotton structure. It is known as one of the important performances. In the first place, a hard cotton structure composed of synthetic fibers is a three-dimensional structure in which a mixed cotton web of synthetic fibers as a matrix and non-elastic heat-adhesive fibers as a binder is heat-treated and fused and fixed at the intersection of the fibers. Compared to simple fiber aggregates such as natural fibers, the settling resistance is excellent.

特公平01−15289号公報Japanese Patent Publication No. 01-15289 特公平05−12470号公報Japanese Patent Publication No. 05-12470

しかしながら、ポリエステル繊維からなる硬綿構造体は製造直後における優れた嵩高性に対し、どうしても使用していくに従い経時的にヘタリが大きくなっていき、ひいては底つき感が出てきて、性能として充分満足出来るものではなく、例えば、敷布団の芯地の用途等に用いるときには局部的なへこみや床つき感、沈み感といった問題があった。   However, the hard cotton structure made of polyester fibers has an excellent bulkiness immediately after production, and as it is always used, the settling becomes larger over time, and as a result, a feeling of bottoming comes out, and the performance is sufficiently satisfactory. For example, there are problems such as local dents, a feeling of flooring, and a feeling of sinking when used for a mattress interlining.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、繊維構造体を構成する、マトリックスおよび非弾性熱接着性短繊維の両方の繊維表面に、ポリエーテル・エステル系ブロック共重合体を主成分とする表面処理剤を特定量付着させることによって、バインダー成分のポリマーの流れ(ぬれ性)を向上させ、かつ捲縮性能、とりわけ捲縮率を通常のポリエステル短繊維よりも高くすることにより繊維間の絡まりを増やし構造体の剛直性と弾力性を向上させることにより、従来のポリエステルからなる硬綿構造体と比べ、耐ヘタリ性の面において、格段に優れることを見出し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention have made polyether-ester block co-polymer on the surface of both the matrix and the non-elastic heat-adhesive short fibers constituting the fiber structure. By attaching a specific amount of the surface treatment agent composed mainly of coalescence, the flow (wetting property) of the polymer of the binder component is improved, and the crimping performance, particularly the crimp rate, is made higher than that of ordinary polyester short fibers. By increasing the entanglement between the fibers and improving the rigidity and elasticity of the structure, the present invention has been found to be remarkably superior in terms of sag resistance compared to conventional cotton structures made of polyester. It came to be completed.

即ち、本発明によれば、
マトリックスとしての非弾性ポリエステル系捲縮短繊維(A)と、該非弾性ポリエステル系捲縮短繊維(A)を構成するポリマーの融点より30〜150℃低い融点を有する共重合ポリエステルポリマーと該共重合ポリエステルポリマーよりも高い融点を有するポリエステルポリマーとが配された非弾性熱接着性複合短繊維(B)とが、重量比で(A:B)=(90:10)〜(50:50)の割合で混綿されており、該短繊維同士の少なくとも一部が融着し、固着点を形成している、繊維構造体において、
該非弾性ポリエステル系捲縮短繊維(A)および該非弾性熱接着性複合短繊維(B)の繊維表面には、ポリエーテル・エステル系ブロック共重合体を主成分とする表面処理剤が、該非弾性ポリエステル系捲縮短繊維(A)と該非弾性熱接着性複合短繊維(B)との合計重量を基準として0.02〜5.0重量%付着されていることを特徴とする、耐ヘタリ性の改善された硬綿構造体を提供することができる。
That is, according to the present invention,
Non-elastic polyester crimped short fiber (A) as a matrix, copolymer polyester polymer having a melting point lower by 30 to 150 ° C. than the melting point of the polymer constituting the non-elastic polyester crimped short fiber (A), and the copolymer polyester polymer Inelastic thermal adhesive composite short fiber (B) in which a polyester polymer having a higher melting point is arranged at a ratio of (A: B) = (90:10) to (50:50) by weight ratio. In the fiber structure, which is blended and at least a part of the short fibers are fused to form a fixing point,
On the fiber surfaces of the inelastic polyester-based crimped short fibers (A) and the inelastic heat-adhesive composite short fibers (B), a surface treatment agent mainly composed of a polyether-ester block copolymer is added to the inelastic polyester. Improvement of set resistance, characterized in that 0.02 to 5.0% by weight is attached based on the total weight of the crimped staple fibers (A) and the inelastic thermal adhesive composite staple fibers (B) An improved hard cotton structure can be provided.

本発明の、ポリエステル繊維からなる硬綿構造体は従来の硬綿構造体に比べて、構造体中に形成される融着結合点の数が多く、且つその結合点が強固に接着しているため硬綿構造体の構造に剛直性があり、従って耐ヘタリ性が向上し、底つき感が解消されており、枕やクッション、敷布団等として有効に用いることができる。   The hard cotton structure made of polyester fiber of the present invention has a larger number of fusion bonding points formed in the structure than the conventional hard cotton structure, and the bonding points are firmly bonded. Therefore, the structure of the hard cotton structure has rigidity, so that the settling resistance is improved, the feeling of bottoming is eliminated, and it can be used effectively as a pillow, cushion, mattress or the like.

