JPH0978425A - Fiber formed body and its production - Google Patents

Fiber formed body and its production

Info

Publication number
JPH0978425A
JPH0978425A JP7229996A JP22999695A JPH0978425A JP H0978425 A JPH0978425 A JP H0978425A JP 7229996 A JP7229996 A JP 7229996A JP 22999695 A JP22999695 A JP 22999695A JP H0978425 A JPH0978425 A JP H0978425A
Authority
JP
Japan
Prior art keywords
fiber
fibers
thermoplastic polymer
melting point
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7229996A
Other languages
Japanese (ja)
Inventor
Masumi Fujimoto
倍已 藤本
Tomoshige Sugino
知重 杉野
Noriyoshi Shintaku
知徳 新宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7229996A priority Critical patent/JPH0978425A/en
Publication of JPH0978425A publication Critical patent/JPH0978425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mattresses And Other Support Structures For Chairs And Beds (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber formed body, having little compressive yield, soft, excellent in water permeability and draining and suitable for pad materials, cushion materials having deflecting properties, etc. SOLUTION: This production method of a fiber formed body having 5-20cm amount of deflection is to arrange an isophthalic acid copolyester R1 as a sheath and a polyethylene terephthalate R2 having temperature >=20 deg.C higher than that of the copolyester as a core, conjugably spin R1 and R2 in the ratio of R1 /R2 (weight ratio)=20/80-60/40 to obtain a sheath core conjugate fiber having 1-10 denier and 10-100mm fiber length, blend 20-60wt.% sheath-core conjugate fiber with 80-40wt.% polyethylene terephthalate fiber having 0.5-30 denier and 10-100mm fiber length, fill the blended fibers by blowing into an air permeable frame, adhesively heat treat the blended fibers in a compressed state at 80-200 deg.C, further add a polyethylene glycol block copolymerized polyester resin emulsion and heat treat the formed body, then compressively treat the formed body at < melting point of the copolymer R1 one or more times in the range of 5-80% in one direction or two directions perpendicular to the compressive direction after filling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、繊維成形体に関す
る。さらに詳しくは寝装用ベッド中材、マットレス、こ
たつ、家具用ソファー、クッション、電車、自動車など
の車両用シート中材、パット材、ドアトリム、サンバイ
ザー、衣料用パッドなど主にクッション材や、その他フ
ィルター、住宅用遮音、断熱などの遮蔽材として好適に
使用される繊維成形体および繊維成形体の製造方法に関
するものである。
TECHNICAL FIELD The present invention relates to a fiber molding. For more details, mainly bedding materials, mattresses, kotatsu, sofas for furniture, cushions, trains, seat materials for vehicles such as cars, pad materials, door trims, sun visors, cushioning materials such as clothing pads, and other filters. The present invention relates to a fiber molded body that is preferably used as a shielding material for housing sound insulation, heat insulation, and the like, and a method for manufacturing the fiber molded body.

【0002】[0002]

【従来の技術】従来、クッション材としては、一般にポ
リウレタンなどの樹脂発泡体が主に使用されてきた。し
かし、樹脂発泡体は発泡時にフロンガスまたはその代替
ガスを使用するため環境面で問題があった。また、通気
性や透湿性が低く蒸れやすいうえに、雨や水飛沫のあた
る場所に設置されたシートなどに用いると、透水性が低
いために、シートにあたった雨や水飛沫が溜まり、シー
トの腐食や着座時に水が滲みだして不快感を与えること
があった。
2. Description of the Related Art Conventionally, resin foam such as polyurethane has been mainly used as a cushion material. However, the resin foam has an environmental problem because it uses CFC gas or its substitute gas during foaming. In addition, it has low breathability and moisture permeability, and it easily gets damp, and when it is used for a sheet installed in a place where it is exposed to rain or water droplets, the rain and water droplets that hit the sheet accumulate due to its low water permeability. There was a case where the water was oozing out when the seat was corroded or when it was seated, which caused discomfort.

【0003】これらの問題を解消するクッション材(繊
維詰め物材)が、特公昭62−2155号公報、特公平
1−18183号公報、特公平4−33478号公報、
特開平3−140185号公報などに提案されている。
これらのクッション材は、熱接着性の繊維として低融点
の繊維を使用したり、高融点の熱可塑性樹脂を芯部と
し、低融点の熱可塑性樹脂を鞘部とする、芯−鞘構造の
複合繊維を使用することにより、ある程度の成果をもた
らしはしたが、さらに向上が望まれている。
Cushion materials (fiber filling materials) for solving these problems are disclosed in Japanese Examined Patent Publication Nos. 62-2155, 1-18183, and 4-33478.
It is proposed in Japanese Patent Laid-Open No. 3-140185.
These cushioning materials use a low-melting point fiber as a heat-adhesive fiber, or use a high-melting point thermoplastic resin as a core part and a low-melting point thermoplastic resin as a sheath part. Although the use of fibers has produced some results, further improvement is desired.

【0004】[0004]

【発明が解決しようとする課題】本発明は、特に屈曲性
があり、圧縮に対してへたり難く、ソフトで、使用環境
が高温の際の繊維間の膠着による圧縮回復性の低下を防
止でき、透湿、透水性が高く快適な使用感を有し、洗濯
性、特に水洗い洗濯で水切れ性が良好で乾燥速度の速
い、しかも環境に優しい繊維成形体およびその製造方法
を提供することを課題とする。
DISCLOSURE OF THE INVENTION The present invention is particularly flexible, hard to settle against compression, soft, and capable of preventing deterioration in compression recovery due to sticking between fibers when the use environment is high. An object of the present invention is to provide a fiber molded article having high moisture permeability, high water permeability, a comfortable feeling of use, good washability, particularly good drainage property in washing with water and fast drying rate, and an environmentally friendly fiber molding, and a method for producing the same. And

【0005】[0005]

【課題を解決するための手段】本発明の繊維成形体は、
前記の課題を解決するために、以下の構成を有する。す
なわち、2種以上の繊維で構成された繊維成形体であっ
て、構成繊維の1種は融点がその他の繊維Bより低い熱
可塑性重合体R1を少なくとも繊維表面側に有する繊維
Aを20〜60重量%、その他の繊維Bを80〜40重
量%から構成され、繊維A相互間および繊維Aと繊維B
の接触点の一部が実質的に接着し、さらに構成繊維の多
くは繊維成形体の厚み方向の断面(bdef)に対し繊
維軸を略平行に配列し、かつ繊維成形体の厚み方向の断
面(bdef)内でランダムな方向に配列し、構成繊維
の表面にポリエステル系樹脂が付与されてなり、撓み量
が5〜20cmであることを特徴とする繊維成形体であ
る。
The fiber molded article of the present invention comprises:
In order to solve the above-mentioned subject, it has the following composition. That is, in a fiber molded body composed of two or more kinds of fibers, one kind of constituent fibers has 20 to 60 fibers A having at least a thermoplastic polymer R1 having a lower melting point than the other fibers B on the fiber surface side. % Of the other fibers B and 80 to 40% by weight of the other fibers B.
Part of the contact points are substantially adhered, and most of the constituent fibers have their fiber axes arranged substantially parallel to the cross section (bdef) in the thickness direction of the fiber molded body, and the cross section in the thickness direction of the fiber molded body. (Bdef) is arranged in random directions, a polyester resin is applied to the surfaces of the constituent fibers, and the amount of flexure is 5 to 20 cm, which is a fiber molding.

【0006】また、本発明の繊維成形体の製造方法は以
下の構成を有する。
Further, the method for producing a fiber molding of the present invention has the following constitution.

