JPH08170256A - Yarn mixture, molded article of yarn and production of molded article of yarn - Google Patents

Yarn mixture, molded article of yarn and production of molded article of yarn

Info

Publication number
JPH08170256A
JPH08170256A JP31083094A JP31083094A JPH08170256A JP H08170256 A JPH08170256 A JP H08170256A JP 31083094 A JP31083094 A JP 31083094A JP 31083094 A JP31083094 A JP 31083094A JP H08170256 A JPH08170256 A JP H08170256A
Authority
JP
Japan
Prior art keywords
fiber
composite fiber
composite
weight
thermoplastic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31083094A
Other languages
Japanese (ja)
Inventor
Masumi Fujimoto
倍已 藤本
Isao Aoyanagi
功 青柳
Yukie Nakajima
幸恵 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP31083094A priority Critical patent/JPH08170256A/en
Publication of JPH08170256A publication Critical patent/JPH08170256A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a yarn mixture and a molded article of yarn hardly yielding despite of softness, having a refreshing feeling in use an exerting no bad influence on the environment and to provide a method for producing the molded article of yarn. CONSTITUTION: The characteristic of this yarn mixture is that it comprises 20-60wt.% of conjugated yarn A obtained by bonding thermoplastic polymers R1 and R2 of two different kinds of components in the weight ratio of 30/70-70/30 to form a core part and combining the core part with a thermoplastic polymer R3 having a melting point lower than that of the lower melting point of the thermoplastic materials R1 and R2 in the weight ratio shown by the formula R3/(R1+R2) of 20/80-60/40 as a sheath part and 40-80wt.% of conjugated yarn B prepared by bonding thermoplastic polymers R4 and R5 of two different kinds of components having melting points higher than that of the thermoplastic polymer R3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は繊維混合物およびこれを
用いた繊維成形体並びに繊維成形体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber mixture, a fiber molding using the same, and a method for producing the fiber molding.

【0002】さらに詳しくは、電車や自動車などで使用
される車両用シート中材,パット材,ドアトリム,サン
バイザー,寝装用ベッド中材,マットレス,こたつ,家
具用ソファー,クッション,その他フィルター,衣料用
パッドの素材などクッション材として好適に使用される
繊維混合物および繊維成形体並びに繊維成形体の製造方
法に関するものである。
More specifically, for vehicle seats used in trains and automobiles, pad materials, door trims, sun visors, bedding bed materials, mattresses, kotatsu, sofas for furniture, cushions, other filters, for clothing. The present invention relates to a fiber mixture suitably used as a cushioning material such as a pad material, a fiber molded body, and a method for producing the fiber molded body.

【0003】[0003]

【従来の技術】従来、クッション材としては、一般にポ
リウレタンなどの樹脂発泡体や特公昭62−2155号
公報、特公平1−18183号公報、特公平4−334
78号公報、特開平3−140185号公報などに熱接
着性の繊維として低融点の繊維を使用することや、高融
点の熱可塑性樹脂を芯部とし低融点の熱可塑性樹脂を鞘
部とする芯鞘構造の複合繊維を使用することが提案され
ている。
2. Description of the Related Art Conventionally, as a cushion material, a resin foam such as polyurethane, Japanese Patent Publication No. 62-2155, Japanese Patent Publication No. 1-18183, and Japanese Patent Publication No. 4-334 are generally used.
No. 78, JP-A-3-140185, etc., a low melting point fiber is used as the thermally adhesive fiber, or a high melting point thermoplastic resin is used as a core portion and a low melting point thermoplastic resin is used as a sheath portion. It has been proposed to use a bicomponent fiber having a core-sheath structure.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、これら
のクッション材は通気性や透湿性に劣り、吸湿性にも劣
っているため蒸れやすく、雨や水飛沫のあたる場所に設
置されたシートなどに用いると、水が溜まり、シートの
腐食や着座時に水が滲みだして使用者に不快感を与える
問題があった。
However, since these cushioning materials are inferior in breathability and moisture permeability and inferior in hygroscopicity, they are apt to be stuffy, and are used for seats installed in places exposed to rain or water splashes. As a result, water accumulates, and there is a problem that the seat is corroded and the water seeps out when the user sits on the seat, which gives the user discomfort.

【0005】またソフトでありながらへたりにくく、製
造の際に、フロンガス等を使用せず、環境に悪影響を与
えないものは開示されていなかった。
Further, it has not been disclosed what is soft and hard to be worn, does not use CFC gas or the like in manufacturing, and has no adverse effect on the environment.

【0006】本発明は前記の問題を解決する繊維混合物
およびこれを用いた繊維成型体並びに繊維成形体の製造
方法を提供することを課題とする。
An object of the present invention is to provide a fiber mixture which solves the above problems, a fiber molded product using the same, and a method for producing a fiber molded product.

【0007】[0007]

【課題を解決するための手段】本発明の繊維混合物は、
前記の課題を解決するために、以下の構成を有する。す
なわち、2種の異なる成分の熱可塑性重合体R1,R2
が重量比30/70〜70/30の範囲で接合されて芯
部を形成し、さらに、熱可塑性重合体R1またはR2の
うち融点が低いものよりも融点が低い熱可塑性重合体R
3が、R3/(R1+R2)で表される重量比20/8
0〜60/40の範囲で鞘部に複合されてなる複合繊維
A20〜60重量%と、熱可塑性重合体R3の融点より
も融点が高く、かつ2種の異なる成分の熱可塑性重合体
R4,R5が接合されてなる複合繊維B40〜80重量
%とからなることを特徴とする繊維混合物である。
The fiber mixture of the present invention comprises:
In order to solve the above-mentioned subject, it has the following composition. That is, two different types of thermoplastic polymers R1 and R2
Are bonded in a weight ratio range of 30/70 to 70/30 to form a core portion, and further, a thermoplastic polymer R having a lower melting point than the thermoplastic polymer R1 or R2 having a lower melting point.
3 is a weight ratio of 20/8 represented by R3 / (R1 + R2)
In the range of 0 to 60/40, 20 to 60% by weight of the composite fiber A which is composited in the sheath portion, and the melting point of the thermoplastic polymer R3 is higher than that of the thermoplastic polymer R3, and the thermoplastic polymer R4 of two different components is used. A fiber mixture comprising 40 to 80% by weight of a composite fiber B in which R5 is joined.

【0008】また、本発明の繊維成形体は次の構成を有
する。
The fiber molding of the present invention has the following constitution.

【0009】すなわち、2種の異なる成分の熱可塑性重
合体R1,R2が重量比30/70〜70/30の範囲
で接合されて芯部を形成し、さらに、熱可塑性重合体R
1またはR2のうち融点が低いものよりも融点が低い熱
可塑性重合体R3が、R3/(R1+R2)で表される
重量比20/80〜60/40の範囲で鞘部に複合され
てなる複合繊維A20〜60重量%と、熱可塑性重合体
R3の融点よりも融点が高く、かつ2種の異なる成分の
熱可塑性重合体R4,R5が接合されてなる複合繊維B
40〜80重量%とからなる繊維混合物の複合繊維A相
互間および複合繊維Aと複合繊維Bとの間の接触点の少
なくとも一部が接着して成形されてなることを特徴とす
る繊維成形体である。
That is, two different types of thermoplastic polymers R1 and R2 are bonded together in a weight ratio range of 30/70 to 70/30 to form a core portion, and the thermoplastic polymer R is further added.
1 or R2 is a composite in which a thermoplastic polymer R3 having a lower melting point than that having a lower melting point is compounded in the sheath portion in a weight ratio of 20/80 to 60/40 represented by R3 / (R1 + R2). Composite fiber B in which 20 to 60% by weight of the fiber A and the thermoplastic polymers R4 and R5 having a melting point higher than that of the thermoplastic polymer R3 and having two different components are joined.
A fiber molded article, wherein at least a part of contact points between the composite fibers A and between the composite fibers A and the composite fibers B of the fiber mixture composed of 40 to 80% by weight are bonded and molded. Is.

【0010】さらに、本発明の繊維成形体の製造方法は
以下の構成を有する。
Further, the method for producing a fiber molding of the present invention has the following constitution.

【0011】すなわち、2種の異なる成分の熱可塑性重
合体R1,R2が重量比30/70〜70/30の範囲
で接合されて芯部を形成し、さらに、熱可塑性重合体R
1またはR2のうち融点が低いものよりも融点が低い熱
可塑性重合体R3が、R3/(R1+R2)で表される
重量比20/80〜60/40の範囲で鞘部に複合され
てなる複合繊維A20〜60重量%と、熱可塑性重合体
R3の融点よりも融点が高く、かつ2種の異なる成分の
熱可塑性重合体R4,R5が接合されてなる複合繊維B
40〜80重量%とからなる繊維混合物を開繊し、気体
と共に通気性型枠内に吹き込んで、密度0.02〜0.
10g/cm3 で充填したものに80〜200℃の熱処
理を施すことを特徴とする繊維成形体の製造方法であ
る。
That is, two different types of thermoplastic polymers R1 and R2 are joined in a weight ratio range of 30/70 to 70/30 to form a core portion, and the thermoplastic polymer R is further added.
1 or R2 is a composite in which a thermoplastic polymer R3 having a lower melting point than that having a lower melting point is compounded in the sheath portion in a weight ratio of 20/80 to 60/40 represented by R3 / (R1 + R2). Composite fiber B in which 20 to 60% by weight of the fiber A and the thermoplastic polymers R4 and R5 having a melting point higher than that of the thermoplastic polymer R3 and having two different components are joined.
A fiber mixture consisting of 40 to 80% by weight is opened, and blown into a breathable mold together with gas to obtain a density of 0.02 to 0.
It is a method for producing a fiber molded body, characterized in that a material filled with 10 g / cm 3 is subjected to a heat treatment at 80 to 200 ° C.

【0012】以下、本発明について詳細に説明する。The present invention will be described in detail below.

【0013】本発明の繊維混合物は複合繊維Aと複合繊
維Bとから構成され、繊維成形体は複合繊維Aの相互間
および複合繊維Aと複合繊維Bとの間の接触点の少なく
とも一部が融着して成形されてなる。図1〜5は複合繊
維Aおよび複合繊維Bの横断面の模式図を示す。図1は
同心型、図2,3は偏心型、図4はR3がR1とR2と
の複合繊維の表面の一部を構成する形態を示す。図5は
複合繊維Bを示す。
The fiber mixture of the present invention comprises a composite fiber A and a composite fiber B, and the fiber molded body has at least a part of contact points between the composite fibers A and between the composite fibers A and B. It is formed by fusion bonding. 1 to 5 show schematic views of cross sections of the composite fiber A and the composite fiber B. FIG. 1 shows a concentric type, FIGS. 2 and 3 show an eccentric type, and FIG. 4 shows a form in which R3 constitutes a part of the surface of the composite fiber of R1 and R2. FIG. 5 shows the composite fiber B.

【0014】本発明に用いる複合繊維Aは主に熱可塑性
重合体R1,R2,R3の3成分からなり、2種の異な
る成分の熱可塑性重合体R1とR2が接合された芯部の
表面側に、鞘部として熱可塑性重合体R3が複合された
構造を有するものである。
The composite fiber A used in the present invention is mainly composed of three components of thermoplastic polymers R1, R2 and R3, and the surface side of the core portion where the two different components of the thermoplastic polymers R1 and R2 are joined. In addition, it has a structure in which the thermoplastic polymer R3 is compounded as a sheath portion.

【0015】また、複合繊維Aは熱処理により、複合繊
維Aもしくは複合繊維Bに融着する性質、すなわち熱接
着性を有するのが好ましい。
Further, it is preferable that the composite fiber A has a property of being fused to the composite fiber A or the composite fiber B by heat treatment, that is, a thermal adhesive property.

【0016】2種の異なる成分の熱可塑性重合体R1お
よびR2の組み合せは熱処理により潜在捲縮を効果的に
発現させる観点から、繊維状に形成された後、熱水や乾
熱処理で収縮率差が発揮される組み合せであることが望
ましい。
The combination of two different types of thermoplastic polymers R1 and R2 has a difference in shrinkage ratio after being formed into a fibrous shape by hot water or dry heat treatment from the viewpoint of effectively developing latent crimps by heat treatment. It is desirable that the combination is such that

【0017】熱可塑性重合体R1としては、例えば、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリヘキサメチレンテレフタレート等の炭素数2〜
8のメチレン基を有するポリアルキレンテレフタレー
ト、4−ナトリウムスルホイソフタル酸又は5−ナトリ
ウムスルホイソフタル酸、5−カリウムスルホイソフタ
ル酸、4−ナトリウムスルホ2,6−ナフタレンジカル
ボン酸等の金属スルホネート基を有する芳香族ジカルボ
ン酸、イソフタル酸、フタル酸、2,6−ナフタレンジ
カルボン酸等の芳香族ジカルボン酸、アジピン酸、セバ
チン酸等の脂肪族ジカルボン酸等を共重合したポリアル
キレンテレフタレート、プロピレングリコール、1,4
−ブタンジオール、ジエチレングリコール等のグリコー
ルを共重合したポリアルキレンテレフタレート、ペンタ
エリトリトール等のポリオールを共重合したポリアルキ
レンテレフタレート、ポリエチレングリコール、ポリプ
ロピレングリコール、ポリテトラメチレングリコール等
のポリアルキレングリコールを共重合したポリアルキレ
ンテレフタレート、ヒドロキシ安息香酸等のオキシ酸を
共重合したポリアルキレンテレフタレート等が挙げら
れ、これらの共重合成分による変性率は15モル%以下
であることが好ましい。前記のなかでも、より好ましく
用いられるのはエチレンテレフタレート単位を主たる構
成単位とする共重合ポリエステルである。さらに好まし
いのは共重合成分として、イソフタル酸、フタル酸、オ
キシ安息香酸、ビスフェノールA等を用いたポリエチレ
ンテレフタレート系共重合ポリエステルである。
As the thermoplastic polymer R1, for example, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, etc. having 2 to 2 carbon atoms can be used.
Aromatic compounds having a metal sulfonate group such as polyalkylene terephthalate having 8 methylene groups, 4-sodium sulfoisophthalic acid or 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, 4-sodium sulfo-2,6-naphthalenedicarboxylic acid Group dicarboxylic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid and other aromatic dicarboxylic acids, adipic acid, sebacic acid and other aliphatic dicarboxylic acids and the like polyalkylene terephthalate, propylene glycol, 1,4
-Polyalkylene terephthalate copolymerized with butanediol, glycol such as diethylene glycol, polyalkylene terephthalate copolymerized with polyol such as pentaerythritol, polyalkylene copolymerized with polyalkylene glycol such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol Examples thereof include terephthalate and polyalkylene terephthalate obtained by copolymerizing an oxy acid such as hydroxybenzoic acid. The modification ratio with these copolymerization components is preferably 15 mol% or less. Among the above, a copolymer polyester having an ethylene terephthalate unit as a main constituent unit is more preferably used. More preferred is a polyethylene terephthalate-based copolyester using isophthalic acid, phthalic acid, oxybenzoic acid, bisphenol A or the like as a copolymerization component.

【0018】熱可塑性重合体R2としては、R1との組
み合わせにより十分な潜在捲縮を繊維に付与せしめるも
のであれば特に限定されない。例えば、ポリエチレンテ
レフタレート、ナイロン−6、ナイロン−6,6、ナイ
ロン−6,10、ナイロン−10,9、ナイロン−1
1、ナイロン−12等のポリアミドが挙げられる。
The thermoplastic polymer R2 is not particularly limited as long as it can give a sufficient latent crimp to the fiber in combination with R1. For example, polyethylene terephthalate, nylon-6, nylon-6,6, nylon-6,10, nylon-10,9, nylon-1
1, and polyamides such as nylon-12.

【0019】熱可塑性重合体R1,R2の組み合わせは
高い潜在捲縮を繊維に付与せしめるものであれば任意に
選択できる。優れた形態固定性,圧縮特性付与の観点か
ら、好ましくはポリエステル同士の組み合わせがよい。
The combination of the thermoplastic polymers R1 and R2 can be arbitrarily selected as long as it can impart a high latent crimp to the fiber. From the viewpoint of imparting excellent morphological fixability and compression characteristics, it is preferable to use a combination of polyesters.

【0020】また、熱可塑性重合体R1,R2の固有粘
度は特に限定されるものではないが、紡糸安定性の観点
からR1で0.45〜0.65程度が好ましく、R2で
0.55〜0.70程度が好ましい。熱可塑性重合体R
3としては、例えば、ポリエチレン、ポリプロピレン、
エチレンプロピレン共重合体、エチレンブテン共重合
体、エチレンブテン共重合体、エチレン酢酸ビニル共重
合体等のポリオレフィンまたはオレフィン共重合体、ポ
リヘキサメチレンテレフタレート、ポリヘキサメチレン
ブチレンテレフタレート、ポリヘキサメチレンテレフタ
レートイソフタレート等のポリエステルあるいは共重合
ポリエステル等の熱可塑性ポリマーが挙げられる。熱可
塑性重合体R3の選択においては、前記の熱可塑性重合
体R1またはR2のうち融点が低いものよりR3の融点
を低くするものである。熱接着性の観点から、20℃以
上低いのが好ましく、25℃以上低いのがより好まし
い。
The intrinsic viscosity of the thermoplastic polymers R1 and R2 is not particularly limited, but from the viewpoint of spinning stability, R1 is preferably about 0.45 to 0.65, and R2 is 0.55 to 0.55. About 0.70 is preferable. Thermoplastic polymer R
Examples of 3 include polyethylene, polypropylene,
Polyolefin or olefin copolymer such as ethylene propylene copolymer, ethylene butene copolymer, ethylene butene copolymer, ethylene vinyl acetate copolymer, polyhexamethylene terephthalate, polyhexamethylene butylene terephthalate, polyhexamethylene terephthalate isophthalate And a thermoplastic polymer such as a copolyester. In selecting the thermoplastic polymer R3, the melting point of R3 is made lower than that of the thermoplastic polymers R1 or R2 having a lower melting point. From the viewpoint of thermal adhesiveness, it is preferably 20 ° C. or higher, and more preferably 25 ° C. or higher.

【0021】また、接着の効果や熱劣化を防止する観点
からR3の融点は80〜170℃の範囲に含まれるのが
好ましく、100〜170℃の範囲に含まれるのはより
好ましい。
From the viewpoint of the effect of adhesion and prevention of thermal deterioration, the melting point of R3 is preferably in the range of 80 to 170 ° C, more preferably in the range of 100 to 170 ° C.

【0022】複合繊維Aにおける熱可塑性重合体の重量
比R1/R2は30/70〜70/30とするものであ
る。好ましくは40/60〜60/40である。R1ま
たはR2のいずれかが30重量%未満になると、R1,
R2の捲縮発現能力が低下し、目的とするソフトで応力
損失の低い繊維成形体が得られにくくなる問題がある。
The weight ratio R1 / R2 of the thermoplastic polymer in the composite fiber A is 30/70 to 70/30. It is preferably 40/60 to 60/40. If either R1 or R2 is less than 30% by weight, R1,
There is a problem that the crimping ability of R2 is lowered, and it becomes difficult to obtain a desired fiber molded body having a low stress loss.

【0023】また、R1およびR2の粘度差が原因とな
って紡糸口金の吐出部で吐出糸条が曲がるニーリング現
象を起こす傾向にあるので、重量比R1/R2を45/
55〜55/45とすることがニーリング現象を有効に
防止する観点からさらに好ましい。
Further, since the viscosity difference between R1 and R2 tends to cause a kneeling phenomenon in which the discharge yarn is bent at the discharge part of the spinneret, the weight ratio R1 / R2 is 45 /.
It is more preferably 55 to 55/45 from the viewpoint of effectively preventing the kneeling phenomenon.

【0024】熱可塑性重合体R1,R2,R3の重量比
R3/(R1+R2)は20/80〜60/40とする
ものである。好ましくは20/80〜50/50であ
る。
The weight ratio R3 / (R1 + R2) of the thermoplastic polymers R1, R2 and R3 is 20/80 to 60/40. It is preferably 20/80 to 50/50.

【0025】熱可塑性重合体R3の重量が20%未満に
なると、繊維間の熱接着性が十分に得られなくなり、製
造した繊維成形体の形態固定性が悪くなる問題がある。
If the weight of the thermoplastic polymer R3 is less than 20%, the thermal adhesiveness between the fibers cannot be sufficiently obtained, and there is a problem that the morphological fixability of the produced fiber molding is deteriorated.

【0026】一方、R3の重量が60%を越えると、繊
維成形体のソフト感が得られにくくなると同時に圧縮残
留歪が大きくなる問題がある。
On the other hand, if the weight of R3 exceeds 60%, it becomes difficult to obtain a soft feeling of the fiber molding, and at the same time, the residual compression strain becomes large.

【0027】熱可塑性重合体R1,R2の複合形態はR
1,R2を接合した構造、特にサイドバイサイド型の構
造にするのが、三次元捲縮を発現しやすくさせるために
は好ましい。複合繊維Aは図1に示すR1とR2との芯
部を形成し、R3を鞘とする同心型芯鞘構造または図
2,3に示す偏心型芯鞘構造、あるいは図4に示す熱可
塑性重合体R3がR1とR2との芯部の表面の一部を構
成する構造をとることができる。複合繊維Aには、この
他必要に応じてR1〜R3以外の重合体成分、顔料、耐
候剤などを、本来の機能を喪失しないかぎり、添加する
ことも好ましい。このような複合繊維Aは通常の複合紡
糸法によって製造することができる。
The composite form of the thermoplastic polymers R1 and R2 is R
A structure in which 1 and R2 are bonded, particularly a side-by-side structure, is preferable in order to easily develop the three-dimensional crimp. The composite fiber A forms a core portion of R1 and R2 shown in FIG. 1, and has a concentric core-sheath structure having R3 as a sheath, an eccentric core-sheath structure shown in FIGS. 2 and 3, or a thermoplastic heavy fiber shown in FIG. It is possible to adopt a structure in which the united R3 constitutes a part of the surface of the core portion of R1 and R2. It is also preferable to add polymer components other than R1 to R3, pigments, weatherproofing agents and the like to the conjugate fiber A, if necessary, unless the original functions are lost. Such a composite fiber A can be manufactured by an ordinary composite spinning method.

【0028】次に、本発明の繊維成形体にソフト感を付
与し、圧縮に対する応力損失を低くするためには複合繊
維Aが三次元捲縮を有するのが好ましい。
Next, in order to give a soft feeling to the fiber molded article of the present invention and reduce the stress loss due to compression, it is preferable that the conjugate fiber A has a three-dimensional crimp.

【0029】その捲縮は複合繊維Aに無荷重下で80℃
〜200℃の熱処理を施すことにより発現させるのが好
ましい。
The crimp is applied to the composite fiber A at 80 ° C. under no load.
It is preferable to develop it by performing a heat treatment at ˜200 ° C.

【0030】三次元捲縮の捲縮数は少なくとも30山/
25mmで捲縮度が少なくとも25%となるのが望まし
い。この捲縮は潜在タイプにすることが望ましい。
The number of crimps in the three-dimensional crimp is at least 30 peaks /
It is desirable that the crimping degree is 25% at 25 mm. It is desirable to make this crimp a latent type.

【0031】つまり繊維成形体を製造する前の繊維の状
態で、強い捲縮が発現していると、繊維同士の絡み合い
が強すぎて、均一な密度の繊維成形体が得られにくくな
る。繊維成形体の製造工程での繊維の取り扱い性を向上
させ、潜在捲縮の発現性を高めるためには、熱処理前に
一定の範囲で軽い機械捲縮を付与しておくことが好まし
い。熱処理前の捲縮数は3〜20山/25mmが好まし
く、より好ましくは3〜15山/25mmである。この
ような複合繊維Aは熱可塑性重合体R1,R2の固有粘
度差、延伸工程での定長熱処理条件、熱処理前の捲縮付
与時のトウ温度、押圧、捲縮付与後の捲縮固定のための
弛緩熱処理条件等を適正に選ぶことによって得ることが
できる。
That is, if strong crimps are developed in the state of the fibers before the fiber molded body is manufactured, the entanglement of the fibers is too strong, and it becomes difficult to obtain the fiber molded body having a uniform density. In order to improve the handleability of fibers in the manufacturing process of the fiber molded body and enhance the latent crimp developability, it is preferable to impart a light mechanical crimp within a certain range before the heat treatment. The number of crimps before heat treatment is preferably 3 to 20 ridges / 25 mm, more preferably 3 to 15 ridges / 25 mm. Such a composite fiber A has a difference in intrinsic viscosity between the thermoplastic polymers R1 and R2, a constant length heat treatment condition in the stretching step, a tow temperature at the time of applying crimp before the heat treatment, pressing, and crimp fixing after the crimp application. It can be obtained by appropriately selecting the relaxation heat treatment conditions and the like.

【0032】例えば、熱可塑性重合体R1として極限粘
度0.65〜0.69のポリエステルを用い、R2とし
て極限粘度0.53〜0.69のポリエステルを用い、
R3として極限粘度0.50〜0.60のポリエステル
を用い、これら3成分を複合紡糸し、適正倍率で延伸後
に、R3の融点より20℃以上低い温度で定長熱処理を
行って捲縮を潜在化させる。その後、スタフィングボッ
クス型クリンパなどのクリンパを用いて機械捲縮を付与
し、次いで、R3の融点より20℃以上低い温度で弛緩
熱処理を行って、捲縮を固定させる。
For example, a polyester having an intrinsic viscosity of 0.65 to 0.69 is used as the thermoplastic polymer R1, and a polyester having an intrinsic viscosity of 0.53 to 0.69 is used as R2.
A polyester having an intrinsic viscosity of 0.50 to 0.60 is used as R3, and these three components are composite-spun, stretched at an appropriate ratio, and then subjected to a fixed length heat treatment at a temperature lower than the melting point of R3 by 20 ° C. or more to cause crimping. Turn into After that, a mechanical crimp is applied using a crimper such as a stuffing box type crimper, and then a relaxation heat treatment is performed at a temperature lower than the melting point of R3 by 20 ° C. or more to fix the crimp.

【0033】なお、弛緩熱処理工程において潜在化させ
た三次元捲縮を顕在化させないためには、トウ温度を常
温から95℃までの温度範囲に設定し、機械捲縮を付与
した後、トウの集束性を乱さないように弛緩熱処理する
のが好ましい。
In order to prevent the latent three-dimensional crimps from being revealed in the relaxation heat treatment step, the tow temperature is set to a temperature range from room temperature to 95 ° C., mechanical crimps are applied, and then the tow It is preferable to perform a relaxation heat treatment so as not to disturb the focusing property.

【0034】また、弛緩熱処理温度を定長熱処理温度よ
り低めに設定することは繊維成形体の製造において潜在
捲縮の発現性を高める観点から好ましい。
Further, it is preferable to set the relaxation heat treatment temperature lower than the constant length heat treatment temperature from the viewpoint of enhancing the latent crimp developability in the production of the fiber molded body.

【0035】繊維混合物を構成する複合繊維Aとして
は、繊度が1〜10デニール、繊維長が10〜100m
mの短繊維が好ましく用いられる。
The composite fiber A constituting the fiber mixture has a fineness of 1 to 10 denier and a fiber length of 10 to 100 m.
m short fibers are preferably used.

【0036】次に、本発明に用いる複合繊維Bについて
説明する。
Next, the conjugate fiber B used in the present invention will be described.

【0037】複合繊維Bは熱可塑性重合体R3の融点よ
り高い融点を有する2種の異なる熱可塑性重合体R4と
R5を接合した複合繊維構造を有するものである。
The composite fiber B has a composite fiber structure in which two different thermoplastic polymers R4 and R5 having a melting point higher than that of the thermoplastic polymer R3 are joined.

【0038】R4およびR5の融点はR3の融点より2
0℃以上高いのが好ましく、25℃以上高いのはより好
ましい。
The melting points of R4 and R5 are 2 more than the melting point of R3.
It is preferably 0 ° C. or higher, and more preferably 25 ° C. or higher.

【0039】また、複合繊維Bは熱処理により潜在捲縮
が発現する性質を有するのが好ましい。2種の異なる成
分の熱可塑性重合体R4およびR5の組み合せは熱処理
により潜在捲縮を効果的に発現させる観点から、繊維状
に形成された後、熱水や乾熱処理で収縮率差が発揮され
る組み合せであることが望ましい。
Further, the composite fiber B preferably has a property of developing latent crimps by heat treatment. The combination of two different types of thermoplastic polymers R4 and R5 shows a shrinkage difference by hot water or dry heat treatment after being formed into a fibrous shape from the viewpoint of effectively developing latent crimps by heat treatment. It is desirable that the combination is

【0040】熱可塑性重合体R4としては、例えば、ポ
リエチレンテレフタレート、ポリブチレンテレフタレー
ト、ポリヘキサメチレンテレフタレート等の炭素数2〜
8のメチレン基を有するポリアルキレンテレフタレー
ト、4−ナトリウムスルホイソフタル酸又は5−ナトリ
ウムスルホイソフタル酸、5−カリウムスルホイソフタ
ル酸、4−ナトリウムスルホ−2,6−ナフタレンジカ
ルボン酸等の金属スルホネート基を有する芳香族ジカル
ボン酸、イソフタル酸、フタル酸、2,6−ナフタレン
ジカルボン酸等の芳香族ジカルボン酸、アジピン酸、セ
バチン酸等の脂肪族ジカルボン酸等を共重合したポリア
ルキレンテレフタレート、プロピレングリコール、1,
4−ブタンジオール、ジエチレングリコール等のグリコ
ールを共重合したポリアルキレンテレフタレート、ペン
タエリスリトール等のポリオールを共重合したポリアル
キレンテレフタレート、ポリエチレングリコール、ポリ
プロピレングリコール、ポリテトラメチレングリコール
等のポリアルキレングリコールを共重合したポリアルキ
レンテレフタレート、ヒドロキシ安息香酸等のオキシ酸
を共重合したポリアルキレンテレフタレート等が挙げら
れ、これらの共重合成分による変性率は15モル%以下
であることが好ましい。
As the thermoplastic polymer R4, for example, polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, etc. having 2 to 2 carbon atoms can be used.
Polyalkylene terephthalate having 8 methylene groups, 4-sodium sulfoisophthalic acid or 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, 4-sodium sulfo-2,6-naphthalenedicarboxylic acid and other metal sulfonate groups Aromatic dicarboxylic acids, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid and other aromatic dicarboxylic acids, adipic acid, sebacic acid and other aliphatic dicarboxylic acid copolymerized polyalkylene terephthalate, propylene glycol, 1,
Polyalkylene terephthalate obtained by copolymerizing glycol such as 4-butanediol and diethylene glycol, polyalkylene terephthalate obtained by copolymerizing polyol such as pentaerythritol, and polyalkylene glycol obtained by copolymerizing polyalkylene glycol such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol. Examples thereof include alkylene terephthalate and polyalkylene terephthalate obtained by copolymerizing an oxy acid such as hydroxybenzoic acid. The modification ratio with these copolymerization components is preferably 15 mol% or less.

【0041】前記のなかでも、好ましく用いられるの
は、エチレンテレフタレート単位を主たる構成単位とす
る共重合ポリエステルである。さらに好ましいのは共重
合成分として、イソフタル酸、フタル酸、オキシ安息香
酸、ビスフェノールA等を用いたポリエチレンテレフタ
レート系共重合ポリエステルである。
Among the above, preferably used is a copolyester having an ethylene terephthalate unit as a main constituent unit. More preferred is a polyethylene terephthalate-based copolyester using isophthalic acid, phthalic acid, oxybenzoic acid, bisphenol A or the like as a copolymerization component.

【0042】熱可塑性重合体R5はR4との組み合わせ
により十分な潜在捲縮を繊維に付与せしめるものであれ
ば特に限定されない。例えば、ポリエチレンテレフタレ
ート、ナイロン−6、ナイロン−6,6、ナイロン−
6,10、ナイロン−10,9、ナイロン−11、ナイ
ロン−12等のポリアミドが挙げられる。
The thermoplastic polymer R5 is not particularly limited as long as it can give a sufficient latent crimp to the fiber by combination with R4. For example, polyethylene terephthalate, nylon-6, nylon-6,6, nylon-
Polyamides such as 6,10, nylon-10, 9, nylon-11, and nylon-12 can be mentioned.

【0043】熱可塑性重合体R4,R5の組み合わせは
高い潜在捲縮を繊維に付与せしめるものであれば任意に
選択できる。優れた形態固定性,圧縮特性付与の観点か
ら、好ましくはポリエステル同士の組み合わせがよい。
The combination of the thermoplastic polymers R4 and R5 can be arbitrarily selected as long as it can impart a high latent crimp to the fiber. From the viewpoint of imparting excellent morphological fixability and compression characteristics, it is preferable to use a combination of polyesters.

【0044】また、熱可塑性重合体R4,R5の固有粘
度は特に限定されるものではないが、紡糸安定性の観点
からR4に関しては0.45〜0.65程度が好まし
く、R5に関しては0.55〜0.70程度が好まし
い。さらに捲縮を効果的に発現させる観点から、複合繊
維Bにおける熱可塑性重合体のR4/R5で表される重
量比は好ましくは10/90〜90/10であり、さら
に好ましくは40/60〜60/40である。
The intrinsic viscosity of the thermoplastic polymers R4 and R5 is not particularly limited, but from the viewpoint of spinning stability, R4 is preferably about 0.45 to 0.65, and R5 is about 0. It is preferably about 55 to 0.70. Further, from the viewpoint of effectively developing crimp, the weight ratio represented by R4 / R5 of the thermoplastic polymer in the composite fiber B is preferably 10/90 to 90/10, and more preferably 40/60 to. It is 60/40.

【0045】また、R4およびR5の粘度差が原因とな
って紡糸口金の吐出部で吐出糸条が曲がるニーリング現
象を起こす傾向にあるので、重量比R4/R5を45/
55〜55/45とすることが有効に防止する観点から
さらに好ましい。
Further, since the viscosity difference between R4 and R5 tends to cause a kneeling phenomenon in which the discharge yarn is bent at the discharge part of the spinneret, the weight ratio R4 / R5 is 45 /.
From the viewpoint of effectively preventing it, 55 to 55/45 is more preferable.

【0046】熱可塑性重合体R4,R5の複合形態はR
4,R5を接合した構造、特に図5で示すサイドバイサ
イド型の構造にするのが、三次元捲縮を発現しやすくさ
せるためには好ましい。複合繊維Bには、この他必要に
応じてR4,R5以外の重合体成分、顔料、耐候剤など
を、本来の機能を喪失しないかぎり、添加することも好
ましい。このような複合繊維Bは通常の複合紡糸法によ
って製造することができる。
The composite form of the thermoplastic polymers R4 and R5 is R
A structure in which 4, R5 are bonded, particularly a side-by-side structure shown in FIG. 5, is preferable in order to easily develop the three-dimensional crimp. It is also preferable to add polymer components other than R4 and R5, pigments, weatherproofing agents and the like to the conjugate fiber B, if necessary, unless the original functions are lost. Such a composite fiber B can be manufactured by an ordinary composite spinning method.

【0047】次に、本発明の繊維成形体にソフト感を付
与し、圧縮に対する応力損失を低くするためには、複合
繊維Bが三次元捲縮を有するのが好ましい。
Next, in order to impart a soft feeling to the fiber molded article of the present invention and reduce the stress loss due to compression, it is preferable that the composite fiber B has a three-dimensional crimp.

【0048】その捲縮は複合繊維Bに無荷重下で80〜
200℃の熱処理を施すことにより発現させるのが好ま
しい。
The crimp is 80 to 80 in the composite fiber B under no load.
It is preferable to develop it by performing a heat treatment at 200 ° C.

【0049】三次元捲縮の捲縮数は少なくとも30山/
25mmで捲縮度が少なくとも25%となるのが望まし
い。しかし、この捲縮は潜在タイプにすることが望まし
い。つまり繊維成形体を製造する前の繊維の状態で、強
い捲縮が発現していると、繊維同士の絡み合いが強すぎ
て、均一な密度の繊維成形体が得られにくくなる。繊維
成形体の製造工程での繊維の取り扱い性を向上させ、潜
在捲縮の発現性を高めるためには、熱処理前に一定の範
囲で軽い捲縮を付与しておくことが好ましい。熱処理前
の捲縮数は3〜20山/25mmが好ましく、より好ま
しくは3〜15山/25mmである。
The number of crimps in the three-dimensional crimp is at least 30 ridges /
It is desirable that the crimping degree is 25% at 25 mm. However, it is desirable to make this crimp a latent type. That is, when strong crimps are developed in the state of the fibers before the fiber molded body is manufactured, the entanglement of the fibers is too strong, and it becomes difficult to obtain the fiber molded body having a uniform density. In order to improve the handleability of the fibers in the manufacturing process of the fiber molded body and enhance the latent crimp developability, it is preferable to apply a light crimp within a certain range before the heat treatment. The number of crimps before heat treatment is preferably 3 to 20 ridges / 25 mm, more preferably 3 to 15 ridges / 25 mm.

【0050】繊維混合物を構成する複合繊維Bとして
は、繊度が0.5〜30デニール、繊維長が10〜10
0mmの短繊維が好ましく用いられる。
The composite fiber B constituting the fiber mixture has a fineness of 0.5 to 30 denier and a fiber length of 10 to 10
Short fibers of 0 mm are preferably used.

【0051】本発明の繊維混合物は前記の複合繊維Aと
複合繊維BがA/Bで表される重量比が20/80〜6
0/40とするものである。複合繊維Aが20重量%未
満であると、繊維同士の熱接着性が不十分になって、製
造された繊維成形体の形態固定性が悪くなるという問題
がある。
In the fiber mixture of the present invention, the weight ratio of the composite fiber A and the composite fiber B expressed by A / B is 20/80 to 6
It is set to 0/40. When the content of the composite fiber A is less than 20% by weight, there is a problem that the thermal adhesiveness between the fibers becomes insufficient and the shape fixability of the manufactured fiber molded product is deteriorated.

【0052】また、複合繊維Aが60重量%を越える
と、繊維成形体のソフト感が低下し、触感が粗硬になる
問題がある。
Further, if the content of the composite fiber A exceeds 60% by weight, the soft feeling of the fiber molding is deteriorated and the tactile feeling becomes coarse and hard.

【0053】本発明においては、前記重量比の複合繊維
Aと複合繊維Bとを、通常の紡績工程で使用する給綿
機、混綿機、開繊機によって、十分に混綿、開繊して本
発明の繊維混合物を得ることができる。十分に混綿、開
繊することにより、本発明の繊維混合物を用いて製造さ
れた繊維成形体の密度や硬度が均一になり、かつ、複合
繊維Aの潜在捲縮を十分に発現させて、繊維成形体のソ
フト感、耐圧縮疲労性を高めることができる。
In the present invention, the above-mentioned weight ratio of the composite fiber A and the composite fiber B is sufficiently mixed and opened by a cotton feeding machine, a cotton mixing machine and a fiber opening machine used in a usual spinning process. It is possible to obtain a fiber mixture of By sufficiently mixing and opening the fibers, the density and hardness of the fiber molded product produced by using the fiber mixture of the present invention become uniform, and the latent crimp of the composite fiber A is sufficiently expressed to obtain fibers. The softness and compression fatigue resistance of the molded product can be enhanced.

【0054】本発明の繊維成形体の製造方法は以下に示
す方法による。
The method for producing the fiber molding of the present invention is as follows.

【0055】つまり、複合繊維Aと複合繊維Bの繊維混
合物を開繊し、目的に応じた形状の通気性型枠に送綿フ
ァンによる空気流などの気体と共に吹き込んで充填す
る。
That is, the fiber mixture of the composite fiber A and the composite fiber B is opened, and the air-permeable mold having a shape suitable for the purpose is blown and filled with a gas such as an air flow from a cotton feeding fan.

【0056】吹き込んで充填するためには、型枠が適度
の通気性を有する必要がある。例えば、JIS L 1
079−1966フラジール型通気性試験機により測定
した際においては、通気性は5〜200cc/cm2
secの範囲が好ましい。
In order to blow and fill the mold, it is necessary that the mold has an appropriate air permeability. For example, JIS L 1
The air permeability is 5 to 200 cc / cm 2 · when measured by a 079-1966 Frazier type air permeability tester.
The range of sec is preferable.

【0057】このような型枠としては、例えば、図6に
示すパンチング金属板を用いた金型6,7を用いること
ができる。通気性型枠内に吹き込まれた繊維はタテ、ヨ
コ、厚み方向にランダムに配列した状態となる。
As such a mold, for example, dies 6 and 7 using a punching metal plate shown in FIG. 6 can be used. The fibers blown into the breathable mold are vertically, horizontally and randomly arranged in the thickness direction.

【0058】次に、充填した繊維混合物を圧縮して、得
ようとする繊維混合物の用途に応じて適切な密度にする
ものである。密度は0.02〜0.10g/cm3 とす
るものである。好ましくは0.025〜0.095g/
cm3 である。密度が0.02g/cm3 未満では、繊
維混合物がソフトすぎて形態固定性が悪くなり、希望の
形状に裁断、成形しにくくなる問題がある。密度が0.
10g/cm3 を越えると、繊維混合物のソフト性が低
下する問題がある。
Next, the filled fiber mixture is compressed to a suitable density according to the intended use of the fiber mixture. The density is 0.02 to 0.10 g / cm 3 . Preferably 0.025-0.095 g /
It is cm 3 . If the density is less than 0.02 g / cm 3 , there is a problem that the fiber mixture becomes too soft and the shape fixability deteriorates, and it becomes difficult to cut and mold it into a desired shape. The density is 0.
If it exceeds 10 g / cm 3 , there is a problem that the softness of the fiber mixture deteriorates.

【0059】さらに、充填した繊維混合物を熱処理する
ものである。熱処理温度は80〜200℃とするもので
ある。熱処理温度が80℃に満たないと十分な熱接着が
得られなく、200℃を超えると繊維混合物を構成する
繊維が劣化する問題がある。この熱処理により、複合繊
維Aの熱可塑性重合体R3はR1〜5と接着性を有し、
結果的に複合繊維A相互間の接触点の少なくとも一部お
よび複合繊維Aと複合繊維Bとの間の接触点の少なくと
も一部を接着することができる。
Further, the filled fiber mixture is heat-treated. The heat treatment temperature is set to 80 to 200 ° C. If the heat treatment temperature is lower than 80 ° C., sufficient thermal adhesion cannot be obtained, and if it exceeds 200 ° C., the fibers constituting the fiber mixture deteriorate. By this heat treatment, the thermoplastic polymer R3 of the composite fiber A has adhesiveness with R1-5,
As a result, at least some of the contact points between the composite fibers A and at least some of the contact points between the composite fibers A and B can be bonded.

【0060】熱処理時間は繊維混合物の密度等によっ
て、適宜選択するのが好ましい。
The heat treatment time is preferably selected appropriately depending on the density of the fiber mixture and the like.

【0061】[0061]

【実施例】次に本発明を実施例、比較例によりさらに詳
細に説明する。本発明に記載した諸特性の測定法を次に
示す。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. The methods for measuring various properties described in the present invention are shown below.

【0062】[熱処理前の捲縮数および捲縮度]複合繊
維の短繊維100gをオープナーで開繊後、ローラーカ
ードでカーディングしてウエッブを作り、このウエッブ
(大きさ:20cm×20cm、重量:25g)の中央
部から、10〜20本の短繊維を、捲縮が引き伸ばされ
ないように取りだし、JIS L 1015−7−12
−1およびJIS L 1015−7−12−2の方法
に準じて測定した。
[Number of crimps and degree of crimp before heat treatment] 100 g of the short fibers of the composite fiber were opened with an opener and carded with a roller card to make a web, and the web (size: 20 cm × 20 cm, weight) : 25 g), 10 to 20 short fibers are taken out from the center so that the crimps are not stretched. JIS L 1015-7-12
-1 and JIS L 1015-7-12-2.

【0063】[熱処理後の捲縮数および捲縮度]複合繊
維の短繊維100gをオープナーで開繊後、ローラーカ
ードでカーディングしてウエッブを作り、このウエッブ
(大きさ:20cm×20cm、重量:25g)を18
0℃のオーブンで3分間熱処理した。熱処理後、ウエッ
ブの中央部から、10〜20本の短繊維を、捲縮が引き
伸ばされないように取りだし、JIS L 1015−
7−12−1およびJIS L 1015−7−12−
2の方法に準じて測定した。
[Number of crimps and degree of crimp after heat treatment] 100 g of the short fibers of the composite fiber were opened with an opener and carded with a roller card to make a web. The web (size: 20 cm × 20 cm, weight) : 25 g) 18
Heat treatment was performed in an oven at 0 ° C. for 3 minutes. After the heat treatment, 10 to 20 short fibers were taken out from the center of the web so that the crimps would not be stretched, and JIS L 1015-
7-12-1 and JIS L 1015-7-12-
It measured according to the method of 2.

【0064】[極限粘度]O−クロロフェノール溶液中
25℃で常法に従い測定した。
[Intrinsic Viscosity] It was measured in an O-chlorophenol solution at 25 ° C. according to a conventional method.

【0065】[繊度]JIS L 1015−7−51
Aの方法に準じて測定した。
[Fineness] JIS L 1015-7-51
It measured according to the method of A.

【0066】[平均繊維長(カット長)]JIS L
1015A法(ステープルダイヤグラム法)に準じて測
定した。 [収縮率]JIS L 1015−7−15−2の方法
に準じて測定した。
[Average Fiber Length (Cut Length)] JIS L
It was measured according to the 1015A method (staple diagram method). [Shrinkage rate] It was measured according to the method of JIS L 1015-7-15-2.

【0067】[圧縮残留歪]一辺が100mmの正方
形、厚さ100mmの試験片を、厚み方向に50%圧縮
した状態で、70±1℃の温度の恒温漕中で22時間処
理した後、圧縮を解き室温で30分間放置した。その
後、厚さ(t1 mm)を測定し、次式により圧縮残留歪
を求めた。
[Compression Residual Strain] A square test piece having a side of 100 mm and a thickness of 100 mm was compressed by 50% in the thickness direction in a constant temperature bath at a temperature of 70 ± 1 ° C. for 22 hours and then compressed. Was left for 30 minutes at room temperature. Then, the thickness (t 1 mm) was measured, and the compressive residual strain was determined by the following equation.

【0068】圧縮残留歪(%)=[(100−t1 )/
100]×100 [繊維成形体の密度]試験片(タテ:20cm、ヨコ:
20cm、厚さ:20cm)を温度20℃、湿度65%
の雰囲気中に24時間放置した後の重量(w)を測定
し、次式で求めた。
Compressive residual strain (%) = [(100-t 1 ) /
100] × 100 [Density of fiber molding] Test piece (vertical: 20 cm, horizontal:
20 cm, thickness: 20 cm) temperature 20 ° C, humidity 65%
The weight (w) after standing for 24 hours in the atmosphere was measured and calculated by the following formula.

【0069】密度(g/cm3 )=w/8000 [形態固定性・ソフト性]触感によって、優(◎)から
不可(×)まで6段階に分類した。
Density (g / cm 3 ) = w / 8000 [Shape fixing / softness] The texture was classified into 6 grades from excellent (⊚) to unacceptable (×).

【0070】[多方向裁断性]試験片を任意の方向に裁
断した際の、裁断の容易さによって優(◎)から不可
(×)まで6段階に分類した。
[Multidirectional cutting property] The test pieces were classified into 6 grades from excellent (⊚) to unacceptable (x) depending on the ease of cutting when cutting in arbitrary directions.

【0071】[実施例1]熱可塑性重合体R1としてイ
ソフタル酸を7モル%とビスフェノールAを4.5モル
%を共重合した極限粘度が0.65、融点が214℃で
あるポリエチレンテレフタレート系ポリエステルを用
い、R2として極限粘度が0.65、融点が255℃で
あるポリエチレンテレフタレートを用い、R3としてイ
ソフタル酸40モル%共重合した極限粘度が0.55、
融点が110℃であるポリエチレンテレフタレート系ポ
リエステルを用い、重量比でR1が40%、R2が40
%、R3が20%である3成分複合繊維Aを孔数が24
である紡糸口金から吐出量18.11g/分、紡糸温度
285℃、引取り速度1350m/分で紡糸することに
よって得た。
Example 1 Polyethylene terephthalate polyester having an intrinsic viscosity of 0.65 and a melting point of 214 ° C. obtained by copolymerizing 7 mol% of isophthalic acid and 4.5 mol% of bisphenol A as a thermoplastic polymer R1. And polyethylene terephthalate having an intrinsic viscosity of 0.65 and a melting point of 255 ° C. as R2, and an intrinsic viscosity of 0.55 obtained by copolymerizing 40 mol% of isophthalic acid as R3,
Polyethylene terephthalate polyester having a melting point of 110 ° C. is used, and R1 is 40% and R2 is 40% by weight.
%, R3 is 20%, the three-component composite fiber A has a pore number of 24
Was obtained by spinning from a spinneret at a discharge rate of 18.11 g / min, a spinning temperature of 285 ° C. and a take-up speed of 1350 m / min.

【0072】次いで、該未延伸糸を延伸後のトウデニー
ルが10万デニールとなるべく合糸して、延伸倍率3.
0倍、延伸浴温度80℃で延伸し、クリンパで捲縮数が
9.4山/25mm、捲縮度が9.1%となるように捲
縮を付与した。さらに、70℃の熱セッターで乾燥した
後、仕上げ油剤を付与して、カット長64mmに切断し
て、繊度が1.9デニール、表面層の融点が約110℃
の複合繊維Aを得た。これとは別に、熱可塑性重合体R
4としてイソフタル酸を7モル%とビスフェノールAを
4.5モル%を共重合した極限粘度が0.65、融点が
214℃であるポリエチレンテレフタレート系ポリエス
テルを用い、R5として極限粘度が0.65、融点が2
55℃のポリエチレンテレフタレートを用い、重量比で
R4が50%、R5が50%である2成分複合繊維Bを
孔数が24である紡糸口金から、吐出し、紡糸温度28
5℃、引取り速度1350m/分で紡糸することによっ
て得た。
Then, the unstretched yarns are combined to obtain a tow denier of 100,000 denier after stretching, and a draw ratio of 3.
It was drawn 0 times at a drawing bath temperature of 80 ° C., and crimped with a crimper so that the number of crimps was 9.4 crests / 25 mm and the crimping degree was 9.1%. Furthermore, after drying with a heat setter at 70 ° C, a finishing oil agent is applied and cut into a cut length of 64 mm, the fineness is 1.9 denier, and the melting point of the surface layer is about 110 ° C.
A composite fiber A of Apart from this, the thermoplastic polymer R
Polyethylene terephthalate polyester having an intrinsic viscosity of 0.65 and a melting point of 214 ° C. obtained by copolymerizing 7 mol% of isophthalic acid and 4.5 mol% of bisphenol A is used as 4, and the intrinsic viscosity of R5 is 0.65. Melting point 2
Using polyethylene terephthalate at 55 ° C., a bicomponent composite fiber B in which R4 is 50% and R5 is 50% by weight is discharged from a spinneret having 24 holes, and a spinning temperature is 28.
It was obtained by spinning at 5 ° C. and a take-off speed of 1350 m / min.

【0073】次いで、この未延伸糸を延伸後のトウデニ
ールが約10万デニールとなるべく合糸して、延伸倍率
3.0倍、延伸浴温度80℃で延伸し、クリンパで捲縮
数が11山/25mm、捲縮度が8.2%となるように
捲縮を付与した。
Next, the unstretched yarn was combined with a tow denier of about 100,000 denier after stretching, stretched at a draw ratio of 3.0 times and at a stretching bath temperature of 80 ° C., and crimped with 11 crimps. / 25 mm, crimping was applied so that the crimping degree was 8.2%.

【0074】さらに、70℃の熱セッターで乾燥した
後、仕上げ油剤を付与して、カット長64mmに切断し
て、繊度が6.1デニールの短繊維を複合繊維Bとして
得た。重量比で40%の複合繊維Aと60%の複合繊維
Bを混綿し、ローラカードでさらに混綿・開繊して繊維
混合物を得た。この繊維混合物を、金型の吹込口8か
ら、各面にパンチングが施された内面が500×500
mmの下金型6に、空気流と共に吹き込んだ。各面にパ
ンチングが施された上金型7によって吹き込まれた繊維
混合物9を充填密度0.042g/cm3 まで圧縮して
厚さ200mmで固定した。金型に圧縮固定した繊維混
合物9を、通常、紡績糸のセットに使用するヒートセッ
ターを用いて、蒸熱130℃で30分間熱セットし、複
合繊維Aと複合繊維Bとの接触点および複合繊維A間の
接触点で熱接着した繊維成形体を得た。
Further, after drying with a heat setter at 70 ° C., a finishing oil agent was applied and cut into a cut length of 64 mm to obtain short fibers having a fineness of 6.1 denier as a composite fiber B. 40% by weight of the composite fiber A and 60% of the composite fiber B were mixed and further mixed and opened with a roller card to obtain a fiber mixture. The fiber mixture was blown through the die inlet port 8 and the inner surface punched on each side was 500 × 500.
It was blown into the lower die 6 mm with the air flow. The fiber mixture 9 blown by the upper die 7 having each surface punched was compressed to a packing density of 0.042 g / cm 3 and fixed at a thickness of 200 mm. The fiber mixture 9 compressed and fixed in the mold is heat set at 130 ° C. for 30 minutes by steam using a heat setter normally used for setting spun yarns, and the contact point between the composite fibers A and the composite fibers B and the composite fibers are set. A fiber molded body was obtained which was heat-bonded at the contact point between A and A.

【0075】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0076】繊維成形体を構成する複合繊維A、複合繊
維Bの特性を表1に示す。
Table 1 shows the characteristics of the composite fiber A and the composite fiber B constituting the fiber molded body.

【0077】[0077]

【表1】 また繊維成形体の特性を表2に示す。[Table 1] Table 2 shows the characteristics of the fiber molded body.

【0078】[0078]

【表2】 [実施例2]使用する熱可塑性重合体R1〜R5は実施
例1と同一であった。重量比でR1が25%、R2が2
5%、R3が50%である複合繊維Aを実施例1と同様
な方法によって得た。
[Table 2] [Example 2] The thermoplastic polymers R1 to R5 used were the same as in Example 1. 25% R1 and 2 R2 by weight
A composite fiber A with 5% and R3 of 50% was obtained by the same method as in Example 1.

【0079】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60%
となる繊維成形体を実施例1と同様な方法で得た。
Using the conjugate fiber B used in Example 1, 40% by weight of the conjugate fiber A and 60% by weight of the conjugate fiber B were used.
A fiber molded body having the following formula was obtained in the same manner as in Example 1.

【0080】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle down, was light and soft, and had a comfortable use feeling.

【0081】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0082】[実施例3]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が20
%、R2が20%、R3が60%である複合繊維Aを実
施例1と同様な方法によって得た。
[Example 3] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 20 by weight
%, R2 was 20%, and R3 was 60% to obtain a composite fiber A by the same method as in Example 1.

【0083】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60%
となる繊維成形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 40% by weight of the composite fiber A and 60% by weight of the composite fiber B were used.
A fiber molded body having the following formula was obtained in the same manner as in Example 1.

【0084】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0085】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0086】[実施例4]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が15
%、R2が35%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
Example 4 Thermoplastic Polymer R1 Used
~ R5 were the same as in Example 1. R1 is 15 by weight
%, R2 35% and R3 50% were obtained in the same manner as in Example 1.

【0087】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.041g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 40% by weight of the composite fiber A and 60% by weight of the composite fiber B were used.
%, And a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1.

【0088】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0089】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0090】[実施例5]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が35
%、R2が15%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
Example 5 Thermoplastic Polymer R1 Used
~ R5 were the same as in Example 1. R1 is 35 by weight
%, R2 15% and R3 50% were obtained by the same method as in Example 1.

【0091】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.041g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the conjugate fiber B used in Example 1, 40% by weight of the conjugate fiber A and 60% by weight of the conjugate fiber B were used.
%, And a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1.

【0092】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0093】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0094】[実施例6]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
Example 6 Thermoplastic Polymer R1 Used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0095】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが20%、複合繊維Bが80
%、その充填密度が0.041g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the conjugate fiber B used in Example 1, 20% by weight of the conjugate fiber A and 80% by weight of the conjugate fiber B were used.
%, And a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1.

【0096】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0097】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0098】[実施例7]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Example 7] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0099】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが60%、複合繊維Bが40
%、その充填密度が0.042g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 60% by weight of the composite fiber A and 40% by weight of the composite fiber B were used.
%, And a packing density of 0.042 g / cm 3 was obtained in the same manner as in Example 1.

【0100】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable usability.

【0101】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0102】[実施例8]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Example 8] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0103】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.020g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 40% by weight of the composite fiber A and 60% of the composite fiber B were used.
%, And a packing density of 0.020 g / cm 3 was obtained in the same manner as in Example 1.

【0104】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0105】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0106】[実施例9]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Example 9] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0107】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.051g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 40% by weight of the composite fiber A and 60% of the composite fiber B were used.
%, And a packing density of 0.051 g / cm 3 was obtained in the same manner as in Example 1.

【0108】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0109】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 1 and 2 together.

【0110】[実施例10]使用する熱可塑性重合体R
1〜R5は実施例1と同一であった。重量比でR1が2
5%、R2が25%、R3が50%である複合繊維Aを
実施例1と同様な方法によって得た。
[Example 10] Thermoplastic polymer R used
1 to R5 were the same as in Example 1. R1 is 2 by weight
A composite fiber A having 5%, R2 of 25% and R3 of 50% was obtained by the same method as in Example 1.

【0111】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.075g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the conjugate fiber B used in Example 1, 40% by weight of the conjugate fiber A and 60% by weight of the conjugate fiber B were used.
%, And a packing density of 0.075 g / cm 3 was obtained in the same manner as in Example 1.

【0112】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0113】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0114】[実施例11]使用する熱可塑性重合体R
1〜R5は実施例1と同一であった。重量比でR1が2
5%、R2が25%、R3が50%である複合繊維Aを
実施例1と同様な方法によって得た。
[Example 11] Thermoplastic polymer R used
1 to R5 were the same as in Example 1. R1 is 2 by weight
A composite fiber A having 5%, R2 of 25% and R3 of 50% was obtained by the same method as in Example 1.

【0115】また実施例1で使用した複合繊維Bを用い
て、重量比で複合繊維Aが40%、複合繊維Bが60
%、その充填密度が0.099g/cm3 である繊維成
形体を実施例1と同様な方法で得た。
Using the composite fiber B used in Example 1, 40% by weight of the composite fiber A and 60% of the composite fiber B were used.
%, And a packing density of 0.099 g / cm 3 was obtained in the same manner as in Example 1.

【0116】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
The fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0117】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0118】[実施例12]使用する熱可塑性重合体R
1〜R5は実施例1と同一であった。重量比でR1が2
5%、R2が25%、R3が50%である複合繊維Aを
実施例1と同様な方法によって得た。
[Example 12] Thermoplastic polymer R used
1 to R5 were the same as in Example 1. R1 is 2 by weight
A composite fiber A having 5%, R2 of 25% and R3 of 50% was obtained by the same method as in Example 1.

【0119】また重量比でR4が13%、R5が87%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.041g/cm3 である繊維
成形体を実施例1と同様な方法で得た。
Also, R4 is 13% and R5 is 87% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1.

【0120】この繊維成形体はへたりにくく、軽くてソ
フトであり、快適な使い心地を有するものであった。
This fiber molding was hard to settle, was light and soft, and had a comfortable use feeling.

【0121】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表1,2に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded body are shown in Tables 1 and 2 together.

【0122】[比較例1]使用する熱可塑性重合体R1
〜5は実施例1と同一であった。重量比でR1が45
%、R2が45%、R3が10%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 1] Thermoplastic polymer R1 used
5 were the same as in Example 1. R1 is 45 by weight
%, R2 was 45%, and R3 was 10% by the same method as in Example 1.

【0123】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.041g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体の複合繊維AはR3/(R1+R2)で表される重
量比が10/90となりR3の重量比が小さくなって繊
維成形体の形態固定性が悪いものとなった。
Also, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1. The composite fiber A of the obtained fiber molding had a weight ratio represented by R3 / (R1 + R2) of 10/90, and the weight ratio of R3 was small, resulting in poor shape fixability of the fiber molding.

【0124】繊維成形体を構成する複合繊維A、複合繊
維Bの特性を表3に示す。
Table 3 shows the characteristics of the composite fiber A and the composite fiber B which compose the fiber molded body.

【0125】[0125]

【表3】 また繊維成形体の特性を表4に示す。[Table 3] Table 4 shows the characteristics of the fiber molded body.

【0126】[0126]

【表4】 [比較例2]使用する熱可塑性重合体R1〜R5は実施
例1と同一であった。重量比でR1が15%、R2が1
5%、R3が70%である複合繊維Aを実施例1と同様
な方法によって得た。
[Table 4] [Comparative Example 2] The thermoplastic polymers R1 to R5 used were the same as in Example 1. R1 is 15% and R2 is 1 by weight
A composite fiber A with 5% and R3 of 70% was obtained by the same method as in Example 1.

【0127】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.041g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体の複合繊維AはR3/(R1+R2)で表される重
量比が70/30となりR3の重量比が大きくなって繊
維成形体のソフト性は劣ったものとなった。
Also, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.041 g / cm 3 was obtained in the same manner as in Example 1. The composite fiber A of the obtained fiber molding had a weight ratio represented by R3 / (R1 + R2) of 70/30, and the weight ratio of R3 was large, and the softness of the fiber molding was poor.

【0128】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0129】[比較例3]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が0
%、R2が50%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 3] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 0 by weight
%, R2 was 50%, and R3 was 50% to obtain a composite fiber A by the same method as in Example 1.

【0130】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.040g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体の複合繊維AはR1/R2で表される重量比が0/
100となりR1の重量比が小さくなって繊維成形体の
ソフト性は劣ったものとなった。
Also, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.040 g / cm 3 was obtained in the same manner as in Example 1. The composite fiber A of the obtained fiber molding has a weight ratio represented by R1 / R2 of 0 /
Since the weight ratio of R1 was reduced to 100, the softness of the fiber molding was inferior.

【0131】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0132】[比較例4]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が10
%、R2が40%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 4] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 10 by weight
%, R2 40% and R3 50% were obtained by the same method as in Example 1.

【0133】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.040g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体の複合繊維AのR1/R2で表される重量比が20
/80となりR1の重量比が小さくなって繊維成形体の
ソフト性は劣ったものとなった。
Further, by weight ratio, R4 is 50% and R5 is 50%.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.040 g / cm 3 was obtained in the same manner as in Example 1. The weight ratio represented by R1 / R2 of the composite fiber A of the obtained fiber molding is 20.
/ 80, the weight ratio of R1 was reduced, and the softness of the fiber molded product was inferior.

【0134】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0135】[比較例5]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が40
%、R2が10%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 5] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 40 by weight
%, R2 was 10%, and R3 was 50% to obtain a composite fiber A by the same method as in Example 1.

【0136】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.042g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体の複合繊維AのR1/R2で表される重量比が80
/20となりR2の重量比が小さくなって繊維成形体の
ソフト性は劣ったものとなった。
Further, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.042 g / cm 3 was obtained in the same manner as in Example 1. The weight ratio represented by R1 / R2 of the composite fiber A of the obtained fiber molding was 80.
Since the weight ratio of R2 was reduced to / 20, the softness of the fiber molded product was inferior.

【0137】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0138】[比較例6]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 6] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0139】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが10%、複合繊維Bが9
0%、その充填密度が0.040g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体は複合繊維Aの重量比が低いため形態固定性と多方
向裁断性に劣ったものとなった。
Further, by weight ratio, R4 is 50% and R5 is 50%.
Using the composite fiber B obtained in the same manner as in Example 1 except that the composite fiber A is 10% and the composite fiber B is 9% by weight.
A fiber molding having 0% and a packing density of 0.040 g / cm 3 was obtained in the same manner as in Example 1. The obtained fiber molded product was inferior in shape fixing property and multidirectional cutting property because the weight ratio of the composite fiber A was low.

【0140】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0141】[比較例7]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 7] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0142】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが70%、複合繊維Bが3
0%、その充填密度が0.042g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体は複合繊維Aの重量比が大きいためソフト性に劣っ
たものとなった。
Also, R4 is 50% and R5 is 50% by weight.
Using the composite fiber B obtained by the same method as in Example 1 except that the composite fiber A is 70% by weight and the composite fiber B is 3% by weight.
A fiber molding having 0% and a packing density of 0.042 g / cm 3 was obtained in the same manner as in Example 1. The obtained fiber molded product was inferior in softness because the weight ratio of the composite fiber A was large.

【0143】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0144】[比較例8]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 8] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0145】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.014g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体は充填密度が小さいため形態安定性および多方向裁
断性に劣ったものであった。
Also, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.014 g / cm 3 was obtained in the same manner as in Example 1. The obtained fiber molded product was inferior in shape stability and multidirectional cutting property because of its low packing density.

【0146】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0147】[比較例9]使用する熱可塑性重合体R1
〜R5は実施例1と同一であった。重量比でR1が25
%、R2が25%、R3が50%である複合繊維Aを実
施例1と同様な方法によって得た。
[Comparative Example 9] Thermoplastic polymer R1 used
~ R5 were the same as in Example 1. R1 is 25 by weight
%, R2 25% and R3 50% were obtained by the same method as in Example 1.

【0148】また重量比でR4が50%、R5が50%
である以外は実施例1と同一な方法で得た複合繊維Bを
用いて、重量比で複合繊維Aが40%、複合繊維Bが6
0%、その充填密度が0.112g/cm3 である繊維
成形体を実施例1と同様な方法で得た。得られた繊維成
形体は充填密度が大きいためソフト性に劣ったものとな
った。
Also, R4 is 50% and R5 is 50% by weight.
40% by weight of the composite fiber A and 6% of the composite fiber B were used by using the composite fiber B obtained by the same method as in Example 1 except that
A fiber molding having 0% and a packing density of 0.112 g / cm 3 was obtained in the same manner as in Example 1. The obtained fiber molding had a high packing density and thus was inferior in softness.

【0149】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0150】[比較例10]使用する熱可塑性重合体R
1,2は実施例1と同一であった。R3として実施例1
で使用した融点が214℃であるポリエチレンテレフタ
レートを用いた。重量比でR1が25%、R2が25
%、R3が50%である複合繊維Aを実施例1と同様な
方法によって得た。また重量比でR4が50%、R5が
50%である以外は実施例1と同一な方法で得た複合繊
維Bを用いて、重量比で複合繊維Aが40%、複合繊維
Bが60%の繊維混合物を実施例1と同様な方法で金型
に圧縮し、乾熱セッターを用いて220℃で60分間セ
ットして、その充填密度が0.042g/cm3 である
繊維成形体を得た。R3の融点がR1の融点より低くな
いため、熱接着性が悪く、形態固定性や多方向裁断性に
劣ったものしか得られなかった。
[Comparative Example 10] Thermoplastic polymer R used
1 and 2 were the same as in Example 1. Example 1 as R3
The polyethylene terephthalate having a melting point of 214 ° C. used in 1. was used. 25% by weight of R1 and 25 by weight of R2
% And R3 of 50% were obtained by the same method as in Example 1. Further, using the conjugate fiber B obtained by the same method as in Example 1 except that R4 is 50% and R5 is 50% by weight, the conjugate fiber A is 40% by weight and the conjugate fiber B is 60% by weight. The fiber mixture of Example 1 was compressed in a mold in the same manner as in Example 1 and set at 220 ° C. for 60 minutes using a dry heat setter to obtain a fiber molded body having a packing density of 0.042 g / cm 3. It was Since the melting point of R3 was not lower than the melting point of R1, only thermal adhesiveness was poor, and only those having inferior morphological fixability and multidirectional cutting property were obtained.

【0151】複合繊維A、複合繊維Bおよび繊維成形体
の特性を併せて表3,4に示す。
Properties of the composite fiber A, the composite fiber B and the fiber molded product are shown in Tables 3 and 4 together.

【0152】[0152]

【発明の効果】本発明の繊維混合物によれば、複合繊維
Aおよび複合繊維Bの三次元捲縮が潜在化し、繊維同志
が絡み合わずに接着するため圧縮残留歪も低くなって、
形態が安定し、軽くてソフトでありながらへたりにく
く、かつ通気性と透湿性に優れた快適な使い心地を有す
る繊維成形体を提供することができる。
According to the fiber mixture of the present invention, the three-dimensional crimp of the composite fiber A and the composite fiber B becomes latent, and the fibers are bonded to each other without being entangled with each other.
It is possible to provide a fiber molded product which has a stable form, is light and soft, is resistant to settling, and has excellent breathability and moisture permeability and is comfortable to use.

【0153】また、繊維混合物のタテ、ヨコ、厚み方向
に繊維がランダムに配列されているため、厚み方向への
圧縮性とヨコ方向への圧縮性の差が少なくなり、得られ
た繊維成形体が多方向裁断性に優れたものとなって、使
用目的に応じた加工が容易にできる。
Further, since the fibers are randomly arranged in the vertical direction, the horizontal direction, and the thickness direction of the fiber mixture, the difference between the compressibility in the thickness direction and the compressibility in the horizontal direction is reduced, and the obtained fiber molded product is obtained. Is excellent in multidirectional cutting property and can be easily processed according to the purpose of use.

【0154】さらに、繊維成形体の製造工程において繊
維の取り扱いが容易であるため作業性が向上し、かつ均
一な密度の繊維成形体を製造することができる。
Further, since the fibers can be easily handled in the manufacturing process of the fiber molding, the workability is improved and the fiber molding having a uniform density can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合繊維Aの一例を示す模式的横断面
図である。
FIG. 1 is a schematic cross-sectional view showing an example of a conjugate fiber A of the present invention.

【図2】本発明の複合繊維Aの他の一例を示す模式的横
断面図である。
FIG. 2 is a schematic cross-sectional view showing another example of the conjugate fiber A of the present invention.

【図3】本発明の複合繊維Aのさらに他の一例を示す模
式的横断面図である。
FIG. 3 is a schematic cross-sectional view showing still another example of the conjugate fiber A of the present invention.

【図4】本発明の複合繊維Aのさらに他の一例を示す模
式的横断面図である。
FIG. 4 is a schematic cross-sectional view showing still another example of the conjugate fiber A of the present invention.

【図5】本発明の複合繊維Bの一例を示す模式的横断面
図である。
FIG. 5 is a schematic cross-sectional view showing an example of the conjugate fiber B of the present invention.

【図6】本発明の繊維成形体の製造に使用される金型の
一例を示す模式的斜視図である。
FIG. 6 is a schematic perspective view showing an example of a mold used for producing the fiber molded body of the present invention.

【図7】本発明の繊維成形体の製造に使用される金型の
一例を示す模式的縦断面図である。
FIG. 7 is a schematic vertical cross-sectional view showing an example of a mold used for producing the fiber molded body of the present invention.

【符号の説明】[Explanation of symbols]

1:熱可塑性重合体R1 2:熱可塑性重合体R2 3:熱可塑性重合体R3 4:熱可塑性重合体R4 5:熱可塑性重合体R5 6:下金型 7:上金型 8:気体の吹き込み口 9:繊維混合物 1: Thermoplastic polymer R1 2: Thermoplastic polymer R2 3: Thermoplastic polymer R3 4: Thermoplastic polymer R4 5: Thermoplastic polymer R5 6: Lower mold 7: Upper mold 8: Gas blowing Mouth 9: Fiber mixture

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】2種の異なる成分の熱可塑性重合体R1,
R2が重量比30/70〜70/30の範囲で接合され
て芯部を形成し、さらに、熱可塑性重合体R1またはR
2のうち融点が低いものよりも融点が低い熱可塑性重合
体R3が、R3/(R1+R2)で表される重量比20
/80〜60/40の範囲で鞘部に複合されてなる複合
繊維A20〜60重量%と、熱可塑性重合体R3の融点
よりも融点が高く、かつ2種の異なる成分の熱可塑性重
合体R4,R5が接合されてなる複合繊維B40〜80
重量%とからなることを特徴とする繊維混合物。
1. A thermoplastic polymer R1, comprising two different components.
R2 is bonded in a weight ratio range of 30/70 to 70/30 to form a core, and further, a thermoplastic polymer R1 or R
The thermoplastic polymer R3 having a lower melting point than the one having a lower melting point of 2 has a weight ratio of 20 represented by R3 / (R1 + R2).
20 to 60% by weight of the composite fiber A that is composited in the sheath portion in the range of 80/60 to 40/40, and a thermoplastic polymer R4 having a melting point higher than that of the thermoplastic polymer R3 and two different components. , R5 are joined to form a composite fiber B40-80
% Of the fiber mixture.
【請求項2】熱可塑性重合体R1,R2,R3,R4お
よびR5がいずれもポリエステルであることを特徴とす
る請求項1に記載の繊維混合物。
2. A fiber mixture as claimed in claim 1, characterized in that the thermoplastic polymers R1, R2, R3, R4 and R5 are all polyesters.
【請求項3】複合繊維Aおよび複合繊維Bが共に捲縮を
有し、複合繊維Aは熱処理前の捲縮数が3〜20山/2
5mmであり、かつ80〜200℃の熱処理により捲縮
数が少なくとも30山/25mmで捲縮度が少なくとも
25%に発現する潜在捲縮複合繊維であり、複合繊維B
は熱処理前の捲縮数が少なくとも3山/25mmで捲縮
度が少なくとも5%であり、80〜200℃の熱処理に
より捲縮数が少なくとも30山/25mmで捲縮度が少
なくとも25%に発現する潜在捲縮複合繊維であること
を特徴とする請求項1または2に記載の繊維混合物。
3. The composite fiber A and the composite fiber B both have crimps, and the composite fiber A has a number of crimps before heat treatment of 3 to 20 peaks / 2.
A latent crimped conjugate fiber having a size of 5 mm and a crimp number of at least 30 peaks / 25 mm and a crimp degree of at least 25% by heat treatment at 80 to 200 ° C.
Has a crimp number of at least 3 peaks / 25 mm and a crimp degree of at least 5%, and a heat treatment at 80 to 200 ° C. causes a crimp number of at least 30 peaks / 25 mm and a crimp degree of at least 25%. 3. The fiber mixture according to claim 1 or 2, which is a latent crimped conjugate fiber.
【請求項4】複合繊維Aが繊度1〜10デニール、繊維
長10〜100mmの短繊維であり、複合繊維Bが繊度
0.5〜30デニール、繊維長10〜100mmの短繊
維であることを特徴とする請求項1,2または3に記載
の繊維混合物。
4. The composite fiber A is a short fiber having a fineness of 1 to 10 denier and a fiber length of 10 to 100 mm, and the composite fiber B is a short fiber having a fineness of 0.5 to 30 denier and a fiber length of 10 to 100 mm. Fiber mixture according to claim 1, 2 or 3.
【請求項5】請求項1,2,3または4に記載の繊維混
合物の複合繊維A相互間および複合繊維Aと複合繊維B
との間の接触点の少なくとも一部が接着して成形されて
なることを特徴とする繊維成形体。
5. The composite fibers A of the fiber mixture according to claim 1, 2, 3 or 4 and between the composite fibers A and B.
At least a part of a contact point between the fiber molding and the fiber molding is bonded and molded.
【請求項6】複合繊維Aおよび複合繊維Bがいずれも、
少なくとも30山/25mmの捲縮数と少なくとも25
%の捲縮度とを有し、かつ密度が0.02〜0.10g
/cm3 であることを特徴とする請求項5に記載の繊維
成形体。
6. The composite fiber A and the composite fiber B are both
At least 30 threads / 25 mm crimp number and at least 25
% Crimp and density of 0.02 to 0.10 g
/ Cm < 3 >, The fiber molded body of Claim 5 characterized by the above-mentioned.
【請求項7】請求項1,2,3または4に記載の繊維混
合物を開繊し、気体と共に通気性型枠内に吹き込んで、
密度0.02〜0.10g/cm3 で充填したものに8
0〜200℃の熱処理を施すことを特徴とする繊維成形
体の製造方法。
7. The fiber mixture according to claim 1, 2, 3 or 4 is opened and blown into a breathable mold together with gas,
8 for those filled with a density of 0.02 to 0.10 g / cm 3.
A method for producing a fiber molded body, which comprises performing a heat treatment at 0 to 200 ° C.
JP31083094A 1994-12-14 1994-12-14 Yarn mixture, molded article of yarn and production of molded article of yarn Pending JPH08170256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31083094A JPH08170256A (en) 1994-12-14 1994-12-14 Yarn mixture, molded article of yarn and production of molded article of yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31083094A JPH08170256A (en) 1994-12-14 1994-12-14 Yarn mixture, molded article of yarn and production of molded article of yarn

Publications (1)

Publication Number Publication Date
JPH08170256A true JPH08170256A (en) 1996-07-02

Family

ID=18009920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31083094A Pending JPH08170256A (en) 1994-12-14 1994-12-14 Yarn mixture, molded article of yarn and production of molded article of yarn

Country Status (1)

Country Link
JP (1) JPH08170256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080188A (en) * 2009-10-02 2011-04-21 Robert Buerkle Gmbh Apparatus and method for producing molding comprising fibrous material
JP2012251254A (en) * 2011-06-01 2012-12-20 Jnc Corp Hot-melt conjugate fiber and nonwoven fabric including the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011080188A (en) * 2009-10-02 2011-04-21 Robert Buerkle Gmbh Apparatus and method for producing molding comprising fibrous material
JP2012251254A (en) * 2011-06-01 2012-12-20 Jnc Corp Hot-melt conjugate fiber and nonwoven fabric including the same

Similar Documents

Publication Publication Date Title
US5646077A (en) Binder fiber and nonwoven fabrics using the fiber
US5554442A (en) Binder fiber and nonwoven fabrics using the fiber
JPH10310965A (en) Polyester short fiber nonwoven fabric
JPH04126856A (en) Polyester solid wadding
JP4043492B2 (en) Hard cotton structure with improved settling resistance
JPH08170256A (en) Yarn mixture, molded article of yarn and production of molded article of yarn
JP3352022B2 (en) Solid cotton with excellent sag resistance under high temperature atmosphere using binder fiber
JPH04240219A (en) Polyester-based heat bonding conjugate fiber
JPH08158222A (en) Fiber mixture and fiber shaped body and production of fiber shaped body
JPH08188946A (en) Formed article of fiber and its production
JP3872203B2 (en) Binder fiber and non-woven fabric using this fiber
JPH09228216A (en) Fiber formed product and its production
JP4326083B2 (en) Polyester-based heat-adhesive composite staple fiber and nonwoven fabric
JPH08188945A (en) Formed article of fiber and its production
JPH0978425A (en) Fiber formed body and its production
JP3304020B2 (en) Composite binder fiber
JPH0835156A (en) Fiber mixture and fiber molded product and method for producing fiber molded product
JP2001207360A (en) Ball-like wadding and fiber structure
JPH08188944A (en) Fiber mixture, formed article of fiber and production of the formed article of fiber
JPH07189101A (en) Soundproof material for automobile
JP4269387B2 (en) Thermal bonding fiber and cushioning material
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JPH0978424A (en) Fiber formed body and its production
JP2001262455A (en) Fibrous solid cotton and method for producing the same
JPH09228219A (en) Fiber formed product