本発明において、ポリエーテル・エステル系ブロック共重合体を主体とする表面処理剤が非弾性ポリエステル系捲縮短繊維(A)および非弾性熱接着性複合短繊維(B)の繊維表面に、該非弾性ポリエステル系捲縮短繊維(A)と該非弾性熱接着性複合短繊維(B)の合計重量を基準として0.02〜5.0重量%付着している必要がある。   In the present invention, the surface treatment agent mainly composed of a polyether / ester block copolymer is formed on the fiber surfaces of the non-elastic polyester-based crimped short fibers (A) and the non-elastic heat-adhesive composite short fibers (B). It is necessary to adhere 0.02 to 5.0% by weight based on the total weight of the polyester-based crimped short fibers (A) and the inelastic heat-adhesive composite short fibers (B).

上記の表面処理剤が、非弾性ポリエステル系捲縮短繊維(A)と非弾性熱接着性複合短繊維(B)の両方の繊維表面に存在することにより、熱成形処理時に接着成分である共重合ポリエステルが溶融状態になったときに、該非弾性ポリエステル系捲縮短繊維(A)への相溶性、流れ性、ぬれ性が格段に向上し、融着結合点の強度が著しく向上する。   Copolymerization that is an adhesive component during thermoforming treatment due to the presence of the surface treatment agent on the surface of both the non-elastic polyester crimped short fiber (A) and the non-elastic heat-adhesive composite short fiber (B). When the polyester is in a molten state, compatibility with the inelastic polyester-based crimped short fiber (A), flowability, and wettability are remarkably improved, and the strength of the fusion bond point is remarkably improved.

該付着量が0.02重量%未満であると、上記の効果が得られない。また、5.0重量%を越えると、付着量に見合うだけの効果は期待できず、コスト的に不利となる、というような問題がある。また該表面処理剤が、マトリックスとしての非弾性ポリエステル系捲縮短繊維(A)または非弾性熱接着性複合短繊維(B)の片方のみに付着している場合には本発明が目的とする、融着結合点強度の向上は起こらない。   When the adhesion amount is less than 0.02% by weight, the above effect cannot be obtained. On the other hand, if the amount exceeds 5.0% by weight, there is a problem that an effect corresponding to the amount of adhesion cannot be expected and the cost becomes disadvantageous. Further, when the surface treatment agent is attached to only one of the non-elastic polyester crimped short fibers (A) or the non-elastic heat-adhesive composite short fibers (B) as a matrix, the present invention is aimed. The fusion bond strength does not increase.

上記の表面処理剤としては、テレフタル酸、イソフタル酸、メタソジウムスルフォイソフタル酸またはそれらの低級アルキルエステルと低級アルキレングリコール、ポリアルキレングリコール、ポリアルキレングリコールモノエーテルからなるポリエーテル・エステルブロック共重合体であり、ポリオキシエチレンアルキルフェニルエーテルホスフェートのアルカリ金属塩、ポリオキシエチレンアルキルフェニルエーテルサルフェートのアルカリ金属及び/またはこれらのアンモニウム塩、アルカノールアミン塩等の界面活性剤を用いて分散させたものを挙げることができる。   As the above surface treatment agent, terephthalic acid, isophthalic acid, metasodium sulfoisophthalic acid or a lower alkyl ester thereof and a lower alkylene glycol, a polyalkylene glycol, a polyalkylene glycol monoether, a polyether / ester block copolymer A polyoxyethylene alkylphenyl ether phosphate alkali metal salt, polyoxyethylene alkylphenyl ether sulfate alkali metal and / or an ammonium salt, an alkanolamine salt or the like dispersed in a surfactant. Can be mentioned.

上記の表面処理剤は、主に合成繊維に吸湿性、吸水性を付与するために使用されるが、非弾性ポリエステル系捲縮短繊維(A)および非弾性熱接着性複合短繊維(B)に付着させることにより、前述のように該非弾性ポリエステル系捲縮短繊維(A)に対する溶融状態の共重合ポリエステルポリマーの相溶性が格段に向上し融着結合点の強度が著しく増す。更に、この剤を付着させるのが該非弾性ポリエステル系捲縮短繊維(A)または該非弾性熱接着性複合短繊維(B)のどちらか一方では不十分である。これは溶融状態にある共重合ポリエステルポリマーが接触する全ての繊維がこの表面処理剤で被覆されている方がより有利であるのは明らかであるためである。   The above-mentioned surface treatment agent is mainly used for imparting hygroscopicity and water absorption to the synthetic fiber, but is applied to the non-elastic polyester-based crimped short fiber (A) and the non-elastic heat-adhesive composite short fiber (B). By adhering, the compatibility of the molten copolyester polymer with the inelastic polyester-based crimped short fiber (A) is significantly improved as described above, and the strength of the fusion bond point is remarkably increased. Furthermore, it is insufficient to attach this agent to either the inelastic polyester-based crimped short fiber (A) or the inelastic heat-adhesive composite short fiber (B). This is because it is clear that it is more advantageous that all fibers with which the copolyester polymer in the molten state comes into contact are coated with this surface treatment agent.

