JP2002242061A - Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure - Google Patents

Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure

Info

Publication number
JP2002242061A
JP2002242061A JP2001038520A JP2001038520A JP2002242061A JP 2002242061 A JP2002242061 A JP 2002242061A JP 2001038520 A JP2001038520 A JP 2001038520A JP 2001038520 A JP2001038520 A JP 2001038520A JP 2002242061 A JP2002242061 A JP 2002242061A
Authority
JP
Japan
Prior art keywords
fiber
ball
thermoplastic resin
biodegradable
biodegradability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001038520A
Other languages
Japanese (ja)
Inventor
Daisuke Sakai
大介 酒井
Hiroyuki Watanabe
博之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2001038520A priority Critical patent/JP2002242061A/en
Publication of JP2002242061A publication Critical patent/JP2002242061A/en
Pending legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Mattresses And Other Support Structures For Chairs And Beds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ball-shaped fiber having excellent cushioning properties and thermoforming properties, suitably usable for bedding, a sofa, a cushion, a filing of car interior, or the like, capable of being subjected to compost disposal due to biodegradability, and hardly providing the load to the environment even when being subjected to landfill disposal due to its degradation within two to three years, and further to provide a fiber structure by using the ball- shaped fiber. SOLUTION: This ball-shaped staple comprises 80-50 wt.% staple fiber composed of a thermoplastic resin (A) having the biodegradability, 2-40 dtex single fiber size and 25-64 mm fiber length, and 20-50 wt.% thermobonding fiber composed of a thermoplastic resin (B) having the melting point or the flow-starting temperature >=20 deg.C lower than that of the thermoplastic resin (A), and the biodegradability, and having 2-40 dtex single fiber size and 25-64 mm fiber length, and has 3-20 mm average diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、寝装具、ソファ
ー、クッション、自動車内装材の詰め物等に好適に用い
られる、生分解性短繊維からなる玉状綿と繊維構造体に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a biodegradable short fiber ball-shaped cotton and a fibrous structure which are suitably used for bedding, sofas, cushions, fillings for automobile interior materials and the like.

【0002】[0002]

【従来の技術】寝装具、ソファー、クッション、自動車
内装材等の詰物としてウレタンやポリエステル短繊維が
広く使用されており、これらの繊維を開繊した後、空気
流によって側地内に吹き込み、詰物体を製造する方法
(例えば、特開昭55−47888号公報)がよく知ら
れている。しかし、この方法では、短繊維が風送時に塊
状化して風送が困難になったり、側地内に均一に充填す
ることが困難であるという問題があった。
2. Description of the Related Art Urethane and polyester staple fibers are widely used as fillers for bedding, sofas, cushions, automobile interior materials and the like. (For example, JP-A-55-47888) is well known. However, in this method, there are problems that the short fibers are agglomerated at the time of blowing and it is difficult to blow, or it is difficult to uniformly fill the side ground.

【0003】そこで、繊維を玉状化することで、吹き込
み作業性が良好となり、均一な詰物を得ることができる
方法が提案された(例えば、特開平6−134150号
公報、特開平7−150455号公報、特開平8−22
9255号公報)。しかしながら、ポリウレタンは、燃
焼時のガスの問題、製造時のフロンガスの問題、リサイ
クルの困難さ等の問題があり、またポリエステルもリサ
イクルの困難さや、廃棄された場合の環境汚染等の問題
が指摘されている。
[0003] Therefore, a method has been proposed in which the fibers are beaded to improve the blowing workability and to obtain a uniform filling (for example, JP-A-6-134150, JP-A-7-150455). JP, JP-A-8-22
No. 9255). However, polyurethane has problems such as problems of gas during combustion, problems of chlorofluorocarbons during production, difficulty of recycling, and the like.Polyester also has problems of difficulty of recycling and environmental pollution when discarded. ing.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述した問
題を解決し、優れたクッション性と熱成型性があり、寝
装具、ソファー、クッション、自動車内装材の詰め物等
に好適に使用することができ、また、生分解性を有する
ため、コンポスト処理を行うことが可能であり、埋め立
て処理する場合でも、2〜3年で分解されるため、環境
に対する負荷が少ない玉状綿と、その玉状綿を用いた繊
維構造体を提供することを技術的な課題とするものであ
る。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, has excellent cushioning properties and thermoformability, and is suitably used for bedding, sofas, cushions, fillings for automobile interior materials, and the like. In addition, since it has biodegradability, it can be composted, and even when it is landfilled, it is decomposed in 2 to 3 years. It is a technical object to provide a fibrous structure using cotton wool.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記の欠
点が解消された新規な詰め物用玉状綿を開発するために
鋭意検討を重ねた結果、本発明に到達した。すなわち、
本発明は、次の構成を要旨とするものである。 (1) 生分解性を有する熱可塑性樹脂(A)からなる、単
繊維繊度が2〜40dtex、繊維長が25〜64mm
である短繊維80〜50質量%と、熱可塑性樹脂(A)
より融点又は流動開始温度が20℃以上低く、生分解性
を有する熱可塑性樹脂(B)からなり、単繊維繊度が2
〜40dtex、繊維長が25〜64mmである熱接着
性繊維20〜50質量%とからなり、平均直径が3〜2
0mmであることを特徴とする熱接着性繊維を含有した
生分解性を有する玉状綿。 (2) 生分解性を有する熱可塑性樹脂(A)からなる、単
繊維繊度が2〜40dtex、繊維長が25〜64mm
である短繊維80〜50質量%と、少なくとも1成分が
熱可塑性樹脂(A)より融点又は流動開始温度が20℃
以上低く、生分解性を有する熱可塑性樹脂(B)からな
る複合繊維であって、かつ断面形状が貼り合わせ型又は
芯鞘型であり、単繊維繊度が2〜40dtex、繊維長
が25〜64mmである熱接着性繊維20〜50質量%
とからなり、平均直径が3〜20mmであることを特徴
とする熱接着性繊維を含有した生分解性を有する玉状
綿。 (3) 熱可塑性樹脂(A)、(B)の少なくとも1成分が
ポリ乳酸であることを特徴とする上記(1) 又は(2) 記載
の熱接着性繊維を含有した生分解性を有する玉状綿。 (4) 上記(1) 〜(3) のいずれかに記載の玉状綿よりなる
ことを特徴とする繊維構造体。
Means for Solving the Problems The present inventors have made intensive studies to develop a new ball-shaped cotton ball for filling in which the above-mentioned disadvantages have been solved, and as a result, have reached the present invention. That is,
The gist of the present invention is as follows. (1) Made of biodegradable thermoplastic resin (A), single fiber fineness is 2 to 40 dtex, fiber length is 25 to 64 mm
80 to 50% by mass of a short fiber, and a thermoplastic resin (A)
It is made of a thermoplastic resin (B) having a melting point or a flow start temperature lower than 20 ° C.
-40 dtex, 20 to 50% by mass of a thermoadhesive fiber having a fiber length of 25 to 64 mm, and an average diameter of 3 to 2
A biodegradable ball-shaped cotton containing a thermoadhesive fiber, which is 0 mm. (2) A single fiber fineness of 2 to 40 dtex and a fiber length of 25 to 64 mm made of a thermoplastic resin (A) having biodegradability
80 to 50% by mass of short fibers, and at least one component has a melting point or a flow start temperature of 20 ° C. higher than that of the thermoplastic resin (A).
A composite fiber made of a thermoplastic resin (B) having a low biodegradability and a cross-sectional shape of a laminated type or a core-sheath type, a single fiber fineness of 2 to 40 dtex, and a fiber length of 25 to 64 mm. 20 to 50% by mass of the heat-adhesive fiber
Characterized by having an average diameter of 3 to 20 mm, comprising a thermodegradable fiber and having biodegradability. (3) A biodegradable ball containing a thermoadhesive fiber according to the above (1) or (2), wherein at least one component of the thermoplastic resins (A) and (B) is polylactic acid. Cotton. (4) A fibrous structure comprising the ball-shaped cotton according to any one of (1) to (3).