【0007】すなわち、2種以上の繊維を混綿するに際
し、1種は融点がその他の繊維Bより低い熱可塑性重合
体R1を少なくとも繊維表面側に有する繊維Aを20〜
60重量%、その他の繊維Bを80〜40重量%を混綿
し、開繊して、気体と共に通気性型枠内に充填し、圧縮
した状態で熱接着処理し、さらにポリエステル系樹脂を
付与し、熱処理して固着させてあらかじめ繊維成形体と
した後、繊維Aの熱可塑性重合体R1の融点未満の温度
下で、前記吹き込み充填後の圧縮方向に対し垂直な2方
向の内2方向または2方向の内1方向に5〜80%の範
囲で1回以上仕上げ圧縮処理をすることを特徴とする繊
維成形体の製造方法である。
That is, when two or more kinds of fibers are mixed, one to 20 kinds of fibers A having at least the thermoplastic polymer R1 having a lower melting point than the other fibers B on the fiber surface side are used.
60% by weight and 80 to 40% by weight of other fibers B are mixed, opened, filled in a breathable mold together with gas, heat-bonded in a compressed state, and further polyester resin is added. After heat treatment and fixing to form a fiber molded body in advance, at a temperature lower than the melting point of the thermoplastic polymer R1 of the fiber A, two directions in two directions perpendicular to the compression direction after the blow filling or two The method for producing a fiber molding is characterized in that the finish compression treatment is performed once or more within a range of 5 to 80% in one of the directions.

【0008】[0008]

【発明の実施の形態】以下、図面を参照しつつ、本発明
について実施態様例を挙げながら詳細に説明する。図1
は、本発明の繊維成形体のブロック形状での繊維配列の
一例をモデル的に示す斜視図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to the accompanying drawings with reference to embodiments. FIG.
FIG. 3 is a perspective view showing a model of an example of a block-shaped fiber array of the fiber molded body of the present invention.

【0009】本発明の繊維成形体は、融点がその他の繊
維Bより低い熱可塑性重合体R1を少なくとも繊維表面
側に有する繊維Aとその他の繊維Bから構成され、繊維
A相互間および繊維Aと繊維Bの接触点の一部が実質的
に接着し、さらに構成繊維の多くは例えば、図1に示さ
れるように繊維成形体の厚み方向の断面(bdef)に
対し繊維軸を略平行に配列し、かつ繊維成形体の厚み方
向の断面(bdef)内でランダムな方向に配列し、ク
ッション体として使用する場合厚み方向、即ち圧縮作用
を受ける方向に対して平行に配列した繊維が多くなるこ
とになり、圧縮回復性や反発力を高める構造にしたもの
である。
The fiber molding of the present invention is composed of a fiber A having a thermoplastic polymer R1 having a melting point lower than that of the other fiber B at least on the fiber surface side and the other fiber B. Some of the contact points of the fibers B are substantially adhered, and most of the constituent fibers are arranged with their fiber axes substantially parallel to the cross section (bdef) in the thickness direction of the fiber molded body as shown in FIG. 1, for example. In addition, when the fibers are arranged in a random direction within the cross section (bdef) in the thickness direction of the fiber molded body and used as a cushion body, the number of fibers arranged in parallel to the thickness direction, that is, the direction to be subjected to the compression action increases. It has a structure that enhances compression recovery and repulsion.

【0010】また、前記構成繊維の多くが、図1のよう
に繊維成形体の厚み方向の断面(bdef)に対し繊維
軸を略平行に配列し、かつ繊維成形体の厚み方向の断面
(bdef)内でランダムな方向に配列するようにする
ことにより、例えばab線を長尺方向としたベッドマッ
ト用クッション材とし、就寝位から座位にベットを変化
させた時にベッドマットも同様な変形をする、つまり屈
曲性の良好な繊維成形体が得られるのである。屈曲性の
程度は、後述する特性評価法で撓み量が5〜20cmで
あることが必要である。5cm未満では屈曲性不良でベ
ットからマットが浮いたり、皺が入ったりして好ましく
ない。20cmを越えると洗濯等でマットを移動させる
場合の取扱い性が悪くなるなどの欠点がある。
Further, as shown in FIG. 1, most of the constituent fibers have their fiber axes arranged substantially parallel to the cross section (bdef) in the thickness direction of the fiber molded body, and the cross section (bdef) in the thickness direction of the fiber molded body. By arranging the bed mats in a random direction in (), for example, a cushioning material for a bed mat having a long ab line is formed, and the bed mat also deforms similarly when the bed is changed from the sleeping position to the sitting position. That is, it is possible to obtain a fiber molding having good flexibility. Regarding the degree of flexibility, it is necessary that the amount of bending is 5 to 20 cm according to the characteristic evaluation method described later. If it is less than 5 cm, the flexibility is poor and the mat floats from the bed or wrinkles are formed, which is not preferable. If it exceeds 20 cm, there is a defect that the handling property when moving the mat for washing or the like is deteriorated.

【0011】さらに、構成繊維の多くが、繊維成形体の
厚み方向の断面(bdef)に対し繊維軸を略平行に配
列し、かつ繊維成形体の厚み方向の断面(bdef)内
でランダムな方向に配列するようにすることにより、屈
曲性が良好であるにもかかわらず洗濯や使用による耐久
性が高く、透湿性や透水性が高くて、使用快適感の高い
繊維成形体が得られるのである。
Further, most of the constituent fibers have their fiber axes arranged substantially parallel to the cross section (bdef) in the thickness direction of the fiber molded body, and have random directions within the cross section (bdef) in the thickness direction of the fiber molded body. By arranging them in such a manner, it is possible to obtain a fiber molded article that has high flexibility even though it has good flexibility, has high moisture permeability and water permeability, and is highly comfortable to use. .

【0012】本発明に用いる繊維Aは、融点がその他の
繊維Bより低い熱可塑性重合体R1を少なくとも表面側
に有する繊維であって、熱処理により、主として繊維相
互間およびその他の繊維Bとの接触点の一部が実質的に
融着する性質、即ち熱接着性を有しているものであり、
繊維成形体の使用耐久性を向上させる観点からR1より
融点が20℃以上高い熱可塑性重合体R2が芯側に複合
された複合繊維がより好ましい。
The fiber A used in the present invention is a fiber having a thermoplastic polymer R1 having a melting point lower than that of the other fibers B on at least the surface side, and is mainly contacted with each other and with other fibers B by heat treatment. Some of the points have the property of being substantially fused, that is, they have thermal adhesiveness,
From the viewpoint of improving the use durability of the fiber molded product, a composite fiber in which a thermoplastic polymer R2 having a melting point higher than that of R1 by 20 ° C. or more is composited on the core side is more preferable.

【0013】熱可塑性重合体R1としては、例えば、ポ
リエチレン、ポリプロピレン、エチレンプロピレン共重
合体、エチレンブテン共重合体、エチレン酢酸ビニル共
重合体等のポリオレフィンあるいはオレフィン共重合
体、ポリヘキサメチレンテレフタレート、ポリヘキサメ
チレンブチレンテレフタレート、ポリヘキサメチレンテ
レフタレートイソフタレート等のポリエステルあるいは
共重合ポリエステル等の熱可塑性ポリマーから選ばれ
る、少なくとも一種類のポリマーを用いることができ
る。熱可塑性重合体R1の選択においては、前記の熱可
塑性重合体R2や他の繊維の融点より低いことが必要で
ある。その融点は繊維間の熱接着性や圧縮に対する回復
性、つまり圧縮残留歪の観点から、80〜170℃であ
ることが好ましい。
Examples of the thermoplastic polymer R1 include polyolefins such as polyethylene, polypropylene, ethylene propylene copolymer, ethylene butene copolymer and ethylene vinyl acetate copolymer, olefin copolymers, polyhexamethylene terephthalate, poly At least one polymer selected from thermoplastic polymers such as polyesters such as hexamethylene butylene terephthalate and polyhexamethylene terephthalate isophthalate or copolymerized polyesters can be used. In selecting the thermoplastic polymer R1, it is necessary to be lower than the melting point of the above-mentioned thermoplastic polymer R2 and other fibers. The melting point is preferably 80 to 170 ° C. from the viewpoint of thermal adhesiveness between fibers and recoverability against compression, that is, residual compression strain.