本発明において、非弾性ポリエステル系捲縮短繊維(A)の捲縮率は30〜40%の範囲にあることが好ましい。これは繊維間の絡まりを増加させることにより繊維結合点を増やし長期間繰り返し荷重をうけても3次元構造保持する寸法安定性(耐ヘタリ性)が付与されるためである。従ってこのような目的からするとその他の捲縮性能(捲縮数)や繊維長なども少なかれ影響すると考えられるが、とりわけ捲縮率が上記範囲にある繊維の場合には格段の効果が認められる。   In the present invention, the crimp ratio of the inelastic polyester-based crimped short fiber (A) is preferably in the range of 30 to 40%. This is because by increasing the entanglement between the fibers, the fiber bonding points are increased, and the dimensional stability (sag resistance) that retains the three-dimensional structure is imparted even when subjected to repeated loads for a long period of time. Therefore, for this purpose, it is considered that other crimp performance (crimp number) and fiber length are more or less affected. However, particularly in the case of fibers having a crimp ratio in the above range, a remarkable effect is recognized.

本発明の非弾性ポリエステル系捲縮短繊維(A)の断面形状は、円形、偏平、異型または中空のいずれであっても良いが、中でも中空または異形であるほうが好ましく、就中、中空断面を有していることが好ましい。これは同じデニールであっても中空断面の方が実質繊維径は大きくなり、バインダー成分との接触面積が大きくなったり、繊維自体の曲げモーメント(剛直性)も上がるため、中実断面の主体繊維を使用するよりも硬く反発性のある構造体を得ることができるからである。該中空断面の中空率は15〜40%の範囲にあることが好ましい。該中空率が15%未満であると、中空である有利性が発揮されにくい。また、40%を越えると熱成形処理時に捲縮が伸びてしまい該非弾性ポリエステル系捲縮短繊維(A)自体がへたってしまうという問題がある。   The cross-sectional shape of the inelastic polyester-based crimped short fiber (A) of the present invention may be any of a circular shape, a flat shape, an irregular shape and a hollow shape. It is preferable. Even if the denier is the same, the hollow fiber has a larger fiber diameter, the contact area with the binder component becomes larger, and the bending moment (rigidity) of the fiber itself also increases. This is because it is possible to obtain a structure that is harder and more repulsive than the use of. The hollow ratio of the hollow cross section is preferably in the range of 15 to 40%. When the hollow ratio is less than 15%, the advantage of being hollow is hardly exhibited. Moreover, when it exceeds 40%, there exists a problem that a crimp will elongate at the time of a thermoforming process, and this inelastic polyester type | system | group crimped short fiber (A) itself will sag.

本発明において、非弾性ポリエステル系捲縮短繊維(A)を構成する非弾性ポリエステル系ポリマーとしては、テレフタル酸またはそのエステル形成性誘導体とエチレングリコールや1,4−ブタンジオールとの重合体、即ちポリエチレンテレフタレートまたはポリブチレンテレフタレートあるいはそれらを主体とする共重合体が好ましく用いられる。共重合する酸成分としてはイソフタル酸、スルホイソフタル酸、5−ナトリウムスルホイソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸、シュウ酸、アジピン酸、セバシン酸、ドデカンニ酸等の脂肪族ジカルボン酸、p−オキシ安息香酸、p−β−オキシエトキシ安息香酸などのオキシカルボン酸を挙げることができる。また、共重合するジオール成分としては、1,3−プロパンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジオール、1,4−ビス(β−オキシエトキシ)ベンゼンなどの芳香族ジオール、ポリエチレングリコール、ポリブチレングリコールなどのポリアルキレングリコールなどのポリアルキレングリコール等を挙げることができる。尚、これらの共重合する第三成分は単独あるいは2種類以上を同時に共重合させたものであってもよい。   In the present invention, the inelastic polyester-based polymer constituting the inelastic polyester-based crimped short fiber (A) is a polymer of terephthalic acid or an ester-forming derivative thereof and ethylene glycol or 1,4-butanediol, that is, polyethylene. Terephthalate, polybutylene terephthalate, or a copolymer mainly composed thereof is preferably used. Examples of acid components to be copolymerized include aromatic dicarboxylic acids such as isophthalic acid, sulfoisophthalic acid, 5-sodium sulfoisophthalic acid, diphenyldicarboxylic acid, and naphthalenedicarboxylic acid, and aliphatics such as oxalic acid, adipic acid, sebacic acid, and dodecanoic acid. Examples thereof include oxycarboxylic acids such as dicarboxylic acid, p-oxybenzoic acid, and p-β-oxyethoxybenzoic acid. Examples of the diol component to be copolymerized include aliphatic diols such as 1,3-propanediol, 1,6-hexanediol, and neopentyl glycol, and aromatic diols such as 1,4-bis (β-oxyethoxy) benzene. And polyalkylene glycols such as polyalkylene glycols such as polyethylene glycol and polybutylene glycol. The third component to be copolymerized may be a single component or a mixture of two or more types simultaneously.