【0006】[0006]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の玉状綿は、熱可塑性樹脂(A)からなる
短繊維と、少なくとも1成分として熱可塑性樹脂(B)
を有する熱接着性繊維で構成されているが、いずれも生
分解性を有していることが必要である。本発明において
使用される繊維を構成する熱可塑性樹脂としては、生分
解性を有するものであれば特に限定されるものではな
く、ポリ乳酸、ポリエチレンサクシネート、ポリブチレ
ンサクシネート、ポリカプロラクトン、ポリ(β−ヒド
ロキシ酪酸)、ポリエステルカーボネート、あるいはこ
れらの共重合体等のいずれを組み合わせたものであって
もよい。この中で、ポリ乳酸はポリエステルなどと同等
の優れた成形加工性を有しており、最も好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The ball-shaped cotton of the present invention comprises a short fiber made of a thermoplastic resin (A) and a thermoplastic resin (B) as at least one component.
, But all of them need to have biodegradability. The thermoplastic resin constituting the fiber used in the present invention is not particularly limited as long as it has biodegradability. Polylactic acid, polyethylene succinate, polybutylene succinate, polycaprolactone, poly ( (β-hydroxybutyric acid), polyester carbonate, or a combination thereof. Among them, polylactic acid has the same excellent moldability as polyester and the like, and is most preferable.

【0007】また、玉状綿に用いる生分解性を有する熱
接着性繊維の少なくとも1部を構成する熱可塑性樹脂
(B)としては、熱可塑性樹脂(A)より融点又は流動
開始温度が20℃以上、好ましくは30〜100℃低い
ことが必要である。融点又は流動開始温度の差が20℃
未満では、玉状綿をパンチングプレート型枠に均一に入
れ、熱処理を施して繊維構造体を成形する際に、熱接着
性繊維を選択的に融解させる温度範囲が制約され、十分
な接着強力が得られないことがある。
The thermoplastic resin (B) constituting at least a part of the biodegradable thermoadhesive fiber used for the ball-shaped cotton has a melting point or a flow start temperature of 20 ° C. higher than that of the thermoplastic resin (A). As described above, it is necessary that the temperature should preferably be lower by 30 to 100C. 20 ° C difference in melting point or flow start temperature
If it is less than 1, the temperature range for selectively melting the heat-adhesive fibers is restricted when the ball-shaped cotton is uniformly placed in the punching plate form and subjected to heat treatment to form the fiber structure, and sufficient adhesive strength is obtained. May not be obtained.

