WO2012105602A1 - Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article - Google Patents

Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article Download PDF

Info

Publication number
WO2012105602A1
WO2012105602A1 PCT/JP2012/052251 JP2012052251W WO2012105602A1 WO 2012105602 A1 WO2012105602 A1 WO 2012105602A1 JP 2012052251 W JP2012052251 W JP 2012052251W WO 2012105602 A1 WO2012105602 A1 WO 2012105602A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
component
nonwoven fabric
composite short
polyethylene
Prior art date
Application number
PCT/JP2012/052251
Other languages
French (fr)
Japanese (ja)
Inventor
洋志 岡屋
亘祐 春本
拓郎 湯田園
Original Assignee
ダイワボウホールディングス株式会社
ダイワボウポリテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイワボウホールディングス株式会社, ダイワボウポリテック株式会社 filed Critical ダイワボウホールディングス株式会社
Priority to KR1020137022758A priority Critical patent/KR101913447B1/en
Priority to CN201280007318.1A priority patent/CN103339304B/en
Priority to JP2012555927A priority patent/JP5886765B2/en
Publication of WO2012105602A1 publication Critical patent/WO2012105602A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/22Formation of filaments, threads, or the like with a crimped or curled structure; with a special structure to simulate wool
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/34Core-skin structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres

Definitions

  • the present invention is an excellent crimpable composite short fiber excellent in spinnability and workability (particularly high-speed card property), and has a good surface feel and flexibility in the thickness direction, and
  • the present invention relates to a fiber assembly having excellent elasticity and a hygiene article using the fiber assembly.
  • composite fibers are composed of two or more components that are composed of polyethylene as a main component so as to occupy at least a part of the surface of the composite fiber.
  • the improvement is repeated for the purpose of improving more the tactile feeling and softness
  • Patent Document 1 Japanese Patent Laid-Open No. 2008-264473 discloses that the first component is a component containing linear polyethylene polymerized using a metallocene catalyst, the second component is 50% by mass or more of polytrimethylene terephthalate.
  • a composite fiber comprising polyester, wherein the center of gravity of the second component is deviated from the position of the center of gravity of the composite fiber, and the composite fiber has at least one kind of crimp selected from wave-shaped crimp and spiral crimp Proposed crimped conjugate fiber.
  • the composite fiber proposed in Patent Document 1 is very soft because the second component is mainly composed of polytrimethylene phthalate, and exhibits an excellent initial bulk recovery rate.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 63-105111 discloses a composite heat-bonding fiber in which two components having different melting points are arranged concentrically or in parallel, and one of the components is linearly low in high-density polyethylene. It is composed of a low melting point component to which 2 to 20% of density polyethylene or low density polyethylene is added, and the other component is a resin having a fiber forming ability higher than the low melting point component by 20 ° C. or more as a high melting point component. Proposed composite heat-fusible fibers.
  • the composite fiber described in this document has a wide range of proper fusing conditions, and it is possible to obtain a non-woven fabric having a stable fusing strength and texture even with fluctuations in production conditions and outside air conditions. .
  • Patent Document 3 Japanese Patent Application Laid-Open No. 11-350255 discloses a sheath made of a polyethylene resin (A) having a high melting point and a low melting point, and the low melting point being at least 5 ° C. lower than the high melting point, A core-sheath type composite fiber composed of a core part composed of a high melting point resin (B) having a melting point higher by 10 ° C. or more than the highest melting point, or a polyethylene resin part composed of a polyethylene resin (A); A side-by-side type composite fiber composed of a high melting point resin portion made of a melting point resin (B) is proposed.
  • the composite fiber described in this document can widen the proper processing temperature, thereby preventing the winding of the roll and the poor fusion when the web made of the fiber is entangled by hot embossing. , Excellent heat embossing property.
  • Patent Document 4 discloses a polyester, a polyethylene obtained by mixing a first polyethylene obtained by a metallocene polymerization catalyst and a second polyethylene obtained by a Ziegler-Natta polymerization catalyst.
  • the polyester is arranged on the core, and the polyethylene is arranged on the sheath.
  • the core-sheath-type composite spinning hole is supplied and melt-spun so that the core is made of the polyester and the sheath is made of the polyethylene.
  • the cross-sectional shape of the core-sheathed composite continuous fiber is not substantially changed in the fiber axis direction, and the sheath thickness is nonuniform and randomly changing in the fiber axis direction and the fiber circumferential direction.
  • JP 2008-264473 A JP 63-105111 A Japanese Patent Laid-Open No. 11-350255 Japanese Patent No. 4315663
  • Fiber products composed of composite fibers composed of polyethylene as the main component occupying at least part of the composite fiber surface are widely used as surface materials for sanitary articles such as sanitary napkins and disposable diapers.
  • sanitary articles such as sanitary napkins and disposable diapers.
  • the surface material of a hygiene article is in direct contact with a delicate part of the human body or animal, it is strongly required that the surface material itself has an excellent tactile sensation.
  • the tactile sensation required for the surface material is not only good surface tactile sensation (smoothness when touching the surface), but also soft and fluffy sensation in the thickness direction, ie, bulkiness and thickness direction.
  • a property that is easily deformed when a force is applied, that is, flexibility in the thickness direction, and a cushion-like feel that gives a feeling of return when a force is applied in the thickness direction, that is, a bulk recovery property is required. Yes.
  • the high-speed card property is a web production speed (1) in the production of a nonwoven fabric when a web is produced by opening a short fiber with a card machine without causing nep or formation unevenness. As expressed in meters per minute). In the non-woven fabric mass production site, for example, a high-speed card property of 100 m / min may be required.
  • Patent Document 1 It is not easy to obtain a composite short fiber having a good tactile sensation and excellent in high-speed card properties.
  • the actual crimpable conjugate fiber described in Patent Document 1 has a problem that it is inferior in high-speed card property because it is flexible.
  • the fibers described in Patent Documents 2 and 3 use polyethylene having a high melting point, the fibers are not necessarily flexible, and a fiber aggregate obtained using the fibers does not exhibit good tactile sensation (particularly surface tactile sensation).
  • Patent Document 4 achieves flexibility by obtaining a long-fiber nonwoven fabric having a special shape.
  • a fiber with a non-constant fiber diameter is made into a short fiber, for example, and the card is passed, the condition of the fiber becomes the card. It cannot pass well, leading to the occurrence of Nep and uneven formation.
  • the present invention has been made in view of such circumstances, and has been made for the purpose of obtaining a composite fiber having good tactile sensation and excellent in high-speed card properties.
  • the present invention A composite short fiber comprising a first component and a second component
  • the first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene
  • the low density polyethylene is included so as to occupy 5% by mass to 25% by mass of the total mass of the linear polyethylene and the low density polyethylene
  • the second component contains 50% by mass or more of polyester having a melting point 40 ° C.
  • the composite short fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp, An actual crimpable composite short fiber is provided.
  • the present invention provides a method for producing crisp crimpable composite staple fibers. That is, A method for producing a composite short fiber comprising a first component and a second component, 5% by mass of the total mass of the linear polyethylene and the low density polyethylene, the linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and the low density polyethylene. A first component occupying ⁇ 25% by weight; A second component containing 50% by mass or more of a polyester having a melting point of 40 ° C.
  • the first component occupies at least 20% of the fiber surface, and melt spinning to obtain a spun filament so that the center of gravity of the second component deviates from the center of gravity of the fiber,
  • the spinning filament is at a temperature within the range of Tg 2 ° C. to 95 ° C. (where Tg 2 is the glass transition temperature of the polymer component having the highest glass transition temperature among the polymer components contained in the second component).
  • a method for producing a composite short fiber having at least one kind of crimp selected from wave-shaped crimps and spiral crimps which comprises cutting an annealed filament into a length of 1 mm to 100 mm.
  • the present invention also provides a fiber aggregate containing 20% by mass or more of the above-described actual crimpable composite short fiber.
  • the fiber aggregate is preferably a non-woven fabric, and more preferably a heat-bonded non-woven fabric heat-bonded with the first component.
  • the present invention further provides a surface material for a hygiene article comprising the fiber assembly.
  • the present invention still further provides a hygiene article incorporating the surface material.
  • the apparently crimpable composite short fiber of the present invention comprises a first component containing linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and a predetermined amount of low density polyethylene. However, it contains 50% by mass or more of polyester, the second component is decentered, and has at least one kind of crimp selected from wave crimps and spiral crimps.
  • the actual crimpable composite short fiber is excellent in card passing property and gives an excellent card web, and a fiber aggregate (particularly non-woven fabric) containing this fiber gives a good surface feel, It is excellent in bulkiness, flexibility in the thickness direction, and bulk recovery.
  • this actual crimpable composite short fiber makes it possible to carry out a heat bonding treatment in a wide temperature range when producing a heat bonded nonwoven fabric by using two types of polyethylene. Therefore, the actual crimpable composite short fiber is suitable for constructing a product that is in direct contact with a delicate part of a human body or an animal, such as a surface material of a hygiene article, and the product with high productivity. Makes it possible to manufacture.
  • the fiber aggregate (particularly non-woven fabric) containing composite short fibers obtained by the method for producing an actual crimpable composite fiber of the present invention gives good surface feel and is bulky, flexible in the thickness direction and bulk recovery. Excellent in properties. Therefore, according to the manufacturing method, it is possible to manufacture with high productivity composite short fibers suitable for constituting a product that is in direct contact with a delicate part of a human body or an animal, such as a surface material of a hygiene article. It becomes.
  • FIG. 1 shows a fiber cross section of an actual crimpable composite short fiber according to an embodiment of the present invention.
  • FIGS. 2A-C show the crimped form of the manifest crimpable composite staple fiber in one embodiment of the present invention.
  • FIG. 3 shows a form of conventional mechanical crimping.
  • FIG. 4 shows the crimped form of the manifest crimpable composite staple fiber in another embodiment of the present invention.
  • the present inventors have ensured that the low melting point component ensures the flexibility and thermal adhesiveness of the fiber, and the high melting point component increases the bulkiness and bulk recoverability of the nonwoven fabric.
  • such fibers are excellent in terms of surface tactile sensation, but are not necessarily sufficient in terms of high-speed card properties, bulkiness when made into a nonwoven fabric, flexibility in the thickness direction, and bulk recovery properties. Therefore, it was studied to modify the low melting point component within a range that does not impair the surface feel derived from the linear polyethylene.
  • the actual crimpable composite short fiber of the present invention is
  • the first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene,
  • the low density polyethylene is included so as to occupy 5% by mass to 25% by mass of the total mass of the linear polyethylene and the low density polyethylene
  • the second component contains 50% by mass or more of polyester having a melting point 40 ° C.
  • the first component occupies at least 20% of the fiber surface
  • the center of gravity of the second component is deviated from the center of gravity of the fiber
  • the composite short fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp, It is an actual crimpable composite short fiber.
  • the first component and the second component constituting the composite short fiber will be described.
  • the first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene.
  • Linear polyethylene also referred to as “LLDPE (Linear Low Density Polyethylene)”
  • the linear polyethylene used in the present invention is not necessarily limited to low density (generally 0.925 g / cm 3 or less).
  • the ⁇ -olefin is generally an ⁇ -olefin having 3 to 12 carbon atoms.
  • ⁇ -olefin having 3 to 12 carbon atoms examples include propylene, butene-1, pentene-1, 4-methylpentene-1, hexene-1, heptene-1, octene-1, nonene-1, Decene-1, dodecene-1 and mixtures thereof may be mentioned.
  • propylene, butene-1, 4-methylpentene-1, hexene-1, 4-methylhexene-1 and octene-1 are particularly preferable, butene-1 and hexene-1 are more preferable.
  • the ⁇ -olefin content in the linear polyethylene is preferably 1 mol% to 10 mol%, more preferably 2 mol% to 5 mol%. If the ⁇ -olefin content is low, the flexibility of the fiber may be impaired. When the content of ⁇ -olefin is increased, the crystallinity is deteriorated, and the fibers may be fused during fiber formation.
  • the linear polyethylene used in the first component has a density of 0.90 g / cm 3 to 0.94 g / cm 3 .
  • the density is less than 0.90 g / cm 3
  • the first component becomes soft, and when it is made into a nonwoven fabric, sufficient bulkiness and bulk recovery are not obtained, and it is inferior in terms of high-speed card properties. May not be obtained.
  • the density of the linear polyethylene is higher than 0.94 g / cm 3 , the bulkiness and bulk recovery of the nonwoven fabric are improved when it is made into a nonwoven fabric, but the surface feel and flexibility in the thickness direction of the nonwoven fabric are improved. Tend to be inferior.
  • linear polyethylene is preferably 0.90g / cm 3 ⁇ 0.935g / cm 3, more preferably 0.91g / cm 3 ⁇ 0.935g / cm 3, even more preferably 0.913 g / cm It has a density of 3 to 0.935 g / cm 3 .
  • the linear polyethylene preferably has a melting point before spinning in the range of 110 ° C to 125 ° C.
  • the melting point of the linear polyethylene is preferably higher than the melting point of the low density polyethylene to be added. If the melting point of the linear polyethylene is too high, a non-woven fabric having a strength that can withstand practical use may not be obtained when a thermobonding nonwoven fabric is produced by performing a thermal bonding treatment at a low temperature. If the melting point of the linear polyethylene is low, when the heat-bonding nonwoven fabric is manufactured by applying the heat-bonding treatment at a high temperature, the surface touch of the nonwoven fabric may be deteriorated, or the high-speed card property is inferior. A good nonwoven fabric cannot be obtained.
  • the linear polyethylene functions as a skeleton polymer and the low density polyethylene serves as a softening agent. Appropriate flexibility can be obtained in the fiber and the fiber assembly obtained therefrom.
  • linear polyethylene having the above density and melting point can be easily obtained by copolymerizing ethylene and ⁇ -olefin using a metallocene catalyst.
  • linear polyethylene is limited to those polymerized using a metallocene catalyst as long as it has a density of 0.90 g / cm 3 to 0.94 g / cm 3 and preferably has the melting point described above.
  • a polymerized with a Ziegler-Natta catalyst may be used.
  • the melt index (MI) of linear polyethylene is preferably in the range of 1 g / 10 min to 60 g / 10 min in consideration of spinnability.
  • the melt index (MI) is measured according to JIS K 7210 (1999) (conditions: 190 ° C., load 21.18 N (2.16 kgf)).
  • the larger the MI the slower the rate of solidification of the sheath component during spinning, and the more easily the fibers are fused. On the other hand, if the MI is too small, fiberization becomes difficult.
  • the MI of the linear polyethylene is preferably 2 g / 10 min to 40 g / 10 min, more preferably 3 g / 10 min to 35 g / 10 min, and 5 g / 10 min to 30 g / 10 min. Even more preferred.
  • the ratio (Q value: Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the linear polyethylene is preferably 5 or less.
  • the Q value is more preferably 2 to 4, and even more preferably 2.5 to 3.5.
  • the Q value is 5 or less, it can be said that the molecular weight distribution of the linear polyethylene has a narrow width.
  • the flexural modulus of linear polyethylene is in the range of 65 MPa to 850 MPa in consideration of the properties of the actual crimpable conjugate fiber obtained, the tactile feel of the fiber aggregate using the actual crimpable conjugate fiber, and the bulkiness. It is preferable that it exists in.
  • the flexural modulus is measured according to JIS K 7171 (2008).
  • the actual crimpable conjugate fiber of the present invention has a soft tactile sensation due to the linear polyethylene that is the main component of the first component, but simply being flexible does not cause the fiber to be stiff and the card passing property is reduced. In some cases, it is difficult to obtain a fiber aggregate that is bulky and has a high bulk recovery property.
  • the linear polyethylene is not easily deformed to some extent with respect to bending (that is, it is preferable that the deformation with respect to bending is somewhat high).
  • the bending elastic modulus is 65 MPa or more.
  • the flexural modulus of the linear polyethylene is too large, the soft tactile sensation may be lost. Therefore, it is preferably 850 MPa or less. More specifically, the flexural modulus of linear polyethylene is more preferably from 120 MPa to 750 MPa, particularly preferably from 180 MPa to 700 MPa, and most preferably from 250 MPa to 650 MPa.
  • the hardness of the linear polyethylene is 45 to 75 in consideration of the properties of the actual crimpable conjugate fiber obtained and the tactile sensation, bulkiness and bulk recovery of the fiber aggregate using the actual crimpable conjugate fiber. It is preferable to be within the range.
  • the hardness of linear polyethylene refers to durometer hardness (HDD) measured using a type D durometer in accordance with JIS K 7215 (1986). If the linear polyethylene, which is the main component of the first component, is too soft, the stiffness of the fiber is lost, the fiber cardability may be reduced, and a bulky fiber aggregate may be difficult to obtain. In addition, the bulk recoverability of the fiber assembly may be reduced.
  • the linear polyethylene has a certain degree of hardness, specifically 45 or more. If the linear polyethylene has a too high hardness, the soft tactile sensation may be lost. Therefore, it is preferably 75 or less. More specifically, the hardness of the linear polyethylene is more preferably 48 to 70, particularly preferably 50 to 65, and most preferably 50 to 62.
  • the low-density polyethylene (also referred to as “LDPE”) contained in the first component is a soft polyethylene with many branches, and is also referred to as a high-pressure polyethylene due to its production method.
  • LDPE low-density polyethylene
  • the low-density polyethylene contained in the first component is a soft polyethylene with many branches, and is also referred to as a high-pressure polyethylene due to its production method.
  • the manifestation of crimp is improved, and the bulkiness and bulk recovery properties and the high-speed card properties when made into a nonwoven fabric are improved. It becomes possible.
  • low density polyethylene is softer than linear polyethylene, for example, it is possible to ensure surface texture that tends to decrease when using high density linear polyethylene. It is.
  • Density of the low density polyethylene is preferably 0.91g / cm 3 ⁇ 0.93g / cm 3. Since the density of low density polyethylene tends to depend on the MI (190 ° C) of the polymer, considering the spinnability, the density of low density polyethylene should be 0.915 g / cm 3 to 0.92 g / cm 3. Is preferred.
  • the melting point of the low density polyethylene is preferably 90 ° C to 120 ° C.
  • low-density polyethylene having a low melting point is preferably used.
  • the melting point of the low density polyethylene is more preferably 95 ° C. to 115 ° C., and particularly preferably 100 ° C. to 110 ° C.
  • the melting point of the low density polyethylene is preferably lower than the melting point of the linear polyethylene.
  • the melting point of the low density polyethylene is more preferably 5 ° C. or more lower than the melting point of the linear polyethylene, and even more preferably 10 ° C. or more lower than the melting point of the linear polyethylene.
  • the melt index (MI) of low density polyethylene is generally preferably in the range of 1 g / 10 min to 60 g / 10 min in view of spinnability.
  • the melt index (MI) is measured according to JIS-K-7210 (1999) (conditions: 190 ° C., load 21.18 N (2.16 kgf)). This is because the larger the MI, the slower the solidification rate of the sheath component during spinning, and the more easily the fibers are fused. On the other hand, if the MI is too small, fiberization becomes difficult.
  • the MI of the low density polyethylene is preferably 3 g / 10 min to 50 g / 10 min, more preferably 5 g / 10 min to 50 g / 10 min, and 10 g / 10 min to 50 g / 10 min. Is even more preferred.
  • the Q value in the low density polyethylene is preferably 10 or less.
  • the Q value is more preferably 4 to 9, and even more preferably 5 to 8. If the Q value exceeds 10, a good crimped shape may not be obtained, and the adhesive strength tends to be low.
  • the linear polyethylene and the low density polyethylene are composed of 95% to 75% by mass of the linear polyethylene when the combined mass is 100% by mass. It is preferable that they are mixed so as to occupy 5% by mass to 25% by mass. More preferably, the linear polyethylene accounts for 90% by mass to 80% by mass, and the low density polyethylene accounts for 10% by mass to 20% by mass. If the proportion of linear polyethylene is too large, the effect of adding low-density polyethylene is difficult to obtain, and the nonwoven fabric is inferior in bulk when made into a nonwoven fabric. If the proportion of linear polyethylene is too small, a nonwoven fabric with high strength cannot be obtained when a heat-bonded nonwoven fabric is obtained.
  • the composite short fiber exhibits good steric crimps, reduces variation in the expressed crimps, and increases the fiber crimp rate. Therefore, the bulkiness of the nonwoven fabric containing this fiber is improved.
  • the reason why steric crimps are likely to appear is not clear, but since long branches of low-density polyethylene are entangled with linear polyethylene molecules with few branches, distortion during stretching is likely to occur, so steric crimps are likely to occur. Estimated. However, the present invention is not limited by this estimation.
  • low density polyethylene functions as a softening agent
  • the resulting nonwoven fabric is excellent in the thickness direction. Flexibility and surface tactile sensation.
  • the processing temperature range of the nonwoven fabric can be widened, and a nonwoven fabric having a substantially constant and flexible texture can be obtained regardless of the processing temperature when manufacturing the heat-bonding nonwoven fabric. Can do.
  • the first component contains other polymer components in addition to the linear polyethylene and the low-density polyethylene as long as a steric crimp is sufficiently developed in the composite short fiber and a non-woven fabric giving a good tactile sensation is provided.
  • the first component is high density polyethylene, polypropylene, polybutene, polybutylene, polymethylpentene resin, polybutadiene, propylene copolymer (for example, propylene-ethylene copolymer), ethylene-vinyl alcohol copolymer, ethylene- Polyolefin resins such as vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, or ethylene- (meth) methyl acrylate copolymer, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate Polyester resins such as phthalate, polylactic acid, polybutylene succinate and copolymers thereof, polyamide resins such as nylon, poly
  • the first component preferably includes 50% by mass or more, more preferably 75% by mass or more as a polymer component, and more preferably 75% by mass or more. More preferred.
  • the first component is a component other than the polymer component, such as an antistatic agent, a pigment, a matting agent, a heat stabilizer, a light stabilizer, a flame retardant, an antibacterial agent, a lubricant, a plasticizer, a softener, an antioxidant, and an ultraviolet ray.
  • Additives such as absorbents and crystal nucleating agents may be included. Such an additive is preferably contained in the first component so as to occupy an amount of 10% by mass or less of the entire first component.
  • the second component is a component containing 50% by mass or more of a polyester having a melting point 40 ° C. or more higher than the melting point of the linear polyethylene constituting the first component as the polymer component.
  • the second component preferably contains 50% by mass or more of polyester as the polymer component, more preferably 75% by mass or more, and most preferably 100% by mass.
  • Polyester is preferably used because it is less expensive than other polymers, has high rigidity, and gives the fiber stiffness.
  • the polyester include polymers or copolymers such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polylactic acid.
  • the melting point of the polyester is 40 ° C. or more higher than the melting point of the linear polyethylene constituting the first component.
  • the preferable melting point of polyester is a temperature higher by 50 ° C. or more than the melting point of linear polyethylene.
  • polyethylene terephthalate and polybutylene terephthalate have high rigidity compared to polytrimethylene terephthalate and give the fiber stiffness, so that the high-speed card property of the resulting crimped composite short fiber can be improved.
  • polyethylene terephthalate is most preferably used because of its high rigidity.
  • Polyethylene terephthalate also has high crystallinity and is less susceptible to heat shrinkage by adjusting the drawing conditions during fiber production as appropriate, so that it does not show latent crimps or shows only slight crimps.
  • Functional composite staple fibers can be provided. When a non-woven fabric produced using such an actual crimpable composite short fiber is prepared, when the web is subjected to heat treatment, the web does not shrink or slightly shrinks, and the manufacturing process is caused by the web shrinkage. Management complexity is eliminated or reduced.
  • the second component contains polyethylene terephthalate and / or polybutylene terephthalate as a preferred polyester and another polymer component other than that, the other polymer component sufficiently exhibits steric crimps in the composite short fiber.
  • the fiber gives the nonwoven fabric which gives a favorable tactile sense, it is not specifically limited.
  • other polyester resins specifically, polyethylene naphthalate, polylactic acid, and polytrimethylene terephthalate may be mixed.
  • polytrimethylene terephthalate is flexible and tends to deteriorate the high-speed card property of the resulting fiber. Therefore, it is preferably not used in the actual crimpable composite short fiber of the present invention.
  • the second component is a component other than the polymer component, such as an antistatic agent, a pigment, a matting agent, a heat stabilizer, a light stabilizer, a flame retardant, an antibacterial agent, a lubricant, a plasticizer, a softening agent, an antioxidant, and an ultraviolet ray.
  • Additives such as absorbents and crystal nucleating agents may be included. Such an additive is preferably contained in the second component so as to occupy an amount of 10% by mass or less of the entire second component.
  • (second component / first component) is preferably 8/2 to 3/7 (volume ratio). More preferably, it is 7/3 to 35/65, and most preferably 6/4 to 4/6.
  • the second component mainly contributes to the bulkiness and bulk recovery of the nonwoven fabric
  • the first component mainly contributes to the nonwoven fabric strength and the nonwoven fabric softness.
  • the composite ratio is 8/2 to 3/7, the strength and softness of the nonwoven fabric and the bulk recoverability can be compatible. As the composite ratio increases, the strength of the nonwoven fabric increases, but the resulting nonwoven fabric becomes harder and the bulk recovery tends to be worse.
  • the amount of the second component is too large, the adhesion point is too small, and the strength of the nonwoven fabric is decreased, so that the bulk recoverability tends to deteriorate.
  • FIG. 1 shows a fiber cross section of a composite short fiber according to an embodiment of the present invention.
  • the first component (1) is disposed around the second component (2), and the first component (1) occupies at least 20% of the surface of the fiber (10) in the fiber cross section. Thereby, the surface of the first component (1) is melted at the time of thermal bonding.
  • the gravity center position (3) of the second component (2) is deviated from the gravity center position (4) of the fiber (10), and the ratio of the deviation (hereinafter sometimes referred to as eccentricity).
  • the fiber cross section where the center of gravity (3) of the second component (2) is displaced from the center of gravity (4) of the fiber is preferably an eccentric core-sheath type or a parallel type as shown in FIG.
  • an eccentric core-sheath fiber cross section is preferable in that desired wave shape crimps and / or spiral crimps can be easily expressed.
  • the eccentricity of the eccentric core-sheath type composite short fiber is preferably 5% to 50%. A more preferable eccentricity is 7% to 30%.
  • the shape of the second component in the fiber cross section may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or the like, and the fiber cross section of the composite short fiber (10).
  • the shape may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or hollow.
  • FIG. 2 shows a crimped form of an actual crimpable composite short fiber according to an embodiment of the present invention.
  • the corrugated crimp referred to in the present invention refers to a curved crest as shown in FIG. 2A.
  • Spiral crimp refers to a crimped crest as shown in FIG. 2B.
  • a crimp in which a wave shape crimp and a spiral crimp as shown in FIG. 2C are mixed is also included in the present invention.
  • serrated crimp has a sharp crest, the bulk recoverability of the nonwoven fabric cannot be increased.
  • the present invention also includes a crimp in which the sharp crimp of the mechanical crimp as shown in FIG. 4 and the corrugated crimp shown in FIG. 2A are mixed.
  • the term “three-dimensional crimp” is used to distinguish it from mechanical crimps, including wavy crimps and spiral crimps.
  • the crimps including the wave shape crimp and the spiral crimp shown in FIG. 2C are mixed in terms of achieving both the card passing property and the initial bulk and bulk recovery properties.
  • the actual crimpable composite short fiber of the present invention can be produced by the following procedure. First, a first component containing linear polyethylene and low density polyethylene, and a second component containing, for example, 50% by mass or more of polyethylene terephthalate and / or polybutylene terephthalate, the first component is at least on the fiber surface in the fiber cross section. Using a composite nozzle that occupies 20% and the center of gravity of the second component deviates from the center of gravity of the fiber, for example, an eccentric core-sheath composite nozzle, the second component is spun at 240 ° C. to 330 ° C., The first component is melt-spun at a spinning temperature of 200 ° C. to 300 ° C. and taken up at a take-up speed of 100 m / min to 1500 m / min to obtain a spun filament.
  • a composite nozzle that occupies 20% and the center of gravity of the second component deviates from the center of gravity of the fiber, for example, an eccentric core-
  • the draw ratio is 1. at a stretching temperature not lower than the melting peak temperature of the linear polyethylene, not less than the glass transition point (Tg 2 ) of the polymer component having the highest glass transition point. Stretching is performed at 8 times or more. A more preferable lower limit of the stretching temperature is a temperature 10 ° C. higher than Tg 2 . A more preferable upper limit of the stretching temperature is 95 ° C, and a particularly preferable upper limit of the stretching temperature is 90 ° C. If the stretching temperature is lower than Tg 2 , the second component is less likely to crystallize, so the thermal shrinkage of the second component in the resulting fiber increases, or the bulk recovery of the nonwoven fabric made from the resulting fiber decreases. A trend is observed. If the stretching temperature is equal to or higher than the melting peak temperature of the linear polyethylene, the fibers are fused, which is not preferable.
  • a more preferred lower limit of the draw ratio is 2 times, a particularly preferred lower limit of the draw ratio is 2.2 times, and a most preferred lower limit of the draw ratio is 2.4 times.
  • the upper limit of the more preferable draw ratio is 5 times, the upper limit of the particularly preferable draw ratio is 4.0 times, and the upper limit of the draw ratio is most 3.5 times. If the draw ratio is less than 1.8 times, the draw ratio is too low, so that it is difficult to obtain a fiber in which corrugated crimps and / or spiral crimps are expressed, and the bulkiness of the nonwoven fabric is reduced. In addition, since the rigidity of the fiber itself is reduced, the nonwoven fabric processability such as card passing property tends to be inferior or the bulk recovery property tends to be lowered. Further, if necessary, an annealing treatment may be performed in an atmosphere of dry heat, wet heat, steam, etc. at a temperature at which fibers at 50 ° C. to 115 ° C. are not fused before and after stretching.
  • a crimp of 5/25 mm to 25/25 mm is applied using a known crimping machine such as a stuffing box type crimping machine.
  • the crimped shape after passing through the crimper may be a serrated crimp and / or a corrugated crimp.
  • the number of crimps exceeds 25 pieces / 25 mm, the number of crimps is too large, so the card passing property is lowered, and not only the formation of the nonwoven fabric is deteriorated, but also the initial volume of the nonwoven fabric may be reduced. .
  • an annealing treatment is performed in an atmosphere of dry heat, wet heat or steam at 50 ° C. to 115 ° C.
  • the annealing treatment the expression of steric crimps can be promoted in the actual crimpable composite short fibers.
  • the process can be simplified if the fiber treatment agent is applied and then crimped by a crimping machine, and the drying treatment is performed simultaneously with the annealing treatment in a dry heat atmosphere at 50 ° C. to 115 ° C. This is preferable because it is possible.
  • the annealing treatment is less than 50 ° C., the dry heat shrinkage of the resulting fiber tends to increase, and the resulting nonwoven fabric may be disturbed or the productivity may be reduced. Further, when the annealing step also serves as the drying step, if the annealing temperature is less than 50 ° C., the drying of the fibers may be insufficient. By such a method, an actual crimpable composite staple fiber in which steric crimp is expressed is obtained.
  • the number of crimps (three-dimensional crimp number) is 12 threads / It is preferably 25 mm to 18 peaks / 25 mm. Further, when the number of crimps and the crimp rate are measured according to JIS L 1015 (2010), the ratio of the crimp rate to the crimp number (crimp rate) / Crimp number) is preferably 0.7 to 1.2, more preferably 0.85 to 1.
  • the crimp rate indicates the fixity of the crimp (hardness of crimp), and if the crimp rate / crimp number satisfies the above range, the crimp is difficult to stretch, and the waveform and / Or since it has spiral crimps, the card passing property is good, the web after passing the card maintains the bulkiness, and the nonwoven fabric after the heat treatment can maintain the elasticity.
  • the fineness and fiber length of the actual crimpable composite short fiber of the present invention are not particularly limited, and are selected according to the application.
  • the actual crimpable composite staple fiber of the present invention as described later, is used for manufacturing a heat-bonded nonwoven fabric in which fibers are thermally bonded after producing a web by a card machine (or other means), It is preferable to use short fibers having a fineness of 1.1 to 15 dtex and a fiber length of 1 to 100 mm.
  • the fineness is preferably 1.5 dtex to 3.5 dtex.
  • the actual crimpable composite short fiber of the present invention is suitable for a dry nonwoven fabric (for example, an air-through nonwoven fabric, a spunlace nonwoven fabric, a needle punched nonwoven fabric, etc.) manufactured by producing a fiber web using a card machine.
  • a dry nonwoven fabric for example, an air-through nonwoven fabric, a spunlace nonwoven fabric, a needle punched nonwoven fabric, etc.
  • Fiber length 15 mm to 80 mm, more preferably 32 mm to 64 mm a fiber length suitable for manufacturing wet nonwoven fabrics
  • fiber length 1 mm to 20 mm, more preferably 3 mm to 15 mm or airlaid
  • fiber length 1 mm to 30 mm, more preferably 5 mm to 25 mm suitable for producing a nonwoven fabric.
  • the fineness can be adjusted as desired by adjusting the fineness and draw ratio of the spun filament.
  • a fiber having a predetermined length is obtained by cutting the fiber after the annealing treatment.
  • the actual crimpable composite short fiber of the present invention described above contains 20% by mass or more in the fiber assembly, so that the surface feel is good, the bulkiness, the flexibility in the thickness direction, and the bulk recovery property.
  • the fiber aggregate include woven and knitted fabrics and nonwoven fabrics.
  • the non-woven fabric is made by integrating the fibers by a method in which a fiber web is prepared so as to contain 20% by mass or more of the actual crimpable composite short fibers, and then the fibers are entangled and / or thermally bonded. It is obtained by making it.
  • examples of the other fibers include natural fibers such as cotton, silk, wool, hemp, and pulp, regenerated fibers such as rayon and cupra, and acrylic, polyester, polyamide, and polyolefin.
  • One type or a plurality of types of fibers can be selected from synthetic fibers such as polyurethane and polyurethane according to the purpose of use.
  • Other fibers may be used by mixing with the actual crimpable composite staple fiber of the present invention, or may be used by being laminated with a fiber web comprising the actual crimpable composite staple fiber of the present invention.
  • Examples of the fiber web used in manufacturing the nonwoven fabric include card webs such as parallel web, semi-random web, random web, cross web, and Chris cross web, airlaid web, wet papermaking web, and spunbond web. It is done. Two or more different types of fiber webs may be laminated.
  • a nonwoven fabric is obtained in the form of a heat-bonded nonwoven fabric in which fibers are thermally bonded to each other by heat-treating the fiber web.
  • the heat-bonded nonwoven fabric remarkably exhibits the effects (flexibility in the thickness direction, bulk recoverability and bulk recoverability) brought about by the actual crimpable composite short fibers of the present invention.
  • the fiber web may be subjected to entanglement treatment such as needle punch treatment or hydroentanglement treatment before and / or after the heat treatment, if necessary.
  • the fiber web is subjected to heat treatment by a known heat treatment means.
  • a heat treatment machine in which pressure such as wind pressure is not so much applied to the fiber web, such as a hot air penetration type heat treatment machine, a hot air blowing type heat treatment machine and an infrared heat treatment machine, is preferably used.
  • the heat treatment conditions such as the heat treatment temperature are such that the first component is sufficiently melted and / or softened so that the fibers are joined at the contact point or intersection, and the three-dimensional crimp generated in the actual crimpable composite short fiber is not destroyed. Select such conditions.
  • the heat treatment temperature is the melting peak temperature before spinning of the linear polyethylene (if a plurality of linear polyethylene is included in the first component, the melting of the linear polyethylene having the highest melting peak temperature).
  • the temperature is preferably Tm ° C. to (Tm + 40) ° C. when the peak temperature is Tm.
  • a more preferable heat treatment temperature range is (Tm + 5) ° C. to (Tm + 30) ° C.
  • the heat-bonded nonwoven fabric produced in this way has a good surface feel and high bulkiness and bulk recovery. Furthermore, this heat bondable nonwoven fabric exhibits high flexibility in the thickness direction of the nonwoven fabric.
  • the flexibility in the thickness direction of the nonwoven fabric can be expressed by an index “bulk after compression”. When comparing nonwoven fabrics having the same thickness, the smaller the bulk after compression, the easier the nonwoven fabric to collapse in the thickness direction. "It's flexible.
  • the flexibility in the thickness direction of the nonwoven fabric can also be expressed by an index “bulk change rate”.
  • the bulk change rate is indicated by the ratio of the change amount of the bulk (thickness) due to compression to the original nonwoven fabric bulk (thickness), and the larger the bulk change rate, the more flexible the nonwoven fabric is in the thickness direction. It is preferable that the bulk change rate of the thermobonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention is 85% or more. More preferably, it is 88% or more.
  • the heat-bonded nonwoven fabric can be evaluated by the bulk recoverability after compression in the thickness direction (bulk recovery after compression).
  • the post-compression recovery bulk shows bulk recoverability in the thickness direction of the nonwoven fabric, and it can be said that the larger the recovery bulk, the richer the cushioning property (elasticity).
  • a nonwoven fabric rich in cushioning properties follows the movement of the body and has improved adhesion to the skin.
  • Bulk recovery after compression is the ratio of the nonwoven fabric bulk (thickness) before compression to the nonwoven fabric bulk (thickness) after a certain time has elapsed after removing the load from the compressed state, and the greater the bulk recovery after compression, , Exhibit greater cushioning properties.
  • the bulk recovery rate of the thermobonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention is 60% or more. More preferably, it is 65% or more, and particularly preferably 68% or more.
  • KES Korean Industrial Standard
  • KES Kawabata Evaluation System
  • the surface tactile sensation of the heat-bonded nonwoven fabric can be evaluated by measuring the characteristic value of surface friction defined by KES.
  • the thickness direction flexibility, bulkiness, and bulk recovery (elasticity) of the heat-bonded nonwoven fabric are as follows: It can be evaluated by measuring a compression characteristic value obtained from the behavior of a load-displacement curve at the time of a compression test defined by KES.
  • the average friction coefficient (hereinafter also referred to as MIU) and the variation of the average friction coefficient (sometimes referred to as the average deviation of the friction coefficient ⁇ , hereinafter also referred to as MMD) are measured as the characteristic values of the surface friction.
  • MIU represents the difficulty (or ease of slipping) of slipping on the surface, and the larger the value, the more difficult it is to slip.
  • MMD shows the dispersion
  • the surface of the heat-bonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention tends to have a high MIU but a small MMD.
  • Such a non-woven fabric feels resistance when touched by hand, but also gives a unique touch feeling called “smooth feeling” and “moist feeling” because it also feels smooth.
  • the equipment for measuring the surface friction characteristic value is not particularly limited as long as the equipment can measure the surface friction based on KES.
  • the characteristic value of the surface friction can be measured by using, for example, a KES-SE friction tester, KES-FB4-AUTO-A automated surface tester (both manufactured by Kato Tech Co., Ltd.) and the like.
  • compression hardness (sometimes referred to as linearity of compression characteristics, hereinafter also referred to as LC), compression energy (sometimes referred to as compression work, hereinafter also referred to as WC (gf ⁇ cm 2 / cm 2). 2 )), compression resilience (also referred to as compression recovery and compression recovery rate, hereinafter also referred to as RC (%)), T 0 (thickness when load is 0.5 gf / cm 2 (mm) )), T M (load refers to a thickness of 50 gf / cm 2 (mm)), compression ratio (the above T 0 , T M , 100 ⁇ (T 0 ⁇ T M ) / T 0 Hereinafter, it is also referred to as EMC (%)).
  • LC shows compressibility with a small force, and the larger this is, the harder it is to compress.
  • WC indicates the work of compression. The larger this is, the softer in the thickness direction, the easier it is to compress.
  • RC shows elasticity (recoverability, resilience) against compression, and the greater this, the easier it is to rebound against compression, i.e., cushioning.
  • the EMC indicates the rate of change in thickness when two predetermined types of loads are applied, and the larger this is, the softer and bulkier it is, and the larger the deformation occurs when a load is applied.
  • the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention has a high compressibility, so that it has a high initial bulk and is not only bulky, but also has a small compressibility and a large compressive energy. It is easy to be compressed in the direction and is flexible.
  • the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention has a high compression resilience, and is therefore elastic against compression and exhibits a good cushioning property.
  • the instrument for measuring the compression characteristic value obtained from the behavior of the load-displacement curve at the time of the compression test is not particularly limited as long as the instrument can measure the compression characteristic value based on KES.
  • the compression characteristic value can be measured by using, for example, a KES-G5 handy compression tester or a KES-FB3-AUTO-A automated compression tester (both manufactured by Kato Tech Co., Ltd.).
  • the surface characteristics that is, the surface friction of the heat-bonded nonwoven fabric
  • the measurement surface is the surface to which hot air is blown in the production of the nonwoven fabric
  • the measurement direction is the vertical direction (also referred to as MD direction)
  • the static load is 25 gf
  • the moving speed of the friction element is It can be measured as 1 mm / sec.
  • the compression characteristic value that is, the compression characteristic value obtained from the behavior of the load-displacement curve in the compression test of the heat-bonded nonwoven fabric, is the surface to which the hot air is blown in the production of the nonwoven fabric, and the circular area with an area of 2 cm 2 is used as the compressor.
  • the speed can be measured as 0.02 cm / sec
  • the upper limit load is 50 gf / cm 2
  • the DEF sensitivity is 20.
  • the heat-bonding nonwoven fabric containing the manifest crimpable composite short fiber of the present invention is characterized by a smooth and soft feel.
  • the average friction coefficient (MIU) and the variation of the average friction coefficient (MMD) are important among the characteristic values of the surface friction based on the KES.
  • the average friction coefficient MIU on the surface of the heat-bonded nonwoven fabric is preferably 0.3 or more and 0.6 or less.
  • the average friction coefficient is 0.3 or more, that is, the friction is somewhat large compared to the conventional nonwoven fabric, and when the thermal adhesive nonwoven fabric touches the skin, appropriate friction and catching are created between the thermal adhesive nonwoven fabric and the skin, The tactile sensation feels “smooth” and “moist”.
  • the average friction coefficient is 0.6 or less, the average friction coefficient of the heat-bonded nonwoven fabric becomes too large, and the tactile sensation becomes worse (for example, the feeling of sticking to the skin or the tactile sensation due to excessive friction) Does not occur).
  • the average friction coefficient (MIU) is more preferably from 0.3 to 0.5, and particularly preferably from 0.32 to 0.45.
  • variation (MMD) of the average friction coefficient of the heat bonding nonwoven fabric surface containing the actual crimpable composite staple fiber of this invention is 0.016 or less.
  • the variation of the average friction coefficient is 0.016 or less, the surface of the nonwoven fabric is not rough, and the average friction coefficient MIU satisfies the above range, so that the heat-bonded nonwoven fabric is smooth and soft, It has a unique “feel of slimy”.
  • the variation in the average friction coefficient is more preferably 0.015 or less.
  • the lower limit of the average friction coefficient variation (MMD) is not particularly limited and is preferably closer to 0, but may be 0.001 or more.
  • the heat-bonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention not only has a large initial bulk, but is soft and easily compressed when a load is applied. And when a load is removed or when a load becomes small, it repels and it has the characteristics that the bulk of a heat bondable nonwoven fabric recovers rapidly.
  • LC, WC, RC, and EMC are important among the compression characteristic values based on the KES.
  • the compression hardness (LC) is preferably 0.64 or less. When the compression is 0.64 or less, there is no hardness during compression and a soft tactile sensation is obtained.
  • the compression hardness (LC) is preferably 0.62 or less, and particularly preferably 0.6 or less.
  • the lower limit value of the compression hardness (LC) is not particularly limited, but may be 0.15 or 0.2.
  • the degree of compression (LC) is affected by the basis weight (g / m 2 ) of the nonwoven fabric to be measured, and the nonwoven fabric with a larger basis weight may have a greater degree of compression. Therefore, even if it evaluates using the value which divided the value of compression hardness (LC) by the basis weight, ie, the compression hardness (LC) per unit basis weight (g / m ⁇ 2 >), as a compression characteristic value of a heat bondable nonwoven fabric. Good.
  • the compression hardness (LC) per unit weight (g / m 2 ) is preferably 0.013 or less, and more preferably 0.012 or less.
  • the compression energy (WC) is preferably 1.0 gf ⁇ cm 2 / cm 2 or more.
  • the compression energy (WC) is more preferably 2.5 gf ⁇ cm 2 / cm 2 or more, particularly preferably 4.5 gf ⁇ cm 2 / cm 2 or more, and most preferably 5.1 gf ⁇ cm 2 / cm 2 or more.
  • the upper limit of the compression energy is not particularly limited, but if it is greater than 8.0 gf ⁇ cm 2 / cm 2 , other compression characteristics may be affected, so it is preferably 8.0 gf ⁇ cm 2 / cm 2 or less. Preferably it is 6.0 gf ⁇ cm 2 / cm 2 or less.
  • the compression resilience (RC) is preferably 58% or more.
  • the compression resilience is 58% or more, the heat-bonding nonwoven fabric is excellent in resilience, and when the load is reduced or the load is removed, the nonwoven fabric recovers the bulk following the load.
  • LC preferable range of compression hardness
  • RC preferable range of compression resilience
  • the thermal bonding nonwoven fabric becomes a nonwoven fabric that easily follows changes in the uneven parts of the body, and when this is used as a surface material for various sanitary materials, the surface material follows the changes in body movement and posture and compresses and recovers bulk. Therefore, it is easy to adhere to the body and brings about an advantage that a fit can be obtained.
  • the upper limit of the compression resilience (RC) is not particularly limited, and may be 100%, 90%, or 85%.
  • the compressibility (EMC) is preferably 70% to 98%.
  • T 0 is the thickness when the load is 0.5 gf / cm 2
  • load using T M is the thickness of the case of 50gf / cm 2
  • EMC (% ) 100 This is a compression characteristic value obtained by x (T 0 -T M ) / T 0 .
  • the compression ratio is smaller than 70%, not only is the initial bulk small, but it is also difficult to deform against compression.
  • a load is applied to the heat-bonded nonwoven fabric, there is a proportion that can be deformed with an increase in load.
  • the compressibility is more preferably 72% to 95%, particularly preferably 75% to 90%, 78% Most preferred is ⁇ 85%.
  • the fiber assembly of the present invention particularly the nonwoven fabric, more particularly the heat-bonded nonwoven fabric, has good surface touch, flexibility and cushioning properties, the surface material of sanitary articles such as sanitary napkins and diapers, wet tissues, wipers, Suitable for applications such as cosmetic materials, female bra pads, shoulder pads, vehicle cushioning materials, flooring flooring backing materials, cushioning materials, and packaging materials.
  • the heat-bonding nonwoven fabric of the present invention is suitable for a surface material of a sanitary article, and the present invention can also be provided as a sanitary article in which the heat-bonding nonwoven fabric of the present invention is used as a surface material.
  • the hygiene article is a product including an absorbent that can absorb blood, body fluid, feces, and urine discharged from the human body or animal, and refers to products such as disposable diapers, sanitary napkins, and urine leak pads. Also called. Since the surface material of these products is directly attached to a delicate part of the human body or animal, it is required to have superior characteristics not only on the surface touch but also on the flexibility and cushioning properties in the thickness direction. .
  • the heat-bonded nonwoven fabric of the present invention is excellent in surface tactile sensation, flexibility, and bulk recovery property, and thus is suitable for constituting a sanitary article together with other members as a surface material.
  • the basis weight is preferably 10 g / m 2 to 70 g / m 2 , more preferably 15 g / m 2 to 60 g / m 2. .
  • the basis weight may be outside these ranges depending on the type of sanitary article.
  • the fabric weight is suitably selected according to the use.
  • the heat-bonded nonwoven fabric of the present invention is used as a surface material of a sanitary article, it is preferable to contain the sensible crimped composite short fiber in an amount of 20% by mass or more, more preferably 50% by mass or more, and more preferably 80% by mass or more. It is particularly preferable to contain it.
  • the surface material has not only surface touch, but also excellent flexibility and cushioning in the thickness direction, and functions required for the surface material such as rough skin prevention. It can be demonstrated.
  • LLDPE linear polyethylene
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • polyethylene terephthalate manufactured by Toray Industries, Inc., trade name “T200E”, melting point 250 ° C., intrinsic viscosity value (IV value) 0.64) was prepared.
  • the composite ratio (volume ratio) of the first component / second component is 55/45
  • the spinning temperature of the sheath component is 260 ° C.
  • the spinning temperature of the core component is Melt extrusion was performed at 300 ° C. and a nozzle temperature of 290 ° C. to obtain a spun filament having an eccentricity of 25% and a fineness of 6.8 dtex.
  • the discharge rate was 250 g / min
  • the take-up speed was 615 m / min.
  • the obtained spinning filament was drawn 2.6 times in hot water at 80 ° C. to obtain a drawn filament having a fineness of about 3.3 dtex.
  • 0.3% by mass of an oil agent obtained by blending a C8 alkyl phosphate potassium salt and a C12 alkyl phosphate potassium salt in a ratio of 35:65 was added as a fiber treatment agent, and then the stretched filament was machined with a stuffing box type crimper. Crimps were applied to 12 pieces / 25 mm. And the annealing process and the drying process were simultaneously performed in the relaxed state for about 15 minutes with the hot air spraying apparatus set to 100 degreeC. Thereafter, the filament was cut into a fiber length of 51 mm to obtain an actual crimpable composite short fiber. In any of Examples and Comparative Examples, the spinnability and stretchability were good.
  • a fiber web having a basis weight of about 50 g / m 2 was produced from the obtained fiber using a roller type card machine. This fiber web was subjected to heat treatment for 10 seconds using a hot air spraying device set at a temperature 10 ° C. higher than the melting point of LLDPE (only HDPE in Comparative Example 6) constituting the first component of each fiber, The components were melted to obtain a heat bonded nonwoven fabric. However, in Example 2, Example 6 and Comparative Example 1, nonwoven fabrics heat-treated at 123 ° C. and 138 ° C. were also produced.
  • Nonwoven fabric bulk The thickness of 10 sheets of samples obtained by cutting a nonwoven fabric into a size of 100 mm ⁇ 100 mm was measured without applying a load, and this was defined as the bulk of the nonwoven fabric.
  • volume change rate [(volume of nonwoven fabric ⁇ volume after compression) / volume of nonwoven fabric)] ⁇ 100 was calculated.
  • non-woven fabrics made of composite short fibers whose sheath component is composed only of linear polyethylene or composite short fibers whose sheath component is composed only of high-density polyethylene (Comparative Example 1 In all of 3 to 6), the bulk change rate was small, and the flexibility in the thickness direction was inferior.
  • the nonwoven fabric composed of the composite short fibers of Comparative Example 6 was also inferior in surface tactile sensation.
  • linear low density polyethylene having a density of less than 0.90 g / cm 3 or exceeding 0.94 g / cm 3 is used, low density polyethylene is mixed to form a composite short fiber. Even so, the non-woven fabric produced therefrom did not give a good surface feel (Comparative Example 4), or did not show satisfactory properties in terms of bulkiness and bulk recovery rate (Comparative Example 5).
  • any non-woven fabric made of composite short fibers in which a sheath component is formed by mixing linear low density polyethylene having a density in the range of 0.90 g / cm 3 to 0.94 g / cm 3 with low density polyethylene It was bulky and exhibited good flexibility (small bulk change rate) in the thickness direction (Examples 1 to 13).
  • the evaluation of shrinkage / formation was low because the mixing ratio of the low density polyethylene was small, but in other respects it showed good characteristics and was sufficiently practical for some applications Met.
  • Example 6 From the comparison between Example 6 and Comparative Example 2, the addition of low-density polyethylene not only contributes to the improvement in bulkiness, flexibility in the thickness direction, and bulk recovery, but also contributes to the improvement in the surface feel of the nonwoven fabric. You can see that This indicates that the low density polyethylene functions as a flexible component that contributes to an improvement in tactile feel of the linear polyethylene having a relatively high density.
  • the nonwoven fabric liquid absorption and liquid passage performance were measured by the following methods in order to confirm the effect as a surface material.
  • a nonwoven fabric sample is placed on two sets of Kim Towel (registered trademark), a plate with an injection tube is placed thereon, and weights of 287 g are placed on both ends of the plate.
  • (Ii) Inject 5 ml of artificial menstrual blood from the tube. At this time, the time (liquid absorption time) until artificial menstrual blood becomes invisible from the nonwoven fabric surface (artificial menstrual blood is no longer confirmed as a liquid) is measured, and this is defined as the liquid absorption speed.
  • Table 2 shows the measured liquid absorption speed, liquid remaining amount, and reverse return amount.
  • the nonwoven fabric of Example 5 has a function of allowing artificial menstrual blood to pass through and absorbing it under the absorbent body, and also in terms of liquid residue and liquid return, the surface of the sanitary article. It was a practical material.
  • a surface friction test of the heat-bonded nonwoven fabric was performed, and the average friction coefficient (MIU) and the average friction coefficient fluctuation (MMD) were measured as the surface characteristic values.
  • a KES-SE® friction tester manufactured by Kato Tech Co., Ltd. was used for the test and measurement of surface friction on the heat-bonded nonwoven fabric.
  • the measurement surface is a surface to which the hot-bonded nonwoven fabric is blown with hot air during manufacture, a static load is applied to the friction element, 25 gf, the friction element is parallel to the vertical direction of the nonwoven fabric, and the moving speed is 1 mm / sec. It was moved under conditions to measure MIU and MMD of the heat-bonding nonwoven fabric.
  • a compression test is performed on the heat-bonded nonwoven fabric, and the compression hardness (LC), compression energy (WC), and compression are calculated from the load-displacement curve.
  • Resilience (RC), T 0 (thickness at a load of 0.5 gf / cm 2 ), T M (thickness at a load of 50 gf / cm 2 ), and compressibility (EMC) were measured.
  • a KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd. was used for the compression test and measurement of the compression characteristic value for the heat-bonded nonwoven fabric.
  • a circular pressure plate having an area of 2 cm 2 is used as a compressor, SENS is set to 2, and DEF sensitivity is set to 20, so that the compression speed of the compressor is 0.02 cm / sec with respect to the heat-bonded nonwoven fabric. And compressed until the load reached 50 gf / cm 2 . After the load reached 50 gf / cm 2 , the compression characteristic value was measured by removing compression so that the moving speed of the compressor was 0.02 cm / sec. Table 3 shows the measurement results.
  • the non-woven fabric containing the actual crimpable composite short fiber of the present invention is softly deformed with respect to the load in the thickness direction and has a large amount of deformation, so that it becomes a heat-bonding non-woven fabric having a soft feeling.
  • the heat-bonding nonwoven fabric composed of the actual crimpable composite short fiber composed of a resin component containing a large amount of linear polyethylene as the first component has a RC higher than that of Comparative Example 6. Since it is large, linear polyethylene itself is more elastic than high-density polyethylene, and is presumed to be a flexible resin.
  • the nonwoven fabric of Comparative Example 1 has an RC equivalent to that of Example 6 that is considered to be affected only by linear polyethylene. , LC is increased, and WC and EMC are smaller than those in Examples 2 and 6. Since the nonwoven fabric of Comparative Example 1 has a small specific volume, that is, a nonwoven fabric having a small initial volume and a large density, it is presumed that the nonwoven fabric has a soft feeling without being deformed with respect to compression in the thickness direction. .
  • the nonwoven fabrics of Examples 2 and 6 have a large MIU representing the difficulty of slipping on the surface of the nonwoven fabric. The surface is difficult to slip.
  • the MMD representing the roughness of the nonwoven fabric surface is smaller in the nonwoven fabrics of Examples 2 and 6. From this result, the nonwoven fabric using crimped composite short fibers composed of a resin component containing linear polyethylene and low density polyethylene satisfying a specific density range of the first component has a large MIU on the surface of the nonwoven fabric, MMD is small.
  • this non-woven fabric has an appropriate friction against the skin, and when the skin touches, the frictional force works between the non-woven fabric and gives the sensation that the non-woven fabric sticks to the skin. That is, since there is no roughness, the tactile sensation becomes smooth and gives a unique and comfortable tactile sensation (smoothness and moist feeling).
  • the average friction coefficient MMD is large.
  • MMD that is, the roughness of the surface of the nonwoven fabric is not only influenced by the surface of the fibers constituting the surface of the nonwoven fabric, but also the ease of movement of the fibers when the skin or friction tester moving on the surface of the nonwoven fabric (ease of deformation) ) Is also affected. Therefore, it is considered that the more difficult the fibers are to be deformed, the less the fibers on the surface move with respect to the movement of the skin and the friction element, and the greater the force required for the skin and the friction elements to move and move the fibers.
  • the nonwoven fabric of Comparative Example 6 is a fiber that is difficult to deform, in which the first component of the actual crimpable composite short fiber that the nonwoven fabric comprises is composed of high-density polyethylene having a large flexural modulus, thereby preventing skin and friction It is presumed that the force required for movement momentarily increases and the MMD increases. Further, the nonwoven fabric of Comparative Example 1 is presumed to be a fiber that easily deforms because the first component of the actual crimpable composite short fiber constituting the nonwoven fabric is composed of linear polyethylene. Since the nonwoven fabric has a small specific volume (in other words, a high density), the number of fibers constituting the nonwoven fabric surface is increasing.
  • the actual crimpable composite short fiber of the present invention is flexible and excellent in processability (especially high-speed card property). When made into a nonwoven fabric, the nonwoven fabric has a good surface feel, bulkiness and thickness direction. Gives flexibility and bulk recovery. Therefore, the actual crimpable composite short fiber of the present invention is particularly suitable for constituting the surface material of a hygiene article, and other fiber products such as wet tissue, wipers, cosmetic materials, and female bra pads. Suitable for constituting shoulder pads, vehicle cushioning materials, flooring flooring backing materials, cushioning materials, and packaging materials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

A composite short fiber comprising a first component and a second component, wherein the first component (1) comprises a linear polyethylene having a density of 0.90-0.94 g/cm3 and a low-density polyethylene, the second component (2) contains 50 mass% or more of a polyester having a melting point that is higher by 40°C or more than the melting point of the linear polyethylene that constitutes the first component, the first component (1) makes up at least 20% of the surface of the fiber in the cross section of the fiber, and the two components are arranged in such a manner that the position of the gravity center of the second component (2) is deviated from the position of the gravity center of the fiber. In this manner, an actualized crimped composite short fiber having at least one crimping form selected from a wavy crimping form and a spiral crimping form can be produced.