一方、融着結合点を形成するために用いられる非弾性熱接着性複合短繊維(B)は、上記非弾性ポリエステル系捲縮短繊維(A)を構成するポリエステル系ポリマーの融点よりも、30〜150℃低い融点の共重合ポリエステルポリマーと上記非弾性ポリエステル系捲縮短繊維(A)を構成するポリエステル系ポリマーに代表される高融点ポリエステルポリマーとを配する必要がある。上記の融点差が30℃未満であると、硬綿構造体製造時に融着加工の熱処理温度が高くなり過ぎて、非弾性捲縮短繊維の捲縮のへたりを起こし、また該捲縮短繊維の力学特性を低下させてしまう。また、この融点差が150℃を越えると、高温下に放置したとき、硬綿構造体の形態保持に問題が生じる。更に、前者の共重合ポリエステルポリマーが融着成分として、少なくとも該複合短繊維表面に露出していることが必要である。   On the other hand, the non-elastic thermoadhesive composite short fiber (B) used for forming the fusion bond point is 30 to 30 ° C. higher than the melting point of the polyester polymer constituting the non-elastic polyester-based crimped short fiber (A). It is necessary to arrange a copolymer polyester polymer having a melting point as low as 150 ° C. and a high melting point polyester polymer represented by the polyester polymer constituting the inelastic polyester crimped short fiber (A). When the melting point difference is less than 30 ° C., the heat treatment temperature for the fusion processing becomes too high during the production of the hard cotton structure, causing the crimping of the inelastic crimped short fibers, and the crimped short fibers. It will decrease the mechanical properties. On the other hand, if the melting point difference exceeds 150 ° C., there is a problem in maintaining the form of the hard cotton structure when left at high temperature. Furthermore, it is necessary that the former copolyester polymer is exposed at least on the surface of the composite short fiber as a fusion component.

該融着成分が繊維表面に露出していないと、構造体中に熱固着点が形成されない。特に、該繊維表面の1/2以上を占めるように露出していることが好ましい。該共重合ポリエステルポリマーと上記高融点ポリエステルポリマーとの比率は重量割合でいえば、前者と後者とが複合比率で(30:70)〜(70:30)の範囲にあるのが必要である。尚、熱可塑性ポリマーについては、その融点が明確に観察されないときは、軟化点をもって代替する。   If the fusion component is not exposed on the fiber surface, no heat fixing point is formed in the structure. In particular, it is preferably exposed so as to occupy 1/2 or more of the fiber surface. In terms of the weight ratio of the copolymerized polyester polymer and the high-melting point polyester polymer, it is necessary that the former and the latter are in the range of (30:70) to (70:30) as a composite ratio. In addition, about the thermoplastic polymer, when the melting | fusing point is not observed clearly, it substitutes with a softening point.

該非弾性熱接着性複合短繊維(B)の断面形状としては、サイド・バイ・サイド型、シース・コア型のいずれであってもよいが、好ましいのは後者である。このシース・コア型においては、シース(鞘)部分に共重合ポリエステルが配され、該共重合ポリエステルよりも高い融点を有するポリエステルポリマーがコア(芯)部分を形成するように配され、その際、同心円状あるいは偏芯状のどちらの形状に配されてしてもよい。特に偏芯状のものにあっては、紡糸段階における繊維同士の膠着現象を防止し、且つ延伸時にはコイル状弾性捲縮が発現するのでより好ましい。   The cross-sectional shape of the inelastic heat-bondable composite short fiber (B) may be either a side-by-side type or a sheath / core type, but the latter is preferred. In this sheath / core type, a copolymer polyester is disposed in the sheath (sheath) portion, and a polyester polymer having a melting point higher than that of the copolymer polyester is disposed so as to form the core (core) portion. It may be arranged in either a concentric or eccentric shape. In particular, the eccentric shape is more preferable because it prevents the sticking phenomenon between the fibers in the spinning stage, and a coiled elastic crimp is developed at the time of drawing.

本発明において、硬綿構造体を構成する非弾性ポリエステル系捲縮短繊維(A)と非弾性熱接着性複合短繊維(B)との混綿率としては重量比で、(A:B)=(90:10)〜(50:50)であることが必要である。該非弾性熱接着性複合短繊維(B)の混綿率が低すぎると、構造体中で形成される融着結合点の数が少なくなり、硬綿構造体が変形しやすいので、反撥弾性力、圧縮弾性等の特性が低い、すなわち耐ヘタリ性に劣る。
一方、該複合短繊維の混綿率が高すぎると、反発性を与えるマトリックス繊維の構成本数が少なくなり、構造体としての反発性が不足してくる。
In the present invention, the blend ratio of the non-elastic polyester-based crimped short fibers (A) and the non-elastic heat-adhesive composite short fibers (B) constituting the hard cotton structure is in a weight ratio, and (A: B) = ( 90:10) to (50:50). If the blending rate of the inelastic heat-adhesive composite short fiber (B) is too low, the number of fusion bonding points formed in the structure is reduced, and the hard cotton structure is easily deformed. Properties such as compression elasticity are low, that is, they are inferior in resistance to stickiness.
On the other hand, if the blending rate of the composite short fibers is too high, the number of matrix fibers that give resilience decreases, and the resilience as a structure becomes insufficient.