【0008】上記した熱可塑性樹脂(B)としては、例
えば、D−乳酸の含有率が8.5〜9.0%、融点が1
30〜135℃のポリ乳酸があり、この熱接着性成分の
みからなる全融タイプ繊維、鞘成分として熱可塑性樹脂
(B)を配した芯鞘型の複合繊維、片側成分に熱可塑性
樹脂(B)を配した貼り合わせ型の複合繊維のいずれで
あってもよい。そして、芯鞘型や貼り合わせ型複合繊維
に組み合わせる熱可塑性樹脂としては、熱可塑性樹脂
(A)が好ましく用いられる。
The thermoplastic resin (B) has, for example, a content of D-lactic acid of 8.5 to 9.0% and a melting point of 1%.
There is polylactic acid at 30 to 135 ° C., which is a fully-fused fiber composed of only the thermoadhesive component, a core-sheath composite fiber in which a thermoplastic resin (B) is disposed as a sheath component, and a thermoplastic resin (B ) May be used. The thermoplastic resin (A) is preferably used as the thermoplastic resin to be combined with the core-sheath type or bonded conjugate fiber.

【0009】次に、本発明に用いる短繊維および熱接着
性繊維の単繊維繊度は、いずれも2〜40dtex、好
ましくは4〜22dtexであることが必要である。単
繊維繊度が2dtex未満では玉状綿の直径が小さくな
り、圧縮弾性が劣るため好ましくない。一方、単繊維繊
度が40dtexを超えると、繊維の剛性が強すぎて玉
状になり難いため好ましくない。
Next, the single fiber fineness of the short fibers and the heat-adhesive fibers used in the present invention must be 2 to 40 dtex, preferably 4 to 22 dtex. If the single fiber fineness is less than 2 dtex, the diameter of the ball-shaped cotton becomes small, and the compression elasticity is inferior. On the other hand, if the single fiber fineness exceeds 40 dtex, the rigidity of the fiber is too strong and it is difficult to bead, which is not preferable.

【0010】また、本発明に用いる短繊維および熱接着
性繊維の繊維長は、いずれも25〜64mm、好ましく
は30〜50mmとすることが必要である。繊維長が2
5mm未満では玉状綿の直径が小さくなり、圧縮弾性が
劣るため好ましくない。一方、繊維長が64mmを超え
ると、絡みすぎて玉状になり難いため好ましくない。
The short fibers and the heat-adhesive fibers used in the present invention must each have a fiber length of 25 to 64 mm, preferably 30 to 50 mm. Fiber length is 2
If the diameter is less than 5 mm, the diameter of the ball-shaped cotton becomes small and the compression elasticity is inferior. On the other hand, if the fiber length exceeds 64 mm, it is not preferable because it is too entangled and difficult to bead.

【0011】本発明の玉状綿は、生分解性を有する短繊
維80〜50質量%と、生分解性を有する熱接着性繊維
20〜50質量%の割合で混合されていることが必要で
ある。熱接着繊維の比率が少なすぎると接着性が悪く、
繊維構造体の剥離強力が非常に低くなるので好ましくな
い。一方、熱接着繊維の比率が多すぎると、繊維構造体
の風合いが硬くなるので好ましくない。本発明者らの実
験結果からは、生分解性を有する短繊維80〜70質量
%と、生分解性を有する熱接着性繊維20〜30質量%
の割合が好適である。
[0011] The ball-shaped cotton of the present invention needs to be mixed in a ratio of 80 to 50% by mass of biodegradable short fibers and 20 to 50% by mass of biodegradable thermoadhesive fibers. is there. If the ratio of the heat bonding fiber is too small, the adhesiveness is poor,
It is not preferable because the peel strength of the fiber structure becomes very low. On the other hand, if the ratio of the heat bonding fibers is too large, the texture of the fiber structure becomes hard, which is not preferable. From the experimental results of the present inventors, it was found that 80 to 70% by mass of biodegradable short fibers and 20 to 30% by mass of biodegradable heat-adhesive fibers.
Is preferred.

【0012】本発明の玉状綿に用いられる繊維は、その
断面形態が丸断面、異形断面のいずれでもよく、また、
中空であっても非中空であってもよい。このような詰め
物用繊維を得るには、通常の紡糸装置を用いて溶融紡糸
して得た未延伸糸を、常法によって延伸、切断すること
により製造することができる。
The fiber used for the ball-shaped cotton of the present invention may have a round cross-section or an irregular cross-section.
It may be hollow or solid. In order to obtain such a filling fiber, an undrawn yarn obtained by melt-spinning using an ordinary spinning apparatus can be produced by drawing and cutting by a conventional method.

【0013】本発明の玉状綿は、上記した繊維を用い
て、高速気流下で撹拌することにより得ることができ
る。そしてその大きさは、平均直径を3〜20mm、好
ましくは5〜15mmにする必要がある。平均直径が3
mmに満たない場合、ネップ状となって嵩高性能が劣
り、クッション性が乏しくなる。また、平均直径が20
mmを超えると、嵩高性能が悪くなり、玉状綿の均一性
が悪化するので好ましくない。
The ball-shaped cotton of the present invention can be obtained by stirring the above-mentioned fibers under a high-speed air flow. And its size needs to have an average diameter of 3 to 20 mm, preferably 5 to 15 mm. Average diameter of 3
If it is less than mm, it becomes a nep shape, the bulk performance is inferior, and the cushioning property is poor. In addition, the average diameter is 20
If it exceeds mm, the bulk performance becomes poor and the uniformity of the ball-shaped cotton deteriorates, which is not preferable.

【0014】玉状綿の大きさは、繊度と繊維長によって
調整できるが、気流の強さと処理時間を調節することに
よっても調整することができ、風速10〜50m/分の
高速気流下で2〜20分間程度撹拌することにより、所
望の大きさの玉状綿を得ることができる。
The size of the ball-shaped cotton can be adjusted by adjusting the fineness and the fiber length, but can also be adjusted by adjusting the strength of the air flow and the processing time. By stirring for about 20 minutes, it is possible to obtain ball-shaped cotton having a desired size.