Description

顕在捲縮性複合短繊維とその製造方法、繊維集合物および衛生物品Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article
 本発明は、紡糸性および加工性(特に高速カード性)に優れた、顕在捲縮性複合短繊維、およびこれを用いた、表面触感が良好で、厚さ方向の柔軟性を有し、かつ弾力性に優れた繊維集合物、ならびに当該繊維集合物を用いた衛生物品に関する。 The present invention is an excellent crimpable composite short fiber excellent in spinnability and workability (particularly high-speed card property), and has a good surface feel and flexibility in the thickness direction, and The present invention relates to a fiber assembly having excellent elasticity and a hygiene article using the fiber assembly.
 予て、2以上の成分からなる複合繊維であって、ポリエチレンを主たる成分とする成分を複合繊維表面の少なくとも一部を占めるように構成した複合繊維が、種々提案されている。そのような複合繊維については、繊維から得られる製品(特に不織布)の触感および柔軟性をより向上させること、およびポリエチレンによる熱接着性をより向上させることを目的として、改良が重ねられている。 Various types of composite fibers have been proposed that are composed of two or more components that are composed of polyethylene as a main component so as to occupy at least a part of the surface of the composite fiber. About such a composite fiber, the improvement is repeated for the purpose of improving more the tactile feeling and softness | flexibility of the product (especially nonwoven fabric) obtained from a fiber, and improving the thermal adhesiveness by polyethylene more.
 例えば、特許文献1(特開2008-264473号公報)は、第一成分を、メタロセン触媒を用いて重合した直鎖状ポリエチレンを含む成分、第二成分を、ポリトリメチレンテレフタレートを50質量%以上含むポリエステルとした複合繊維であって、第二成分の重心位置が複合繊維の重心位置からずれており、複合繊維が波形状捲縮及び螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している、顕在捲縮性複合繊維を提案している。特許文献1で提案された複合繊維は、第二成分がポリトリメチレンフタレートを主成分とするため、非常に柔らかく、また、優れた初期嵩回復率を示す。 For example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-264473) discloses that the first component is a component containing linear polyethylene polymerized using a metallocene catalyst, the second component is 50% by mass or more of polytrimethylene terephthalate. A composite fiber comprising polyester, wherein the center of gravity of the second component is deviated from the position of the center of gravity of the composite fiber, and the composite fiber has at least one kind of crimp selected from wave-shaped crimp and spiral crimp Proposed crimped conjugate fiber. The composite fiber proposed in Patent Document 1 is very soft because the second component is mainly composed of polytrimethylene phthalate, and exhibits an excellent initial bulk recovery rate.
 特許文献2(特開昭63-105111号公報)は、融点の異なる2成分を同心状ないしは並列状に配置した複合系熱接着性繊維において、前記成分の一方を高密度ポリエチレンに直鎖状低密度ポリエチレンまたは低密度ポリエチレンを2~20%添加した低融点成分で構成するとともに、他方の成分を低融点成分よりも融点が20℃以上高い繊維形成能を有する樹脂を高融点成分となすことを特徴とする複合系熱融着性繊維を提案している。この文献に記載された複合繊維は、適正融着条件が広く、生産条件や外気条件の変動に対しても、安定した融着強力と風合いとを備えた不織布が得られることを可能にしている。 Patent Document 2 (Japanese Patent Application Laid-Open No. 63-105111) discloses a composite heat-bonding fiber in which two components having different melting points are arranged concentrically or in parallel, and one of the components is linearly low in high-density polyethylene. It is composed of a low melting point component to which 2 to 20% of density polyethylene or low density polyethylene is added, and the other component is a resin having a fiber forming ability higher than the low melting point component by 20 ° C. or more as a high melting point component. Proposed composite heat-fusible fibers. The composite fiber described in this document has a wide range of proper fusing conditions, and it is possible to obtain a non-woven fabric having a stable fusing strength and texture even with fluctuations in production conditions and outside air conditions. .
 特許文献3(特開平11-350255号公報)は、高融点と低融点を有し、かつ低融点が高融点より少なくとも5℃低いポリエチレン系樹脂(A)からなる鞘部と、ポリエチレン系樹脂の最も高い融点よりもさらに10℃以上高い融点を有する高融点樹脂(B)からなる芯部とから構成される芯鞘型複合繊維、またはポリエチレン系樹脂(A)からなるポリエチレン系樹脂部と、高融点樹脂(B)からなる高融点樹脂部とから構成されるサイドバイサイド型複合繊維を提案している。この文献に記載された複合繊維は、適正加工温度を広くし、それにより、当該繊維からなるウェブに熱エンボス加工により交絡処理する際、熱ロールへの巻き付けと融着不良を防止することができ、熱エンボス性に優れたものとなる。 Patent Document 3 (Japanese Patent Application Laid-Open No. 11-350255) discloses a sheath made of a polyethylene resin (A) having a high melting point and a low melting point, and the low melting point being at least 5 ° C. lower than the high melting point, A core-sheath type composite fiber composed of a core part composed of a high melting point resin (B) having a melting point higher by 10 ° C. or more than the highest melting point, or a polyethylene resin part composed of a polyethylene resin (A); A side-by-side type composite fiber composed of a high melting point resin portion made of a melting point resin (B) is proposed. The composite fiber described in this document can widen the proper processing temperature, thereby preventing the winding of the roll and the poor fusion when the web made of the fiber is entangled by hot embossing. , Excellent heat embossing property.
 特許文献4(特許第4315663号公報)は、ポリエステルと、メタロセン系重合触媒により得られた第一ポリエチレンとチーグラー・ナッタ系重合触媒により得られた第二ポリエチレンとが混合されたポリエチレンとを、該ポリエステルが芯に配され、該ポリエチレンが鞘に配されるように、芯鞘型複合紡糸孔に供給し、溶融紡糸して、芯部が該ポリエステルで鞘部が該ポリエチレンで構成され、芯部の横断面形状は繊維軸方向において実質的に変化せず、鞘部の厚さは、繊維軸方向及び繊維周方向において不均一で且つ無作為に変化している芯鞘状複合長繊維を得た後、該芯鞘状複合長繊維を集積することを特徴とする不織布の製造方法を提案している。この製造方法によれば、長繊維の繊維径が一定でないことにより柔軟性に優れ、また、ヒートシール性にも優れた長繊維不織布が得られる。 Patent Document 4 (Patent No. 4315663) discloses a polyester, a polyethylene obtained by mixing a first polyethylene obtained by a metallocene polymerization catalyst and a second polyethylene obtained by a Ziegler-Natta polymerization catalyst. The polyester is arranged on the core, and the polyethylene is arranged on the sheath. The core-sheath-type composite spinning hole is supplied and melt-spun so that the core is made of the polyester and the sheath is made of the polyethylene. The cross-sectional shape of the core-sheathed composite continuous fiber is not substantially changed in the fiber axis direction, and the sheath thickness is nonuniform and randomly changing in the fiber axis direction and the fiber circumferential direction. After that, a method for producing a nonwoven fabric characterized by accumulating the core-sheath composite long fibers is proposed. According to this production method, a long fiber nonwoven fabric having excellent flexibility and heat sealability due to the fact that the fiber diameter of the long fibers is not constant can be obtained.
特開2008-264473号公報JP 2008-264473 A 特開昭63-105111号公報JP 63-105111 A 特開平11-350255号公報Japanese Patent Laid-Open No. 11-350255 特許第4315663号公報Japanese Patent No. 4315663
 ポリエチレンを主たる成分とする成分を複合繊維表面の少なくとも一部を占めるように構成した複合繊維からなる繊維製品(特に、不織布)は、生理用ナプキンおよび紙おむつ等の衛生物品の表面材として、広く使用されている。衛生物品の表面材は、人体または動物のデリケートな部分に直接接するものであるため、表面材それ自体が優れた触感を有することが強く要求される。そのような要求は、近年、ますます高まっている。表面材に求められる触感として、具体的には、良好な表面触感(表面をさわったときのなめらかさ)に加えて、厚さ方向において柔らかくフワフワとした感触、即ち、嵩高性、厚さ方向に力を加えたときに変形しやすい性質、即ち、厚さ方向の柔軟性、および厚さ方向に力を加えたときに戻り感を与えるクッションのような感触、即ち、嵩回復性が求められている。 Fiber products (especially non-woven fabrics) composed of composite fibers composed of polyethylene as the main component occupying at least part of the composite fiber surface are widely used as surface materials for sanitary articles such as sanitary napkins and disposable diapers. Has been. Since the surface material of a hygiene article is in direct contact with a delicate part of the human body or animal, it is strongly required that the surface material itself has an excellent tactile sensation. Such demands are increasing in recent years. Specifically, the tactile sensation required for the surface material is not only good surface tactile sensation (smoothness when touching the surface), but also soft and fluffy sensation in the thickness direction, ie, bulkiness and thickness direction. A property that is easily deformed when a force is applied, that is, flexibility in the thickness direction, and a cushion-like feel that gives a feeling of return when a force is applied in the thickness direction, that is, a bulk recovery property is required. Yes.
 また、衛生物品の表面材のみならず、繊維から繊維製品を製造するに際しては、できるだけ効率よく生産することが望まれている。生産の効率性の一つの指標として挙げられるのが、不織布製造の際の高速カード性である。高速カード性は、不織布を製造するに際し、短繊維をカード機により開繊してウェブを作製する場合に、作製されるウェブにおいて、ネップや地合ムラが生じることなく、ウェブの作製速度(1分間あたりのメートル数で表される)をどの程度上昇させ得るかによって決定される。不織布の量産現場においては、例えば、100m/minという、高速カード性が要求されることもある。 Also, when manufacturing textile products from fibers as well as the surface material of sanitary articles, it is desired to produce them as efficiently as possible. One index of production efficiency is the high-speed card property when manufacturing nonwoven fabrics. The high-speed card property is a web production speed (1) in the production of a nonwoven fabric when a web is produced by opening a short fiber with a card machine without causing nep or formation unevenness. As expressed in meters per minute). In the non-woven fabric mass production site, for example, a high-speed card property of 100 m / min may be required.
 良好な触感を有し、かつ高速カード性にも優れた複合短繊維を得ることは、容易なことではない。例えば、特許文献1に記載の顕在捲縮性複合繊維は、柔軟であるがゆえに、高速カード性に劣るという問題を有している。特許文献2および3に記載の繊維は、高融点のポリエチレンを使用するため、必ずしも柔軟なものでなく、それを用いて得た繊維集合物は良好な触感(特に表面触感)を示さない。特許文献4は、特殊な形状を有する長繊維不織布を得ることによって、柔軟性を達成しているが、繊維径が一定でない繊維を例えば短繊維にしてカードを通過させると、繊維がカードを具合良く通過することができず、ネップおよび地合ムラの発生につながる。 It is not easy to obtain a composite short fiber having a good tactile sensation and excellent in high-speed card properties. For example, the actual crimpable conjugate fiber described in Patent Document 1 has a problem that it is inferior in high-speed card property because it is flexible. Since the fibers described in Patent Documents 2 and 3 use polyethylene having a high melting point, the fibers are not necessarily flexible, and a fiber aggregate obtained using the fibers does not exhibit good tactile sensation (particularly surface tactile sensation). Patent Document 4 achieves flexibility by obtaining a long-fiber nonwoven fabric having a special shape. However, when a fiber with a non-constant fiber diameter is made into a short fiber, for example, and the card is passed, the condition of the fiber becomes the card. It cannot pass well, leading to the occurrence of Nep and uneven formation.
 本発明は、かかる実情に鑑みてなされたものであり、良好な触感を有し、かつ高速カード性に優れた複合繊維を得ることを目的としてなされたものである。 The present invention has been made in view of such circumstances, and has been made for the purpose of obtaining a composite fiber having good tactile sensation and excellent in high-speed card properties.
 本発明は、
 第一成分と第二成分とを含む複合短繊維であって、
 第一成分は、密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含み、
 第一成分において、低密度ポリエチレンが、直鎖状ポリエチレンと低密度ポリエチレンとを合わせた質量の5質量%~25質量%を占めるように含まれており、
 第二成分は、第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含んでおり、
 繊維断面において、第一成分は繊維表面の少なくとも20%を占めており、第二成分の重心位置は繊維の重心位置からずれており、
 複合短繊維は、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している、
顕在捲縮性複合短繊維を提供する。
The present invention
A composite short fiber comprising a first component and a second component,
The first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene,
In the first component, the low density polyethylene is included so as to occupy 5% by mass to 25% by mass of the total mass of the linear polyethylene and the low density polyethylene,
The second component contains 50% by mass or more of polyester having a melting point 40 ° C. or higher than the melting point of the linear polyethylene constituting the first component,
In the fiber cross section, the first component occupies at least 20% of the fiber surface, the center of gravity of the second component is deviated from the center of gravity of the fiber,
The composite short fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp,
An actual crimpable composite short fiber is provided.
 本発明は顕在捲縮性複合短繊維の製造方法を提供する。即ち、
 第一成分と第二成分とを含む複合短繊維の製造方法であって、
 密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含み、かつ低密度ポリエチレンが、直鎖状ポリエチレンと低密度ポリエチレンとを合わせた質量の5質量%~25質量%を占める第一成分と、
 第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含む第二成分とを、
 繊維断面において、第一成分が繊維表面の少なくとも20%を占め、第二成分の重心位置が繊維の重心位置からずれるように、溶融紡糸して、紡糸フィラメントを得ること、
 紡糸フィラメントをTg℃~95℃(ただし、Tgは第二成分に含まれるポリマー成分のうち、最も高いガラス転移点を有するポリマー成分のガラス転移点)の範囲内にある温度で1.8~5倍に延伸すること、
 延伸後のフィラメントに対し、捲縮数5山/25mm~25山/25mmの範囲で機械捲縮を付与すること、
 50~115℃の範囲内にある温度でアニーリング処理を施すこと、
 アニーリング処理したフィラメントを1mm~100mmの長さに切断すること
を含む、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している複合短繊維の製造方法を提供する。
The present invention provides a method for producing crisp crimpable composite staple fibers. That is,
A method for producing a composite short fiber comprising a first component and a second component,
5% by mass of the total mass of the linear polyethylene and the low density polyethylene, the linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and the low density polyethylene. A first component occupying ~ 25% by weight;
A second component containing 50% by mass or more of a polyester having a melting point of 40 ° C. or higher than the melting point of the linear polyethylene constituting the first component;
In the fiber cross section, the first component occupies at least 20% of the fiber surface, and melt spinning to obtain a spun filament so that the center of gravity of the second component deviates from the center of gravity of the fiber,
The spinning filament is at a temperature within the range of Tg 2 ° C. to 95 ° C. (where Tg 2 is the glass transition temperature of the polymer component having the highest glass transition temperature among the polymer components contained in the second component). Stretching up to 5 times,
Applying mechanical crimps to the filaments after drawing in the range of 5 crimps / 25mm to 25 threads / 25mm,
Performing an annealing treatment at a temperature within a range of 50 to 115 ° C .;
Provided is a method for producing a composite short fiber having at least one kind of crimp selected from wave-shaped crimps and spiral crimps, which comprises cutting an annealed filament into a length of 1 mm to 100 mm.
 本発明はまた、前記顕在捲縮性複合短繊維を20質量%以上含む繊維集合物を提供する。繊維集合物は、好ましくは不織布であり、より好ましくは、第一成分で熱接着された熱接着不織布である。 The present invention also provides a fiber aggregate containing 20% by mass or more of the above-described actual crimpable composite short fiber. The fiber aggregate is preferably a non-woven fabric, and more preferably a heat-bonded non-woven fabric heat-bonded with the first component.
 本発明はさらに、前記繊維集合物から成る、衛生物品の表面材を提供する。本発明はさらにまた、前記表面材が組み込まれた衛生物品を提供する。 The present invention further provides a surface material for a hygiene article comprising the fiber assembly. The present invention still further provides a hygiene article incorporating the surface material.
 本発明の顕在捲縮性複合短繊維は、第一成分が、密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および所定量の低密度ポリエチレンを含み、第二成分が、ポリエステルを50質量%以上含み、第二成分が偏心させられていて、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している。この顕在捲縮性複合短繊維は、カード通過性に優れていて、優れた地合のカードウェブを与えるとともに、この繊維を含む繊維集合物(特に不織布)は、良好な表面触感を与えるとともに、嵩高性、厚さ方向の柔軟性および嵩回復性に優れている。さらに、この顕在捲縮性複合短繊維は、2種類のポリエチレンを使用することにより、熱接着不織布を作製するときに広い温度範囲で熱接着処理を実施することを可能にする。よって、この顕在捲縮性複合短繊維は、衛生物品の表面材のような、人体または動物のデリケートな部分と直接接触する製品を構成するのに適し、かつそのような製品を高い生産性で製造することを可能にする。 The apparently crimpable composite short fiber of the present invention comprises a first component containing linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and a predetermined amount of low density polyethylene. However, it contains 50% by mass or more of polyester, the second component is decentered, and has at least one kind of crimp selected from wave crimps and spiral crimps. The actual crimpable composite short fiber is excellent in card passing property and gives an excellent card web, and a fiber aggregate (particularly non-woven fabric) containing this fiber gives a good surface feel, It is excellent in bulkiness, flexibility in the thickness direction, and bulk recovery. Furthermore, this actual crimpable composite short fiber makes it possible to carry out a heat bonding treatment in a wide temperature range when producing a heat bonded nonwoven fabric by using two types of polyethylene. Therefore, the actual crimpable composite short fiber is suitable for constructing a product that is in direct contact with a delicate part of a human body or an animal, such as a surface material of a hygiene article, and the product with high productivity. Makes it possible to manufacture.
 本発明の顕在捲縮性複合繊維の製造方法で得られた複合短繊維を含む繊維集合物(特に不織布)は、良好な表面触感を与えるとともに、嵩高性、厚さ方向の柔軟性および嵩回復性に優れている。したがって、前記製造方法によれば、衛生物品の表面材のような、人体または動物のデリケートな部分と直接接触する製品を構成するのに適した複合短繊維を高い生産性で製造することが可能となる。 The fiber aggregate (particularly non-woven fabric) containing composite short fibers obtained by the method for producing an actual crimpable composite fiber of the present invention gives good surface feel and is bulky, flexible in the thickness direction and bulk recovery. Excellent in properties. Therefore, according to the manufacturing method, it is possible to manufacture with high productivity composite short fibers suitable for constituting a product that is in direct contact with a delicate part of a human body or an animal, such as a surface material of a hygiene article. It becomes.
図1は本発明の一実施形態における顕在捲縮性複合短繊維の繊維断面を示す。FIG. 1 shows a fiber cross section of an actual crimpable composite short fiber according to an embodiment of the present invention. 図2A~Cは、本発明の一実施形態における顕在捲縮性複合短繊維の捲縮形態を示す。FIGS. 2A-C show the crimped form of the manifest crimpable composite staple fiber in one embodiment of the present invention. 図3は従来の機械捲縮の形態を示す。FIG. 3 shows a form of conventional mechanical crimping. 図4は本発明の別の実施形態における顕在捲縮性複合短繊維の捲縮形態を示す。FIG. 4 shows the crimped form of the manifest crimpable composite staple fiber in another embodiment of the present invention.
 本発明者らは、上記目的を達成するためには、複合繊維において、低融点成分が、繊維の柔軟性および熱接着性を確保し、高融点成分が、不織布の嵩高性および嵩回復性を確保し、かつ高速のカードに耐えうる剛性を提供する必要があると考えた。そこで、低融点成分を良好な表面触感を与える直鎖状ポリエチレンで構成し、高融点成分をポリエステルで構成し、かつ立体捲縮が発現した顕在捲縮性複合繊維を得ることを検討した。しかし、そのような繊維は、表面触感の点では優れているものの、高速カード性および不織布としたときの嵩高性、厚さ方向の柔軟性および嵩回復性においては必ずしも十分ではなかった。そこで、直鎖状ポリエチレンに由来する表面触感を損なわない範囲で、低融点成分を改質することを検討した。 In order to achieve the above object, the present inventors have ensured that the low melting point component ensures the flexibility and thermal adhesiveness of the fiber, and the high melting point component increases the bulkiness and bulk recoverability of the nonwoven fabric. We thought it necessary to provide sufficient rigidity to withstand high-speed cards. Therefore, an investigation was made to obtain an apparently crimped conjugate fiber in which the low melting point component is composed of linear polyethylene giving a good surface feel, the high melting point component is composed of polyester, and steric crimps are expressed. However, such fibers are excellent in terms of surface tactile sensation, but are not necessarily sufficient in terms of high-speed card properties, bulkiness when made into a nonwoven fabric, flexibility in the thickness direction, and bulk recovery properties. Therefore, it was studied to modify the low melting point component within a range that does not impair the surface feel derived from the linear polyethylene.
 検討の結果、所定値以上の密度を有する直鎖状ポリエチレンに、少量の低密度ポリエチレンを添加することにより、直鎖状ポリエチレンによる良好な表面触感を損ねることなく、高速カード性に優れ、かつ不織布にしたときに優れた嵩高性、厚さ方向の柔軟性および嵩回復性を示す複合短繊維が得られることを見出した。よって、本発明の顕在捲縮性複合短繊維は、
 第一成分は、密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含み、
 第一成分において、低密度ポリエチレンが、直鎖状ポリエチレンと低密度ポリエチレンとを合わせた質量の5質量%~25質量%を占めるように含まれており、
 第二成分は、第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含んでおり、
 繊維断面において、第一成分は繊維表面の少なくとも20%を占めており、第二成分の重心位置は繊維の重心位置からずれており、
 複合短繊維は、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している、
顕在捲縮性複合短繊維である。以下、この複合短繊維を構成する、第一成分および第二成分について説明する。
As a result of the study, by adding a small amount of low-density polyethylene to linear polyethylene having a density of a predetermined value or more, it is excellent in high-speed card properties without impairing the good surface feel of linear polyethylene, and non-woven fabric It was found that composite short fibers exhibiting excellent bulkiness, flexibility in the thickness direction, and bulk recoverability when obtained. Therefore, the actual crimpable composite short fiber of the present invention is
The first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene,
In the first component, the low density polyethylene is included so as to occupy 5% by mass to 25% by mass of the total mass of the linear polyethylene and the low density polyethylene,
The second component contains 50% by mass or more of polyester having a melting point 40 ° C. or higher than the melting point of the linear polyethylene constituting the first component,
In the fiber cross section, the first component occupies at least 20% of the fiber surface, the center of gravity of the second component is deviated from the center of gravity of the fiber,
The composite short fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp,
It is an actual crimpable composite short fiber. Hereinafter, the first component and the second component constituting the composite short fiber will be described.
 第一成分は、密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含む。直鎖状ポリエチレン(「LLDPE(Linear Low Density Polyethylene)」とも呼ばれるが、本発明で使用される直鎖状ポリエチレンは必ずしも低密度(一般に0.925g/cm以下)のものに限られない)とは、エチレンとα-オレフィンとを共重合させることによって得られる共重合体を指す。α-オレフィンは、一般に炭素数が3~12のα-オレフィンである。炭素数が3~12のα-オレフィンとしては、具体的にはプロピレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ドデセン-1及びこれらの混合物を挙げることができる。これらのうち、プロピレン、ブテン-1、4-メチルペンテン-1、ヘキセン-1、4-メチルヘキセン-1及びオクテン-1が特に好ましく、ブテン-1及びヘキセン-1がさらに好ましい。 The first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene. Linear polyethylene (also referred to as “LLDPE (Linear Low Density Polyethylene)”), the linear polyethylene used in the present invention is not necessarily limited to low density (generally 0.925 g / cm 3 or less). Refers to a copolymer obtained by copolymerizing ethylene and α-olefin. The α-olefin is generally an α-olefin having 3 to 12 carbon atoms. Specific examples of the α-olefin having 3 to 12 carbon atoms include propylene, butene-1, pentene-1, 4-methylpentene-1, hexene-1, heptene-1, octene-1, nonene-1, Decene-1, dodecene-1 and mixtures thereof may be mentioned. Of these, propylene, butene-1, 4-methylpentene-1, hexene-1, 4-methylhexene-1 and octene-1 are particularly preferable, butene-1 and hexene-1 are more preferable.
 直鎖状ポリエチレン中のα-オレフィン含有量は、1mol%~10mol%であることが好ましく、2mol%~5mol%であることがより好ましい。α-オレフィン含有量が少ないと、繊維の柔軟性が損なわれることがある。α-オレフィンの含有量が多くなると、結晶性が悪くなり、繊維化の際に繊維同士が融着する可能性がある。 The α-olefin content in the linear polyethylene is preferably 1 mol% to 10 mol%, more preferably 2 mol% to 5 mol%. If the α-olefin content is low, the flexibility of the fiber may be impaired. When the content of α-olefin is increased, the crystallinity is deteriorated, and the fibers may be fused during fiber formation.
 第一成分において使用される直鎖状ポリエチレンは、0.90g/cm~0.94g/cmの密度を有する。密度が0.90g/cm未満であると、第一成分が柔らかくなり、不織布にしたときに十分な嵩高性および嵩回復性を得られず、また、高速カード性の点で劣り、地合の良好な不織布を得られないことがある。一方、直鎖状ポリエチレンの密度が0.94g/cmよりも大きくなると、不織布にしたときに、不織布の嵩高性および嵩回復性は向上するが、不織布の表面触感および厚さ方向の柔軟性が劣る傾向にある。よって、直鎖状ポリエチレンは、好ましくは0.90g/cm~0.935g/cm、より好ましくは0.91g/cm~0.935g/cm、さらにより好ましくは0.913g/cm~0.935g/cmの密度を有する。 The linear polyethylene used in the first component has a density of 0.90 g / cm 3 to 0.94 g / cm 3 . When the density is less than 0.90 g / cm 3 , the first component becomes soft, and when it is made into a nonwoven fabric, sufficient bulkiness and bulk recovery are not obtained, and it is inferior in terms of high-speed card properties. May not be obtained. On the other hand, when the density of the linear polyethylene is higher than 0.94 g / cm 3 , the bulkiness and bulk recovery of the nonwoven fabric are improved when it is made into a nonwoven fabric, but the surface feel and flexibility in the thickness direction of the nonwoven fabric are improved. Tend to be inferior. Thus, linear polyethylene is preferably 0.90g / cm 3 ~ 0.935g / cm 3, more preferably 0.91g / cm 3 ~ 0.935g / cm 3, even more preferably 0.913 g / cm It has a density of 3 to 0.935 g / cm 3 .