本発明の硬綿構造体を製造するにあたっては、まず上記の重量比で混綿された短繊維塊をカードに通し均一に混綿したウェッブを得る。このようにすることにより、非弾性ポリエステル系捲縮短繊維(A)と非弾性熱接着性複合短繊維(B)間及び該非弾性熱接着性複合短繊維(B)同士には無数の繊維交叉点が形成される。次に、このウェッブを所定の密度になるように金型内に載置し、非弾性ポリエステル系捲縮短繊維(A)を構成するポリエステル系ポリマーの融点よりも低く、非弾性熱接着性複合短繊維(B)に一成分として配された、共重合ポリエステルポリマーの融点よりも10〜80℃高い温度で熱成形処理する。これにより上述の繊維交叉点で該共重合ポリエステルポリマーが溶融・流動し融着する。   In producing the hard cotton structure of the present invention, first, a web obtained by uniformly blending the short fiber mass blended in the above weight ratio through a card is obtained. By doing in this way, innumerable fiber crossing points between the non-elastic polyester-based crimped short fibers (A) and the non-elastic heat-adhesive composite short fibers (B) and between the inelastic heat-adhesive composite short fibers (B). Is formed. Next, this web is placed in a mold so as to have a predetermined density, and is lower than the melting point of the polyester polymer constituting the inelastic polyester-based crimped short fiber (A), and is inelastic heat-adhesive composite short. A thermoforming treatment is performed at a temperature 10 to 80 ° C. higher than the melting point of the copolyester polymer disposed as a component on the fiber (B). As a result, the copolymerized polyester polymer melts, flows and fuses at the above-described fiber crossing points.

該非弾性熱接着性複合短繊維(B)は、通常の紡糸方法で紡糸する事が出来、その際、該非弾性熱接着性複合短繊維(B)は引き取り速度500〜1500m/minの範囲で紡出後1.5倍以上延伸されていることが好ましい。この延伸処理により、短繊維化され弛緩状態になる過程で該繊維中の非晶部がランダム化し、より弾性の優れた繊維構造になり、それが溶融固化後も維持され易いため、構造体となったときの耐ヘタリ性に優れた効果を発揮する。   The inelastic heat-adhesive composite short fiber (B) can be spun by a normal spinning method. At this time, the inelastic heat-adhesive composite short fiber (B) is spun at a take-up speed of 500 to 1500 m / min. It is preferable that the film is stretched 1.5 times or more. By this drawing treatment, the amorphous portion in the fiber is randomized in the process of becoming a short fiber and in a relaxed state, resulting in a more elastic fiber structure, which is easy to maintain after melting and solidification. Demonstrates excellent anti-sagging effect.

以下、本発明を実施例により更に具体的に説明するが、本発明はこれにより何等制限を受けるものではない。尚、実施例中の各値は以下の方法にて測定した。
(1)捲縮率:
JIS L−1015記載の方法に準じて測定を行った。
(2)原綿の油剤付着量:
JIS L−1015記載の方法に準じて、アルコール・ベンゼン抽出法により測定を行った。
(3)硬さ:
JIS K−6401記載による25%圧縮硬さを用いた。通常のクッション材用途では、20〜30kgあれば実用上問題は無い。
(4)圧縮残留歪:
JIS K−6401記載の方法に準拠して測定した。
(5)8万回定歪圧縮耐久性:
JIS K−6401記載の方法に準拠し、無荷重時の厚さを基準として50%の厚さになるような一定の歪を、繰り返して8万回与え、その後初期の厚みの75%になった時の残留歪(C)と硬さ保持率(D)とを測定した。
(6)定荷重圧縮耐久性:
JIS K−6401記載の方法に準拠し、0.5kg/cm2の一定荷重を360回繰り返して試料に加え、その後初期の厚みの75%になった時の残留歪(C)と硬さ保持率(D)とを測定した。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited thereto. In addition, each value in an Example was measured with the following method.
(1) Crimp rate:
Measurement was performed according to the method described in JIS L-1015.
(2) Amount of oil on the raw cotton:
In accordance with the method described in JIS L-1015, measurement was performed by an alcohol / benzene extraction method.
(3) Hardness:
A 25% compression hardness according to JIS K-6401 was used. For normal cushioning material use, there is no practical problem if it is 20-30 kg.
(4) Compression residual strain:
It measured based on the method of JISK-6401 description.
(5) 80,000 times constant strain compression durability:
In accordance with the method described in JIS K-6401, a constant strain that gives a thickness of 50% based on the thickness under no load is repeatedly given 80,000 times, and then becomes 75% of the initial thickness. The residual strain (C) and the hardness retention (D) were measured.
(6) Constant load compression durability:
In accordance with the method described in JIS K-6401, a constant load of 0.5 kg / cm 2 is repeatedly applied 360 times to the sample, and then the residual strain (C) and hardness retention when 75% of the initial thickness is reached. The rate (D) was measured.