【0015】次に、本発明の繊維構造体は、これらの玉
状綿を、例えばパンチングプレート型枠に均一に入れ、
熱処理を施すことで得ることができる。熱処理方法とし
ては、熱可塑性樹脂(B)の融点、あるいは流動開始温
度より10〜30℃高い温度にて、5〜30分程度行う
のが好ましい。
Next, the fiber structure of the present invention uniformly puts these ball-shaped cotton into, for example, a punching plate form,
It can be obtained by performing a heat treatment. The heat treatment is preferably performed at a temperature higher by 10 to 30 ° C. than the melting point of the thermoplastic resin (B) or the flow start temperature for about 5 to 30 minutes.

【0016】[0016]

【作用】本発明の玉状綿と繊維構造体は、構成繊維に生
分解性繊維を使用しているため、コンポスト処理を行う
ことができ、また埋め立て処理される場合でも、2〜3
年で分解されるため、環境に対する負荷が少ないもので
ある。
The beaded cotton and the fibrous structure of the present invention can be subjected to a composting treatment because biodegradable fibers are used as constituent fibers.
Since it is decomposed in a year, the burden on the environment is small.

【0017】[0017]

【実施例】次に、本発明を実施例により具体的に説明す
るが、本発明はこれらによって限定されるものではな
い。なお、実施例に記述した諸物性の評価法は、次のと
おりである。 (1)相対粘度(η) フェノール/四塩化エタンの等重量混合溶液を溶媒と
し、ウベローデ粘度計を使用して温度20℃で測定し
た。 (2)融点 パーキンエルマー社製の示差走査熱量計DSC−7型を
使用し、昇温速度20℃/分で測定した。 (3)流動開始温度 フローテスター(島津製作所製CFT−500型)を用
い、荷重100kg/cm2 、ノズル径0.5mmの条
件で、初期温度50℃より10℃/分の割合で昇温し、
ポリマーがダイから流出し始める温度として求めた。 (4)繊度 JIS L−1015−7−5−1Aの方法により測定
した。 (5)繊維長 JIS L−1015−7−4−1Cの方法により測定
した。 (6)玉状綿の平均直径 任意の玉状綿を50個選択してノギスにより個々の直径
を測定し、その平均値を算出した。 (7)繰り返し圧縮残留ひずみ率 JIS K−6401−5−6の方法により測定した。
15%以下を合格とした。 (8)剥離強力 幅5cm、長さ15cmの短冊状に切断した繊維構造体
を、オリエンテック社製UTM−4型のテンシロンを用
い、引っ張り速度10cm/分の条件で伸長切断し、こ
の時の最大強力を剥離強力とした。250cN以上を合
格とした。 (9)風合い評価 繊維構造体のクッション性を触感で判断し、クッション
性が良好なものを○、クッション性が悪いもの(硬い)
を×とした。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. The methods for evaluating various physical properties described in the examples are as follows. (1) Relative viscosity (η) Measured at a temperature of 20 ° C. using an Ubbelohde viscometer using an equal weight mixed solution of phenol / ethane tetrachloride as a solvent. (2) Melting point The melting point was measured at a heating rate of 20 ° C./min using a differential scanning calorimeter DSC-7 manufactured by Perkin Elmer. (3) Flow start temperature Using a flow tester (CFT-500, manufactured by Shimadzu Corporation), the temperature was raised at a rate of 10 ° C./min from the initial temperature of 50 ° C. under the conditions of a load of 100 kg / cm 2 and a nozzle diameter of 0.5 mm. ,
It was determined as the temperature at which the polymer began to flow out of the die. (4) Fineness Measured according to the method of JIS L-1015-7-5-1A. (5) Fiber length Measured according to the method of JIS L-1015-7-4-1C. (6) Average diameter of ball-shaped cotton Fifty arbitrary ball-shaped cottons were selected, each diameter was measured with a caliper, and the average value was calculated. (7) Residual compression residual strain rate Measured according to the method of JIS K-6401-5-6.
15% or less was regarded as a pass. (8) Peeling strength A fibrous structure cut into a strip having a width of 5 cm and a length of 15 cm is stretched and cut at a pulling speed of 10 cm / min using a UTM-4 type Tensilon manufactured by Orientec. The maximum strength was defined as the peel strength. 250 cN or more was regarded as a pass. (9) Texture evaluation The cushioning property of the fiber structure is judged by the tactile sensation, and those with good cushioning property are evaluated as ○, and those with poor cushioning property (hard).
Is indicated by x.

【0018】実施例1 生分解性を有する熱可塑性樹脂(A)として、L−乳酸
とD−乳酸の含有率の比が98.8:1.2であり、融
点170℃、η=1.850のポリ乳酸を用い、孔数4
0孔の通常用いられる紡糸口金を用いて吐出量348g
/min、温度220℃で紡糸し、引取速度800m/
minで引取り、未延伸糸を得た。 得られた未延伸糸
を14万dtexになるように集め、延伸倍率3.58
倍、延伸温度60℃で延伸し、125℃で緊張熱処理を
行い、次いで押込式捲縮機に供給して捲縮を付与した
後、51mmにカットして、繊度33dtex、強度
3.0cN/dtexのポリ乳酸短繊維(I)を得た。
Example 1 As a biodegradable thermoplastic resin (A), the content ratio of L-lactic acid to D-lactic acid is 98.8: 1.2, melting point 170 ° C., η = 1. 850 polylactic acid, 4 holes
Using a normally used spinneret with 0 holes, discharge amount 348g
/ Min, spinning at a temperature of 220 ° C and a take-up speed of 800m /
min, and an undrawn yarn was obtained. The obtained unstretched yarn was collected to 140,000 dtex, and the draw ratio was 3.58.
It is stretched at a stretching temperature of 60 ° C., subjected to a tension heat treatment at 125 ° C., and then supplied to an indentation type crimping machine to be crimped. Of polylactic acid short fiber (I) was obtained.