【0014】熱可塑性重合体R2は、特に限定されない
が、例えば、テレフタル酸、2,6−ナフタレンジカル
ボン酸あるいはそれらのエステルを主たるジカルボン酸
成分とし、エチレングリコールもしくはテトラメチレン
グリコールを主たるグリコール成分とするポリエチレン
テレフタレート、ポリブチレンテレフタレートあるい
は、ポリエチレン2,6−ナフタレートなどの線状ポリ
エステルを用いることができる。このうちポリエチレン
テレフタレート(通常のポリエステル)が好ましい。
The thermoplastic polymer R2 is not particularly limited, but for example, terephthalic acid, 2,6-naphthalenedicarboxylic acid or their ester is a main dicarboxylic acid component, and ethylene glycol or tetramethylene glycol is a main glycol component. Linear polyesters such as polyethylene terephthalate, polybutylene terephthalate or polyethylene 2,6-naphthalate can be used. Of these, polyethylene terephthalate (ordinary polyester) is preferred.

【0015】繊維成形体の形態安定性、ソフト感および
圧縮残留歪の観点から、熱可塑性重合体R1とR2の重
量比(R1/R2)は、20/80〜60/40が好ま
しく、20/80〜50/50の範囲がより好ましい。
The weight ratio (R1 / R2) of the thermoplastic polymers R1 and R2 is preferably 20/80 to 60/40, and more preferably 20 / The range of 80 to 50/50 is more preferable.

【0016】また、繊維Aには、この他必要に応じてR
1、R2以外の重合体成分、酸化チタン、カーボンブラ
ック等の顔料のほか、各種の抗酸化剤、着色防止剤、耐
光剤、帯電防止剤等が、本来の機能を喪失しないかぎ
り、複合や混合などにより添加することができる。この
ような複合繊維Aは、複合紡糸によって製造することが
できる。
In addition to the fiber A, if necessary, R
1. In addition to polymer components other than 1, R2, pigments such as titanium oxide and carbon black, various antioxidants, anti-coloring agents, light-proofing agents, antistatic agents, etc., can be combined or mixed unless the original functions are lost. And the like. Such a composite fiber A can be manufactured by composite spinning.

【0017】形態安定性および均一な密度の繊維成形体
を得る観点から、繊維Aとしては、繊度が1〜10デニ
ール、繊維長が10〜100mmの短繊維が好ましく用
いられる。
From the viewpoint of obtaining a fiber molded product having a morphological stability and a uniform density, a short fiber having a fineness of 1 to 10 denier and a fiber length of 10 to 100 mm is preferably used as the fiber A.

【0018】繊維Aの捲縮は、繊維成形体の用途によっ
て適宜選択すればよく、嵩高性、ソフト感、圧縮に対す
る回復性をよくするためには、捲縮数が3山/25mm
以上、捲縮が5%以上であるのが好ましく、捲縮数が5
山/25mm以上、捲縮が15%以上であるのがより好
ましい。
The crimp of the fiber A may be appropriately selected depending on the intended use of the fiber molding, and in order to improve the bulkiness, softness, and recovery from compression, the number of crimps is 3 ridges / 25 mm.
As described above, the crimp is preferably 5% or more, and the number of crimps is 5
More preferably, the height is 25 mm or more and the crimp is 15% or more.

【0019】繊維Aと混合するその他の繊維Bは、熱可
塑性重合体R1の融点より高ければ特に限定されず、繊
維Aの低融点成分R1の融点より高い成分であれば、用
途によって数種類使用することができる。例えば、ポリ
エステルの他にも、6−ナイロン、66−ナイロン、6
10−ナイロン、109−ナイロン、11−ナイロン、
12−ナイロン等のポリアミドを用いることができる
が、なかでも、ポリエステルが好ましい。
The other fiber B mixed with the fiber A is not particularly limited as long as it is higher than the melting point of the thermoplastic polymer R1, and if the component is higher than the low melting point component R1 of the fiber A, several types are used depending on the application. be able to. For example, in addition to polyester, 6-nylon, 66-nylon, 6
10-nylon, 109-nylon, 11-nylon,
Polyamide such as 12-nylon can be used, but polyester is preferable.

【0020】繊維成形体の使用耐久性を向上させる観点
から、その他の繊維Bは、繊維Aの低融点成分R1の融
点より20℃以上高い融点を有するのが好ましい。
From the viewpoint of improving the use durability of the fiber molded body, the other fibers B preferably have a melting point higher than the melting point of the low melting point component R1 of the fiber A by 20 ° C. or more.

【0021】その他の繊維Bとしては、繊維の嵩、圧縮
抵抗、圧縮回復性、触感、形状保持性および密度の均一
性の観点から、繊度が0.5〜30デニール、繊維長が
10〜100mmの短繊維が好ましく用いられる。
As the other fibers B, the fineness is 0.5 to 30 denier and the fiber length is 10 to 100 mm from the viewpoints of the bulk, compression resistance, compression recovery, touch, shape retention and density uniformity of the fibers. The short fibers of are preferably used.

【0022】その他の繊維Bの捲縮は、繊維成形体の用
途によって適宜選択すればよく、嵩高性、ソフト感、圧
縮に対する回復性をよくするためには、捲縮数が3山/
25mm以上、捲縮が5%以上であるのが好ましく、捲
縮数が5山/25mm以上、捲縮が15%以上であるの
がより好ましい。
The other crimps of the fiber B may be appropriately selected depending on the intended use of the fiber molding, and in order to improve the bulkiness, softness, and recovery from compression, the number of crimps is 3 ridges /
It is preferable that the crimp is 25 mm or more and the crimp is 5% or more, and it is more preferable that the number of crimps is 5 peaks / 25 mm or more and the crimp is 15% or more.

【0023】本発明の繊維成形体は、前記の繊維Aを2
0〜60重量%とその他の繊維Bを80〜40重量%と
から構成されるものである。繊維Aが20重量%未満で
あると、繊維A相互間および繊維Aとその他の繊維Bと
の熱接着点が少なくなって形態安定性が悪くなる。ま
た、60重量%以上では、繊維成形体のソフト感が低下
し、触感が粗硬になる。
The fiber molding of the present invention comprises the above-mentioned fiber A
It is composed of 0 to 60% by weight and 80 to 40% by weight of other fibers B. When the amount of the fiber A is less than 20% by weight, the thermal bonding points between the fibers A and between the fibers A and the other fibers B are reduced, and the shape stability is deteriorated. On the other hand, when it is 60% by weight or more, the soft feeling of the fiber molded article is deteriorated and the tactile feeling becomes coarse and hard.