[参考例1]
表面処理剤の製造:
分子量3000〜8000のポリオキシアルキレングリコール50部、テレフタル酸30部、エチレングリコール20部とからなる共重合ポリエステル10部にポリオキシエチレンラウリルエーテル2.7部を混合して窒素気流中にて250℃にて溶融させ、これらを93℃のモノエタノールアミン1%水溶液の90部に撹拌しながら調整し、共重合ポリエステル乳化分散液(表面処理剤)を得た。
[Reference Example 1]
Manufacture of surface treatment agent:
2.7 parts of polyoxyethylene lauryl ether was mixed with 10 parts of a copolyester composed of 50 parts of polyoxyalkylene glycol having a molecular weight of 3000 to 8000, 30 parts of terephthalic acid, and 20 parts of ethylene glycol, and 250 ° C. in a nitrogen stream. These were melted and adjusted to 90 parts of a 93% monoethanolamine 1% aqueous solution with stirring to obtain a copolymerized polyester emulsion dispersion (surface treatment agent).

[参考例2]
非弾性熱接着性複合短繊維(B)の製造:
ジメチルテレフタレートとジメチルイソフタレートとを所定の割合で混合した酸成分とエチレングリコールとジエチルグリコールを混合したグリコール成分を重合し得られた共重合ポリエステル系ポリマーを、芯鞘型繊維において鞘成分に配し、通常のポリエチレンテレフタレートポリマーを芯成分に配して、シース・コア比が50:50となるように非弾性熱接着性繊維を常法により引き取り速度1100m/minで製造した。この未延伸糸を約3.7倍に延伸した後、参考例1の操作により得た表面処理剤を該繊維表面に約0.16重量%付着させ、繊維長が51mmとなるようにカットして、非弾性熱接着性複合短繊維(B)を得た。
[Reference Example 2]
Production of inelastic thermal adhesive composite short fiber (B):
A copolymer polyester polymer obtained by polymerizing an acid component in which dimethyl terephthalate and dimethyl isophthalate are mixed at a predetermined ratio and a glycol component in which ethylene glycol and diethyl glycol are mixed is disposed in the sheath component in the core-sheath fiber. Then, an ordinary polyethylene terephthalate polymer was arranged in the core component, and inelastic heat-adhesive fibers were produced at a take-up speed of 1100 m / min by a conventional method so that the sheath / core ratio was 50:50. After this undrawn yarn was drawn about 3.7 times, the surface treatment agent obtained by the operation of Reference Example 1 was attached to the fiber surface at about 0.16% by weight, and the fiber length was cut to 51 mm. Thus, an inelastic heat-adhesive composite short fiber (B) was obtained.

[実施例1]
固有粘度0.64のポリエチレンテレフタレートポリマーを使用し、ノズル孔径0.5mm、孔数192holeの紡糸口金から、紡糸温度300℃、吐出量724g/分、引き取り速度565m/minとなるように設定して、通常の溶融紡糸機を利用して溶融紡糸した。得られた未延伸糸を70℃の温水中で約4.1倍に延伸した後、該延伸糸の繊維表面に、参考例1の操作で得た、共重合ポリエステル乳化分散液を約0.16重量%付着させた後捲縮を付与し、140℃で約80分間弛緩熱処理した後、繊維長が64mmとなるように切断して約18deの非弾性ポリエステル系捲縮短繊維(A)を得た。
[Example 1]
Using a polyethylene terephthalate polymer with an intrinsic viscosity of 0.64, setting a spinning temperature of 300 ° C., a discharge rate of 724 g / min, and a take-up speed of 565 m / min from a spinneret having a nozzle hole diameter of 0.5 mm and a hole number of 192 holes. Then, melt spinning was performed using a normal melt spinning machine. The obtained undrawn yarn was drawn about 4.1 times in warm water at 70 ° C., and then the copolymerized polyester emulsion dispersion obtained by the procedure of Reference Example 1 was put on the fiber surface of the drawn yarn by about 0.00. After applying 16% by weight, crimping was applied, and after relaxation heat treatment at 140 ° C. for about 80 minutes, the fiber length was cut to 64 mm to obtain an inelastic polyester-based crimped short fiber (A) of about 18 de. It was.

上記の操作で得た、非弾性ポリエステル系捲縮短繊維(A)と参考例2の操作により得られた非弾性熱接着性複合短繊維(B)とが70:30の重量比率になるように混綿し原綿塊をカードに掛けて混綿しウェブを作成し、このウェブを密度が約30kg/m3となるように金型内に載置し160℃で20分間熱成形処理して硬綿構造体を得た。結果を表1及び表2に示す。 The non-elastic polyester crimped short fiber (A) obtained by the above operation and the non-elastic heat-adhesive composite short fiber (B) obtained by the operation of Reference Example 2 are in a weight ratio of 70:30. A mixture of raw cotton lumps is placed on a card to create a web, and this web is placed in a mold so that the density is about 30 kg / m 3 and thermoformed at 160 ° C. for 20 minutes to form a hard cotton structure. Got the body. The results are shown in Tables 1 and 2.