【0019】生分解性を有する熱可塑性樹脂(A)とし
て、L−乳酸とD−乳酸の含有率の比が98.8:1.
2であり、融点が170℃、η=1.850のポリ乳酸
を芯鞘複合繊維の芯成分に用い、生分解性を有する熱可
塑性樹脂(B)として、L−乳酸とD−乳酸の含有率の
比が91.5:8.5であり、流動開始温度が130
℃、η=1.850のポリ乳酸を芯鞘複合繊維の鞘成分
に用いて、孔数65孔の通常芯鞘複合繊維用紡糸口金か
ら、吐出量330g/min、温度225℃で紡糸し、
引取速度700m/minで引取り、未延伸糸を得た。
The biodegradable thermoplastic resin (A) has a ratio of L-lactic acid to D-lactic acid of 98.8: 1.
2, polylactic acid having a melting point of 170 ° C. and η = 1.850 is used as the core component of the core-sheath composite fiber, and contains L-lactic acid and D-lactic acid as a biodegradable thermoplastic resin (B). Ratio of 91.5: 8.5 and a flow onset temperature of 130
Using a polylactic acid having a η of 1.850 and a sheath component of the core-sheath conjugate fiber at a temperature of 225 ° C. at a discharge rate of 330 g / min from a 65-hole spinneret for a core-sheath conjugate fiber,
An undrawn yarn was obtained at a take-up speed of 700 m / min.

【0020】得られた未延伸糸を15万dtexになる
ように集め、延伸倍率4.35倍、延伸温度50℃で延
伸し、次いで押込式捲縮機に供給し、捲縮を付与した
後、38mmにカットしてポリ乳酸の熱接着性繊維(I
I) を得た。得られた繊維は、繊度17dtex、強度
3.2cN/dtexであった。
The obtained undrawn yarn is collected to 150,000 dtex, drawn at a draw ratio of 4.35 times, at a drawing temperature of 50 ° C., and then supplied to an indentation type crimping machine to give a crimp. , Cut into 38mm and heat-bonded polylactic acid fiber (I
I) was obtained. The resulting fiber had a fineness of 17 dtex and a strength of 3.2 cN / dtex.

【0021】主体繊維である上記短繊維(I)140g
と熱接着性繊維(II)60g(質量混合比=70/3
0)を計量して、開繊した後に玉綿加工機に入れ、空気
圧250mmAq、撹拌速度30m/秒の空気気流下で
5分間撹拌して直径18.3mmの玉状綿を得た。
140 g of the above-mentioned short fiber (I) as a main fiber
And heat-adhesive fiber (II) 60 g (mass mixing ratio = 70/3)
After 0) was weighed and opened, it was put into a cotton processing machine and stirred for 5 minutes in an air stream at an air pressure of 250 mmAq and a stirring speed of 30 m / sec to obtain a 18.3 mm diameter cotton ball.

【0022】次いで、得られた玉状綿をパンチングプレ
−ト型枠(15cm×15cm)に厚さ3.5cm、充
填密度0.025g/cm3 になるように均一に入れ、
140℃×20分間の熱処理を行い、繊維構造体を試作
した。得られた玉状綿の平均直径、繊維構造体の繰り返
し圧縮残留ひずみ率、剥離強力及び風合いの評価結果を
表1に示す。
Next, the obtained ball-shaped cotton is uniformly placed in a punching plate form (15 cm × 15 cm) so as to have a thickness of 3.5 cm and a packing density of 0.025 g / cm 3 .
Heat treatment was performed at 140 ° C. for 20 minutes to produce a fibrous structure as a prototype. Table 1 shows the evaluation results of the average diameter of the obtained ball-shaped cotton, the residual compressive residual strain of the fiber structure, the peel strength, and the hand.

【0023】実施例2〜7、比較例1〜5 主体繊維である短繊維(I)及び熱接着性繊維(II)の
繊度、繊維長、短繊維(I)及び熱接着性繊維(II)の
混率、玉状綿の直径を表1に示すようにそれぞれ変更さ
せ、他は実施例1の方法と同様にして、玉状綿及び繊維
構造体を得た。得られた玉状綿の平均直径、繊維構造体
の繰り返し圧縮残留ひずみ率、剥離強力及び風合いを表
1に示す。
Examples 2 to 7, Comparative Examples 1 to 5 Fineness, shortness, short fiber (I) and heat adhesive fiber (II) of short fibers (I) and heat adhesive fibers (II) as main fibers And the diameter of the ball-shaped cotton were changed as shown in Table 1, except that the ball-shaped cotton and the fiber structure were obtained in the same manner as in Example 1. Table 1 shows the average diameter of the obtained ball-shaped cotton, the residual compression residual strain rate of the fiber structure, the peel strength and the feeling.