 また、直鎖状ポリエチレンは、紡糸前の融点が110℃~125℃の範囲内にあるものであることが好ましい。また、直鎖状ポリエチレンの融点は、添加する低密度ポリエチレンの融点よりも高いことが好ましい。直鎖状ポリエチレンの融点が高すぎると、低温で熱接着処理をして、熱接着不織布を製造したときに、実用に耐えうる強度の不織布を得られないことがある。直鎖状ポリエチレンの融点が低いと、高温で熱接着処理を施して、熱接着不織布を製造したときに、不織布の表面触感が低下することがあるか、あるいは高速カード性の点で劣り、地合の良好な不織布を得られない。直鎖状ポリエチレンの融点を、それに添加する低密度ポリエチレンの融点よりも高くすることにより、不織布において、直鎖状ポリエチレンが骨格ポリマーとして機能するとともに、低密度ポリエチレンが柔軟化剤としての役割を果たし、繊維ひいてはそれから得られる繊維集合物において適度な柔軟性が得られる。 The linear polyethylene preferably has a melting point before spinning in the range of 110 ° C to 125 ° C. The melting point of the linear polyethylene is preferably higher than the melting point of the low density polyethylene to be added. If the melting point of the linear polyethylene is too high, a non-woven fabric having a strength that can withstand practical use may not be obtained when a thermobonding nonwoven fabric is produced by performing a thermal bonding treatment at a low temperature. If the melting point of the linear polyethylene is low, when the heat-bonding nonwoven fabric is manufactured by applying the heat-bonding treatment at a high temperature, the surface touch of the nonwoven fabric may be deteriorated, or the high-speed card property is inferior. A good nonwoven fabric cannot be obtained. By making the melting point of the linear polyethylene higher than the melting point of the low density polyethylene added to it, in the nonwoven fabric, the linear polyethylene functions as a skeleton polymer and the low density polyethylene serves as a softening agent. Appropriate flexibility can be obtained in the fiber and the fiber assembly obtained therefrom.
 上記の密度および融点を有する直鎖状ポリエチレンは、メタロセン触媒を用いてエチレンとα・オレフィンとを共重合させることにより、容易に得られる。尤も、0.90g/cm~0.94g/cmの密度を有し、好ましくは上記の融点を有し得る限りにおいて、直鎖状ポリエチレンは、メタロセン触媒を用いて重合されたものに限定されず、例えば、チーグラー・ナッタ触媒を用いて重合されたものを用いてよい。 The linear polyethylene having the above density and melting point can be easily obtained by copolymerizing ethylene and α-olefin using a metallocene catalyst. However, linear polyethylene is limited to those polymerized using a metallocene catalyst as long as it has a density of 0.90 g / cm 3 to 0.94 g / cm 3 and preferably has the melting point described above. Instead, for example, a polymerized with a Ziegler-Natta catalyst may be used.
 直鎖状ポリエチレンのメルトインデックス(MI)は、紡糸性を考慮すると1g/10min~60g/10minの範囲内にあることが好ましい。ここで、メルトインデックス(MI)は、JIS K 7210(1999年)(条件:190℃、荷重21.18N(2.16kgf))に準じて測定される。MIが大きいほど、紡糸時に鞘成分の固化速度が遅くなり、繊維同士が融着しやすくなる。一方、MIが小さすぎると、繊維化が困難となる。より具体的には、直鎖状ポリエチレンのMIは、2g/10min~40g/10minであることが好ましく、3g/10min~35g/10minであることがより好ましく、5g/10min~30g/10minであることがさらにより好ましい。 The melt index (MI) of linear polyethylene is preferably in the range of 1 g / 10 min to 60 g / 10 min in consideration of spinnability. Here, the melt index (MI) is measured according to JIS K 7210 (1999) (conditions: 190 ° C., load 21.18 N (2.16 kgf)). The larger the MI, the slower the rate of solidification of the sheath component during spinning, and the more easily the fibers are fused. On the other hand, if the MI is too small, fiberization becomes difficult. More specifically, the MI of the linear polyethylene is preferably 2 g / 10 min to 40 g / 10 min, more preferably 3 g / 10 min to 35 g / 10 min, and 5 g / 10 min to 30 g / 10 min. Even more preferred.
 直鎖状ポリエチレンにおける重量平均分子量(Mw)と数平均分子量(Mn)との比(Q値:Mw/Mn)は、5以下であることが好ましい。より好ましいQ値は2~4であり、さらにより好ましくは2.5~3.5である。Q値が5以下であると、直鎖状ポリエチレンの分子量分布の幅が狭いという特徴を有しているといえ、このQ値の範囲を満たす直鎖状ポリエチレンを第一成分に使用することで、顕在捲縮性に優れた複合短繊維を得ることができる。 The ratio (Q value: Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the linear polyethylene is preferably 5 or less. The Q value is more preferably 2 to 4, and even more preferably 2.5 to 3.5. When the Q value is 5 or less, it can be said that the molecular weight distribution of the linear polyethylene has a narrow width. By using a linear polyethylene satisfying this Q value range as the first component. Thus, it is possible to obtain a composite short fiber excellent in actual crimpability.
 直鎖状ポリエチレンの曲げ弾性率は、得られる顕在捲縮性複合繊維の性質や、顕在捲縮性複合繊維を用いた繊維集合物の触感、嵩高性を考慮すれば、65MPa~850MPaの範囲内にあることが好ましい。ここで、曲げ弾性率は、JIS K 7171(2008年)に準じて測定される。本発明の顕在捲縮性複合繊維は、第一成分の主成分である直鎖状ポリエチレンに起因する柔軟な触感を有するが、単に柔軟なだけでは繊維のコシがなく、カード通過性が低下したり、嵩高で嵩回復性に富んだ繊維集合物が得られにくくなったりすることがある。そのため直鎖状ポリエチレンは、曲げに対してある程度変形しにくいものであることが好ましく(即ち、曲げに対する変形のしにくさが、ある程度高いものが好ましく)、具体的には曲げ弾性率が65MPa以上のものが好ましい。直鎖状ポリエチレンの曲げ弾性率が大きすぎると柔軟な触感が失われるおそれがあるので、それは850MPa以下であることが好ましい。より具体的には、直鎖状ポリエチレンの曲げ弾性率は、120MPa~750MPaであることがより好ましく、180MPa~700MPaであることが特に好ましく、250MPa~650MPaであることが最も好ましい。 The flexural modulus of linear polyethylene is in the range of 65 MPa to 850 MPa in consideration of the properties of the actual crimpable conjugate fiber obtained, the tactile feel of the fiber aggregate using the actual crimpable conjugate fiber, and the bulkiness. It is preferable that it exists in. Here, the flexural modulus is measured according to JIS K 7171 (2008). The actual crimpable conjugate fiber of the present invention has a soft tactile sensation due to the linear polyethylene that is the main component of the first component, but simply being flexible does not cause the fiber to be stiff and the card passing property is reduced. In some cases, it is difficult to obtain a fiber aggregate that is bulky and has a high bulk recovery property. Therefore, it is preferable that the linear polyethylene is not easily deformed to some extent with respect to bending (that is, it is preferable that the deformation with respect to bending is somewhat high). Specifically, the bending elastic modulus is 65 MPa or more. Are preferred. If the flexural modulus of the linear polyethylene is too large, the soft tactile sensation may be lost. Therefore, it is preferably 850 MPa or less. More specifically, the flexural modulus of linear polyethylene is more preferably from 120 MPa to 750 MPa, particularly preferably from 180 MPa to 700 MPa, and most preferably from 250 MPa to 650 MPa.
 直鎖状ポリエチレンの硬度は、得られる顕在捲縮性複合繊維の性質や、顕在捲縮性複合繊維を用いた繊維集合物の触感、嵩高性および嵩回復性を考慮すれば、45~75の範囲内にあることが好ましい。ここで、直鎖状ポリエチレンの硬度は、JIS K 7215(1986年)に準じ、タイプD デュロメータを用いて測定されるデュロメータ硬さ(HDD)を指す。第一成分の主成分である直鎖状ポリエチレンが柔らかすぎると繊維のコシが失われ、繊維のカード通過性が低下したり、嵩高な繊維集合物が得られにくくなったりすることがあるだけでなく、繊維集合物の嵩回復性が低下することもある。そのため、直鎖状ポリエチレンはある程度の硬度、具体的には45以上の硬度を有することが好ましい。直鎖状ポリエチレンの硬度が大きすぎると柔軟な触感が失われるおそれがあるので、それは75以下であることが好ましい。より具体的には、直鎖状ポリエチレンの硬度は、48~70であることがより好ましく、50~65であることが特に好ましく、50~62であることが最も好ましい。 The hardness of the linear polyethylene is 45 to 75 in consideration of the properties of the actual crimpable conjugate fiber obtained and the tactile sensation, bulkiness and bulk recovery of the fiber aggregate using the actual crimpable conjugate fiber. It is preferable to be within the range. Here, the hardness of linear polyethylene refers to durometer hardness (HDD) measured using a type D durometer in accordance with JIS K 7215 (1986). If the linear polyethylene, which is the main component of the first component, is too soft, the stiffness of the fiber is lost, the fiber cardability may be reduced, and a bulky fiber aggregate may be difficult to obtain. In addition, the bulk recoverability of the fiber assembly may be reduced. Therefore, it is preferable that the linear polyethylene has a certain degree of hardness, specifically 45 or more. If the linear polyethylene has a too high hardness, the soft tactile sensation may be lost. Therefore, it is preferably 75 or less. More specifically, the hardness of the linear polyethylene is more preferably 48 to 70, particularly preferably 50 to 65, and most preferably 50 to 62.
 第一成分に含まれる低密度ポリエチレン(「LDPE」とも呼ばれる)とは、分岐の多い軟質のポリエチレンであり、その製造方法に由来して、高圧法ポリエチレンとも呼ばれる。本発明においては、低密度ポリエチレンを、第一成分に少量添加することによって、顕在捲縮をより良好に発現させて、不織布としたときの嵩高性および嵩回復性、ならびに高速カード性を向上させることが可能となる。また、低密度ポリエチレンは、直鎖状ポリエチレンよりも柔らかいものであるため、例えば、密度の高い直鎖状ポリエチレンを用いたときに低下しがちな表面触感を、低密度ポリエチレンで確保することも可能である。 The low-density polyethylene (also referred to as “LDPE”) contained in the first component is a soft polyethylene with many branches, and is also referred to as a high-pressure polyethylene due to its production method. In the present invention, by adding a small amount of low-density polyethylene to the first component, the manifestation of crimp is improved, and the bulkiness and bulk recovery properties and the high-speed card properties when made into a nonwoven fabric are improved. It becomes possible. In addition, since low density polyethylene is softer than linear polyethylene, for example, it is possible to ensure surface texture that tends to decrease when using high density linear polyethylene. It is.
 低密度ポリエチレンの密度は0.91g/cm~0.93g/cmであることが好ましい。低密度ポリエチレンの密度はポリマーのMI(190℃)に依存する傾向にあるため、紡糸性を考慮すると、低密度ポリエチレンの密度は、0.915g/cm~0.92g/cmであることが好ましい。 Density of the low density polyethylene is preferably 0.91g / cm 3 ~ 0.93g / cm 3. Since the density of low density polyethylene tends to depend on the MI (190 ° C) of the polymer, considering the spinnability, the density of low density polyethylene should be 0.915 g / cm 3 to 0.92 g / cm 3. Is preferred.
 低密度ポリエチレンの融点は、90℃~120℃であることが好ましい。本発明においては、低い融点の低密度ポリエチレンが好ましく用いられる。融点が低い低密度ポリエチレンを用いることにより、顕在捲縮をより良好に発現させることができ、不織布製造の際の熱加工温度領域を広くすることができ、また、熱処理した後に柔軟な不織布を得ることができる。より具体的には、低密度ポリエチレンの融点は95℃~115℃であることがより好ましく、100℃~110℃であると特に好ましい。また、低密度ポリエチレンの融点は、前記直鎖状ポリエチレンの融点よりも低いことが好ましい。低密度ポリエチレンの融点は、より好ましくは、直鎖状ポリエチレンの融点よりも5℃以上低く、さらにより好ましくは、直鎖状ポリエチレンの融点より10℃以上低い。 The melting point of the low density polyethylene is preferably 90 ° C to 120 ° C. In the present invention, low-density polyethylene having a low melting point is preferably used. By using low-density polyethylene with a low melting point, the actual crimp can be expressed more favorably, the thermal processing temperature range during the production of the nonwoven fabric can be widened, and a flexible nonwoven fabric is obtained after heat treatment be able to. More specifically, the melting point of the low density polyethylene is more preferably 95 ° C. to 115 ° C., and particularly preferably 100 ° C. to 110 ° C. The melting point of the low density polyethylene is preferably lower than the melting point of the linear polyethylene. The melting point of the low density polyethylene is more preferably 5 ° C. or more lower than the melting point of the linear polyethylene, and even more preferably 10 ° C. or more lower than the melting point of the linear polyethylene.
 低密度ポリエチレンのメルトインデックス(MI)は、紡糸性を考慮すれば、一般的に1g/10min~60g/10minの範囲内にあることが好ましい。ここで、メルトインデックス(MI)は、JIS-K-7210(1999年)(条件:190℃、荷重21.18N(2.16kgf))に準じて測定される。MIが大きいほど、紡糸時に鞘成分の固化速度が遅くなり、繊維同士が融着しやすくなるからである。一方、MIが小さすぎると、繊維化が困難となる。より具体的には、低密度ポリエチレンのMIは、3g/10min~50g/10minであることが好ましく、5g/10min~50g/10minであることがより好ましく、10g/10min~50g/10minであることがさらにより好ましい。 The melt index (MI) of low density polyethylene is generally preferably in the range of 1 g / 10 min to 60 g / 10 min in view of spinnability. Here, the melt index (MI) is measured according to JIS-K-7210 (1999) (conditions: 190 ° C., load 21.18 N (2.16 kgf)). This is because the larger the MI, the slower the solidification rate of the sheath component during spinning, and the more easily the fibers are fused. On the other hand, if the MI is too small, fiberization becomes difficult. More specifically, the MI of the low density polyethylene is preferably 3 g / 10 min to 50 g / 10 min, more preferably 5 g / 10 min to 50 g / 10 min, and 10 g / 10 min to 50 g / 10 min. Is even more preferred.
 低密度ポリエチレンにおけるQ値は、10以下であることが好ましい。より好ましいQ値は4~9であり、さらにより好ましくは5~8である。Q値が10を越えると、良好な捲縮発現形状が得られないことがあり、また、接着強力も低くなる傾向にある。 The Q value in the low density polyethylene is preferably 10 or less. The Q value is more preferably 4 to 9, and even more preferably 5 to 8. If the Q value exceeds 10, a good crimped shape may not be obtained, and the adhesive strength tends to be low.
 第一成分において、直鎖状ポリエチレンと、低密度ポリエチレンとは、それらを合わせた質量を100質量%としたときに、直鎖状ポリエチレンが95質量%~75質量%を占め、低密度ポリエチレンが5質量%~25質量%を占めるように、混合されていることが好ましい。より好ましくは、直鎖状ポリエチレンが90質量%~80質量%を占め、低密度ポリエチレンが10質量%~20質量%を占める。直鎖状ポリエチレンの占める割合が多すぎると、低密度ポリエチレンを加えることによる効果が得られにくく、不織布としたときに、不織布が嵩高性において劣るものとなる。直鎖状ポリエチレンの占める割合が少なすぎると、熱接着不織布としたときに、強度の高い不織布を得ることができない。 In the first component, the linear polyethylene and the low density polyethylene are composed of 95% to 75% by mass of the linear polyethylene when the combined mass is 100% by mass. It is preferable that they are mixed so as to occupy 5% by mass to 25% by mass. More preferably, the linear polyethylene accounts for 90% by mass to 80% by mass, and the low density polyethylene accounts for 10% by mass to 20% by mass. If the proportion of linear polyethylene is too large, the effect of adding low-density polyethylene is difficult to obtain, and the nonwoven fabric is inferior in bulk when made into a nonwoven fabric. If the proportion of linear polyethylene is too small, a nonwoven fabric with high strength cannot be obtained when a heat-bonded nonwoven fabric is obtained.
 低密度ポリエチレンは、上記の範囲内で含まれると、複合短繊維において、良好な立体捲縮を発現させ、また、発現した捲縮のばらつきを少なくさせるとともに、繊維の捲縮率を高くする。したがって、この繊維を含む不織布の嵩高性を良好にする。立体捲縮が発現しやすい理由は定かではないが、分岐の少ない直鎖状ポリエチレン分子に低密度ポリエチレンの長分岐が絡み合い、延伸での歪みが生じ易くなるため、立体捲縮が発現し易くなるものと推定される。尤も、この推定によって本発明が制限されることはない。また、低密度ポリエチレンは、柔軟化剤として機能するので、上記の範囲で低密度ポリエチレンを含むと、例えば、密度の高い直鎖状ポリエチレンを使用した場合に、得られる不織布が厚さ方向において優れた柔軟性を示し、また、表面触感が良好となる。さらに、上記の範囲で低密度ポリエチレンを含むと、不織布の加工温度領域を広くすることができ、熱接着不織布を製造するときの加工温度に拘わらず、ほぼ一定した柔軟な風合いの不織布を得ることができる。 When the low density polyethylene is contained within the above range, the composite short fiber exhibits good steric crimps, reduces variation in the expressed crimps, and increases the fiber crimp rate. Therefore, the bulkiness of the nonwoven fabric containing this fiber is improved. The reason why steric crimps are likely to appear is not clear, but since long branches of low-density polyethylene are entangled with linear polyethylene molecules with few branches, distortion during stretching is likely to occur, so steric crimps are likely to occur. Estimated. However, the present invention is not limited by this estimation. In addition, since low density polyethylene functions as a softening agent, when low density polyethylene is included in the above range, for example, when a high-density linear polyethylene is used, the resulting nonwoven fabric is excellent in the thickness direction. Flexibility and surface tactile sensation. Furthermore, when low-density polyethylene is included in the above range, the processing temperature range of the nonwoven fabric can be widened, and a nonwoven fabric having a substantially constant and flexible texture can be obtained regardless of the processing temperature when manufacturing the heat-bonding nonwoven fabric. Can do.
 複合短繊維において立体捲縮が十分に発現し、かつ良好な触感を与える不織布を与える限りにおいて、第一成分には、直鎖状ポリエチレンおよび低密度ポリエチレンに加えて他のポリマー成分を含んでいてよい。例えば、第一成分は、高密度ポリエチレン、ポリプロピレン、ポリブテン、ポリブチレン、ポリメチルペンテン樹脂、ポリブタジエン、プロピレン系共重合体(例えば、プロピレン-エチレン共重合体)、エチレン-ビニルアルコール共重合体、エチレン-酢酸ビニル共重合体、エチレン-(メタ)アクリル酸共重合体、またはエチレン-(メタ)アクリル酸メチル共重合体等などのポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸、ポリブチレンサクシネートおよびその共重合体などのポリエステル樹脂、ナイロン66、ナイロン12、およびナイロン6などのポリアミド系樹脂、アクリル系樹脂、ポリカーボネート、ポリアセタール、ポリスチレンおよび環状ポリオレフィンなどのエンジニアリング・プラスチック、それらの混合物、ならびにそれらのエラストマー系樹脂などから選択される、1または複数のポリマー成分を含んでよい。 The first component contains other polymer components in addition to the linear polyethylene and the low-density polyethylene as long as a steric crimp is sufficiently developed in the composite short fiber and a non-woven fabric giving a good tactile sensation is provided. Good. For example, the first component is high density polyethylene, polypropylene, polybutene, polybutylene, polymethylpentene resin, polybutadiene, propylene copolymer (for example, propylene-ethylene copolymer), ethylene-vinyl alcohol copolymer, ethylene- Polyolefin resins such as vinyl acetate copolymer, ethylene- (meth) acrylic acid copolymer, or ethylene- (meth) methyl acrylate copolymer, polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate Polyester resins such as phthalate, polylactic acid, polybutylene succinate and copolymers thereof, polyamide resins such as nylon 66, nylon 12 and nylon 6, acrylic resins, polycarbonate, polyacetate Lumpur, engineering plastics such as polystyrene and cyclic polyolefin, mixtures thereof, and is selected from such as those elastomeric resin may include one or more polymer components.
 第一成分は、ポリマー成分として、直鎖状ポリエチレンと低密度ポリエチレンとを合わせて、50質量%以上含むことが好ましく、75質量%以上含むことがより好ましく、ポリマー成分としてそれらのみを含むことがより好ましい。 The first component preferably includes 50% by mass or more, more preferably 75% by mass or more as a polymer component, and more preferably 75% by mass or more. More preferred.
 第一成分は、ポリマー成分以外の成分、例えば、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤、結晶核剤などの添加剤を含んでよい。そのような添加剤は、第一成分の全体の10質量%以下の量を占めるように、第一成分に含まれることが好ましい。 The first component is a component other than the polymer component, such as an antistatic agent, a pigment, a matting agent, a heat stabilizer, a light stabilizer, a flame retardant, an antibacterial agent, a lubricant, a plasticizer, a softener, an antioxidant, and an ultraviolet ray. Additives such as absorbents and crystal nucleating agents may be included. Such an additive is preferably contained in the first component so as to occupy an amount of 10% by mass or less of the entire first component.
 第二成分は、ポリマー成分として、第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含む成分である。第二成分は、ポリマー成分として、ポリエステルを、好ましくは50質量%以上含み、より好ましくは75質量%以上含み、最も好ましくは100質量%含む。 The second component is a component containing 50% by mass or more of a polyester having a melting point 40 ° C. or more higher than the melting point of the linear polyethylene constituting the first component as the polymer component. The second component preferably contains 50% by mass or more of polyester as the polymer component, more preferably 75% by mass or more, and most preferably 100% by mass.
 ポリエステルは、他のポリマーに比べて、安価であり、高い剛直性を有し、繊維にコシを与えるので、好ましく用いられる。ポリエステルとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸などの重合体または共重合体が挙げられる。前記ポリエステルの融点は、第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い。好ましいポリエステルの融点は、直鎖状ポリエチレンの融点より50℃以上高い温度である。 Polyester is preferably used because it is less expensive than other polymers, has high rigidity, and gives the fiber stiffness. Examples of the polyester include polymers or copolymers such as polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and polylactic acid. The melting point of the polyester is 40 ° C. or more higher than the melting point of the linear polyethylene constituting the first component. The preferable melting point of polyester is a temperature higher by 50 ° C. or more than the melting point of linear polyethylene.
 前記ポリエステルのうち、ポリエチレンテレフタレートおよびポリブチレンテレフタレートは、ポリトリメチレンテレフタレートと比較して、高い剛直性を有し、繊維にコシを与えるので、得られる顕在捲縮性複合短繊維の高速カード性を良好にする。特に、ポリエチレンテレフタレートは、剛直性が大きいことから、最も好ましく使用される。ポリエチレンテレフタレートはまた、繊維製造中の延伸条件を適宜調節することにより、高い結晶性を有し、熱収縮しにくいものとなるので、潜在捲縮性を示さないまたはごく僅かに示す、顕在捲縮性複合短繊維を与え得る。そのような顕在捲縮性複合短繊維を用いて作製した不織布を作成すると、ウェブが熱処理に付されたときに、ウェブにおいて収縮が生じない又は僅かな収縮が生じ、ウェブ収縮に起因する製造工程の管理の煩雑さが無くなる、または軽減される。 Among the polyesters, polyethylene terephthalate and polybutylene terephthalate have high rigidity compared to polytrimethylene terephthalate and give the fiber stiffness, so that the high-speed card property of the resulting crimped composite short fiber can be improved. Make good. In particular, polyethylene terephthalate is most preferably used because of its high rigidity. Polyethylene terephthalate also has high crystallinity and is less susceptible to heat shrinkage by adjusting the drawing conditions during fiber production as appropriate, so that it does not show latent crimps or shows only slight crimps. Functional composite staple fibers can be provided. When a non-woven fabric produced using such an actual crimpable composite short fiber is prepared, when the web is subjected to heat treatment, the web does not shrink or slightly shrinks, and the manufacturing process is caused by the web shrinkage. Management complexity is eliminated or reduced.
 第二成分が、好ましいポリエステルとしてのポリエチレンテレフタレートおよび/またはポリブチレンテレフタレートと、それ以外の他のポリマー成分とを含む場合、当該他のポリマー成分は、複合短繊維において立体捲縮が十分に発現し、かつ繊維が良好な触感を与える不織布を与える限りにおいて、特に限定されない。例えば、他のポリエステル系樹脂、具体的には、ポリエチレンナフタレート、ポリ乳酸およびポリトリメチレンテレフタレートを混合してよい。しかし、ポリトリメチレンテレフタレートは前述したとおり、柔軟であって、得られる繊維の高速カード性を低下させる傾向にあるから、本発明の顕在捲縮性複合短繊維においては使用しないことが好ましい。 When the second component contains polyethylene terephthalate and / or polybutylene terephthalate as a preferred polyester and another polymer component other than that, the other polymer component sufficiently exhibits steric crimps in the composite short fiber. And as long as the fiber gives the nonwoven fabric which gives a favorable tactile sense, it is not specifically limited. For example, other polyester resins, specifically, polyethylene naphthalate, polylactic acid, and polytrimethylene terephthalate may be mixed. However, as described above, polytrimethylene terephthalate is flexible and tends to deteriorate the high-speed card property of the resulting fiber. Therefore, it is preferably not used in the actual crimpable composite short fiber of the present invention.
 第二成分は、ポリマー成分以外の成分、例えば、帯電防止剤、顔料、艶消し剤、熱安定剤、光安定剤、難燃剤、抗菌剤、滑剤、可塑剤、柔軟剤、酸化防止剤、紫外線吸収剤、結晶核剤などの添加剤を含んでよい。そのような添加剤は、第二成分の全体の10質量%以下の量を占めるように、第二成分に含まれることが好ましい。 The second component is a component other than the polymer component, such as an antistatic agent, a pigment, a matting agent, a heat stabilizer, a light stabilizer, a flame retardant, an antibacterial agent, a lubricant, a plasticizer, a softening agent, an antioxidant, and an ultraviolet ray. Additives such as absorbents and crystal nucleating agents may be included. Such an additive is preferably contained in the second component so as to occupy an amount of 10% by mass or less of the entire second component.
 本発明の顕在捲縮性複合短繊維において、(第二成分/第一成分)は、8/2~3/7(容積比)が好ましい。より好ましくは7/3~35/65、最も好ましくは6/4~4/6である。本発明の顕在捲縮性繊維で不織布を作製したときに、第二成分は、主として不織布の嵩高性および嵩回復性に寄与し、第一成分は、主として不織布強力および不織布の柔らかさに寄与する。その複合比が8/2~3/7であると、不織布強力および柔らかさと、嵩回復性を両立することができる。複合比は、第一成分が多くなると、不織布強力は上がるが、得られる不織布が硬くなり、嵩回復も悪くなる傾向になる。一方、第二成分が多くなりすぎると接着点が少なくなりすぎて、不織布強力が小さくなり、そのため嵩回復性が悪くなる傾向となる。 In the actual crimpable composite short fiber of the present invention, (second component / first component) is preferably 8/2 to 3/7 (volume ratio). More preferably, it is 7/3 to 35/65, and most preferably 6/4 to 4/6. When a nonwoven fabric is produced with the actual crimpable fiber of the present invention, the second component mainly contributes to the bulkiness and bulk recovery of the nonwoven fabric, and the first component mainly contributes to the nonwoven fabric strength and the nonwoven fabric softness. . When the composite ratio is 8/2 to 3/7, the strength and softness of the nonwoven fabric and the bulk recoverability can be compatible. As the composite ratio increases, the strength of the nonwoven fabric increases, but the resulting nonwoven fabric becomes harder and the bulk recovery tends to be worse. On the other hand, when the amount of the second component is too large, the adhesion point is too small, and the strength of the nonwoven fabric is decreased, so that the bulk recoverability tends to deteriorate.
 本発明の顕在捲縮性複合においては、第二成分の重心位置は繊維断面において繊維の重心位置からずれている。図1に本発明の一実施形態における複合短繊維の繊維断面を示す。第二成分(2)の周囲に第一成分(1)が配置され、第一成分(1)が繊維断面において繊維(10)表面の少なくとも20%を占めている。これにより第一成分(1)は熱接着時に表面が溶融する。繊維断面において、第二成分(2)の重心位置(3)は、繊維(10)の重心位置(4)からずれており、ずれの割合(以下、偏心率と記載する場合がある。)は、複合短繊維の繊維断面を電子顕微鏡などで拡大撮影し、繊維断面における第二成分(2)の重心位置(3)をC1とし、顕在捲縮性複合繊維(10)の繊維断面における繊維の重心位置(4)をCfとし、顕在捲縮性複合繊維(10)の繊維断面の半径(5)をrfとしたとき、下記式で示す数値をいう。
 偏心率(%)=[|Cf-C1|/rf]×100
In the actual crimpable composite of the present invention, the position of the center of gravity of the second component is shifted from the position of the center of gravity of the fiber in the fiber cross section. FIG. 1 shows a fiber cross section of a composite short fiber according to an embodiment of the present invention. The first component (1) is disposed around the second component (2), and the first component (1) occupies at least 20% of the surface of the fiber (10) in the fiber cross section. Thereby, the surface of the first component (1) is melted at the time of thermal bonding. In the fiber cross section, the gravity center position (3) of the second component (2) is deviated from the gravity center position (4) of the fiber (10), and the ratio of the deviation (hereinafter sometimes referred to as eccentricity). The cross section of the composite short fiber is magnified by an electron microscope or the like, the center of gravity (3) of the second component (2) in the fiber cross section is C1, and the fiber cross section of the actual crimpable composite fiber (10) When the center of gravity (4) is Cf and the radius (5) of the fiber cross section of the actual crimpable conjugate fiber (10) is rf, the numerical value shown by the following formula is used.
Eccentricity (%) = [| Cf−C1 | / rf] × 100
 第二成分(2)の重心位置(3)が繊維の重心位置(4)からずれている繊維断面としては、図1に示す偏心芯鞘型、あるいは並列型であることが好ましい形態である。場合によっては、多芯型であっても多芯部分が集合して繊維の重心位置からずれて存在しているものでも可能である。特に、偏心芯鞘型の繊維断面であると、容易に所望の波形状捲縮及び/又は螺旋状捲縮を発現させることができる点で好ましい。偏心芯鞘型複合短繊維の偏心率は、5%~50%であることが好ましい。より好ましい偏心率は、7%~30%である。また、第二成分の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形であってもよく、複合短繊維(10)の繊維断面における形態は、円形以外に、楕円形、Y形、X形、井形、多角形、星形などの異形、あるいは中空形であってもよい。 The fiber cross section where the center of gravity (3) of the second component (2) is displaced from the center of gravity (4) of the fiber is preferably an eccentric core-sheath type or a parallel type as shown in FIG. Depending on the case, even a multi-core type may be used in which multi-core portions are gathered and are shifted from the center of gravity of the fiber. In particular, an eccentric core-sheath fiber cross section is preferable in that desired wave shape crimps and / or spiral crimps can be easily expressed. The eccentricity of the eccentric core-sheath type composite short fiber is preferably 5% to 50%. A more preferable eccentricity is 7% to 30%. In addition to the circular shape, the shape of the second component in the fiber cross section may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or the like, and the fiber cross section of the composite short fiber (10). In addition to the circular shape, the shape may be elliptical, Y-shaped, X-shaped, well-shaped, polygonal, star-shaped, or hollow.
 図2に本発明の一実施形態における顕在捲縮性複合短繊維の捲縮形態を示す。本発明でいう波形状捲縮とは、図2Aに示すような捲縮の山部が湾曲したものを示す。螺旋状捲縮とは、図2Bに示すような捲縮の山部が螺旋状に湾曲したものを示す。図2Cに示すような波形状捲縮と螺旋状捲縮とが混在した捲縮も本発明に含まれる。図3に示すような通常の機械捲縮の場合は、捲縮の山が鋭角である、いわゆる鋸歯状捲縮のままであると、不織布としたときの嵩回復性を大きくすることができない。さらに、圧縮に対する面弾性、いわゆるスプリング効果に劣り、特に十分な嵩回復性が得られない。また、図4に示すように機械捲縮の鋭角な捲縮と、図2Aに示す波形状捲縮が混在した捲縮も本発明に含まれる。本発明においては、波形状捲縮と螺旋状捲縮とを含めて、機械捲縮と区別して立体捲縮という。 FIG. 2 shows a crimped form of an actual crimpable composite short fiber according to an embodiment of the present invention. The corrugated crimp referred to in the present invention refers to a curved crest as shown in FIG. 2A. Spiral crimp refers to a crimped crest as shown in FIG. 2B. A crimp in which a wave shape crimp and a spiral crimp as shown in FIG. 2C are mixed is also included in the present invention. In the case of ordinary mechanical crimping as shown in FIG. 3, if the so-called serrated crimp has a sharp crest, the bulk recoverability of the nonwoven fabric cannot be increased. Furthermore, it is inferior to the surface elasticity against compression, the so-called spring effect, and in particular, sufficient bulk recovery is not obtained. Further, the present invention also includes a crimp in which the sharp crimp of the mechanical crimp as shown in FIG. 4 and the corrugated crimp shown in FIG. 2A are mixed. In the present invention, the term “three-dimensional crimp” is used to distinguish it from mechanical crimps, including wavy crimps and spiral crimps.
 本発明においては、特に図2Cに示す波形状捲縮と螺旋状捲縮とが混在した捲縮であることが、カード通過性と初期嵩および嵩回復性を両立できる点で好ましい。 In the present invention, it is particularly preferable that the crimps including the wave shape crimp and the spiral crimp shown in FIG. 2C are mixed in terms of achieving both the card passing property and the initial bulk and bulk recovery properties.
 本発明の顕在捲縮性複合短繊維は、以下の手順で製造することができる。まず、直鎖状ポリエチレンおよび低密度ポリエチレンを含む第一成分と、例えば、ポリエチレンテレフタレートおよび/またはポリブチレンテレフタレートを50質量%以上含む第二成分とを、繊維断面において第一成分が繊維表面の少なくとも20%を占め、第二成分の重心位置が繊維の重心位置からずれるように配置された複合型ノズル、例えば偏心芯鞘型複合ノズルを用いて、第二成分を紡糸温度240℃~330℃、第一成分を紡糸温度200℃~300℃で溶融紡糸し、引取速度100m/min~1500m/minで引き取り、紡糸フィラメントを得る。 The actual crimpable composite short fiber of the present invention can be produced by the following procedure. First, a first component containing linear polyethylene and low density polyethylene, and a second component containing, for example, 50% by mass or more of polyethylene terephthalate and / or polybutylene terephthalate, the first component is at least on the fiber surface in the fiber cross section. Using a composite nozzle that occupies 20% and the center of gravity of the second component deviates from the center of gravity of the fiber, for example, an eccentric core-sheath composite nozzle, the second component is spun at 240 ° C. to 330 ° C., The first component is melt-spun at a spinning temperature of 200 ° C. to 300 ° C. and taken up at a take-up speed of 100 m / min to 1500 m / min to obtain a spun filament.
 次いで、第二成分に含まれるポリマー成分のうち、最も高いガラス転移点を有するポリマー成分のガラス転移点(Tg)以上、直鎖状ポリエチレンの融解ピーク温度未満の延伸温度で、延伸倍率1.8倍以上で延伸処理を施す。より好ましい延伸温度の下限は、Tgより10℃高い温度である。より好ましい延伸温度の上限は、95℃であり、特に好ましい延伸温度の上限は、90℃である。延伸温度がTgよりも低いと、第二成分の結晶化が進みにくいため、得られる繊維において第二成分の熱収縮が大きくなる、または得られる繊維で作製した不織布の嵩回復性が小さくなる傾向が認められる。延伸温度が直鎖状ポリエチレンの融解ピーク温度以上であると、繊維同士が融着するため、好ましくない。 Next, among the polymer components contained in the second component, the draw ratio is 1. at a stretching temperature not lower than the melting peak temperature of the linear polyethylene, not less than the glass transition point (Tg 2 ) of the polymer component having the highest glass transition point. Stretching is performed at 8 times or more. A more preferable lower limit of the stretching temperature is a temperature 10 ° C. higher than Tg 2 . A more preferable upper limit of the stretching temperature is 95 ° C, and a particularly preferable upper limit of the stretching temperature is 90 ° C. If the stretching temperature is lower than Tg 2 , the second component is less likely to crystallize, so the thermal shrinkage of the second component in the resulting fiber increases, or the bulk recovery of the nonwoven fabric made from the resulting fiber decreases. A trend is observed. If the stretching temperature is equal to or higher than the melting peak temperature of the linear polyethylene, the fibers are fused, which is not preferable.
 より好ましい延伸倍率の下限は2倍であり、特に好ましい延伸倍率の下限は2.2倍であり、最も好ましい延伸倍率の下限は2.4倍である。より好ましい延伸倍率の上限は5倍であり、特に好ましい延伸倍率の上限は4.0倍であり、最も延伸倍率の上限は3.5倍である。延伸倍率が1.8倍未満であると、延伸倍率が低すぎるため、波形状捲縮および/または螺旋状捲縮が発現した繊維を得ることが難しく、不織布としたときの嵩高性が小さくなるだけでなく、繊維自体の剛性も小さくなるため、カード通過性などの不織布工程性に劣る、あるいは嵩回復性が低下する傾向がある。また、延伸時の前後において必要に応じて50℃~115℃の繊維同士が融着しない温度で乾熱、湿熱、蒸熱等の雰囲気下でアニーリング処理を施してもよい。 A more preferred lower limit of the draw ratio is 2 times, a particularly preferred lower limit of the draw ratio is 2.2 times, and a most preferred lower limit of the draw ratio is 2.4 times. The upper limit of the more preferable draw ratio is 5 times, the upper limit of the particularly preferable draw ratio is 4.0 times, and the upper limit of the draw ratio is most 3.5 times. If the draw ratio is less than 1.8 times, the draw ratio is too low, so that it is difficult to obtain a fiber in which corrugated crimps and / or spiral crimps are expressed, and the bulkiness of the nonwoven fabric is reduced. In addition, since the rigidity of the fiber itself is reduced, the nonwoven fabric processability such as card passing property tends to be inferior or the bulk recovery property tends to be lowered. Further, if necessary, an annealing treatment may be performed in an atmosphere of dry heat, wet heat, steam, etc. at a temperature at which fibers at 50 ° C. to 115 ° C. are not fused before and after stretching.
 次いで、必要に応じて繊維処理剤を付与する前または後に、スタッフィングボックス式捲縮機など公知の捲縮機を用いて捲縮数5個/25mm~25個/25mmの捲縮を付与する。捲縮機を通過した後の捲縮形状は、鋸歯状捲縮及び/又は波形状捲縮であってもよい。捲縮数が5個/25mm未満であると、カード通過性が低下すると共に、不織布の嵩高性や嵩回復性が悪くなる傾向がある。一方、捲縮数が25個/25mmを超えると、捲縮数が多すぎるためにカード通過性が低下し、不織布の地合が悪くなるだけでなく、不織布の初期嵩も小さくなる恐れがある。 Next, before or after applying the fiber treatment agent as necessary, a crimp of 5/25 mm to 25/25 mm is applied using a known crimping machine such as a stuffing box type crimping machine. The crimped shape after passing through the crimper may be a serrated crimp and / or a corrugated crimp. When the number of crimps is less than 5 pieces / 25 mm, the card passing property tends to deteriorate, and the bulkiness and bulk recoverability of the nonwoven fabric tend to deteriorate. On the other hand, if the number of crimps exceeds 25 pieces / 25 mm, the number of crimps is too large, so the card passing property is lowered, and not only the formation of the nonwoven fabric is deteriorated, but also the initial volume of the nonwoven fabric may be reduced. .
 さらに、前記捲縮機にて捲縮を付与した後、50℃~115℃の乾熱、湿熱、あるいは蒸熱の雰囲気下でアニーリング処理を施すことが好ましい。アニーリング処理により、顕在捲縮性複合短繊維において立体捲縮の発現を促進することができる。具体的には、繊維処理剤を付与した後に捲縮機にて捲縮を付与し、50℃~115℃の乾熱雰囲気下でアニーリング処理と同時に乾燥処理を施すと工程を簡略化することができるため、好ましい。アニーリング処理が50℃未満であると、得られる繊維の乾熱収縮率が大きくなる傾向となり、得られる不織布の地合が乱れたり、生産性が低下したりする恐れがある。また、アニーリング工程が乾燥工程も兼ねている場合、アニーリング温度が50℃未満であると、繊維の乾燥が不十分となる可能性がある。このような方法により、立体捲縮が発現した顕在捲縮性複合短繊維が得られる。 Furthermore, it is preferable that after the crimping is performed by the crimping machine, an annealing treatment is performed in an atmosphere of dry heat, wet heat or steam at 50 ° C. to 115 ° C. By the annealing treatment, the expression of steric crimps can be promoted in the actual crimpable composite short fibers. Specifically, the process can be simplified if the fiber treatment agent is applied and then crimped by a crimping machine, and the drying treatment is performed simultaneously with the annealing treatment in a dry heat atmosphere at 50 ° C. to 115 ° C. This is preferable because it is possible. If the annealing treatment is less than 50 ° C., the dry heat shrinkage of the resulting fiber tends to increase, and the resulting nonwoven fabric may be disturbed or the productivity may be reduced. Further, when the annealing step also serves as the drying step, if the annealing temperature is less than 50 ° C., the drying of the fibers may be insufficient. By such a method, an actual crimpable composite staple fiber in which steric crimp is expressed is obtained.
 このようにして得られる本発明の顕在捲縮性複合短繊維において、捲縮数(立体捲縮数)は、繊維のカード通過性及び不織布等にしたときの嵩高性を考慮すると、12山/25mm~18山/25mmであることが好ましい。また、本発明の顕在捲縮性複合短繊維について、JIS L 1015(2010年)に準じて捲縮数および捲縮率を測定したときに、捲縮率と捲縮数の比(捲縮率/捲縮数)が0.7~1.2であることが好ましく、0.85~1であることがより好ましい。捲縮率は、捲縮の固定性(捲縮の伸びにくさ)を示し、捲縮率/捲縮数が、上記範囲を満たすと、捲縮が伸びにくく、適度な大きさの波形及び/又は螺旋状捲縮を有するので、カード通過性が良好であり、カード通過後のウェブは嵩高性を維持し、熱処理後の不織布等は弾力性を維持することができる。 In the actual crimpable composite short fiber of the present invention thus obtained, the number of crimps (three-dimensional crimp number) is 12 threads / It is preferably 25 mm to 18 peaks / 25 mm. Further, when the number of crimps and the crimp rate are measured according to JIS L 1015 (2010), the ratio of the crimp rate to the crimp number (crimp rate) / Crimp number) is preferably 0.7 to 1.2, more preferably 0.85 to 1. The crimp rate indicates the fixity of the crimp (hardness of crimp), and if the crimp rate / crimp number satisfies the above range, the crimp is difficult to stretch, and the waveform and / Or since it has spiral crimps, the card passing property is good, the web after passing the card maintains the bulkiness, and the nonwoven fabric after the heat treatment can maintain the elasticity.
 本発明の顕在捲縮性複合短繊維の繊度および繊維長は特に限定されず、その用途に応じて選択される。例えば、本発明の顕在捲縮性複合短繊維は、後述するように、カード機(またはその他の手段)によりウェブを作製した後、繊維同士を熱接着させる熱接着不織布の製造に用いられる場合、その繊度は1.1dtex~15dtex、繊維長は1mm~100mmの短繊維とすることが好ましい。例えば、本発明の顕在捲縮性複合短繊維を衛生材料の表面材として用いる場合、その繊度は1.5dtex~3.5dtexであることが好ましい。これらの繊度および繊維長は、熱接着不織布以外の不織布を製造する際に用いてもよいことはいうまでもない。具体的には、本発明の顕在捲縮性複合短繊維は、カード機を用いて繊維ウェブを作製して製造される乾式不織布(例えばエアスルー不織布、スパンレース不織布、ニードルパンチ不織布など)に適した繊維長(繊維長15mm~80mm、より好ましくは32mm~64mm)、湿式不織布を製造するのに適した繊維長(繊維長1mm~20mm、より好ましくは3mm~15mm)を有してよく、またはエアレイド不織布を製造するのに適した繊維長(1mm~30mm、より好ましくは5mm~25mm)を有してよい。繊度は、紡糸フィラメントの繊度および延伸倍率を調節することによって、所望のように調節することができる。所定長さの繊維は、前記アニーリング処理の後で、繊維をカットすることにより得られる。 The fineness and fiber length of the actual crimpable composite short fiber of the present invention are not particularly limited, and are selected according to the application. For example, the actual crimpable composite staple fiber of the present invention, as described later, is used for manufacturing a heat-bonded nonwoven fabric in which fibers are thermally bonded after producing a web by a card machine (or other means), It is preferable to use short fibers having a fineness of 1.1 to 15 dtex and a fiber length of 1 to 100 mm. For example, when the actual crimpable composite short fiber of the present invention is used as a surface material of a sanitary material, the fineness is preferably 1.5 dtex to 3.5 dtex. Needless to say, these finenesses and fiber lengths may be used when producing non-woven fabrics other than heat-bonded non-woven fabrics. Specifically, the actual crimpable composite short fiber of the present invention is suitable for a dry nonwoven fabric (for example, an air-through nonwoven fabric, a spunlace nonwoven fabric, a needle punched nonwoven fabric, etc.) manufactured by producing a fiber web using a card machine. It may have a fiber length (fiber length 15 mm to 80 mm, more preferably 32 mm to 64 mm), a fiber length suitable for manufacturing wet nonwoven fabrics (fiber length 1 mm to 20 mm, more preferably 3 mm to 15 mm), or airlaid It may have a fiber length (1 mm to 30 mm, more preferably 5 mm to 25 mm) suitable for producing a nonwoven fabric. The fineness can be adjusted as desired by adjusting the fineness and draw ratio of the spun filament. A fiber having a predetermined length is obtained by cutting the fiber after the annealing treatment.
 以上において説明した本発明の顕在捲縮性複合短繊維は、繊維集合物中に20質量%以上含有されることにより、表面触感が良好で、嵩高性、厚さ方向の柔軟性および嵩回復性に優れた繊維集合物を形成する。繊維集合物としては、織編物および不織布などが挙げられる。 The actual crimpable composite short fiber of the present invention described above contains 20% by mass or more in the fiber assembly, so that the surface feel is good, the bulkiness, the flexibility in the thickness direction, and the bulk recovery property. To form an excellent fiber aggregate. Examples of the fiber aggregate include woven and knitted fabrics and nonwoven fabrics.
 続いて、本発明の繊維集合物の具体的な一例として不織布を、その製造方法とともに説明する。不織布は、前記顕在捲縮性複合短繊維を20質量%以上含有するように繊維ウェブを作製し、続いて、繊維同士を交絡させる、および/または熱接着させる等の方法によって、繊維同士を一体化させることによって得られる。他の繊維を用いる場合には、当該他の繊維として、例えば、コットン、シルク、ウール、麻、パルプなどの天然繊維、レーヨン、キュプラなどの再生繊維、およびアクリル系、ポリエステル系、ポリアミド系、ポリオレフィン系、ならびにポリウレタン系などの合成繊維から、1種または複数種の繊維を用途などに応じて選択することができる。他の繊維は、本発明の顕在捲縮性複合短繊維と混合して使用してよく、あるいは本発明の顕在捲縮性複合短繊維から成る繊維ウェブと積層して用いてよい。 Subsequently, a non-woven fabric will be described together with its production method as a specific example of the fiber assembly of the present invention. The non-woven fabric is made by integrating the fibers by a method in which a fiber web is prepared so as to contain 20% by mass or more of the actual crimpable composite short fibers, and then the fibers are entangled and / or thermally bonded. It is obtained by making it. When other fibers are used, examples of the other fibers include natural fibers such as cotton, silk, wool, hemp, and pulp, regenerated fibers such as rayon and cupra, and acrylic, polyester, polyamide, and polyolefin. One type or a plurality of types of fibers can be selected from synthetic fibers such as polyurethane and polyurethane according to the purpose of use. Other fibers may be used by mixing with the actual crimpable composite staple fiber of the present invention, or may be used by being laminated with a fiber web comprising the actual crimpable composite staple fiber of the present invention.
 前記不織布を製造する際に用いられる繊維ウェブとしては、パラレルウェブ、セミランダムウェブ、ランダムウェブ、クロスウェブ、およびクリスクロスウェブなどのカードウェブ、エアレイドウェブ、湿式抄紙ウェブ、およびスパンボンドウェブ等が挙げられる。異なる種類の繊維ウェブを2種類以上積層してもよい。 Examples of the fiber web used in manufacturing the nonwoven fabric include card webs such as parallel web, semi-random web, random web, cross web, and Chris cross web, airlaid web, wet papermaking web, and spunbond web. It is done. Two or more different types of fiber webs may be laminated.
 本発明の顕在捲縮性複合短繊維を用いて不織布を製造する場合には、繊維ウェブに熱処理を施して、第一成分で繊維同士を熱接着させた熱接着不織布の形態で不織布を得ることが好ましい。熱接着不織布は、本発明の顕在捲縮性複合短繊維がもたらす効果(厚さ方向の柔軟性、嵩回復性および嵩回復性)を顕著に発揮するからである。繊維間を絡合させるために、繊維ウェブには必要に応じて熱処理前および/または熱処理後にニードルパンチ処理や水流交絡処理等の交絡処理を施してもよい。 When manufacturing a nonwoven fabric using the actual crimpable composite short fiber of the present invention, a nonwoven fabric is obtained in the form of a heat-bonded nonwoven fabric in which fibers are thermally bonded to each other by heat-treating the fiber web. Is preferred. This is because the heat-bonded nonwoven fabric remarkably exhibits the effects (flexibility in the thickness direction, bulk recoverability and bulk recoverability) brought about by the actual crimpable composite short fibers of the present invention. In order to entangle the fibers, the fiber web may be subjected to entanglement treatment such as needle punch treatment or hydroentanglement treatment before and / or after the heat treatment, if necessary.
 熱接着不織布を得るために、前記繊維ウェブには、公知の熱処理手段により熱処理を施す。熱処理手段としては、熱風貫通式熱処理機、熱風吹き付け式熱処理機および赤外線式熱処理機等、風圧等の圧力が繊維ウェブにあまり加わらない熱処理機が好ましく用いられる。熱処理温度等の熱処理条件は、第一成分が十分に溶融および/または軟化して、繊維同士が接点または交点において接合するとともに、顕在捲縮性複合短繊維に生じている立体捲縮がつぶれないような条件を選択して実施する。例えば、熱処理温度は、直鎖状ポリエチレンの紡糸前の融解ピーク温度(複数の直鎖状ポリエチレンが第一成分に含まれている場合には、最も高い融解ピーク温度を有する直鎖状ポリエチレンの融解ピーク温度)をTmとしたときに、Tm℃~(Tm+40)℃の温度とすることが好ましい。より好ましい熱処理温度範囲は(Tm+5)℃~(Tm+30)℃である。 In order to obtain a heat-bonding nonwoven fabric, the fiber web is subjected to heat treatment by a known heat treatment means. As the heat treatment means, a heat treatment machine in which pressure such as wind pressure is not so much applied to the fiber web, such as a hot air penetration type heat treatment machine, a hot air blowing type heat treatment machine and an infrared heat treatment machine, is preferably used. The heat treatment conditions such as the heat treatment temperature are such that the first component is sufficiently melted and / or softened so that the fibers are joined at the contact point or intersection, and the three-dimensional crimp generated in the actual crimpable composite short fiber is not destroyed. Select such conditions. For example, the heat treatment temperature is the melting peak temperature before spinning of the linear polyethylene (if a plurality of linear polyethylene is included in the first component, the melting of the linear polyethylene having the highest melting peak temperature). The temperature is preferably Tm ° C. to (Tm + 40) ° C. when the peak temperature is Tm. A more preferable heat treatment temperature range is (Tm + 5) ° C. to (Tm + 30) ° C.
 このようにして作製される熱接着不織布は、表面触感が良好であるとともに、高い嵩高性および嵩回復性を示す。さらに、この熱接着性不織布は、不織布の厚さ方向において、高い柔軟性を示す。不織布の厚さ方向の柔軟性は、「圧縮後嵩」という指標で表すことができ、同じ厚さの不織布を比較したときに、圧縮後嵩が小さいほど、厚さ方向に不織布が「つぶれやすく」、柔軟であるといえる。不織布の厚さ方向の柔軟性は、「嵩変化率」という指標で表すこともできる。嵩変化率は、元の不織布嵩(厚さ)に対する、圧縮による嵩(厚さ)の変化量の割合で示し、嵩変化率が大きいほど、不織布が厚さ方向で柔軟であることを示す。本発明の顕在捲縮性複合短繊維を含む熱接着不織布の嵩変化率は、85%以上であることが好ましい。より好ましくは、88%以上である。 The heat-bonded nonwoven fabric produced in this way has a good surface feel and high bulkiness and bulk recovery. Furthermore, this heat bondable nonwoven fabric exhibits high flexibility in the thickness direction of the nonwoven fabric. The flexibility in the thickness direction of the nonwoven fabric can be expressed by an index “bulk after compression”. When comparing nonwoven fabrics having the same thickness, the smaller the bulk after compression, the easier the nonwoven fabric to collapse in the thickness direction. "It's flexible. The flexibility in the thickness direction of the nonwoven fabric can also be expressed by an index “bulk change rate”. The bulk change rate is indicated by the ratio of the change amount of the bulk (thickness) due to compression to the original nonwoven fabric bulk (thickness), and the larger the bulk change rate, the more flexible the nonwoven fabric is in the thickness direction. It is preferable that the bulk change rate of the thermobonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention is 85% or more. More preferably, it is 88% or more.
 また、熱接着不織布は、厚さ方向に圧縮した後の嵩回復性(圧縮後嵩回復)によっても評価することができる。圧縮後回復嵩は、不織布の厚さ方向の嵩回復性を示し、回復嵩が大きいほど、クッション性(弾力性)に富むといえる。クッション性に富む不織布は、例えば、衛生物品の表面材として使用したときに、身体の動きに対して追随して、肌への密着性が向上したものとなる。圧縮後嵩回復は、圧縮された状態から荷重を除き、一定時間が経過した後の不織布嵩(厚さ)に対する圧縮前の不織布嵩(厚さ)の割合で示し、圧縮後嵩回復が大きいほど、より大きなクッション性を示す。本発明の顕在捲縮性複合短繊維を含む熱接着不織布の嵩回復率は、60%以上であることが好ましい。より好ましくは65%以上であり、特に好ましくは68%以上である。 Also, the heat-bonded nonwoven fabric can be evaluated by the bulk recoverability after compression in the thickness direction (bulk recovery after compression). The post-compression recovery bulk shows bulk recoverability in the thickness direction of the nonwoven fabric, and it can be said that the larger the recovery bulk, the richer the cushioning property (elasticity). When used as a surface material for sanitary articles, for example, a nonwoven fabric rich in cushioning properties follows the movement of the body and has improved adhesion to the skin. Bulk recovery after compression is the ratio of the nonwoven fabric bulk (thickness) before compression to the nonwoven fabric bulk (thickness) after a certain time has elapsed after removing the load from the compressed state, and the greater the bulk recovery after compression, , Exhibit greater cushioning properties. It is preferable that the bulk recovery rate of the thermobonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention is 60% or more. More preferably, it is 65% or more, and particularly preferably 68% or more.
 熱接着不織布の表面触感および厚さ方向の柔軟性、嵩高性、嵩回復性(弾力性)は、布帛の風合いを計測し客観的に評価する方法の一つである、KES(Kawabata Evaluation System)に基づいて計測・評価することができる。熱接着不織布の表面触感は、KESで定義されている表面摩擦の特性値を測定することで評価でき、熱接着不織布の厚さ方向の柔軟性、嵩高性、嵩回復性(弾力性)は、KESで定義されている、圧縮試験時の荷重-変位曲線の挙動から求められる圧縮特性値を測定することで評価することができる。具体的には、表面摩擦の特性値として、平均摩擦係数(以下、MIUとも称す)および平均摩擦係数の変動(摩擦係数μの平均偏差といわれることもあり、以下、MMDとも称す)が測定される。MIUは、表面のすべりにくさ(またはすべりやすさ)を表し、これが大きいほどすべりにくいことを示す。MMDは、摩擦のばらつきを示し、これが大きいほど表面がざらざらしていることを示す。本発明の顕在捲縮性複合短繊維を含む熱接着不織布の表面は、MIUは高いが、MMDは小さい傾向にある。そのような不織布は、手で触ったときに抵抗を感じさせるが、なめらかさも同時に感じさせるため「ぬめり感」、「しっとり感」と呼ばれる独特の触感を与える。これら表面摩擦の特性値を測定する機器は、KESに基づいた表面摩擦の測定が行える機器であれば特に限定されない。表面摩擦の特性値は、例えば、KES-SE 摩擦感テスター、KES-FB4-AUTO-A 自動化表面試験機(いずれもカトーテック(株)製)などを使用することで測定できる。 KES (Kawabata Evaluation System) is one of the methods to measure the texture of the fabric and to objectively evaluate the surface touch and thickness direction flexibility, bulkiness, and bulk recovery (elasticity) of the heat-bonded nonwoven fabric. Can be measured and evaluated based on The surface tactile sensation of the heat-bonded nonwoven fabric can be evaluated by measuring the characteristic value of surface friction defined by KES. The thickness direction flexibility, bulkiness, and bulk recovery (elasticity) of the heat-bonded nonwoven fabric are as follows: It can be evaluated by measuring a compression characteristic value obtained from the behavior of a load-displacement curve at the time of a compression test defined by KES. Specifically, the average friction coefficient (hereinafter also referred to as MIU) and the variation of the average friction coefficient (sometimes referred to as the average deviation of the friction coefficient μ, hereinafter also referred to as MMD) are measured as the characteristic values of the surface friction. The MIU represents the difficulty (or ease of slipping) of slipping on the surface, and the larger the value, the more difficult it is to slip. MMD shows the dispersion | variation in friction, and it shows that the surface is so rough that this is large. The surface of the heat-bonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention tends to have a high MIU but a small MMD. Such a non-woven fabric feels resistance when touched by hand, but also gives a unique touch feeling called “smooth feeling” and “moist feeling” because it also feels smooth. The equipment for measuring the surface friction characteristic value is not particularly limited as long as the equipment can measure the surface friction based on KES. The characteristic value of the surface friction can be measured by using, for example, a KES-SE friction tester, KES-FB4-AUTO-A automated surface tester (both manufactured by Kato Tech Co., Ltd.) and the like.
 圧縮特性値としては、圧縮かたさ(圧縮特性の直線性といわれることもあり、以下、LCとも称す)、圧縮エネルギー(圧縮仕事量といわれることもあり、以下、WCとも称す (gf・cm /cm))、圧縮レジリエンス(圧縮回復性、圧縮回復率ともいわれることもあり、以下、RCとも称す (%))、T(荷重が0.5gf/cmの時の厚さを指す (mm))、T(荷重が50gf/cmの厚さを指す (mm))、圧縮率(前記T、Tを用いて、100×(T-T)/T の式で求められる。以下、EMCとも称す (%))が測定される。LCは、小さな力での圧縮性を示し、これが大きいほど圧縮がかたい。WCは圧縮の仕事量を示し、これが大きいほど、厚さ方向でやわらかく、圧縮されやすい。RCは圧縮に対する弾性(回復性、反発性)を示し、これが大きいほど圧縮に対して反発しやすい、即ち、クッション性を有する。EMCは、所定の2種類の荷重を加えたときの厚さの変化割合を示し、これが大きいほどふんわりとしていて嵩高であり、荷重が加わることで大きく変形する。本発明の顕在捲縮性複合短繊維を含む熱接着不織布は、圧縮率が大きいことから、初期嵩に富み、嵩高であるだけでなく、圧縮かたさが小さく、圧縮エネルギーが大きいことから、厚さ方向において圧縮されやすく柔軟である。本発明の顕在捲縮性複合短繊維を含む熱接着不織布は、加えて圧縮レジリエンスが大きいことから、圧縮に対して弾性があり良好なクッション性を示す。これら圧縮試験時の荷重-変位曲線の挙動から求められる圧縮特性値を測定する機器は、KESに基づいた圧縮特性値の測定が行える機器であれば特に限定されない。圧縮特性値は、例えば、KES-G5 ハンディー圧縮試験機、KES-FB3-AUTO-A 自動化圧縮試験機(いずれもカトーテック(株)製)を使用することで測定できる。 As compression characteristic values, compression hardness (sometimes referred to as linearity of compression characteristics, hereinafter also referred to as LC), compression energy (sometimes referred to as compression work, hereinafter also referred to as WC (gf · cm 2 / cm 2). 2 )), compression resilience (also referred to as compression recovery and compression recovery rate, hereinafter also referred to as RC (%)), T 0 (thickness when load is 0.5 gf / cm 2 (mm) )), T M (load refers to a thickness of 50 gf / cm 2 (mm)), compression ratio (the above T 0 , T M , 100 × (T 0 −T M ) / T 0 Hereinafter, it is also referred to as EMC (%)). LC shows compressibility with a small force, and the larger this is, the harder it is to compress. WC indicates the work of compression. The larger this is, the softer in the thickness direction, the easier it is to compress. RC shows elasticity (recoverability, resilience) against compression, and the greater this, the easier it is to rebound against compression, i.e., cushioning. The EMC indicates the rate of change in thickness when two predetermined types of loads are applied, and the larger this is, the softer and bulkier it is, and the larger the deformation occurs when a load is applied. The heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention has a high compressibility, so that it has a high initial bulk and is not only bulky, but also has a small compressibility and a large compressive energy. It is easy to be compressed in the direction and is flexible. The heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention has a high compression resilience, and is therefore elastic against compression and exhibits a good cushioning property. The instrument for measuring the compression characteristic value obtained from the behavior of the load-displacement curve at the time of the compression test is not particularly limited as long as the instrument can measure the compression characteristic value based on KES. The compression characteristic value can be measured by using, for example, a KES-G5 handy compression tester or a KES-FB3-AUTO-A automated compression tester (both manufactured by Kato Tech Co., Ltd.).
 表面特性、即ち熱接着不織布の表面摩擦は、測定面を不織布の製造において熱風が吹き付けられた面とし、測定方向をタテ方向(MD方向とも称す)、静荷重を25gf、摩擦子の移動速度を1mm/secとして測定することができる。圧縮特性、即ち熱接着不織布の圧縮試験における荷重-変位曲線の挙動から求められる圧縮特性値は、測定面を不織布の製造において熱風が吹き付けられた面とし、圧縮子として面積が2cmの円形加圧板を用い、速度0.02cm/sec、上限荷重50gf/cm、DEF感度20として測定することができる。 The surface characteristics, that is, the surface friction of the heat-bonded nonwoven fabric, is that the measurement surface is the surface to which hot air is blown in the production of the nonwoven fabric, the measurement direction is the vertical direction (also referred to as MD direction), the static load is 25 gf, and the moving speed of the friction element is It can be measured as 1 mm / sec. The compression characteristic value, that is, the compression characteristic value obtained from the behavior of the load-displacement curve in the compression test of the heat-bonded nonwoven fabric, is the surface to which the hot air is blown in the production of the nonwoven fabric, and the circular area with an area of 2 cm 2 is used as the compressor. Using a pressure plate, the speed can be measured as 0.02 cm / sec, the upper limit load is 50 gf / cm 2 , and the DEF sensitivity is 20.
 本発明の顕在捲縮性複合短繊維を含む熱接着不織布は、触感がなめらかで柔らかいことを特徴とする。これらの触ったときのなめらかさ、やわらかさを感じるためには前記したKESに基づく表面摩擦の特性値の中でも平均摩擦係数(MIU)と平均摩擦係数の変動(MMD)が重要である。本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、熱接着不織布表面の平均摩擦係数MIUは0.3以上0.6以下であることが好ましい。平均摩擦係数が0.3以上、即ち、従来の不織布に比べて摩擦がある程度大きいことで、熱接着不織布が肌に触れた際、熱接着不織布と肌の間に適度な摩擦、引っかかりが生まれ、触感が『ぬめり感』や『しっとり感』を感じるものとなる。平均摩擦係数が0.6以下であることで、熱接着不織布の平均摩擦係数が大きくなりすぎて、触感が悪くなる(例えば摩擦が大きすぎるために、肌に貼り付く感覚や、触感がべとつく感覚が生じる)こともない。平均摩擦係数(MIU)は0.3以上0.5以下であることがより好ましく、0.32以上0.45以下であることが特に好ましい。次に、本発明の顕在捲縮性複合短繊維を含む熱接着不織布表面の平均摩擦係数の変動(MMD)は0.016以下であることが好ましい。平均摩擦係数の変動が0.016以下であることで、不織布表面に粗さがなくなり、平均摩擦係数MIUが前記の範囲を満たすことと相俟って、熱接着不織布の触感がなめらかで柔らかく、独特の『ぬめり感』を持つようになる。平均摩擦係数の変動は、0.015以下であることがより好ましい。平均摩擦係数の変動(MMD)は、下限値が特に制限されず、0に近づけば近づくほど好ましいが、0.001以上であってもよい。 The heat-bonding nonwoven fabric containing the manifest crimpable composite short fiber of the present invention is characterized by a smooth and soft feel. In order to feel the smoothness and softness when touched, the average friction coefficient (MIU) and the variation of the average friction coefficient (MMD) are important among the characteristic values of the surface friction based on the KES. In the heat-bonded nonwoven fabric containing the actual crimpable composite short fibers of the present invention, the average friction coefficient MIU on the surface of the heat-bonded nonwoven fabric is preferably 0.3 or more and 0.6 or less. The average friction coefficient is 0.3 or more, that is, the friction is somewhat large compared to the conventional nonwoven fabric, and when the thermal adhesive nonwoven fabric touches the skin, appropriate friction and catching are created between the thermal adhesive nonwoven fabric and the skin, The tactile sensation feels “smooth” and “moist”. When the average friction coefficient is 0.6 or less, the average friction coefficient of the heat-bonded nonwoven fabric becomes too large, and the tactile sensation becomes worse (for example, the feeling of sticking to the skin or the tactile sensation due to excessive friction) Does not occur). The average friction coefficient (MIU) is more preferably from 0.3 to 0.5, and particularly preferably from 0.32 to 0.45. Next, it is preferable that the fluctuation | variation (MMD) of the average friction coefficient of the heat bonding nonwoven fabric surface containing the actual crimpable composite staple fiber of this invention is 0.016 or less. When the variation of the average friction coefficient is 0.016 or less, the surface of the nonwoven fabric is not rough, and the average friction coefficient MIU satisfies the above range, so that the heat-bonded nonwoven fabric is smooth and soft, It has a unique “feel of slimy”. The variation in the average friction coefficient is more preferably 0.015 or less. The lower limit of the average friction coefficient variation (MMD) is not particularly limited and is preferably closer to 0, but may be 0.001 or more.
 本発明の顕在捲縮性複合短繊維を含む熱接着不織布は、初期嵩が大きいだけでなく、荷重が加わった際には、柔らかく、圧縮されやすい。そして、荷重が除かれる或いは荷重が小さくなると反発し、熱接着性不織布の嵩が速やかに回復するという特徴を有している。圧縮時および圧縮解放時にこれらの特徴を示すためには、前記したKESに基づく圧縮特性値の中でも、LC、WC、RC、EMCが重要である。本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、圧縮かたさ(LC)は0.64以下であることが好ましい。圧縮かたさが0.64以下であることで、圧縮時にかたさがなく、柔らかい触感が得られる。圧縮かたさ(LC)は好ましくは0.62以下であり、0.6以下であると特に好ましい。圧縮かたさ(LC)の下限値は特に限定されないが、0.15であってもよく、0.2であってもよい。なお、圧縮かたさ(LC)は測定する不織布の目付(g/m)の影響を受け、目付の大きい不織布ほど圧縮かたさが大きくなる場合がある。そのため、熱接着性不織布の圧縮特性値として、圧縮かたさ(LC)の値を目付で割った値、即ち、単位目付(g/m)あたりの圧縮かたさ(LC)を用いて評価してもよい。本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、単位目付(g/m)あたりの圧縮かたさ(LC)は0.013以下が好ましく、0.012以下がより好ましい。 The heat-bonding nonwoven fabric containing the actual crimpable composite short fiber of the present invention not only has a large initial bulk, but is soft and easily compressed when a load is applied. And when a load is removed or when a load becomes small, it repels and it has the characteristics that the bulk of a heat bondable nonwoven fabric recovers rapidly. In order to show these characteristics at the time of compression and compression release, LC, WC, RC, and EMC are important among the compression characteristic values based on the KES. In the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention, the compression hardness (LC) is preferably 0.64 or less. When the compression is 0.64 or less, there is no hardness during compression and a soft tactile sensation is obtained. The compression hardness (LC) is preferably 0.62 or less, and particularly preferably 0.6 or less. The lower limit value of the compression hardness (LC) is not particularly limited, but may be 0.15 or 0.2. The degree of compression (LC) is affected by the basis weight (g / m 2 ) of the nonwoven fabric to be measured, and the nonwoven fabric with a larger basis weight may have a greater degree of compression. Therefore, even if it evaluates using the value which divided the value of compression hardness (LC) by the basis weight, ie, the compression hardness (LC) per unit basis weight (g / m < 2 >), as a compression characteristic value of a heat bondable nonwoven fabric. Good. In the heat-bonded nonwoven fabric containing the actual crimpable composite short fibers of the present invention, the compression hardness (LC) per unit weight (g / m 2 ) is preferably 0.013 or less, and more preferably 0.012 or less.
 本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、圧縮エネルギー(WC)は1.0gf・cm /cm以上であることが好ましい。圧縮エネルギー(WC)が1.0gf・cm /cm以上であることで不織布は荷重が加わった際に大きく変形し、ふんわり感が大きくなる。圧縮エネルギー(WC)は、より好ましくは2.5gf・cm /cm以上、特に好ましくは4.5gf・cm /cm以上、最も好ましくは5.1gf・cm /cm以上である。圧縮エネルギーの上限は特に限定されないが8.0gf・cm /cmより大きくなると他の圧縮特性に影響を与える可能性があることから8.0gf・cm /cm以下であることが好ましく、より好ましくは6.0gf・cm /cm以下である。 In the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention, the compression energy (WC) is preferably 1.0 gf · cm 2 / cm 2 or more. When the compression energy (WC) is 1.0 gf · cm 2 / cm 2 or more, the nonwoven fabric is greatly deformed when a load is applied, and the soft feeling is increased. The compression energy (WC) is more preferably 2.5 gf · cm 2 / cm 2 or more, particularly preferably 4.5 gf · cm 2 / cm 2 or more, and most preferably 5.1 gf · cm 2 / cm 2 or more. The upper limit of the compression energy is not particularly limited, but if it is greater than 8.0 gf · cm 2 / cm 2 , other compression characteristics may be affected, so it is preferably 8.0 gf · cm 2 / cm 2 or less. Preferably it is 6.0 gf · cm 2 / cm 2 or less.
 本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、圧縮レジリエンス(RC)は58%以上であることが好ましい。圧縮レジリエンス58%以上であることで、熱接着不織布は反発性に優れ、荷重が減少する或いは荷重が除かれた場合、それに追随して嵩を回復する不織布となる。特に前記圧縮かたさ(LC)の好ましい範囲を満たし、かつ圧縮レジリエンス(RC)の好ましい範囲を満たすことで、圧縮に対して柔らかく変形し、荷重が減少することで元の嵩、即ち元の形に戻ろうとする。そのため、熱接着不織布は身体の凹凸部の変化に追随しやすい不織布となり、これを各種衛生材料の表面材に使用すると、表面材が体の動きや姿勢の変化に追随して圧縮・嵩回復するので身体に密着しやすく、フィット感が得られるという利点をもたらす。圧縮レジリエンス(RC)の上限は特に限定されず、100%であってもよく、90%であってもよく、85%であってもよい。 In the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention, the compression resilience (RC) is preferably 58% or more. When the compression resilience is 58% or more, the heat-bonding nonwoven fabric is excellent in resilience, and when the load is reduced or the load is removed, the nonwoven fabric recovers the bulk following the load. In particular, by satisfying the preferable range of compression hardness (LC) and satisfying the preferable range of compression resilience (RC), it deforms softly with respect to compression and reduces the load to its original bulk, that is, the original shape. Try to return. For this reason, the thermal bonding nonwoven fabric becomes a nonwoven fabric that easily follows changes in the uneven parts of the body, and when this is used as a surface material for various sanitary materials, the surface material follows the changes in body movement and posture and compresses and recovers bulk. Therefore, it is easy to adhere to the body and brings about an advantage that a fit can be obtained. The upper limit of the compression resilience (RC) is not particularly limited, and may be 100%, 90%, or 85%.
 本発明の顕在捲縮性複合短繊維を含む熱接着不織布において、圧縮率(EMC)は70%~98%であることが好ましい。ここで圧縮率とは、荷重が0.5gf/cmの時の厚さであるTと、荷重が50gf/cmの時の厚さであるTを用い、EMC(%)=100×(T-T)/T で求められる圧縮特性値である。圧縮率が70%より小さくなると、初期嵩が小さいだけでなく、圧縮に対しても変形しにくいといえ、熱接着不織布に対して荷重を加えた際、荷重の増加に伴って変形できる割合が小さく、触感が剛直感のあるものになるおそれがある。圧縮率が98%より大きくなると、荷重を加えた際に大きく変形しすぎるため、形状維持性が低下しやすくなるだけでなく、小さい荷重でも熱接着不織布が潰れきってしまい、平坦な薄いシート状になってしまうおそれがある。本発明の顕在捲縮性複合短繊維を用いた熱接着不織布において、圧縮率(EMC)は72%~95%であることがより好ましく、75%~90%であることが特に好ましく、78%~85%であることが最も好ましい。 In the heat-bonded nonwoven fabric containing the actual crimpable composite short fiber of the present invention, the compressibility (EMC) is preferably 70% to 98%. Here, the compression ratio, and T 0 is the thickness when the load is 0.5 gf / cm 2, load using T M is the thickness of the case of 50gf / cm 2, EMC (% ) = 100 This is a compression characteristic value obtained by x (T 0 -T M ) / T 0 . When the compression ratio is smaller than 70%, not only is the initial bulk small, but it is also difficult to deform against compression. When a load is applied to the heat-bonded nonwoven fabric, there is a proportion that can be deformed with an increase in load. There is a risk that the tactile sensation is small and intuitional. If the compression ratio is greater than 98%, it will be deformed too much when a load is applied, so that not only the shape maintainability tends to deteriorate, but also the heat-bonded nonwoven fabric will be crushed even with a small load, and a flat thin sheet shape There is a risk of becoming. In the heat-bonded nonwoven fabric using the actual crimpable composite short fiber of the present invention, the compressibility (EMC) is more preferably 72% to 95%, particularly preferably 75% to 90%, 78% Most preferred is ˜85%.
 本発明の繊維集合物、特に不織布、より特に熱接着不織布は、表面触感が良好で、柔軟性およびクッション性を有するから、生理用ナプキンおよびオムツなどの衛生物品の表面材、ウェットティッシュ、ワイパー、化粧品用材料、女性のブラジャーのパッド、肩パッド、車両用クッション材、床暖房用フローリングの裏打ち材、緩衝材、および包装材料等の用途に好適である。 Since the fiber assembly of the present invention, particularly the nonwoven fabric, more particularly the heat-bonded nonwoven fabric, has good surface touch, flexibility and cushioning properties, the surface material of sanitary articles such as sanitary napkins and diapers, wet tissues, wipers, Suitable for applications such as cosmetic materials, female bra pads, shoulder pads, vehicle cushioning materials, flooring flooring backing materials, cushioning materials, and packaging materials.
 特に、本発明の熱接着不織布は、衛生物品の表面材に適しており、本発明はまた、本発明の熱接着不織布が表面材として使用されている衛生物品としても提供され得る。衛生物品とは、人体または動物から排出される血液、体液および糞尿等を吸収し得る吸収体を含む製品であって、紙おむつ、生理用ナプキン、および尿漏れパッド等の製品を指し、吸収性物品とも称される。これらの製品の表面材は、人体または動物のデリケートな部分に直接密着させられるため、表面触感のみならず、厚さ方向の柔軟性およびクッション性に関しても、より優れた特性を有することが求められる。本発明の熱接着不織布は、前述のように、表面触感、柔軟性および嵩回復性において優れていることから、表面材として、他の部材とともに衛生物品を構成するのに適している。 In particular, the heat-bonding nonwoven fabric of the present invention is suitable for a surface material of a sanitary article, and the present invention can also be provided as a sanitary article in which the heat-bonding nonwoven fabric of the present invention is used as a surface material. The hygiene article is a product including an absorbent that can absorb blood, body fluid, feces, and urine discharged from the human body or animal, and refers to products such as disposable diapers, sanitary napkins, and urine leak pads. Also called. Since the surface material of these products is directly attached to a delicate part of the human body or animal, it is required to have superior characteristics not only on the surface touch but also on the flexibility and cushioning properties in the thickness direction. . As described above, the heat-bonded nonwoven fabric of the present invention is excellent in surface tactile sensation, flexibility, and bulk recovery property, and thus is suitable for constituting a sanitary article together with other members as a surface material.
 本発明の熱接着不織布を衛生物品の表面材とする場合、その目付は、10g/m~70g/mとすることが好ましく、15g/m~60g/mとすることがより好ましい。尤も、目付は、衛生物品の種類によっては、これらの範囲外にあってもよい。また、本発明の熱接着不織布を他の用途に使用する場合には、その用途に応じて、その目付が適宜選択される。 When the heat-bonded nonwoven fabric of the present invention is used as the surface material of a sanitary article, the basis weight is preferably 10 g / m 2 to 70 g / m 2 , more preferably 15 g / m 2 to 60 g / m 2. . However, the basis weight may be outside these ranges depending on the type of sanitary article. Moreover, when using the thermobonding nonwoven fabric of this invention for another use, the fabric weight is suitably selected according to the use.
 本発明の熱接着不織布を衛生物品の表面材として用いる場合、前記顕在捲縮性複合短繊維を20質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、80質量%以上含有することが特に好ましい。前記顕在捲縮性複合短繊維の割合が上記範囲内にあると、表面材として表面触感のみならず、厚さ方向の柔軟性およびクッション性に優れ、肌荒れ防止性など表面材に求められる機能を発揮することができる。 When the heat-bonded nonwoven fabric of the present invention is used as a surface material of a sanitary article, it is preferable to contain the sensible crimped composite short fiber in an amount of 20% by mass or more, more preferably 50% by mass or more, and more preferably 80% by mass or more. It is particularly preferable to contain it. When the ratio of the actual crimpable composite short fibers is within the above range, the surface material has not only surface touch, but also excellent flexibility and cushioning in the thickness direction, and functions required for the surface material such as rough skin prevention. It can be demonstrated.
[実施例1~13、比較例1~6]
(第一成分)
 直鎖状ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)および高密度ポリエチレン(HDPE)として下記のものを用意した。
 LLDPE-1:メタロセン触媒で重合された直鎖状ポリエチレン(宇部丸善ポリエチレン(株)製、商品名「420SD」、密度0.918g/cm、Q値3.0、MI=7g/10min、融点118℃、ヘキセン共重合、曲げ弾性率280MPa、硬度(HDD)52)
 LLDPE-2:メタロセン触媒で重合された直鎖状ポリエチレン(宇部丸善ポリエチレン(株)製、商品名「ユメリット(登録商標) 631J」、密度0.931g/cm、Q値3.0、MI=20g/10min、融点120℃、ヘキセン共重合、曲げ弾性率600MPa、硬度(HDD)60)
 LLDPE-3:メタロセン触媒で重合された直鎖状ポリエチレン(ダウケミカル社製、商品名「ASPUN(登録商標) 6835A」、密度0.950g/cm、Q値3.5、MI=17g/10min、融点126℃、オクテン共重合)
 LLDPE-4:メタロセン触媒で重合された直鎖状ポリエチレン(日本ポリエチレン(株)製、商品名「カーネル(登録商標) KS560T」、密度0.898g/cm、Q値3.1、MI=16g/10min、融点86℃、ヘキセン共重合、曲げ弾性率62MPa、硬度(HDD)40)
 LLDPE-5:チーグラー・ナッタ触媒で重合された直鎖状ポリエチレン(日本ポリエチレン(株)製、商品名「ノバテック(登録商標) UJ370T」、密度0.921g/cm、Q値4.2、MI=22g/10min、融点121℃、ヘキセン共重合、曲げ弾性率180MPa、硬度(HDD)50)
[Examples 1 to 13, Comparative Examples 1 to 6]
(First ingredient)
The following were prepared as linear polyethylene (LLDPE), low density polyethylene (LDPE) and high density polyethylene (HDPE).
LLDPE-1: linear polyethylene polymerized with a metallocene catalyst (manufactured by Ube Maruzen Polyethylene Co., Ltd., trade name “420SD”, density 0.918 g / cm 3 , Q value 3.0, MI = 7 g / 10 min, melting point 118 ° C, hexene copolymerization, flexural modulus 280 MPa, hardness (HDD) 52)
LLDPE-2: linear polyethylene polymerized with a metallocene catalyst (manufactured by Ube Maruzen Polyethylene Co., Ltd., trade name “Umerit® 631J”, density 0.931 g / cm 3 , Q value 3.0, MI = 20 g / 10 min, melting point 120 ° C., hexene copolymerization, flexural modulus 600 MPa, hardness (HDD) 60)
LLDPE-3: linear polyethylene polymerized by metallocene catalyst (trade name “ASPUN® 6835A” manufactured by Dow Chemical Co., Ltd.), density 0.950 g / cm 3 , Q value 3.5, MI = 17 g / 10 min , Melting point 126 ° C., octene copolymerization)
LLDPE-4: Linear polyethylene polymerized by metallocene catalyst (manufactured by Nippon Polyethylene Co., Ltd., trade name “Kernel (registered trademark) KS560T”, density 0.898 g / cm 3 , Q value 3.1, MI = 16 g) / 10min, melting point 86 ° C, hexene copolymerization, flexural modulus 62MPa, hardness (HDD) 40)
LLDPE-5: linear polyethylene polymerized by Ziegler-Natta catalyst (manufactured by Nippon Polyethylene Co., Ltd., trade name “NOVATEC (registered trademark) UJ370T”, density 0.921 g / cm 3 , Q value 4.2, MI = 22 g / 10 min, melting point 121 ° C., hexene copolymerization, flexural modulus 180 MPa, hardness (HDD) 50)
 LDPE-1:日本ポリエチレン(株)製、商品名「ノバテック(登録商標) LJ802」、密度0.918g/cm、Q値5.3、MI=22g/10min、融点106℃
 LDPE-2:日本ポリエチレン(株)製、「ノバテック(登録商標) LJ902」、密度0.915g/cm、Q値5.3、MI=45g/10min、融点102℃
 LDPE-3:日本ポリエチレン(株)製、「ノバテック(登録商標) LC720」、密度0.922g/cm、Q値5.1、MI=9.4g/10min、融点110℃
LDPE-4:宇部丸善ポリエチレン(株)製、商品名「J2516」、密度0.916g/cm、MI=25g/10min、融点106℃
 LDPE-5:宇部丸善ポリエチレン(株)製、商品名「J3519」、密度0.916g/cm、MI=35g/10min、融点108℃
 HDPE:日本ポリエチレン(株)製、商品名「ノバテック(登録商標) HE481」、密度0.956g/cm、Q値5.6、MI=12g/10min、融点133℃、曲げ弾性率900MPa、硬度(HDD)64
LDPE-1: manufactured by Nippon Polyethylene Co., Ltd., trade name “NOVATEC (registered trademark) LJ802”, density 0.918 g / cm 3 , Q value 5.3, MI = 22 g / 10 min, melting point 106 ° C.
LDPE-2: “Novatec (registered trademark) LJ902” manufactured by Nippon Polyethylene Co., Ltd., density 0.915 g / cm 3 , Q value 5.3, MI = 45 g / 10 min, melting point 102 ° C.
LDPE-3: manufactured by Nippon Polyethylene Co., Ltd., “Novatech (registered trademark) LC720”, density 0.922 g / cm 3 , Q value 5.1, MI = 9.4 g / 10 min, melting point 110 ° C.
LDPE-4: manufactured by Ube Maruzen Polyethylene Co., Ltd., trade name “J2516”, density 0.916 g / cm 3 , MI = 25 g / 10 min, melting point 106 ° C.
LDPE-5: manufactured by Ube Maruzen Polyethylene Co., Ltd., trade name “J3519”, density 0.916 g / cm 3 , MI = 35 g / 10 min, melting point 108 ° C.
HDPE: manufactured by Nippon Polyethylene Co., Ltd., trade name “NOVATEC (registered trademark) HE481”, density 0.956 g / cm 3 , Q value 5.6, MI = 12 g / 10 min, melting point 133 ° C., flexural modulus 900 MPa, hardness (HDD) 64
(第二成分)
 第二成分を構成するポリマーとして、ポリエチレンテレフタレート((東レ(株)製、商品名「T200E」、融点250℃、極限粘度値(IV値)0.64)を用意した。
(Second component)
As a polymer constituting the second component, polyethylene terephthalate (manufactured by Toray Industries, Inc., trade name “T200E”, melting point 250 ° C., intrinsic viscosity value (IV value) 0.64) was prepared.
 第一成分として、表1-1~表1-3に示すポリマーを使用し(括弧内は混合比(質量))、第二成分として上記商品名「T200E」を使用して、それらの2つの成分を偏心鞘芯型複合ノズル(600ホール)を用い、第一成分/第二成分の複合比(容積比)を55/45として、鞘成分の紡糸温度を260℃、芯成分の紡糸温度を300℃、ノズル温度を290℃として溶融押出し、偏心率25%、繊度6.8dtexの紡糸フィラメントを得た。溶融押出の際、吐出量は250g/min、引き取り速度は615m/minとした。 Using the polymers shown in Table 1-1 to Table 1-3 as the first component (mixing ratio (mass) in parentheses), and using the above trade name “T200E” as the second component, Using an eccentric sheath / core composite nozzle (600 holes) as the component, the composite ratio (volume ratio) of the first component / second component is 55/45, the spinning temperature of the sheath component is 260 ° C., and the spinning temperature of the core component is Melt extrusion was performed at 300 ° C. and a nozzle temperature of 290 ° C. to obtain a spun filament having an eccentricity of 25% and a fineness of 6.8 dtex. During melt extrusion, the discharge rate was 250 g / min, and the take-up speed was 615 m / min.
 得られた紡糸フィラメントを、80℃の熱水中で2.6倍に延伸し、繊度約3.3dtexの延伸フィラメントとした。次いで、繊維処理剤として、C8アルキルリン酸エステルカリウム塩とC12アルキルリン酸エステルカリウム塩を35:65でブレンドした油剤を0.3質量%付与した後、延伸フィラメントにスタッフィングボックス型クリンパーにて機械捲縮を12個/25mmとなるように付与した。そして、100℃に設定した熱風吹き付け装置にて約15分間、弛緩した状態でアニーリング処理と乾燥処理を同時に施した。その後、フィラメントを51mmの繊維長に切断して、顕在捲縮性複合短繊維を得た。
 いずれの実施例および比較例においても、紡糸性および延伸性は良好であった。
The obtained spinning filament was drawn 2.6 times in hot water at 80 ° C. to obtain a drawn filament having a fineness of about 3.3 dtex. Next, 0.3% by mass of an oil agent obtained by blending a C8 alkyl phosphate potassium salt and a C12 alkyl phosphate potassium salt in a ratio of 35:65 was added as a fiber treatment agent, and then the stretched filament was machined with a stuffing box type crimper. Crimps were applied to 12 pieces / 25 mm. And the annealing process and the drying process were simultaneously performed in the relaxed state for about 15 minutes with the hot air spraying apparatus set to 100 degreeC. Thereafter, the filament was cut into a fiber length of 51 mm to obtain an actual crimpable composite short fiber.
In any of Examples and Comparative Examples, the spinnability and stretchability were good.
 得られた繊維から、ローラー式カード機を用いて目付約50g/mの繊維ウェブを作製した。この繊維ウェブを、各繊維の第一成分を構成するLLDPE(比較例6のみHDPE)の融点よりも10℃高い温度に設定した熱風吹き付け装置を用いて、10秒間、熱処理に付し、第一成分を溶融させて、熱接着不織布を得た。但し、実施例2、実施例6および比較例1においては、123℃および138℃で熱処理した不織布も製造した。 A fiber web having a basis weight of about 50 g / m 2 was produced from the obtained fiber using a roller type card machine. This fiber web was subjected to heat treatment for 10 seconds using a hot air spraying device set at a temperature 10 ° C. higher than the melting point of LLDPE (only HDPE in Comparative Example 6) constituting the first component of each fiber, The components were melted to obtain a heat bonded nonwoven fabric. However, in Example 2, Example 6 and Comparative Example 1, nonwoven fabrics heat-treated at 123 ° C. and 138 ° C. were also produced.
 得られた顕在捲縮性複合短繊維および熱接着不織布について、下記の評価を実施した。
[捲縮発現]
 アニーリング処理後の繊維の捲縮を観察し、下記の基準に従って評価した。
 A:良好な立体状捲縮が認められる。
 B:捲縮の深さが大きい、波形状の捲縮が認められる。
 C:波形状の捲縮が認められるが、山と山との間の長さが捲縮の深さよりも大きい、緩い捲縮である。
 D:機械捲縮により付与された、鋸歯状捲縮のみが認められる。
The following evaluation was implemented about the actual crimpable composite staple fiber and the heat bonding nonwoven fabric which were obtained.
[Crimp expression]
The fibers after annealing were observed for crimping and evaluated according to the following criteria.
A: A good three-dimensional crimp is recognized.
B: Corrugated crimp with a large crimp depth is observed.
C: A wave-shaped crimp is observed, but the length between the peaks is larger than the crimp depth.
D: Only serrated crimps imparted by mechanical crimps are observed.
[捲縮数、捲縮率]
 JIS L 1015(2010年)に準じて測定した。
[Number of crimps, crimp ratio]
It measured according to JIS L 1015 (2010).
[不織布嵩]
 不織布を100mm×100mmの寸法に裁断した試料を10枚重ねたものの厚さを、荷重を加えることなく測定し、これを不織布嵩とした。
[Nonwoven fabric bulk]
The thickness of 10 sheets of samples obtained by cutting a nonwoven fabric into a size of 100 mm × 100 mm was measured without applying a load, and this was defined as the bulk of the nonwoven fabric.
[圧縮後嵩]
 不織布を100mm×100mmの寸法に裁断した試料を10枚重ねたものに、5kgf(49N)の荷重を加えて1分間経過した時点で、厚さを測定し、これを圧縮後嵩とした。
[Bulk after compression]
The thickness was measured at the time when a load of 5 kgf (49 N) was applied and 10 minutes passed after a sample of 10 sheets of nonwoven fabric cut to a size of 100 mm × 100 mm was applied, and this was taken as the bulk after compression.
[嵩変化率]
 測定した不織布嵩および圧縮後嵩から、嵩変化率(%)=[(不織布嵩-圧縮後嵩)/不織布嵩)]×100の式に基づいて、算出した。
[Bulk change rate]
Based on the measured volume of nonwoven fabric and volume after compression, the volume change rate (%) = [(volume of nonwoven fabric−volume after compression) / volume of nonwoven fabric)] × 100 was calculated.
[表面触感]
 不織布の表面を触って、下記の評価基準に従って評価した。
 A:非常になめらかである。
 B:若干ざらつきを感じる。
 C:ざらついている。
[Surface feel]
The surface of the nonwoven fabric was touched and evaluated according to the following evaluation criteria.
A: Very smooth.
B: I feel a little rough.
C: It is rough.
[収縮性/地合]
 タテ×ヨコが200mm×200mmである、目付30g/mの繊維ウェブを、ローラー式カード機を用いて作製し、各繊維の第一成分を構成するLLDPEの融点よりも10℃高い温度に設定した熱風吹き付け装置を用いて、1分間、熱処理に付し、熱処理後のウェブのタテ寸法およびヨコ寸法を測定し、ウェブ面積収縮率を下記の式に従って求めた。
[Shrinkage / formation]
Fabricate a fiber web of 30g / m 2 with a vertical and horizontal width of 200mm x 200mm using a roller card machine, and set it to a temperature 10 ° C higher than the melting point of LLDPE constituting the first component of each fiber. Using the hot air spraying apparatus, heat treatment was performed for 1 minute, the vertical and horizontal dimensions of the web after the heat treatment were measured, and the web area shrinkage was determined according to the following formula.
Figure JPOXMLDOC01-appb-M000001
さらに、熱処理後のウェブの地合を観察し、ウェブ面積収縮率と合わせて、下記の基準で評価した。
 A:ウェブ面積収縮率が3%未満であり、ウェブ表面(熱風が吹き付けられた面)も平滑であった。
 B:ウェブ面積収縮率は5%以下であり、ウェブ表面(熱風が吹き付けられた面)は僅かに凹凸を有していた。
 C:ウェブ面積収縮率は5%を超えており、ウェブ表面(熱風が吹き付けられた面)において凹凸が目立っていた。
Figure JPOXMLDOC01-appb-M000001
Furthermore, the formation of the web after heat treatment was observed and evaluated according to the following criteria together with the web area shrinkage.
A: The shrinkage ratio of the web area was less than 3%, and the web surface (surface on which hot air was blown) was also smooth.
B: The shrinkage ratio of the web area was 5% or less, and the web surface (the surface on which the hot air was blown) was slightly uneven.
C: The web area shrinkage rate exceeded 5%, and the unevenness was conspicuous on the web surface (the surface on which the hot air was blown).
[嵩回復]
 不織布を100mm×100mmの寸法に裁断した試料を10枚重ねたものに、5kgf(49N)の荷重を加えて12時間放置し、除重10分後の厚さを測定した。さらに、求めた厚さと不織布嵩とから、嵩回復率を、嵩回復率(%)=(除重後の厚さ/不織布嵩)×100の式に従って算出した。
[Bulk recovery]
A load of 5 kgf (49 N) was applied to a stack of 10 samples obtained by cutting the nonwoven fabric into a size of 100 mm × 100 mm and left for 12 hours, and the thickness after 10 minutes of dewetting was measured. Furthermore, the bulk recovery rate was calculated from the obtained thickness and the nonwoven fabric bulk according to the formula: bulk recovery rate (%) = (thickness after dewetting / nonwoven fabric bulk) × 100.
[不織布強力]
 不織布のヨコ方向(CD方向)を引張方向とし、JIS L 1096(2010年) 6.12.1 A法(ストリップ法)に準じて、定速緊張形引張試験機を用いて、試料片の幅5cm、つかみ間隔10cm、引張速度30±2cm/minの条件で引張試験に付し、切断時の荷重値を測定した。
[Strong nonwoven fabric]
The width of the specimen is measured using a constant speed tension type tensile tester in accordance with JIS L 1096 (2010) 6.12.1 A method (strip method), with the horizontal direction (CD direction) of the nonwoven fabric as the tensile direction. A tensile test was performed under the conditions of 5 cm, gripping interval 10 cm, and tensile speed 30 ± 2 cm / min, and the load value at the time of cutting was measured.
 各実施例および各比較例で得られた繊維および不織布の性能を、表1-1~表1-3に示す。 The performance of the fibers and nonwoven fabrics obtained in each Example and each Comparative Example is shown in Table 1-1 to Table 1-3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表1-1~表1-3に示すように、直鎖状ポリエチレンのみで鞘成分を構成した複合短繊維または高密度ポリエチレンのみで鞘成分を構成した複合短繊維で作製した不織布(比較例1~3、6)はいずれも、嵩変化率が小さくて、厚さ方向の柔軟性において劣るものであった。比較例6の複合短繊維からなる不織布は表面触感においても劣っていた。また、密度が0.90g/cm未満であるか、あるいは0.94g/cmを超える直鎖状低密度ポリエチレンを使用した場合には、低密度ポリエチレンを混合して、複合短繊維を構成しても、それから作製される不織布は、良好な表面触感を与えず(比較例4)、あるいは嵩高性および嵩回復率の点で満足のいく特性を示さなかった(比較例5)。 As shown in Table 1-1 to Table 1-3, non-woven fabrics made of composite short fibers whose sheath component is composed only of linear polyethylene or composite short fibers whose sheath component is composed only of high-density polyethylene (Comparative Example 1 In all of 3 to 6), the bulk change rate was small, and the flexibility in the thickness direction was inferior. The nonwoven fabric composed of the composite short fibers of Comparative Example 6 was also inferior in surface tactile sensation. When linear low density polyethylene having a density of less than 0.90 g / cm 3 or exceeding 0.94 g / cm 3 is used, low density polyethylene is mixed to form a composite short fiber. Even so, the non-woven fabric produced therefrom did not give a good surface feel (Comparative Example 4), or did not show satisfactory properties in terms of bulkiness and bulk recovery rate (Comparative Example 5).
 密度が0.90g/cm~0.94g/cmの範囲内にある直鎖状低密度ポリエチレンを低密度ポリエチレンと混合して鞘成分を構成した複合短繊維で作製した不織布はいずれも、嵩高であり、また、厚さ方向において良好な柔軟性(小さい嵩変化率)を示した(実施例1~13)。実施例1および9においては、低密度ポリエチレンの混合割合が少なかったためか、収縮性/地合の評価が低かったが、その他の点では良好な特性を示し、用途によっては十分に実用可能なものであった。 Any non-woven fabric made of composite short fibers in which a sheath component is formed by mixing linear low density polyethylene having a density in the range of 0.90 g / cm 3 to 0.94 g / cm 3 with low density polyethylene, It was bulky and exhibited good flexibility (small bulk change rate) in the thickness direction (Examples 1 to 13). In Examples 1 and 9, the evaluation of shrinkage / formation was low because the mixing ratio of the low density polyethylene was small, but in other respects it showed good characteristics and was sufficiently practical for some applications Met.
 実施例6および比較例2の比較から、低密度ポリエチレンの添加が、嵩高性、厚さ方向の柔軟性、および嵩回復性の向上に寄与するだけでなく、不織布の表面触感の向上にも寄与していることがわかる。このことは、低密度ポリエチレンが、比較的密度が高い直鎖状ポリエチレンの触感向上に寄与する柔軟成分として機能することを示している。 From the comparison between Example 6 and Comparative Example 2, the addition of low-density polyethylene not only contributes to the improvement in bulkiness, flexibility in the thickness direction, and bulk recovery, but also contributes to the improvement in the surface feel of the nonwoven fabric. You can see that This indicates that the low density polyethylene functions as a flexible component that contributes to an improvement in tactile feel of the linear polyethylene having a relatively high density.
 実施例5の不織布について、表面材としての効果を確認するため、下記の方法で不織布吸液および液通過性能を測定した。 For the nonwoven fabric of Example 5, the nonwoven fabric liquid absorption and liquid passage performance were measured by the following methods in order to confirm the effect as a surface material.
[ランオフ(run-off)]
 (1)不織布を、縦方向(機械方向)×横方向が18cm×7cmとなるように切断して、サンプルを用意する。
 (2)このサンプルを、その縦方向と水平面とが45度の角度をなす斜面を有する、略垂直二等辺三角形の断面を有する支持台の上に、日本製紙クレシア(株)製「キムタオル(登録商標)」を4枚重ねたものを最初に敷き、その上に不織布サンプルを載せて固定する。
 (3)不織布表面の上端1cmの位置から、生理食塩水をマイクロチューブポンプまたはビュレットにて1g/10secの速度で計6g滴下し、注いだ生理食塩水がすべて不織布に吸収され、生理食塩水の水滴が不織布表面から消えた位置を測定し、当該位置と生理食塩水を不織布表面に滴下した位置との間の、生理食塩水の水滴が不織布表面を流れた距離を求める。
[Run-off]
(1) A nonwoven fabric is cut | disconnected so that a vertical direction (machine direction) x horizontal direction may be 18 cm x 7 cm, and a sample is prepared.
(2) This sample is placed on a support base having a substantially vertical isosceles triangle cross section having a slope whose vertical direction and horizontal plane form an angle of 45 degrees, and “Kim Towel” (registered by Nippon Paper Crecia Co., Ltd.) First, a stack of four "trademarks""is laid, and a nonwoven fabric sample is placed thereon and fixed.
(3) From the position of the upper end of the nonwoven fabric surface, 6 g of physiological saline is dropped at a rate of 1 g / 10 sec with a microtube pump or burette, and all the poured physiological saline is absorbed by the nonwoven fabric, and the physiological saline The position at which the water droplet disappeared from the nonwoven fabric surface is measured, and the distance between the position and the position at which the physiological saline solution is dropped on the nonwoven fabric surface is determined.
[吸液速度、液残り量、逆戻り量]
 (1)吸液速度、液残り量、逆戻り量を測定するために、下記の物品を用意した。
 吸収体:キムタオル(登録商標)2組
 注入筒付きプレート(筒下部の内経1cm)
 人工経血(粘度8MPa・s)
 ろ紙(東洋濾紙(株)製 ADVANTEC(登録商標) No.2)10cm×10cm
 重り(5kg、287g×2)
 (2)方法
 吸液速度、液残り量、および逆戻り量を下記の手順に従って測定した。
(i)キムタオル(登録商標)2組の上に不織布サンプルを乗せ、その上に注入筒付きプレートを乗せ、プレート両端に287gの重りを乗せる。
(ii)人工経血5mlを筒から注入する。この時、人工経血が不織布表面から見えなくなる(液体として人工経血が確認されなくなる)までの時間(吸液時間)を測定し、これを吸液速度とする。
(iii)プレートを外し、10分静置する。
(iv)10分後、不織布をろ紙(8枚)で挟み、不織布に残った人工経血をろ紙に吸わせ、ろ紙の質量を秤量する(人工経血を吸収させる前のろ紙と人工経血を吸収させた後のろ紙の質量差が液残り量に相当する)。
(v)不織布を吸収体上に戻し、不織布の上に新たにろ紙(8枚)を載せ、5kgの重りを10秒間載せる。その後、ろ紙の質量を測定する(不織布の上に載せる前のろ紙と不織布の上に載せておもりを載せた後のろ紙の質量差が逆戻り量に相当する)。
(vi)上記(i)に戻り、2回目の測定を行う。
[Liquid absorption speed, liquid remaining amount, reversal amount]
(1) In order to measure the liquid absorption speed, the remaining liquid amount, and the return amount, the following articles were prepared.
Absorbent: 2 sets of Kim Towel (registered trademark) Plate with injection cylinder (inner diameter 1 cm below the cylinder)
Artificial menstrual blood (viscosity 8MPa ・ s)
Filter paper (ADVANTEC (registered trademark) No. 2 manufactured by Toyo Filter Paper Co., Ltd.) 10cm x 10cm
Weight (5kg, 287g x 2)
(2) Method The liquid absorption speed, the remaining liquid amount, and the reverse amount were measured according to the following procedure.
(I) A nonwoven fabric sample is placed on two sets of Kim Towel (registered trademark), a plate with an injection tube is placed thereon, and weights of 287 g are placed on both ends of the plate.
(Ii) Inject 5 ml of artificial menstrual blood from the tube. At this time, the time (liquid absorption time) until artificial menstrual blood becomes invisible from the nonwoven fabric surface (artificial menstrual blood is no longer confirmed as a liquid) is measured, and this is defined as the liquid absorption speed.
(Iii) Remove the plate and let stand for 10 minutes.
(Iv) After 10 minutes, sandwich the nonwoven fabric with filter paper (8 sheets), suck the artificial menstrual blood remaining on the nonwoven fabric into the filter paper, and weigh the mass of the filter paper (filter paper and artificial menstrual blood before absorbing artificial menstrual blood) The difference in the mass of the filter paper after absorbing water corresponds to the remaining liquid amount).
(V) Return the nonwoven fabric to the absorbent body, and newly place a filter paper (8 sheets) on the nonwoven fabric and place a 5 kg weight for 10 seconds. Thereafter, the mass of the filter paper is measured (the difference in mass between the filter paper before being placed on the non-woven fabric and the filter paper after placing the weight on the non-woven fabric corresponds to the reverse amount).
(Vi) Return to (i) above and perform the second measurement.
 測定した吸液速度、液残り量、および逆戻り量を表2に示す。 Table 2 shows the measured liquid absorption speed, liquid remaining amount, and reverse return amount.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表2に示すように、実施例5の不織布は、人工経血を通過させて、その下の吸収体に吸収させる機能を有し、また、液残りおよび液戻りの点でも、衛生物品の表面材として実用可能なものであった。 As shown in Table 2, the nonwoven fabric of Example 5 has a function of allowing artificial menstrual blood to pass through and absorbing it under the absorbent body, and also in terms of liquid residue and liquid return, the surface of the sanitary article. It was a practical material.
[表面特性および圧縮特性 KESによる評価]
 実施例2および6、ならびに比較例1および6で得た繊維をそれぞれ用いて、目付約50g/mの繊維ウェブをローラー式カード機で作製した。得られたカードウェブを、各繊維の第一成分を構成するLLDPEまたはHDPEの融点よりも10℃高い温度(実施例2:128℃、実施例6:130℃、比較例1:128℃、比較例6:140℃)に設定した熱風吹き付け装置を用いて、1分間熱風処理に付し、第一成分を溶融させて熱接着不織布を得た。
[Surface characteristics and compression characteristics Evaluation by KES]
Using the fibers obtained in Examples 2 and 6 and Comparative Examples 1 and 6, fiber webs having a basis weight of about 50 g / m 2 were produced with a roller card machine. The obtained card web is 10 ° C. higher than the melting point of LLDPE or HDPE constituting the first component of each fiber (Example 2: 128 ° C., Example 6: 130 ° C., Comparative Example 1: 128 ° C., Comparison) Example 6: Using a hot air spraying device set at 140 ° C., the hot air treatment was performed for 1 minute, and the first component was melted to obtain a heat-bonded nonwoven fabric.
 得られた各熱接着不織布について、表面触感および厚さ方向の柔軟性、嵩高性、嵩回復性(弾力性)を評価するために、KES(Kawabata Evaluation System)に基づいた表面特性および圧縮特性の測定・評価を行った。 In order to evaluate the surface touch and thickness direction flexibility, bulkiness, and bulk recovery (elasticity) of each obtained heat-bonded nonwoven fabric, surface properties and compression properties based on KES (Kawabata Evaluation System) Measurement and evaluation were performed.
 具体的には、表面特性を評価するために、熱接着不織布の表面摩擦試験を行い、表面特性値として平均摩擦係数(MIU)、平均摩擦係数の変動(MMD)を測定した。熱接着不織布に対する表面摩擦の試験・測定にはカトーテック(株)製 KES-SE 摩擦感テスターを使用した。測定に際し、測定面は熱接着不織布が製造時に熱風を吹き付けられた面とし、摩擦子に対し静荷重を25gfかけ、摩擦子を不織布のタテ方向に平行な方向に、移動速度を1mm/secの条件で移動させて熱接着不織布のMIU、MMDを測定した。 Specifically, in order to evaluate the surface characteristics, a surface friction test of the heat-bonded nonwoven fabric was performed, and the average friction coefficient (MIU) and the average friction coefficient fluctuation (MMD) were measured as the surface characteristic values. A KES-SE® friction tester manufactured by Kato Tech Co., Ltd. was used for the test and measurement of surface friction on the heat-bonded nonwoven fabric. At the time of measurement, the measurement surface is a surface to which the hot-bonded nonwoven fabric is blown with hot air during manufacture, a static load is applied to the friction element, 25 gf, the friction element is parallel to the vertical direction of the nonwoven fabric, and the moving speed is 1 mm / sec. It was moved under conditions to measure MIU and MMD of the heat-bonding nonwoven fabric.
 熱接着不織布の圧縮特性を評価するために、具体的には、熱接着不織布に対し圧縮試験を行い、荷重-変位曲線から圧縮特性値として、圧縮かたさ(LC)、圧縮エネルギー(WC)、圧縮レジリエンス(RC)、T(荷重0.5gf/cmの時の厚さ)、T(荷重50gf/cmの厚さ)、圧縮率(EMC)を測定した。熱接着不織布に対する圧縮試験と圧縮特性値の測定にはカトーテック(株)製 KES-G5 ハンディー圧縮試験機を使用した。測定に際し、圧縮子として面積が2cmの円形加圧板を用い、SENS:2、DEF感度:20に設定し、前記圧縮子を熱接着不織布に対し、圧縮速度が0.02cm/secとなるように圧縮し、荷重が50gf/cmとなるまで圧縮した。荷重が50gf/cmに達した後、圧縮子の移動速度が0.02cm/secとなるように圧縮を除き、前記圧縮特性値を測定した。測定結果を表3に示す。 In order to evaluate the compression characteristics of the heat-bonded nonwoven fabric, specifically, a compression test is performed on the heat-bonded nonwoven fabric, and the compression hardness (LC), compression energy (WC), and compression are calculated from the load-displacement curve. Resilience (RC), T 0 (thickness at a load of 0.5 gf / cm 2 ), T M (thickness at a load of 50 gf / cm 2 ), and compressibility (EMC) were measured. A KES-G5 handy compression tester manufactured by Kato Tech Co., Ltd. was used for the compression test and measurement of the compression characteristic value for the heat-bonded nonwoven fabric. At the time of measurement, a circular pressure plate having an area of 2 cm 2 is used as a compressor, SENS is set to 2, and DEF sensitivity is set to 20, so that the compression speed of the compressor is 0.02 cm / sec with respect to the heat-bonded nonwoven fabric. And compressed until the load reached 50 gf / cm 2 . After the load reached 50 gf / cm 2 , the compression characteristic value was measured by removing compression so that the moving speed of the compressor was 0.02 cm / sec. Table 3 shows the measurement results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示すKESに基づいた表面特性および圧縮特性の結果において、実施例2と実施例6と、比較例6の圧縮特性を比較すると、実施例2、6の不織布は、LCが比較例6より小さく、RCやEMCは比較例6の不織布より大きくなっている。これは実施例2、6で使用した顕在捲縮性複合短繊維の第一成分は、曲げ弾性率が高密度ポリエチレンよりも小さい直鎖状ポリエチレンを樹脂成分として含むことによる。直鎖状ポリエチレンを使用したことで、LCが小さく、荷重に対して柔らかく変形する熱接着不織布が得られる。また、直鎖状ポリエチレンの曲げ弾性率が小さいことから、荷重に対してより大きく変形するために、EMCが大きくなったと考えられる。即ち、本発明の顕在捲縮性複合短繊維を含む不織布は、厚み方向の荷重に対して柔らかく変形し、しかも変形する量が大きいことからふんわり感をもった熱接着不織布になったと考えられる。また、第一成分が直鎖状ポリエチレンを多く含有する樹脂成分で構成された顕在捲縮性複合短繊維で構成された熱接着不織布は(比較例1も含めて)RCが比較例6よりも大きいことから直鎖状ポリエチレン自体が高密度ポリエチレンよりも弾力性があり、しなやかな樹脂である、と推測される。 In the results of the surface characteristics and compression characteristics based on KES shown in Table 3, when comparing the compression characteristics of Example 2 and Example 6 with Comparative Example 6, the nonwoven fabrics of Examples 2 and 6 have an LC of Comparative Example 6. It is smaller and RC and EMC are larger than the nonwoven fabric of the comparative example 6. This is because the first component of the actual crimpable composite short fiber used in Examples 2 and 6 contains linear polyethylene having a bending elastic modulus smaller than that of high-density polyethylene as a resin component. By using linear polyethylene, a thermobonding nonwoven fabric that has a small LC and is softly deformed with respect to the load can be obtained. Moreover, since the bending elastic modulus of linear polyethylene is small, in order to deform | transform more largely with respect to a load, it is thought that EMC became large. That is, it is considered that the non-woven fabric containing the actual crimpable composite short fiber of the present invention is softly deformed with respect to the load in the thickness direction and has a large amount of deformation, so that it becomes a heat-bonding non-woven fabric having a soft feeling. In addition, the heat-bonding nonwoven fabric composed of the actual crimpable composite short fiber composed of a resin component containing a large amount of linear polyethylene as the first component (including Comparative Example 1) has a RC higher than that of Comparative Example 6. Since it is large, linear polyethylene itself is more elastic than high-density polyethylene, and is presumed to be a flexible resin.
 実施例2および実施例6の不織布と比較例1の不織布を比較すると、比較例1の不織布は直鎖状ポリエチレンのみが影響していると考えられるRCは実施例6と同等の値であるが、LCが大きくなっただけでなく、WCおよびEMCが実施例2、6よりも小さくなっている。比較例1の不織布は比容積が小さい、即ち、初期嵩が小さく、密度の大きい不織布であるために、厚さ方向の圧縮に対して変形しにくく、ふんわり感のない不織布になったと推測される。 Comparing the nonwoven fabric of Example 2 and Example 6 with the nonwoven fabric of Comparative Example 1, the nonwoven fabric of Comparative Example 1 has an RC equivalent to that of Example 6 that is considered to be affected only by linear polyethylene. , LC is increased, and WC and EMC are smaller than those in Examples 2 and 6. Since the nonwoven fabric of Comparative Example 1 has a small specific volume, that is, a nonwoven fabric having a small initial volume and a large density, it is presumed that the nonwoven fabric has a soft feeling without being deformed with respect to compression in the thickness direction. .
 実施例2と実施例6の不織布と、比較例1、6の不織布の表面特性を比較すると、実施例2、6の不織布は、不織布表面のすべりにくさを表すMIUが大きくなっており、不織布表面がすべりにくくなっている。一方、不織布表面のざらつきを表すMMDは実施例2、6の不織布のほうが小さくなっている。この結果から第一成分が特定の密度の範囲を満たす直鎖状ポリエチレンと低密度ポリエチレンを含む樹脂成分で構成された捲縮性複合短繊維を使用した不織布は、不織布表面のMIUが大きいが、MMDが小さい。そのため、この不織布は、肌に対して適度な摩擦を有することで肌が触れた際、肌と不織布の間に摩擦力が働き、肌に不織布が貼り付くような感覚を与えるが、摩擦の変動、即ち、ざらつきがないことから触感がなめらかになり、独特の心地よい触感(ぬめり感やしっとり感)を与える。 Comparing the surface properties of the nonwoven fabrics of Example 2 and Example 6 and the nonwoven fabrics of Comparative Examples 1 and 6, the nonwoven fabrics of Examples 2 and 6 have a large MIU representing the difficulty of slipping on the surface of the nonwoven fabric. The surface is difficult to slip. On the other hand, the MMD representing the roughness of the nonwoven fabric surface is smaller in the nonwoven fabrics of Examples 2 and 6. From this result, the nonwoven fabric using crimped composite short fibers composed of a resin component containing linear polyethylene and low density polyethylene satisfying a specific density range of the first component has a large MIU on the surface of the nonwoven fabric, MMD is small. For this reason, this non-woven fabric has an appropriate friction against the skin, and when the skin touches, the frictional force works between the non-woven fabric and gives the sensation that the non-woven fabric sticks to the skin. That is, since there is no roughness, the tactile sensation becomes smooth and gives a unique and comfortable tactile sensation (smoothness and moist feeling).
 比較例1、比較例6の不織布では平均摩擦係数のMMDが大きくなっている。MMD、即ち、不織布表面の粗さは不織布表面を構成する繊維表面の影響を受けるだけでなく、肌や摩擦試験の摩擦子が不織布表面を動いた際の繊維の動きやすさ(変形しやすさ)にも影響される。よって、繊維が変形しにくいほど、肌や摩擦子の移動に対して表面の繊維が動きにくく、肌や摩擦子が繊維を動かして移動するのに必要な力が大きくなると考えられる。比較例6の不織布は、不織布の構成する顕在捲縮性複合短繊維の第一成分が曲げ弾性率の大きな高密度ポリエチレンで構成された、変形しにくい繊維であり、これによって肌や摩擦子の移動に必要な力が瞬間的に大きくなるときが生じ、MMDが大きくなったと推測される。また、比較例1の不織布は、不織布を構成する顕在捲縮性複合短繊維の第一成分が直鎖状ポリエチレンで構成されるため、構成繊維そのものは変形しやすい繊維と推測されるが、不織布の比容積が小さい(言い換えるならば密度の大きい)不織布であることから不織布表面を構成する繊維本数が増えている。そのため、比較例1の不織布において肌や摩擦子を移動させた際、実施例2、6の不織布(比容積がより大きく、密度がより小さい)と比較して、多くの繊維が肌や摩擦子の移動を妨げようとするため、肌や摩擦子の移動に必要な力が瞬間的に大きくなるときが生じ、MMDが大きくなったと推測される。 In the nonwoven fabrics of Comparative Examples 1 and 6, the average friction coefficient MMD is large. MMD, that is, the roughness of the surface of the nonwoven fabric is not only influenced by the surface of the fibers constituting the surface of the nonwoven fabric, but also the ease of movement of the fibers when the skin or friction tester moving on the surface of the nonwoven fabric (ease of deformation) ) Is also affected. Therefore, it is considered that the more difficult the fibers are to be deformed, the less the fibers on the surface move with respect to the movement of the skin and the friction element, and the greater the force required for the skin and the friction elements to move and move the fibers. The nonwoven fabric of Comparative Example 6 is a fiber that is difficult to deform, in which the first component of the actual crimpable composite short fiber that the nonwoven fabric comprises is composed of high-density polyethylene having a large flexural modulus, thereby preventing skin and friction It is presumed that the force required for movement momentarily increases and the MMD increases. Further, the nonwoven fabric of Comparative Example 1 is presumed to be a fiber that easily deforms because the first component of the actual crimpable composite short fiber constituting the nonwoven fabric is composed of linear polyethylene. Since the nonwoven fabric has a small specific volume (in other words, a high density), the number of fibers constituting the nonwoven fabric surface is increasing. Therefore, when the skin and friction elements are moved in the nonwoven fabric of Comparative Example 1, many fibers are present in the skin and friction elements compared to the nonwoven fabrics of Examples 2 and 6 (the specific volume is larger and the density is smaller). It is estimated that the MMD has increased because the force necessary for moving the skin and the frictional momentary momentary increases.
 本発明の顕在捲縮性複合短繊維は、柔軟であるとともに、加工性(特に高速カード性)に優れていて、不織布にしたときに、不織布に良好な表面触感、嵩高性、厚さ方向の柔軟性および嵩回復性を与える。よって、本発明の顕在捲縮性複合短繊維は、衛生物品の表面材を構成するのに特に適し、また、他の繊維製品、例えば、ウェットティッシュ、ワイパー、化粧品用材料、女性のブラジャーのパッド、肩パッド、車両用クッション材、床暖房用フローリングの裏打ち材、緩衝材、および包装材料を構成するのに適している。 The actual crimpable composite short fiber of the present invention is flexible and excellent in processability (especially high-speed card property). When made into a nonwoven fabric, the nonwoven fabric has a good surface feel, bulkiness and thickness direction. Gives flexibility and bulk recovery. Therefore, the actual crimpable composite short fiber of the present invention is particularly suitable for constituting the surface material of a hygiene article, and other fiber products such as wet tissue, wipers, cosmetic materials, and female bra pads. Suitable for constituting shoulder pads, vehicle cushioning materials, flooring flooring backing materials, cushioning materials, and packaging materials.
  1 第一成分
  2 第二成分
  3 第二成分の繊維断面における重心位置
  4 複合短繊維の繊維断面における重心位置
  5 複合短繊維の繊維断面における半径
  10 複合短繊維
DESCRIPTION OF SYMBOLS 1 1st component 2 2nd component 3 Center of gravity position in fiber cross section of 2nd component 4 Center of gravity position in fiber cross section of composite short fiber 5 Radius in fiber cross section of composite short fiber 10 Composite short fiber

Claims (9)

  1.  第一成分と第二成分とを含む複合短繊維であって、
     第一成分は、密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含み、
     第一成分において、低密度ポリエチレンが、直鎖状ポリエチレンと低密度ポリエチレンとを合わせた質量の5質量%~25質量%を占めるように含まれており、
     第二成分は、第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含んでおり、
     繊維断面において、第一成分は繊維表面の少なくとも20%を占めており、第二成分の重心位置は繊維の重心位置からずれており、
     複合短繊維は、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している、
    顕在捲縮性複合短繊維。
    A composite short fiber comprising a first component and a second component,
    The first component includes linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and low density polyethylene,
    In the first component, the low density polyethylene is included so as to occupy 5% by mass to 25% by mass of the total mass of the linear polyethylene and the low density polyethylene,
    The second component contains 50% by mass or more of polyester having a melting point 40 ° C. or higher than the melting point of the linear polyethylene constituting the first component,
    In the fiber cross section, the first component occupies at least 20% of the fiber surface, the center of gravity of the second component is deviated from the center of gravity of the fiber,
    The composite short fiber has at least one kind of crimp selected from a wave crimp and a spiral crimp,
    Obvious crimpable composite staple fiber.
  2.  前記直鎖状ポリエチレンが、メタロセン触媒を用いて重合したものである、請求項1に記載の顕在捲縮性複合短繊維。 2. The actual crimpable composite short fiber according to claim 1, wherein the linear polyethylene is polymerized using a metallocene catalyst.
  3.  前記直鎖状ポリエチレンの紡糸前の融点が、前記低密度ポリエチレンの紡糸前の融点よりも高い、請求項1または2に記載の顕在捲縮性複合短繊維。 3. The actual crimpable composite short fiber according to claim 1 or 2, wherein a melting point of the linear polyethylene before spinning is higher than a melting point of the low density polyethylene before spinning.
  4.  前記複合短繊維におけるJIS L 1015(2010年)に準じて捲縮数および捲縮率を測定したとき、捲縮率と捲縮数の比(捲縮率/捲縮数)が1.2以下である、請求項1~3のいずれか1項に記載の顕在捲縮性複合短繊維。 When measuring the number of crimps and the crimp rate according to JIS L 1015 (2010) in the composite short fiber, the ratio of the crimp rate to the number of crimps (crimp rate / crimp number) is 1.2 or less. The actual crimpable composite staple fiber according to any one of claims 1 to 3, wherein
  5.  第一成分と第二成分とを含む複合短繊維の製造方法であって、
     密度0.90g/cm~0.94g/cmの直鎖状ポリエチレン、および低密度ポリエチレンを含み、かつ低密度ポリエチレンが、直鎖状ポリエチレンと低密度ポリエチレンとを合わせた質量の5質量%~25質量%を占める第一成分と、
     第一成分を構成する直鎖状ポリエチレンの融点よりも40℃以上高い融点を有するポリエステルを50質量%以上含む第二成分とを、
     繊維断面において、第一成分が繊維表面の少なくとも20%を占め、第二成分の重心位置が繊維の重心位置からずれるように、溶融紡糸して、紡糸フィラメントを得ること、
     紡糸フィラメントをTg℃~95℃(ただし、Tgは第二成分に含まれるポリマー成分のうち、最も高いガラス転移点を有するポリマー成分のガラス転移点)の範囲内にある温度で1.8~5倍に延伸すること、
     延伸後のフィラメントに対し、捲縮数5山/25mm~25山/25mmの範囲で機械捲縮を付与すること、
     50~115℃の範囲内にある温度でアニーリング処理を施すこと、
     アニーリング処理したフィラメントを1mm~100mmの長さに切断すること
    を含む、波形状捲縮および螺旋状捲縮から選ばれる少なくとも一種の捲縮を有している複合短繊維の製造方法。
    A method for producing a composite short fiber comprising a first component and a second component,
    5% by mass of the total mass of the linear polyethylene and the low density polyethylene, the linear polyethylene having a density of 0.90 g / cm 3 to 0.94 g / cm 3 and the low density polyethylene. A first component occupying ~ 25% by weight;
    A second component containing 50% by mass or more of a polyester having a melting point of 40 ° C. or higher than the melting point of the linear polyethylene constituting the first component;
    In the fiber cross section, the first component occupies at least 20% of the fiber surface, and melt spinning to obtain a spun filament so that the center of gravity of the second component deviates from the center of gravity of the fiber,
    The spinning filament is at a temperature within the range of Tg 2 ° C. to 95 ° C. (where Tg 2 is the glass transition point of the polymer component having the highest glass transition point among the polymer components contained in the second component). Stretching up to 5 times,
    Applying a mechanical crimp to the stretched filament in the range of 5/25 mm to 25/25 mm
    Performing an annealing treatment at a temperature within a range of 50 to 115 ° C .;
    A method for producing a composite short fiber having at least one kind of crimp selected from corrugated crimps and spiral crimps, comprising cutting an annealed filament into a length of 1 mm to 100 mm.
  6.  請求項1~4のいずれか1項に記載の顕在捲縮性複合短繊維を20質量%以上含む、繊維集合物。 A fiber assembly containing 20% by mass or more of the actual crimpable composite short fiber according to any one of claims 1 to 4.
  7.  前記顕在捲縮性複合短繊維の第一成分によって、繊維同士が熱接着されている不織布である、請求項6に記載の繊維集合物。 The fiber assembly according to claim 6, which is a non-woven fabric in which fibers are thermally bonded to each other by the first component of the actual crimpable composite short fiber.
  8.  請求項6または7に記載の繊維集合物からなる、衛生物品の表面材。 A sanitary article surface material comprising the fiber assembly according to claim 6 or 7.
  9.  請求項8に記載の表面材を含む、衛生物品。 A sanitary article comprising the surface material according to claim 8.
PCT/JP2012/052251 2011-02-02 2012-02-01 Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article WO2012105602A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137022758A KR101913447B1 (en) 2011-02-02 2012-02-01 Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article
CN201280007318.1A CN103339304B (en) 2011-02-02 2012-02-01 Manifest crimpiness composite short fiber and manufacture method, fiber aggregate and hygienic article
JP2012555927A JP5886765B2 (en) 2011-02-02 2012-02-01 Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011020883 2011-02-02
JP2011-020883 2011-02-02

Publications (1)

Publication Number Publication Date
WO2012105602A1 true WO2012105602A1 (en) 2012-08-09

Family

ID=46602809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052251 WO2012105602A1 (en) 2011-02-02 2012-02-01 Actualized crimped composite short fiber and process for production thereof, fiber assembly, and sanitary article

Country Status (5)

Country Link
JP (2) JP5886765B2 (en)
KR (1) KR101913447B1 (en)
CN (1) CN103339304B (en)
TW (1) TWI575128B (en)
WO (1) WO2012105602A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031665A (en) * 2012-12-25 2013-04-10 博爱(中国)膨化芯材有限公司 Bulking core material and manufacturing process and application thereof
WO2014192976A1 (en) * 2013-05-31 2014-12-04 Es Fibervisions Co., Ltd. Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
WO2015159978A1 (en) * 2014-04-18 2015-10-22 ダイワボウホールディングス株式会社 Composite short fibers for absorbent article, process for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article
WO2015159878A1 (en) * 2014-04-15 2015-10-22 ユニ・チャーム株式会社 Absorbent article
JP2015204983A (en) * 2014-04-18 2015-11-19 ダイワボウホールディングス株式会社 Surface sheet for absorbent article, and absorbent article including the same
WO2015182441A1 (en) * 2014-05-30 2015-12-03 花王株式会社 Disposable diaper
JP2016220752A (en) * 2015-05-27 2016-12-28 日本製紙クレシア株式会社 Absorbent article
JP2017144803A (en) * 2016-02-15 2017-08-24 日本バイリーン株式会社 Interior surface material and method for manufacturing the same
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2019010527A (en) * 2018-08-31 2019-01-24 ダイワボウホールディングス株式会社 Surface sheet for absorbent article and absorbent article including the same
EP3505660A1 (en) * 2017-12-28 2019-07-03 San Fang Chemical Industry Co., Ltd. Conjugated fiber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY193083A (en) 2016-12-14 2022-09-26 Toray Industries Eccentric core-sheath composite fiber and combined filament yarn
CN110831558A (en) * 2017-06-30 2020-02-21 大和纺控股株式会社 Sheet for absorbent article and absorbent article
JP2019103589A (en) * 2017-12-12 2019-06-27 王子ホールディングス株式会社 Absorbent article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110583B2 (en) * 1982-06-29 1986-03-29 Chisso Corp
JPS6392722A (en) * 1986-10-03 1988-04-23 Unitika Ltd Heat-weldable fiber and nonwoven cloth made thereof
JP2008274473A (en) * 2007-04-27 2008-11-13 Daiwabo Co Ltd Spontaneously crimping conjugate fiber and fiber aggregate using the same
JP4315663B2 (en) * 2002-10-17 2009-08-19 ユニチカ株式会社 Method for producing nonwoven fabric comprising core-sheath composite long fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545265B2 (en) * 1988-03-22 1996-10-16 チッソ株式会社 Filter element using composite fiber
DK245488D0 (en) * 1988-05-05 1988-05-05 Danaklon As SYNTHETIC FIBER AND PROCEDURES FOR PRODUCING THEREOF
DE69032885T2 (en) * 1990-08-07 1999-05-27 Dow Chemical Co THERMALLY TIED FIBER PRODUCTS WITH BICOMPONENT FIBERS AS ADHESIVE FIBERS
US5948529A (en) * 1997-02-26 1999-09-07 Hna Holdings, Inc. Bicomponent fiber
KR20010019669A (en) * 1999-08-30 2001-03-15 조민호 Conjugated fiber having durable hydrophilic property
WO2005021850A1 (en) * 2003-08-28 2005-03-10 Daiwabo Co., Ltd. Potential crimping composite fiber and method for production thereof, and fiber aggregate, and nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110583B2 (en) * 1982-06-29 1986-03-29 Chisso Corp
JPS6392722A (en) * 1986-10-03 1988-04-23 Unitika Ltd Heat-weldable fiber and nonwoven cloth made thereof
JP4315663B2 (en) * 2002-10-17 2009-08-19 ユニチカ株式会社 Method for producing nonwoven fabric comprising core-sheath composite long fiber
JP2008274473A (en) * 2007-04-27 2008-11-13 Daiwabo Co Ltd Spontaneously crimping conjugate fiber and fiber aggregate using the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103031665A (en) * 2012-12-25 2013-04-10 博爱(中国)膨化芯材有限公司 Bulking core material and manufacturing process and application thereof
TWI631245B (en) * 2013-05-31 2018-08-01 Es飛博比瓊斯股份有限公司 Heat-bondable conjugate fiber, and producing method thereof, and nonwoven fabric using the same
WO2014192976A1 (en) * 2013-05-31 2014-12-04 Es Fibervisions Co., Ltd. Heat-bondable conjugate fiber with excellent softness and nonwoven fabric using the same
RU2657046C2 (en) * 2013-05-31 2018-06-08 Ес Файбервижнз Ко., Лтд. Heat-bondable bicomponent fiber with excellent softness and nonwoven fabric using the same
JPWO2015159878A1 (en) * 2014-04-15 2017-04-13 ユニ・チャーム株式会社 Absorbent articles
WO2015159878A1 (en) * 2014-04-15 2015-10-22 ユニ・チャーム株式会社 Absorbent article
CN106460241A (en) * 2014-04-18 2017-02-22 大和纺控股株式会社 Composite short fibers for absorbent article, process for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article
JP2015204983A (en) * 2014-04-18 2015-11-19 ダイワボウホールディングス株式会社 Surface sheet for absorbent article, and absorbent article including the same
CN106460241B (en) * 2014-04-18 2020-03-17 大和纺控股株式会社 Composite short fiber for absorbent article, method for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article
WO2015159978A1 (en) * 2014-04-18 2015-10-22 ダイワボウホールディングス株式会社 Composite short fibers for absorbent article, process for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article
WO2015182441A1 (en) * 2014-05-30 2015-12-03 花王株式会社 Disposable diaper
JP2016005545A (en) * 2014-05-30 2016-01-14 花王株式会社 Disposable diaper
RU2680241C2 (en) * 2014-05-30 2019-02-18 Као Корпорейшн Disposable diaper
JP2016220752A (en) * 2015-05-27 2016-12-28 日本製紙クレシア株式会社 Absorbent article
JP2017144803A (en) * 2016-02-15 2017-08-24 日本バイリーン株式会社 Interior surface material and method for manufacturing the same
JP2017222970A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Nonwoven fabric, and absorbent article
JP2017222972A (en) * 2016-06-14 2017-12-21 王子ホールディングス株式会社 Composite fiber
EP3505660A1 (en) * 2017-12-28 2019-07-03 San Fang Chemical Industry Co., Ltd. Conjugated fiber
TWI675135B (en) * 2017-12-28 2019-10-21 三芳化學工業股份有限公司 Conjugated fiber and method for manufacturing the same
JP2019010527A (en) * 2018-08-31 2019-01-24 ダイワボウホールディングス株式会社 Surface sheet for absorbent article and absorbent article including the same

Also Published As

Publication number Publication date
JP5886765B2 (en) 2016-03-16
KR101913447B1 (en) 2018-10-30
JP2016106188A (en) 2016-06-16
JP6069554B2 (en) 2017-02-01
CN103339304B (en) 2016-04-06
CN103339304A (en) 2013-10-02
JPWO2012105602A1 (en) 2014-07-03
KR20140006933A (en) 2014-01-16
TW201241253A (en) 2012-10-16
TWI575128B (en) 2017-03-21

Similar Documents

Publication Publication Date Title
JP6069554B2 (en) Revealed crimpable composite short fiber and method for producing the same, fiber assembly and sanitary article
JP6216013B2 (en) Nonwoven fabric, absorbent article sheet, and absorbent article using the same
JP6927299B2 (en) Non-woven
WO2015159978A1 (en) Composite short fibers for absorbent article, process for producing same, thermally bonded nonwoven fabric for absorbent article, surface sheet for absorbent article, and absorbent article
JP6397210B2 (en) Absorbent article surface sheet and absorbent article including the same
JP6110089B2 (en) Nonwoven fabric and cushion material using the same
JP4587410B2 (en) Composite nonwoven fabric, method for producing the same, absorbent article using the nonwoven fabric, and wiping cloth
JP5172217B2 (en) Laminated nonwoven fabric and method for producing the same
JP5326104B2 (en) Non-woven fabric for wiper and method for producing the same
JP6523741B2 (en) Nonwoven fabric and method of manufacturing the same
JP6598951B2 (en) Absorbent article surface sheet and absorbent article including the same
JP6342536B2 (en) Nonwoven fabric and cushion material using the same
JP6611969B2 (en) Composite fiber, nonwoven fabric and absorbent article sheet
JP4013346B2 (en) Nonwoven fabric and absorbent article using the same
JP6726425B2 (en) Nonwoven fabric and manufacturing method thereof
JP6054091B2 (en) Cushion material and composite short fiber for cushion material
JP7411950B2 (en) Surface material for sanitary materials and its manufacturing method
JP2021177019A (en) Nonwoven fabric and method for manufacturing the same
JP2024520747A (en) Nonwovens suitable for medical applications

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280007318.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004258

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20137022758

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12742411

Country of ref document: EP

Kind code of ref document: A1