[実施例2]
実施例1において、非弾性ポリエステル系捲縮短繊維(A)を製造するに際し、14deの中空断面(中空率25%)を有する該非弾性ポリエステル系捲縮短繊維(A)とすること以外は、同様の操作を行って硬綿構造体を得た。結果を表1及び表2に示す。
[Example 2]
In Example 1, when producing the non-elastic polyester-based crimped short fiber (A), the same procedure except that the non-elastic polyester-based crimped short fiber (A) having a hollow cross section of 14 de (hollow rate of 25%) is used. The operation was performed to obtain a hard cotton structure. The results are shown in Tables 1 and 2.

[比較例1]
実施例1において、非弾性ポリエステル系捲縮短繊維(A)に付着させる表面処理剤を、共重合ポリエステル乳化分散液から代えてラウリルフォスフェート系油剤とすること以外は同様の操作を行って硬綿構造体を得た。結果を表1及び表2に示す。
[Comparative Example 1]
In Example 1, the same procedure was followed except that the surface treatment agent attached to the inelastic polyester-based crimped short fiber (A) was replaced with a lauryl phosphate-based oil agent instead of the copolymerized polyester emulsified dispersion, and the cotton wool A structure was obtained. The results are shown in Tables 1 and 2.

[比較例2、3、4]
比較例1において、非弾性熱接着性複合短繊維(B)に付着させる表面処理剤を、共重合ポリエステル乳化分散液から代えてラウリルフォスフェート系油剤とし、且つ、非弾性ポリエステル系捲縮短繊維(A)の物性を表1に記載した様に変更すること以外は同様の操作を行って硬綿構造体を得た。結果を表1及び表2に示す。
[Comparative Examples 2, 3, 4]
In Comparative Example 1, the surface treatment agent attached to the inelastic heat-adhesive composite short fiber (B) is replaced with a lauryl phosphate oil instead of the copolyester emulsion dispersion, and the inelastic polyester crimped short fiber ( A hard cotton structure was obtained by performing the same operation except that the physical properties of A) were changed as shown in Table 1. The results are shown in Tables 1 and 2.

[比較例5]
比較例2において、非弾性熱接着性複合短繊維(B)に付着させる表面処理剤を共重合ポリエステル乳化分散液から代えてラウリルフォスフェート系油剤とすること以外は同様の操作を行って硬綿構造体を得た。結果を表1及び表2に示す。
[Comparative Example 5]
In Comparative Example 2, the same operation was carried out except that the surface treatment agent to be adhered to the inelastic heat-adhesive composite short fiber (B) was changed from the copolymerized polyester emulsified dispersion to a lauryl phosphate-based oil agent. A structure was obtained. The results are shown in Tables 1 and 2.

Figure 0004043492
Figure 0004043492

Figure 0004043492
Figure 0004043492

但し、表2中の8万回定歪圧縮及び定荷重圧縮の測定において、Cは残留歪(%)をDは硬さ保持率(%)を各々表す。   However, in the measurement of 80,000 times constant strain compression and constant load compression in Table 2, C represents residual strain (%) and D represents hardness retention (%).

本発明の、ポリエステル繊維からなる硬綿構造体は従来の硬綿構造体に比べて、構造体中に形成される融着結合点の数が多く、且つその結合点が強固に接着しているため硬綿構造体の構造に剛直性がある。従って耐ヘタリ性が向上し底つき感が解消されており、枕やクッション、敷布団等として有効に用いることができ、産業上の意義が大きい。   The hard cotton structure made of polyester fiber of the present invention has a larger number of fusion bonding points formed in the structure than the conventional hard cotton structure, and the bonding points are firmly bonded. Therefore, the structure of the hard cotton structure is rigid. Accordingly, the settling resistance is improved and the feeling of bottoming is eliminated, and it can be effectively used as a pillow, cushion, mattress or the like, and has great industrial significance.

Claims (3)