【0024】実施例8 生分解性を有する熱可塑性樹脂(B)として、L−乳酸
とD−乳酸の含有率の比が91.5:8.5であり、流
動開始温度が130℃、η=1.850であるポリ乳酸
を用い、孔数40孔の通常用いられる紡糸口金を用い
て、吐出量200g/min、温度225℃で紡糸し、
引取速度700m/minで引取り、未延伸糸を得た。
Example 8 As a biodegradable thermoplastic resin (B), the content ratio of L-lactic acid to D-lactic acid was 91.5: 8.5, the flow starting temperature was 130 ° C., and η Using a polylactic acid having a density of 1.850 and a commonly used spinneret having 40 holes, spinning at a discharge rate of 200 g / min and a temperature of 225 ° C.,
An undrawn yarn was obtained at a take-up speed of 700 m / min.

【0025】得られた未延伸糸を15万dtexになる
ように集め、延伸倍率4.20倍、延伸温度50℃で延
伸し、次いで押込式捲縮機に供給して捲縮を付与した
後、38mmにカットして、繊度17dtex、強度
2.9cN/dtexのポリ乳酸熱接着繊維(III)を得
た。このポリ乳酸繊維を熱接着繊維として用いた以外
は、実施例1と同様の方法にて玉状綿及び繊維構造体を
得た。得られた玉状綿の平均直径、繊維構造体の繰り返
し圧縮残留ひずみ率、剥離強力及び風合いを表1に示
す。
The obtained undrawn yarn is collected to 150,000 dtex, drawn at a draw ratio of 4.20 times, at a drawing temperature of 50 ° C., and then supplied to a press-type crimping machine to give crimp. , 38 mm to obtain a polylactic acid heat-bonding fiber (III) having a fineness of 17 dtex and a strength of 2.9 cN / dtex. Except that this polylactic acid fiber was used as the heat bonding fiber, ball-shaped cotton and a fiber structure were obtained in the same manner as in Example 1. Table 1 shows the average diameter of the obtained ball-shaped cotton, the residual compression residual strain rate of the fiber structure, the peel strength and the feeling.

【0026】実施例9 生分解性を有する熱可塑性樹脂(B)として、数平均分
子量が約50000、融点が116℃であるポリブチレ
ンサクシネートを用い、孔数40孔の通常用いられる紡
糸口金を用いて吐出量270g/min、温度195℃
で紡糸し、引取速度800m/minで引取り、未延伸
糸を得た。
Example 9 As a biodegradable thermoplastic resin (B), polybutylene succinate having a number average molecular weight of about 50,000 and a melting point of 116 ° C. was used, and a commonly used spinneret having 40 holes was used. 270 g / min discharge rate and 195 ° C temperature
At a take-up speed of 800 m / min to obtain an undrawn yarn.

【0027】得られた未延伸糸を14万dtexになる
ように集め、延伸倍率2.76倍、延伸温度55℃で延
伸し、次いで押込式捲縮機に供給して捲縮を付与した
後、38mmにカットして、繊度17dtex、強度
2.7cN/dtexのポリブチレンサクシネートの熱
接着繊維(IV)を得た。このポリブチレンサクシネート
繊維を熱接着繊維として用いた以外は、実施例1と同様
の方法にて玉状綿及び繊維構造体を得た。得られた玉状
綿の平均直径、繊維構造体の繰り返し圧縮残留ひずみ
率、剥離強力及び風合いを表1に示す。
The obtained undrawn yarn is collected to 140,000 dtex, drawn at a drawing ratio of 2.76 times, at a drawing temperature of 55 ° C., and then supplied to a press-type crimping machine to apply crimp. , 38 mm to obtain a heat-bonded fiber (IV) of polybutylene succinate having a fineness of 17 dtex and a strength of 2.7 cN / dtex. Except that this polybutylene succinate fiber was used as a heat bonding fiber, ball-shaped cotton and a fiber structure were obtained in the same manner as in Example 1. Table 1 shows the average diameter of the obtained ball-shaped cotton, the residual compression residual strain rate of the fiber structure, the peel strength and the feeling.

【0028】[0028]

【表1】 [Table 1]

【0029】表1から明らかなように、実施例1〜9
は、いずれも玉状が安定していて、繊維構造体の繰り返
し圧縮残留ひずみ率、剥離強力、風合いも良好であっ
た。
As is clear from Table 1, Examples 1 to 9
In each case, the ball shape was stable, and the repetition compression residual strain rate, peeling strength and texture of the fiber structure were also good.

【0030】一方、比較例1は、繊度が細いため玉状綿
の平均直径が小さく、繰り返し圧縮残留ひずみ率が悪く
なった。また、比較例2は繊度が太いため、比較例3は
繊維長が短かいため、いずれも繊維が絡まず、玉状にな
らなかった。比較例4は、繊維長が長いため、繊維が絡
みすぎて玉状にならなかった。次に、比較例5は、主体
繊維の比率が多く、熱接着繊維の比率が少なすぎるため
接着性が悪く、玉状綿の剥離強力が非常に低くなった。
比較例6は、熱接着繊維の比率が多すぎため、繊維構造
体の風合いが硬くなった。さらに、比較例7は、撹拌速
度が速すぎたため玉状綿の平均直径が小さくなり、繊維
構造体の繰り返し圧縮残留ひずみ率が悪くなった。比較
例8は、撹拌速度が遅すぎたため玉状綿の平均直径が大
きくなり、繊維構造体の繰り返し圧縮残留ひずみ率が悪
くなった。
On the other hand, in Comparative Example 1, since the fineness was small, the average diameter of the ball-shaped cotton was small, and the rate of repeated compression residual strain was poor. Further, since the fineness of Comparative Example 2 was large, and the fiber length of Comparative Example 3 was short, the fibers were not entangled in any case and did not bead. In Comparative Example 4, since the fiber length was long, the fibers were too entangled and did not bead. Next, in Comparative Example 5, the ratio of the main fibers was large, and the ratio of the heat bonding fibers was too small, so that the adhesiveness was poor and the peel strength of the ball-shaped cotton was extremely low.
In Comparative Example 6, the texture of the fibrous structure became hard because the ratio of the heat bonding fibers was too large. Further, in Comparative Example 7, the average diameter of the ball-shaped cotton was small because the stirring speed was too high, and the cyclic compression residual strain rate of the fiber structure was poor. In Comparative Example 8, since the stirring speed was too low, the average diameter of the ball-shaped cotton was large, and the repetition compression residual strain of the fiber structure was poor.

【0031】[0031]

【発明の効果】本発明によれば、優れたクッション性を
有し、寝装具、ソファー、クッション、自動車内装材の
詰め物等に好適に使用することができ、また、生分解性
を有するため、コンポスト処理を行うことが可能であ
り、埋め立て処理する場合でも、2〜3年で分解される
ため、環境に対する負荷が少ない玉状綿と繊維構造体が
提供される。
According to the present invention, it has excellent cushioning properties, can be suitably used for bedding, sofas, cushions, fillings for automobile interior materials, and has biodegradability. Composting can be performed, and even in the case of landfilling, it is decomposed in 2 to 3 years, so that a ball-shaped cotton and a fibrous structure with low environmental load are provided.

フロントページの続き Fターム(参考) 3B096 AD04 BA01 4L041 AA07 BA02 BA05 BA09 BA21 BC04 BD10 BD11 CA05 DD01 DD05 4L047 AA21 AA27 AB02 AB10 BA09 BB06 BB09 CA18 CA20 CC07 CC09 CC14 Continued on front page F-term (reference) 3B096 AD04 BA01 4L041 AA07 BA02 BA05 BA09 BA21 BC04 BD10 BD11 CA05 DD01 DD05 4L047 AA21 AA27 AB02 AB10 BA09 BB06 BB09 CA18 CA20 CC07 CC09 CC14

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生分解性を有する熱可塑性樹脂(A)か
らなる、単繊維繊度が2〜40dtex、繊維長が25
〜64mmである短繊維80〜50質量%と、熱可塑性
樹脂(A)より融点又は流動開始温度が20℃以上低
く、生分解性を有する熱可塑性樹脂(B)からなり、単
繊維繊度が2〜40dtex、繊維長が25〜64mm
である熱接着性繊維20〜50質量%とからなり、平均
直径が3〜20mmであることを特徴とする熱接着性繊
維を含有した生分解性を有する玉状綿。
1. A single fiber fineness of 2 to 40 dtex and a fiber length of 25 made of a biodegradable thermoplastic resin (A).
80 to 50% by mass of short fibers of up to 64 mm, a thermoplastic resin (B) having a melting point or a flow start temperature lower than that of the thermoplastic resin (A) by 20 ° C. or more and having biodegradability, and a single fiber fineness of 2 ~ 40dtex, fiber length 25 ~ 64mm
A biodegradable cotton ball containing the heat-adhesive fiber, comprising 20 to 50% by mass of the heat-adhesive fiber having an average diameter of 3 to 20 mm.
【請求項2】 生分解性を有する熱可塑性樹脂(A)か
らなる、単繊維繊度が2〜40dtex、繊維長が25
〜64mmである短繊維80〜50質量%と、少なくと
も1成分が熱可塑性樹脂(A)より融点又は流動開始温
度が20℃以上低く、生分解性を有する熱可塑性樹脂
(B)からなる複合繊維であって、かつ断面形状が貼り
合わせ型又は芯鞘型であり、単繊維繊度が2〜40dt
ex、繊維長が25〜64mmである熱接着性繊維20
〜50質量%とからなり、平均直径が3〜20mmであ
ることを特徴とする熱接着性繊維を含有した生分解性を
有する玉状綿。
2. A single fiber fineness of 2 to 40 dtex and a fiber length of 25 made of a biodegradable thermoplastic resin (A).
Composite fiber comprising a biodegradable thermoplastic resin (B) in which at least one component has a melting point or a flow start temperature lower by 20 ° C. or more than the thermoplastic resin (A), and 80 to 50% by mass of short fibers of up to 64 mm. And the cross-sectional shape is a lamination type or a core-sheath type, and the single fiber fineness is 2 to 40 dt.
ex, the heat-adhesive fiber 20 having a fiber length of 25 to 64 mm
Biodegradable cotton ball containing thermoadhesive fiber, characterized by having an average diameter of 3 to 20 mm.
【請求項3】 熱可塑性樹脂(A)、(B)の少なくと
も1成分がポリ乳酸であることを特徴とする請求項1又
は2記載の熱接着性繊維を含有した生分解性を有する玉
状綿。
3. The biodegradable sphere containing thermoadhesive fibers according to claim 1, wherein at least one component of the thermoplastic resins (A) and (B) is polylactic acid. cotton.
【請求項4】 請求項1〜3のいずれかに記載の玉状綿
よりなることを特徴とする繊維構造体。
4. A fibrous structure comprising the ball-shaped cotton according to claim 1.
JP2001038520A 2001-02-15 2001-02-15 Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure Pending JP2002242061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001038520A JP2002242061A (en) 2001-02-15 2001-02-15 Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001038520A JP2002242061A (en) 2001-02-15 2001-02-15 Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure

Publications (1)

Publication Number Publication Date
JP2002242061A true JP2002242061A (en) 2002-08-28

Family

ID=18901475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001038520A Pending JP2002242061A (en) 2001-02-15 2001-02-15 Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure

Country Status (1)

Country Link
JP (1) JP2002242061A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
WO2018084055A1 (en) * 2016-11-01 2018-05-11 株式会社村田製作所 Antibacterial nonwoven member, antibacterial nonwoven cloth, and antibacterial cushioning material
US11041260B2 (en) 2016-06-06 2021-06-22 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287847A (en) * 1990-03-29 1991-12-18 Nippon Ester Co Ltd Fiber ball for wadding
JPH08229255A (en) * 1995-02-28 1996-09-10 Nippon Ester Co Ltd Fiber ball for wadding
JPH09228218A (en) * 1996-02-28 1997-09-02 Nippon Ester Co Ltd Production of polyester-based elastic solid staple
JP2000226733A (en) * 1999-02-02 2000-08-15 Toray Ind Inc Matrix fiber for cushioning material and cushioning material
JP2000234252A (en) * 1999-02-10 2000-08-29 Toray Ind Inc Clothes-wadding made of polyester
JP2001226864A (en) * 2000-02-08 2001-08-21 Kanebo Ltd Elastic fibrous structure and method of producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03287847A (en) * 1990-03-29 1991-12-18 Nippon Ester Co Ltd Fiber ball for wadding
JPH08229255A (en) * 1995-02-28 1996-09-10 Nippon Ester Co Ltd Fiber ball for wadding
JPH09228218A (en) * 1996-02-28 1997-09-02 Nippon Ester Co Ltd Production of polyester-based elastic solid staple
JP2000226733A (en) * 1999-02-02 2000-08-15 Toray Ind Inc Matrix fiber for cushioning material and cushioning material
JP2000234252A (en) * 1999-02-10 2000-08-29 Toray Ind Inc Clothes-wadding made of polyester
JP2001226864A (en) * 2000-02-08 2001-08-21 Kanebo Ltd Elastic fibrous structure and method of producing the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007875A1 (en) 2009-07-17 2011-01-20 ダイワボウホールディングス株式会社 Crimped composite fiber, and fibrous mass and textile product using the same
US11041260B2 (en) 2016-06-06 2021-06-22 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption
US11739446B2 (en) 2016-06-06 2023-08-29 Murata Manufacturing Co., Ltd. Charge-generating thread for bacterium-countermeasure, cloth for bacterium-countermeasure, cloth, clothing article, medical member, charge-generating thread that acts on living body, and charge-generating thread for substance-adsorption
WO2018084055A1 (en) * 2016-11-01 2018-05-11 株式会社村田製作所 Antibacterial nonwoven member, antibacterial nonwoven cloth, and antibacterial cushioning material
CN108495961A (en) * 2016-11-01 2018-09-04 株式会社村田制作所 Antibiotic property nonwoven components, antibiotic property non-woven fabrics and antibiotic property padded coaming
JP6399271B1 (en) * 2016-11-01 2018-10-03 株式会社村田製作所 Antibacterial nonwoven material, antibacterial nonwoven fabric, and antibacterial cushioning material
CN108495961B (en) * 2016-11-01 2021-03-26 株式会社村田制作所 Antibacterial nonwoven member, antibacterial nonwoven fabric, and antibacterial cushioning material
US11105023B2 (en) 2016-11-01 2021-08-31 Murata Manufacturing Co., Ltd. Antibacterial nonwoven member, antibacterial nonwoven fabric, and antibacterial buffer material

Similar Documents

Publication Publication Date Title
TWI722359B (en) Biodegradation-enhanced synthetic fiber and methods of making the same
JP2004353161A (en) Polyester conjugated fiber
JP3434628B2 (en) Polylactic acid-based long-fiber nonwoven fabric and method for producing the same
JP2002242061A (en) Ball-shaped fiber including thermobonding fiber and having biodegradability, and fiber structure
JP3109768B2 (en) Degradable composite fiber
JP2001214380A (en) Leather-like sheet
JP3966768B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP3938950B2 (en) Polylactic acid-based long fiber nonwoven fabric and method for producing the same
JP6112931B2 (en) Polyester composite short fiber
JP2002030555A (en) Ball-like staple fiber comprising thermally adhesive fiber and fiber structure
JP4298427B2 (en) Split polylactic acid based composite fiber
JP4795278B2 (en) Binder fiber and non-woven fabric using the same
JP2008057057A (en) Polylactic acid-based fiber and polylactic acid-based non-woven fabric
JPH05247819A (en) Cushioning material
JP2005029903A (en) Latent crimping polylactic acid conjugated fiber
JP4081903B2 (en) Polyester filling cotton
JP4213054B2 (en) Method for producing ultra-thin fiber nonwoven fabric
Haile et al. Biodegradable copolyester for fibers and nonwovens
JPH10316739A (en) Refuse sack
JP2008095237A (en) Biodegradable sanitary material
JP4117915B2 (en) Biodegradable nonwoven fabric and method for producing the same
JP2005171408A (en) Biodegradable nonwoven fabric and its production method
JP4269387B2 (en) Thermal bonding fiber and cushioning material
JP2005076142A (en) Nonwoven fabric and method for producing the same
JP2005009052A (en) Structural body including biodegradable polyester fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20101110

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101207

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426