【0024】本発明の繊維成形体は、ポリエステル系樹
脂が構成繊維の表面に付与されてなる。このポリエステ
ル系樹脂の付与により、構成繊維間の平滑性が高まり、
ソフトでへたり難くすると同時に、使用環境が高温の際
に問題となる繊維間の膠着による圧縮回復性の低下を防
止できる。
The fiber molding of the present invention comprises a polyester resin provided on the surface of the constituent fibers. The addition of this polyester resin enhances the smoothness between the constituent fibers,
It is soft and hard to set, and at the same time, it is possible to prevent deterioration of compression recovery due to sticking between fibers which is a problem when the use environment is high temperature.

【0025】本発明で用いるポリエステル系樹脂は平滑
性を高め、膠着を防止できる物であれば特に限定される
ものではないが、温度安定性や構成繊維への均一付与の
観点から、ポリエステルにポリエチレングリコールをブ
ロック重合し、自己乳化性を有しているものが好ましく
用いられる。
The polyester resin used in the present invention is not particularly limited as long as it can improve smoothness and prevent sticking, but from the viewpoint of temperature stability and uniform application to constituent fibers, polyethylene is added to polyester. Those which block-polymerize glycol and have self-emulsifying property are preferably used.

【0026】繊維成形体を構成する繊維Aおよび繊維B
はいずれもポリエステルであることが好ましい。ポリエ
ステルは、圧縮特性(圧縮回復性)、熱接着形態固定性
に優れ、燃焼ガスの毒性が低く、リサイクルできるなど
の総合的な面で、好ましい材料である。
Fibers A and B constituting the fiber molding
Is preferably polyester. Polyester is a preferable material in terms of comprehensive properties such as excellent compression properties (compression recovery property), heat-bonding form fixing property, low toxicity of combustion gas, and recyclability.

【0027】次に、本発明の繊維成形体の製造方法につ
いて説明する。図2は、本発明の繊維成形体の製造方法
の一例に用いられる装置の金型をモデル的に示す縦断面
図である。
Next, the method for producing the fiber molding of the present invention will be described. FIG. 2 is a vertical cross-sectional view showing a model of a mold of an apparatus used in an example of the method for producing a fiber molded body of the present invention.

【0028】前記の重量比の繊維Aとその他の繊維Bと
を、通常の紡績工程で使用する給綿機、混綿機、開繊機
を通して、十分に混綿、開繊し、繊維混合物としたの
ち、例えば、目的に応じた形状の型枠に、送綿ファンに
よる空気流などの気体と共に、繊維混合物を吹き込んで
充填する。吹き込んで充填するためには、型枠が、適度
の通気性を有する必要がある。通気性は、例えば、JI
S L 1079−1966フラジール型通気性試験機
により測定した場合、5〜200cc/cm2 ・sec
の範囲が好ましい。このような型枠としては、例えば、
図2に示すパンチング金属板を用いた金型1、2を用い
ることができる。吹き込み口3から通気性型枠内に吹き
込まれた繊維4は、タテ、ヨコ、厚み方向にランダムに
配列した状態となる。
The fibers A and the other fibers B having the above weight ratios are thoroughly mixed and opened through a cotton feeding machine, a cotton mixing machine and a fiber opening machine used in a usual spinning process to prepare a fiber mixture, For example, the fiber mixture is blown into and filled in a mold having a shape suitable for the purpose together with a gas such as an air flow from a cotton feeding fan. In order to blow and fill, it is necessary that the formwork has an appropriate air permeability. Breathability is, for example, JI
S L 1079-1966 When measured with a Frazier type breathability tester, 5 to 200 cc / cm 2 · sec
Is preferred. As such a formwork, for example,
The dies 1 and 2 using the punching metal plate shown in FIG. 2 can be used. The fibers 4 blown into the breathable mold through the blowing port 3 are in a state of being arranged randomly in the vertical direction, the horizontal direction, and the thickness direction.

【0029】次に、充填した繊維混合物を圧縮して、得
ようとする繊維成形体の用途に応じた適当な密度にす
る。密度は、0.01〜0.1g/cm3 にするのが好
ましい。
Next, the filled fiber mixture is compressed to a density suitable for the intended use of the fiber molded body to be obtained. The density is preferably 0.01 to 0.1 g / cm 3 .

【0030】また、この圧縮処理は本発明の繊維成形体
の繊維軸を使用する繊維成形体の厚み方向の断面(bd
ef)に対し略平行に配列させて、狙いの屈曲性を高め
る作用もある。
Further, this compression treatment is carried out by the cross section (bd) in the thickness direction of the fiber molding using the fiber shaft of the fiber molding of the present invention.
ef) is also arranged substantially parallel to it, which also has the effect of increasing the target flexibility.

【0031】圧縮した充填物を熱処理して、繊維A相互
間および繊維Aとその他の繊維Bとの接触点の一部を実
質的に接着して形態を固定する。熱処理の温度は繊維A
のR1が溶融接着する温度であればよく、一般的には、
80〜200℃が好ましい。次に、本発明は、前記熱処
理後の繊維成形体にポリエステル系樹脂を付与し、熱処
理して固着させるものである。このポリエステル系樹脂
付与によって構成繊維間の平滑性を高め、ソフトでへた
り難くすると同時に、繊維接触点での膠着防止および難
燃性の向上が可能となる。
The compressed packing is heat treated to substantially bond the fibers A and some of the contact points between the fibers A and the other fibers B to fix the morphology. Heat treatment temperature is fiber A
R1 may be at a temperature at which it melt-bonds, and generally,
80-200 degreeC is preferable. Next, in the present invention, a polyester resin is applied to the fiber molded body after the heat treatment, and the fiber molded body is heat treated and fixed. By adding the polyester resin, the smoothness between the constituent fibers can be increased, and the fibers can be made soft and difficult to set, and at the same time, it is possible to prevent sticking at the fiber contact point and improve the flame retardancy.

【0032】ポリエステル系樹脂の付与量は単位繊維重
量当たりの付与量で表し(以下%owfという)、平滑
性付与、膠着防止および経済性の観点から、ポリエステ
ル系樹脂を0.1〜2%owf程度付着させるのが好ま
しい。
The applied amount of the polyester resin is expressed by the applied amount per unit fiber weight (hereinafter referred to as% owf). From the viewpoint of imparting smoothness, preventing sticking and economical efficiency, the polyester resin is added in an amount of 0.1 to 2% owf. It is preferable to adhere to a certain degree.

【0033】ポリエステル系樹脂を構成繊維に固着させ
るための熱処理の温度は、一般的に構成繊維の熱劣化等
の観点から80〜200℃が好ましい。熱処理の時間は
繊維成形体の密度やサイズ等によって適宜選択しうる。
The temperature of the heat treatment for fixing the polyester resin to the constituent fibers is generally preferably 80 to 200 ° C. from the viewpoint of heat deterioration of the constituent fibers. The heat treatment time can be appropriately selected depending on the density and size of the fiber molding.

【0034】次に、本発明は、繊維Aの熱可塑性重合体
Rの融点未満の温度下で、前記吹き込み充填後の圧縮方
向に対し垂直な2方向の内2方向または2方向の内1方
向に5〜80%の範囲で1回以上仕上げ2次圧縮処理し
て本発明の繊維成形体とする。
Next, according to the present invention, at a temperature lower than the melting point of the thermoplastic polymer R of the fiber A, two directions in the two directions perpendicular to the compression direction after the blow filling or one direction in the two directions. In addition, the fiber compact of the present invention is obtained by finishing secondary compression treatment once or more in the range of 5 to 80%.

【0035】本発明の繊維成形体は、圧縮弾力性、屈曲
性、透湿性、透水性の優れたものとするため、使用され
る用途の例えば着座位や就寝位で圧縮作用を受ける方向
の面に構成繊維の多くの繊維軸を略平行に配列する。そ
のためには、前記繊維成形体製造時の2次圧縮処理方向
が使用される用途の例えば着座位や就寝位で圧縮作用を
受ける方向、つまりその用途の厚み方向とする。この場
合、2次圧縮処理によって繊維AのR1で溶融接着した
不必要な接着点をあらかじめ除去し、繊維成形体使用時
のソフト感や圧縮回復性を良好にする作用がある。2次
圧縮率が5%未満ではソフト感や圧縮回復性を十分に高
めることができないし、80%を越えると溶融接着が多
く破壊されて使用耐久性が低くなる欠点がある。
Since the fiber molded article of the present invention has excellent compression elasticity, flexibility, moisture permeability and water permeability, it has a surface in the direction in which it is subjected to a compression action, for example, in a sitting position or a sleeping position. Many fiber axes of the constituent fibers are arranged substantially parallel to each other. For that purpose, the direction of the secondary compression treatment at the time of manufacturing the fiber molded body is the direction in which it is used, for example, the direction in which it is subjected to a compression action in the sitting or sleeping position, that is, the thickness direction of the application. In this case, the secondary compression treatment has an effect of previously removing unnecessary bonding points melt-bonded at R1 of the fiber A and improving soft feeling and compression recovery when the fiber molded body is used. If the secondary compression ratio is less than 5%, the soft feeling and compression recovery cannot be sufficiently enhanced, and if it exceeds 80%, a large amount of melt adhesion is broken and the use durability is lowered.

【0036】[0036]

【実施例】次に本発明を実施例によりさらに具体的に説
明する。本発明に記述した諸特性の測定法は次の通りで
ある。
Next, the present invention will be described more specifically with reference to examples. The measuring methods of various characteristics described in the present invention are as follows.

【0037】[撓み量]幅10cm、厚み5cm、長さ
50cmの長方形試験片を3個準備し、水平な台上にの
せ、試験片をすべらせて台の端から長さ30cmだした
状態で1分間放置後、繊維成形体の厚み方向(例えば、
ac方向、bd方向、ef方向)である台の上面と試験
片の先端の下面の高さの差(撓み量cm)をスケールで
読とり、3回の平均値で示した。
[Amount of Deflection] Three rectangular test pieces having a width of 10 cm, a thickness of 5 cm and a length of 50 cm were prepared, placed on a horizontal table, and the test pieces were slid so that the length was 30 cm from the edge of the table. After leaving it for 1 minute, the thickness direction of the fiber molded body (for example,
The difference in height (deflection amount cm) between the upper surface of the table and the lower surface of the tip of the test piece in the ac direction, bd direction, and ef direction) was read on a scale and shown as an average value of three times.

【0038】[捲縮数および捲縮度]捲縮数および捲縮
度はJIS L 1015−7−12−1およびJIS
L1015−7−12−2の方法に準じて測定した。
[Number of Crimps and Degree of Crimp] The number of crimps and the degree of crimp are JIS L 1015-7-12-1 and JIS.
It measured according to the method of L1015-7-12-2.

【0039】[繊度]JIS L 1015−7−51
Aの方法に準じて測定した。
[Fineness] JIS L 1015-7-51
It measured according to the method of A.

【0040】[平均繊維長(カット長)]JIS L
1015A法(ステープルダイヤグラム法)に準じて測
定した。 [圧縮残留歪]一辺が10cmの立方体の試験片を3個
準備し、繊維成形体の厚み方向(例えば、ac方向、b
d方向、ef方向)に50%圧縮した状態で、70±1
℃の温度の恒温漕中で22時間処理した後、圧縮を解き
室温で30分間放置した。その後、厚さ(t1 cm)を
測定し、次式により圧縮残留歪を求めて、3回の平均値
で示した。
[Average fiber length (cut length)] JIS L
It was measured according to the 1015A method (staple diagram method). [Compressive Residual Strain] Three cubic test pieces each having a side of 10 cm were prepared, and the thickness direction (for example, ac direction, b) of the fiber molded body was prepared.
70 ± 1 with 50% compression in d direction and ef direction)
After treatment in a constant temperature bath at a temperature of ° C for 22 hours, the sample was decompressed and left at room temperature for 30 minutes. Then, the thickness (t 1 cm) was measured, and the compressive residual strain was calculated by the following formula and shown as an average value of 3 times.

【0041】 圧縮残留歪(%)={(10−t1 )/10}×100 [圧縮応力損失]一辺が10cmの立方体の試験片を3
個準備し、インストロン型の引張り試験機の圧縮装置で
圧縮応力200g/cm2 までの圧縮、回復曲線を描
き、圧縮時100g/cm2 応力時の圧縮歪率と同等回
復率での回復応力(σ)を測定し、次式により圧縮応力
損失を求めて、3回の平均値で示した。
Compressive residual strain (%) = {(10-t 1 ) / 10} × 100 [Compressive stress loss] Three cubic test pieces each having a side of 10 cm were used.
Prepare individual pieces, draw a compression curve up to 200g / cm 2 with a compression device of an Instron type tensile testing machine, and draw a recovery curve, and recover the recovery stress at the recovery rate equivalent to the compression strain rate at 100g / cm 2 stress during compression. (Σ) was measured, and the compressive stress loss was calculated by the following formula, and shown as an average value of three times.

【0042】圧縮応力損失(%)={(100−σ)/
100)}×100 [密度]一辺が10cmの立方体の試験片を3個準備
し、20℃×65%RHの室内に24時間放置した後、
その室内で試験片の重さ(W)を測定し、次式により密
度を求めて、3回の平均値で示した。
Compressive stress loss (%) = {(100-σ) /
100)} × 100 [Density] Three cubic test pieces each having a side of 10 cm were prepared and allowed to stand in a room at 20 ° C. × 65% RH for 24 hours.
The weight (W) of the test piece was measured in the chamber, and the density was calculated by the following formula, and the average value of three times was shown.

【0043】密度(cc/g)=10×10×10/W [屈曲性]図1のab線あるいはcd線を曲げる場合の
曲げ易さによって、曲げやすい(◎)から曲げにくい
(×)まで6段階に分類した。
Density (cc / g) = 10 × 10 × 10 / W [Flexibility] Depending on the ease of bending when the ab line or the cd line in FIG. 1 is bent, it is easy to bend (⊚) to difficult to bend (×). It was classified into 6 levels.

【0044】[繊維成形体の取扱性、ソフト感、形態安
定性]触感によって、優(◎)から不良(×)まで6段
階に分類した。
[Handling of Fiber Molded Product, Soft Feel, Morphological Stability] The feel was classified into 6 grades from excellent (⊚) to poor (x).

【0045】[実施例1〜3および比較例1〜3]熱可
塑性重合体R1としてイソフタル酸40モル%共重合し
たポリエチレンテレフタレート系ポリエステル(極限粘
度:0.55、融点:110℃)を用い、熱可塑性重合
体R2として通常のポリエチレンテレフタレート(極限
粘度:0.65、融点:255℃)を用いて、紡糸温度
285℃、紡糸口金孔数24孔、引取り速度1350m
/分、吐出量36.22g/分、重量比R1/R2を5
0/50とし、R1を鞘、R2を芯とする芯鞘複合繊維
Aを紡糸した。
[Examples 1 to 3 and Comparative Examples 1 to 3] Polyethylene terephthalate type polyester (intrinsic viscosity: 0.55, melting point: 110 ° C.) copolymerized with 40 mol% of isophthalic acid was used as the thermoplastic polymer R1. Ordinary polyethylene terephthalate (intrinsic viscosity: 0.65, melting point: 255 ° C.) was used as the thermoplastic polymer R2, spinning temperature 285 ° C., spinneret hole number 24 holes, take-up speed 1350 m.
/ Min, discharge rate 36.22 g / min, weight ratio R1 / R2 is 5
A core-sheath composite fiber A having a sheath of R1 and a core of R2 was spun at 0/50.

【0046】次いで、該未延伸糸を延伸後のトウデニー
ルが10万デニールとなるべく合糸して、延伸倍率3
倍、延伸浴温度80℃で延伸し、クリンパで機械捲縮を
付与した。さらに、70℃の熱セッターで乾燥した後、
仕上げ油剤を付与して、カット長32mmに切断して、
繊度3.9デニール、表面層の融点が約110℃の複合
短繊維Aを得た。
Next, the unstretched yarns are combined so that the tow denier after stretching is 100,000 denier, and the draw ratio is 3
The film was stretched at a stretching bath temperature of 80 ° C. twice and mechanically crimped with a crimper. Furthermore, after drying with a heat setter at 70 ° C,
Apply a finishing oil and cut to a cut length of 32 mm,
A composite short fiber A having a fineness of 3.9 denier and a melting point of the surface layer of about 110 ° C. was obtained.

【0047】これとは別に、極限粘度0.65、融点が
255℃であるポリエチレンテレフタレートを用い、通
常の紡糸・延伸した後、カット長32mm、繊度約1
3.1デニールの中空(中空率38%)丸断面の短繊維
Bを得た。
Separately from this, polyethylene terephthalate having an intrinsic viscosity of 0.65 and a melting point of 255 ° C. was used, and after ordinary spinning and drawing, a cut length of 32 mm and a fineness of about 1
A short fiber B having a 3.1 denier hollow (hollow ratio 38%) and a circular cross section was obtained.

【0048】前記複合短繊維Aを40重量%、短繊維B
を60重量%混綿し、ローラカードでさらに混綿、開繊
し、繊維混合物を得た。この繊維混合物を、図2の金型
の吹込口3から、各面にパンチングが施された、内面の
幅×長さ×高さが1000×1000×1000mmの
下金型1に、空気流と共に吹き込んだ。各面にパンチン
グが施された上金型2で吹き込まれた繊維混合物4を圧
縮して、高さ500mm、密度0.039cc/gまで
圧縮し固定した。
40% by weight of the composite short fibers A, short fibers B
Was mixed with 60% by weight and further mixed with a roller card and opened to obtain a fiber mixture. This fiber mixture was blown into the lower mold 1 having a width x length x height of 1000 x 1000 x 1000 mm of the inner surface, which was punched on each side, from the blow-in port 3 of the mold of Fig. 2 together with the air flow. Blown in. The fiber mixture 4 blown by the upper die 2 having each surface punched was compressed to a height of 500 mm and a density of 0.039 cc / g and fixed.

【0049】金型に圧縮固定した繊維混合物4を、熱風
強制循環式の大型乾熱セッターで135℃×20分間乾
熱セットし、複合短繊維Aと短繊維Bとの接触点および
複合短繊維A間の接触点で熱接着した繊維成形体とし
後、比較例1を除き前記繊維成形体を市販のポリエステ
ル系樹脂(商品名 SR1800 高松油脂株式会社
製)の溶液に浸漬し、遠心脱水後、大型乾熱セッターを
用いて140℃で30分間熱処理して固着させた。さら
に、得られた前記繊維成形体の圧縮方向に対し垂直な方
向を上下方向(厚み方向)として室温状態で大型油圧機
で仕上げ圧縮処理して、密度0.04cc/gの繊維成
形体を得た。
The fiber mixture 4 compressed and fixed in the mold was dry-heat set at 135 ° C. for 20 minutes with a large-sized dry heat setter of hot air forced circulation type, and the contact point between the composite short fibers A and the short fibers B and the composite short fibers were set. After forming a heat-bonded fiber molded body at a contact point between A, except for Comparative Example 1, the fiber molded body is immersed in a solution of a commercially available polyester resin (trade name SR1800 manufactured by Takamatsu Yushi Co., Ltd.), and after centrifugal dehydration, Using a large dry heat setter, heat treatment was performed at 140 ° C. for 30 minutes to fix. Further, a direction perpendicular to the compression direction of the obtained fiber molding is set as a vertical direction (thickness direction) and subjected to finish compression treatment with a large hydraulic machine at room temperature to obtain a fiber molding having a density of 0.04 cc / g. It was

【0050】表1に、得られた繊維成形体の性質を示
す。実施例1、2および3はポリエステル系樹脂の付与
量0.9%owf、圧縮率5〜80%で1〜5回の仕上
げ圧縮処理まで実施したもので、構成繊維の繊維軸が繊
維成形体の厚み方向の面に対し平行な方向に配列し、圧
縮応力損失が低く、かつ撓み量が高いため、圧縮残留歪
がやや低く、屈曲性、繊維成形体の取扱性、ソフト性お
よび形態安定性の良好な繊維成形体が得られた。これに
対し、比較例1は前記吹き込まれた繊維混合物4を圧縮
して、高さ500mm、密度0.039cc/gまで圧
縮固定し、大型乾熱セッターで135℃×20分間乾熱
セットして得られたもので、ポリエステル系樹脂付与お
よび仕上げ圧縮処理をしていない繊維成形体で、前記圧
縮方向を厚み方向としたものである。したがって、構成
繊維の繊維軸が繊維成形体の厚み方向の面に対し垂直な
方向に配列し、かつ、仕上げ圧縮処理をしていないた
め、繊維成形体の取扱性や形態安定性は良好であるが、
圧縮応力損失が高く、圧縮残留歪はやや高く、屈曲性や
ソフト性の劣るものであった。また、比較例2はポリエ
ステル系樹脂の付与量0.9%owfであるが、仕上げ
圧縮処理をしていないものである。したがって構成繊維
の繊維軸が繊維成形体の厚み方向の面に対し平行な方向
に配列しているが、仕上げ圧縮処理をしていないため、
繊維成形体の取扱性や形態安定性、圧縮応力損失、ソフ
ト性は良好であるが、撓み量が低く、屈曲性の劣るもの
であった。さらに、比較例3はポリエステル系樹脂の付
与量0.9%owf、圧縮率82%で5回の仕上げ圧縮
処理まで実施したもので、構成繊維の繊維軸が繊維成形
体の厚み方向の面に対し平行な方向に配列し、仕上げ圧
縮処理の程度が高すぎるため、屈曲性、繊維成形体の取
扱性、ソフト性は良好であるが、形態安定性の劣るもの
であった。
Table 1 shows the properties of the obtained fiber molding. In Examples 1, 2 and 3, the amount of polyester resin applied was 0.9% owf, the compression ratio was 5 to 80%, and the final compression treatment was performed 1 to 5 times. Since they are arranged in the direction parallel to the surface of the thickness direction, the compression stress loss is low and the amount of bending is high, the compression residual strain is a little low, and the flexibility, handleability of the fiber molding, softness and morphological stability As a result, a good fiber molded product was obtained. On the other hand, in Comparative Example 1, the blown fiber mixture 4 was compressed, fixed to a height of 500 mm and a density of 0.039 cc / g, and dry-heat set with a large dry heat setter at 135 ° C. for 20 minutes. The obtained fiber molded body was not subjected to polyester resin application and finish compression treatment, and the compression direction was the thickness direction. Therefore, since the fiber axes of the constituent fibers are arranged in a direction perpendicular to the plane in the thickness direction of the fiber molded body and the finishing compression treatment is not performed, the handleability and the morphological stability of the fiber molded body are good. But,
The compressive stress loss was high, the compressive residual strain was rather high, and the flexibility and softness were poor. In Comparative Example 2, the applied amount of the polyester resin is 0.9% owf, but the finish compression treatment is not performed. Therefore, the fiber axes of the constituent fibers are arranged in a direction parallel to the surface in the thickness direction of the fiber molded body, but since the finish compression treatment is not performed,
The fiber molded product had good handleability, morphological stability, compressive stress loss, and softness, but had a low amount of bending and poor flexibility. Further, in Comparative Example 3, the amount of the polyester resin applied was 0.9% owf and the compression ratio was 82%, and the compression treatment was performed up to 5 times. Since they were arranged in parallel to each other and the degree of finishing compression treatment was too high, the flexibility, the handleability of the fiber molded product and the softness were good, but the morphological stability was poor.

【0051】なお、実施例1〜3および比較例1〜3と
もに日本鉄道車両機械協会の評価方法によって難燃性が
表示できるものであった。
In each of Examples 1 to 3 and Comparative Examples 1 to 3, flame retardancy could be indicated by the evaluation method of Japan Railway Vehicle Machinery Association.

【0052】[0052]

【表1】 [実施例4〜5および比較例4〜5]実施例1と同様に
して繊維Aおよび繊維Bを製造し、実施例1と同様にし
て繊維Aと繊維Bを混綿し、その混綿割合のみ変更して
成形体を得、前記繊維成形体にポリエステル系樹脂を付
与、固着した後、圧縮率50%で5回の仕上げ圧縮処理
して密度0.04cc/gの成形体を得た。
[Table 1] [Examples 4 to 5 and Comparative Examples 4 to 5] Fibers A and B were produced in the same manner as in Example 1, fibers A and B were mixed in the same manner as in Example 1, and only the mixing ratio was changed. A molded product was obtained by applying a polyester resin to the fiber molded product and fixing it, and then a final compression treatment was performed 5 times at a compression ratio of 50% to obtain a molded product having a density of 0.04 cc / g.

【0053】表1に、得られた繊維成形体の性質を示
す。実施例4および実施例5は繊維Aの混綿割合を20
重量%および60重量%としたもので、構成繊維の繊維
軸が繊維成形体の厚み方向の面に対し平行な方向に配列
し、圧縮応力損失が低く、かつ撓み量が高いため、圧縮
残留歪が低く、屈曲性、繊維成形体の取扱性、ソフト性
および形態安定性の良好な繊維成形体が得られた。これ
に対し、比較例4は繊維Aの混綿割合を18重量%とし
たもので、構成繊維の繊維軸が繊維成形体の厚み方向の
面に対し平行な方向に配列し、ポリエステル系樹脂を付
与しているため、圧縮応力損失が低く、かつ撓み量が高
いため、圧縮残留歪が低く、屈曲性、ソフト性に優れて
いるが、繊維Aの混綿割合が20重量%未満であり、繊
維成形体の取扱性、形態安定性がやや劣るものであっ
た。さらに、比較例5は繊維Aの混綿割合を62重量%
としたもので、構成繊維の繊維軸が繊維成形体の厚み方
向の面に対し平行な方向に配列し、ポリエステル系樹脂
を付与しているため、圧縮応力損失が低く、かつ撓み量
が高いため、圧縮残留歪が低く、屈曲性、繊維成形体の
取扱性、形態安定性に優れているが、繊維Aの混綿割合
が60重量%を越えるため、ソフト性がやや劣るもので
あった。
Table 1 shows the properties of the obtained fiber molding. In Examples 4 and 5, the blending ratio of the fiber A was 20.
Since the fiber axes of the constituent fibers are arranged in a direction parallel to the plane in the thickness direction of the fiber molded body, the compressive stress loss is low, and the amount of bending is high, the compressive residual strain is high. And the flexibility, the handling property of the fiber molded product, the softness, and the morphological stability were excellent. On the other hand, in Comparative Example 4, the mixing ratio of the fiber A was set to 18% by weight, and the fiber axes of the constituent fibers were arranged in the direction parallel to the plane in the thickness direction of the fiber molded body, and the polyester resin was added. Since the compression stress loss is low and the amount of flexure is high, the compression residual strain is low, and the flexibility and softness are excellent, but the blending ratio of the fiber A is less than 20% by weight, and the fiber molding The handleability and morphological stability of the body were slightly inferior. Further, in Comparative Example 5, the mixing ratio of the fiber A is 62% by weight.
Since the fiber axes of the constituent fibers are arranged in a direction parallel to the surface of the fiber molded body in the thickness direction and the polyester resin is added, the compressive stress loss is low and the amount of bending is high. Although the compression residual strain was low, the flexibility, the handleability of the fiber molded product, and the morphological stability were excellent, the softness was somewhat inferior because the mixing ratio of the fiber A exceeded 60% by weight.

【0054】[0054]

【発明の効果】本発明によれば、特に屈曲性があり、圧
縮に対してへたり難く、ソフトで、使用環境が高温の際
の繊維間の膠着による圧縮回復性の低下を防止でき、透
湿、透水性が高く快適な使用感を有し、洗濯性、特に水
洗い洗濯で水切れ性が良好で乾燥速度の速い、しかも環
境に優しい繊維成形体およびその製造方法を提供するこ
とができる。
EFFECTS OF THE INVENTION According to the present invention, it is particularly flexible and hard to settle against compression, is soft, and can prevent deterioration of compression recovery due to sticking between fibers when the use environment is high, and It is possible to provide a fiber molded article having a high wetness and water permeability, a comfortable feeling of use, a good washability, particularly a good drainage property in washing with water and a fast drying rate, and an environmentally friendly fiber molding, and a method for producing the same.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブロック形状繊維成形体の一例をモデ
ル的に示す斜視図である。
FIG. 1 is a model perspective view showing an example of a block-shaped fiber molding of the present invention.

【図2】本発明の繊維成形体の製造方法に用いられる装
置の一例をモデル的に示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing a model of an example of an apparatus used in the method for producing a fiber molded product of the present invention.

【符号の説明】 1:下金型 2:上金型 3:気体の吹き込み口 4:繊維混合物[Explanation of reference numerals] 1: Lower mold 2: Upper mold 3: Gas blowing port 4: Fiber mixture

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 1/64 D04H 1/64 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location D04H 1/64 D04H 1/64 A

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】2種以上の繊維で構成された繊維成形体で
あって、構成繊維の1種は融点がその他の繊維Bより低
い熱可塑性重合体R1を少なくとも繊維表面側に有する
繊維Aを20〜60重量%、その他の繊維Bを80〜4
0重量%から構成され、繊維A相互間および繊維Aと繊
維Bの接触点の一部が実質的に接着し、さらに構成繊維
の多くは繊維成形体の厚み方向の断面(bdef)に対
し繊維軸を略平行に配列し、かつ繊維成形体の厚み方向
の断面(bdef)内でランダムな方向に配列し、構成
繊維の表面にポリエステル系樹脂が付与されてなり、撓
み量が5〜20cmであることを特徴とする繊維成形
体。
1. A fiber molded article composed of two or more kinds of fibers, wherein one kind of constituent fibers comprises a fiber A having at least a thermoplastic polymer R1 having a lower melting point than the other fibers B on the fiber surface side. 20-60% by weight, other fiber B 80-4
0% by weight, and the fibers A and fibers B and a part of the contact points of the fibers A and B are substantially adhered to each other, and most of the constituent fibers are fibers with respect to the cross section (bdef) in the thickness direction of the fiber molded body. The axes are arranged substantially parallel to each other, and the fibers are arranged in random directions within the cross section (bdef) in the thickness direction of the fiber molding, and the polyester resin is applied to the surfaces of the constituent fibers, and the bending amount is 5 to 20 cm. A fiber formed body characterized by being present.
【請求項2】繊維Aの融点がその他の繊維Bより20℃
以上低い熱可塑性重合体R1を少なくとも繊維表面側に
有することを特徴とする請求項1記載の繊維成形体。
2. The melting point of the fiber A is 20 ° C. higher than that of the other fibers B.
The fiber molding according to claim 1, which has the low thermoplastic polymer R1 at least on the fiber surface side.
【請求項3】繊維Aは2種の異なる成分の熱可塑性重合
体R1および熱可塑性重合体R2からなる複合繊維であ
って、熱可塑性重合体R1を繊維表面側にして、R1よ
り融点が20℃以上高い熱可塑性重合体R2を芯側に
し、かつR1/R2の重量比が20/80〜60/40
であることを特徴とする請求項1または2に記載の繊維
成形体。
3. A fiber A is a composite fiber comprising two different components of a thermoplastic polymer R1 and a thermoplastic polymer R2, the thermoplastic polymer R1 being the fiber surface side, and having a melting point of 20 or more than R1. The thermoplastic polymer R2 having a temperature higher than ℃ is used as the core side, and the weight ratio of R1 / R2 is 20/80 to 60/40.
The fiber molded body according to claim 1 or 2, wherein
【請求項4】繊維Aおよび繊維Bがいずれもポリエステ
ルであることを特徴とする請求項1、2または3に記載
の繊維成形体。
4. The fiber molding according to claim 1, 2 or 3, wherein both the fiber A and the fiber B are polyester.
【請求項5】繊維Aは繊度1〜10デニール、繊維長が
10〜100mmの短繊維であり、繊維Bは繊度0.5
〜30デニール、繊維長が10〜100mmの短繊維で
あることを特徴とする請求項1、2、3または4に記載
の繊維成形体。
5. The fiber A is a short fiber having a fineness of 1 to 10 denier and a fiber length of 10 to 100 mm, and the fiber B is a fineness of 0.5.
It is a short fiber having a fiber length of 10 to 100 mm and a denier of 30 to 30, and the fiber molded body according to claim 1, 2, 3, or 4.
【請求項6】ポリエステル系樹脂がポリエステルにポリ
エチレングリコールをブロック重合し、自己乳化性を有
しているものからなることを特徴とする請求項1、2、
3、4または5に記載の繊維成形体。
6. A polyester-based resin, which is self-emulsifying by block-polymerizing polyester with polyethylene glycol.
The fiber molding according to 3, 4, or 5.
【請求項7】2種以上の繊維を混綿するに際し、1種は
融点がその他の繊維Bより低い熱可塑性重合体R1を少
なくとも繊維表面側に有する繊維Aを20〜60重量
%、その他の繊維Bを80〜40重量%を混綿し、開繊
して、気体と共に通気性型枠内に充填し、圧縮した状態
で熱接着処理し、さらにポリエステル系樹脂を付与し、
熱処理して固着させてあらかじめ繊維成形体とした後、
繊維Aの熱可塑性重合体R1の融点未満の温度下で、前
記吹き込み充填後の圧縮方向に対し垂直な2方向の内2
方向または2方向の内1方向に5〜80%の範囲で1回
以上仕上げ圧縮処理をすることを特徴とする繊維成形体
の製造方法。
7. When mixing two or more kinds of fibers, one kind is 20 to 60% by weight of the fiber A having at least the surface of the thermoplastic polymer R1 having a melting point lower than that of the other fibers B, and the other fibers. 80% to 40% by weight of B is mixed, opened, filled in a breathable form with gas, heat-bonded in a compressed state, and further provided with a polyester resin,
After heat treatment and fixing to form a fiber molded body in advance,
At a temperature lower than the melting point of the thermoplastic polymer R1 of the fiber A, one of two directions perpendicular to the compression direction after the blow filling is used.
Direction or one of two directions is subjected to finish compression treatment once or more within a range of 5 to 80%.
【請求項8】熱接着処理を温度80〜200℃で実施す
ることを特徴とする請求項7記載の繊維成形体の製造方
法。
8. The method for producing a fiber molded article according to claim 7, wherein the heat-bonding treatment is carried out at a temperature of 80 to 200 ° C.
JP7229996A 1995-09-07 1995-09-07 Fiber formed body and its production Pending JPH0978425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7229996A JPH0978425A (en) 1995-09-07 1995-09-07 Fiber formed body and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7229996A JPH0978425A (en) 1995-09-07 1995-09-07 Fiber formed body and its production

Publications (1)

Publication Number Publication Date
JPH0978425A true JPH0978425A (en) 1997-03-25

Family

ID=16900975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7229996A Pending JPH0978425A (en) 1995-09-07 1995-09-07 Fiber formed body and its production

Country Status (1)

Country Link
JP (1) JPH0978425A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012802A1 (en) * 1998-09-01 2000-03-09 Kanebo Limited Nonwoven fabric and production method thereof, production device used for the method, cushion materials using it, nonwoven fabric suitable for filters, nonwoven structures and cushion materials
CN100347075C (en) * 2002-07-11 2007-11-07 特维拉有限公司 Cover filled with polyester fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000012802A1 (en) * 1998-09-01 2000-03-09 Kanebo Limited Nonwoven fabric and production method thereof, production device used for the method, cushion materials using it, nonwoven fabric suitable for filters, nonwoven structures and cushion materials
CN100347075C (en) * 2002-07-11 2007-11-07 特维拉有限公司 Cover filled with polyester fiber

Similar Documents

Publication Publication Date Title
CN110337509B (en) Fiber structure and method for producing same
US5646077A (en) Binder fiber and nonwoven fabrics using the fiber
EP0637642B1 (en) Binder fiber and nonwoven fabric produced therefrom
JPH0978425A (en) Fiber formed body and its production
JPH04126856A (en) Polyester solid wadding
JP3352022B2 (en) Solid cotton with excellent sag resistance under high temperature atmosphere using binder fiber
JPH0978424A (en) Fiber formed body and its production
JP2002173861A (en) Fiber molded article and method of manufacturing the same
JP2002000408A (en) Vehicle seat
JP3872203B2 (en) Binder fiber and non-woven fabric using this fiber
JPH08188946A (en) Formed article of fiber and its production
JP3304020B2 (en) Composite binder fiber
JPH08170256A (en) Yarn mixture, molded article of yarn and production of molded article of yarn
JP4326083B2 (en) Polyester-based heat-adhesive composite staple fiber and nonwoven fabric
JPH08188945A (en) Formed article of fiber and its production
JPH08158222A (en) Fiber mixture and fiber shaped body and production of fiber shaped body
JPH09228219A (en) Fiber formed product
JPH07189101A (en) Soundproof material for automobile
JP2001262455A (en) Fibrous solid cotton and method for producing the same
JPH08188944A (en) Fiber mixture, formed article of fiber and production of the formed article of fiber
JPH09228216A (en) Fiber formed product and its production
JPH09224785A (en) Bed mat
JP3431090B2 (en) Nonwoven laminated net, manufacturing method and product using the same
JP3430448B2 (en) Laminated structure, manufacturing method and products using the same
JP3526041B2 (en) Mat and its manufacturing method