マトリックスとしての非弾性ポリエステル系捲縮短繊維(A)と、該非弾性ポリエステル系捲縮短繊維(A)を構成するポリマーの融点より30〜150℃低い融点を有する共重合ポリエステルポリマーと該共重合ポリエステルポリマーよりも高い融点を有するポリエステルポリマーとが重量比率(30:70)〜(70:30)で配された非弾性熱接着性複合短繊維(B)とが、重量比で(A:B)=(90:10)〜(50:50)の割合で混綿されており、該短繊維同士の少なくとも一部が融着し、固着点を形成している、繊維構造体において、
該非弾性ポリエステル系捲縮短繊維(A)および該非弾性熱接着性複合短繊維(B)の繊維表面には、ポリエーテル・エステル系ブロック共重合体を主成分とする表面処理剤が、該捲縮短繊維(A)と該非弾性熱接着性複合短繊維(B)との合計重量を基準として0.02〜5.0重量%付着されていることを特徴とする、耐ヘタリ性の改善された硬綿構造体。
Non-elastic polyester crimped short fiber (A) as a matrix, copolymer polyester polymer having a melting point lower by 30 to 150 ° C. than the melting point of the polymer constituting the non-elastic polyester crimped short fiber (A), and the copolymer polyester polymer Inelastic heat-adhesive composite short fibers (B) in which a polyester polymer having a higher melting point is arranged at a weight ratio (30:70) to (70:30), (A: B) = In a fiber structure that is blended at a ratio of (90:10) to (50:50), and at least a part of the short fibers are fused to form a fixing point,
On the fiber surfaces of the inelastic polyester-based crimped short fibers (A) and the inelastic heat-adhesive composite short fibers (B), a surface treatment agent containing a polyether / ester block copolymer as a main component is provided with the crimped short fibers. Hardness having improved sag resistance, characterized in that 0.02 to 5.0% by weight based on the total weight of the fiber (A) and the inelastic thermal adhesive composite short fiber (B) is adhered. Cotton structure.
非弾性ポリエステル系捲縮短繊維(A)の捲縮率が30%〜40%の範囲にある、請求項1記載の硬綿構造体。   The hard cotton structure according to claim 1, wherein a crimp ratio of the non-elastic polyester-based crimped short fiber (A) is in a range of 30% to 40%. 非弾性ポリエステル系捲縮短繊維(A)が中空断面を有し、且つその中空率が15〜40%の範囲にある請求項1記載の硬綿構造体。   The hard cotton structure according to claim 1, wherein the non-elastic polyester-based crimped short fibers (A) have a hollow cross section and the hollow ratio is in the range of 15 to 40%.
JP2006046787A 1996-10-01 2006-02-23 Hard cotton structure with improved settling resistance Expired - Fee Related JP4043492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046787A JP4043492B2 (en) 1996-10-01 2006-02-23 Hard cotton structure with improved settling resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26073896 1996-10-01
JP2006046787A JP4043492B2 (en) 1996-10-01 2006-02-23 Hard cotton structure with improved settling resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33553496A Division JP3793301B2 (en) 1996-10-01 1996-12-16 Hard cotton structure with improved settling resistance

Publications (2)

Publication Number Publication Date
JP2006207110A JP2006207110A (en) 2006-08-10
JP4043492B2 true JP4043492B2 (en) 2008-02-06

Family

ID=36964268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046787A Expired - Fee Related JP4043492B2 (en) 1996-10-01 2006-02-23 Hard cotton structure with improved settling resistance

Country Status (1)

Country Link
JP (1) JP4043492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131105A (en) 2014-05-08 2016-11-15 미쯔비시 레이온 가부시끼가이샤 Wadding

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6110089B2 (en) * 2012-08-08 2017-04-05 ダイワボウホールディングス株式会社 Nonwoven fabric and cushion material using the same
CN110337509B (en) * 2017-03-03 2022-05-10 帝人富瑞特株式会社 Fiber structure and method for producing same
CN111020867A (en) * 2019-12-26 2020-04-17 苏州椰为媒纤维制品科技有限公司 High-elastic coconut palm mat

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160131105A (en) 2014-05-08 2016-11-15 미쯔비시 레이온 가부시끼가이샤 Wadding

Also Published As

Publication number Publication date
JP2006207110A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
JP4043492B2 (en) Hard cotton structure with improved settling resistance
JP3793301B2 (en) Hard cotton structure with improved settling resistance
JP2957290B2 (en) Cushioning material
JP3157393B2 (en) Fiber molded high elastic cushioning material
JP3432936B2 (en) Method for producing hollow composite fiber
JP4918111B2 (en) Method for producing nonwoven fabric containing heat-adhesive conjugate fiber
JP4326083B2 (en) Polyester-based heat-adhesive composite staple fiber and nonwoven fabric
JPH0734326A (en) Heat-bondable conjugate fiber
JP3150846B2 (en) Fiber molded cushion material
JP4269387B2 (en) Thermal bonding fiber and cushioning material
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP5847503B2 (en) Manufacturing method of molded products
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JPH11200221A (en) Nonwoven fabric structure with improved shock-absorbing performance
JP3468341B2 (en) Thermal adhesive polyester fiber
JP3627230B2 (en) Cushion material and manufacturing method thereof
JP2713667B2 (en) Cushion material
JPH08170256A (en) Yarn mixture, molded article of yarn and production of molded article of yarn
JP2001032158A (en) Fiber-made cushion material and cushion
JP2003027339A (en) Polyester-based conjugate fiber and fiber structure
JP5813427B2 (en) Manufacturing method of molded products
JP2000226733A (en) Matrix fiber for cushioning material and cushioning material
JP3747654B2 (en) Thermal bonding fiber and cushioning material
JP4838600B2 (en) Cotton for clothing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees