JP6871892B2 - Manufacturing method of core-sheath composite fiber and core-sheath composite fiber - Google Patents

Manufacturing method of core-sheath composite fiber and core-sheath composite fiber Download PDF

Info

Publication number
JP6871892B2
JP6871892B2 JP2018220474A JP2018220474A JP6871892B2 JP 6871892 B2 JP6871892 B2 JP 6871892B2 JP 2018220474 A JP2018220474 A JP 2018220474A JP 2018220474 A JP2018220474 A JP 2018220474A JP 6871892 B2 JP6871892 B2 JP 6871892B2
Authority
JP
Japan
Prior art keywords
core
sheath
composite fiber
sheath composite
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018220474A
Other languages
Japanese (ja)
Other versions
JP2020084371A (en
Inventor
田中 高太郎
高太郎 田中
佐藤 直
佐藤  直
毅晴 吉橋
毅晴 吉橋
斉春 福島
斉春 福島
村山 進
進 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018220474A priority Critical patent/JP6871892B2/en
Priority to CN201911164893.2A priority patent/CN111218728A/en
Priority to US16/693,449 priority patent/US20200165749A1/en
Publication of JP2020084371A publication Critical patent/JP2020084371A/en
Application granted granted Critical
Publication of JP6871892B2 publication Critical patent/JP6871892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/006Pressing and sintering powders, granules or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0017Combinations of extrusion moulding with other shaping operations combined with blow-moulding or thermoforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/04Extrusion blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/22Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor using multilayered preforms or parisons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/58Blowing means
    • B29C49/60Blow-needles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/62Venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2277/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7172Fuel tanks, jerry cans

Description

本発明は、芯鞘複合繊維および芯鞘複合繊維の製造方法に関する。 The present invention relates to a core-sheath composite fiber and a method for producing a core-sheath composite fiber.

芯鞘複合繊維とは、糸状の芯材と、該芯材を鞘のようにくるむ鞘材とからなる複合構造の繊維であり、性質の異なる芯材と鞘材とを組み合わせることで、単一構造の繊維では実現し難い様々な効果を発揮するものである。芯鞘複合繊維はフィルター等の織物の素材としてはもちろん、合成樹脂部品の補強材料等、様々な分野で活用されている。 The core-sheath composite fiber is a fiber having a composite structure composed of a thread-like core material and a sheath material that wraps the core material like a sheath. By combining the core material and the sheath material having different properties, a single core material is used. It exerts various effects that are difficult to achieve with structural fibers. Core-sheath composite fibers are used not only as materials for woven fabrics such as filters, but also in various fields such as reinforcing materials for synthetic resin parts.

特許文献1には、鞘成分としての高密度ポリエチレンと芯成分としてのポリエステルとからなる複合繊維であって、鞘成分の溶融温度は110〜180℃であり、芯成分の溶融温度は240〜270℃であり、高温加圧によって鞘成分が溶融して補強繊維と融着することで三次元的な多孔性のネットワーク構造を形成する自動車用の天井材が開示されている。 Patent Document 1 describes a composite fiber composed of high-density polyethylene as a sheath component and polyester as a core component, in which the melting temperature of the sheath component is 110 to 180 ° C. and the melting temperature of the core component is 240 to 270. A ceiling material for an automobile is disclosed, which forms a three-dimensional porous network structure by melting the sheath component by high-temperature pressurization and fusing with the reinforcing fiber at ° C.

特許5198647号公報Japanese Patent No. 51986647

このような芯鞘複合繊維には、該芯鞘複合繊維の芯材同士を融着させてカバーを成形し、該カバーを対象の外側表皮に融着させることで対象の剛度を向上する、補強の用途が考えられる。芯鞘複合繊維で作成したカバーは、内部に多数の芯材が通っているため、単なる樹脂シートで作成したカバーよりも高い剛性が期待できる。しかし、このような補強の用途で従来の芯鞘複合繊維を利用しようとすると、以下のような問題が発生する。 In such a core-sheath composite fiber, the core materials of the core-sheath composite fiber are fused to each other to form a cover, and the cover is fused to the outer skin of the target to improve the rigidity of the target. Can be used for. Since a cover made of core-sheath composite fiber has a large number of core materials passing through it, it can be expected to have higher rigidity than a cover made of a simple resin sheet. However, when the conventional core-sheath composite fiber is used for such reinforcement, the following problems occur.

鞘材と芯材の融点が近ければ、鞘材を溶融させるに際して芯材まで一緒に溶融させてしまう失敗が起こりやすくなり、芯鞘複合繊維をコンポジットやシート等に成形することが困難になる。特許文献1の発明には、鞘材および芯材それぞれの融点の範囲については開示されているが、鞘材と芯材部の融点差が何℃以上であるべきかについては開示していない。開示された融点の範囲から算出した融点差は60℃〜160℃であるが、最大値の160℃であってもコンポジット等を簡便に成形するにはやや不足である。 If the melting points of the sheath material and the core material are close to each other, it is easy for the core material to be melted together when the sheath material is melted, and it becomes difficult to form the core-sheath composite fiber into a composite or a sheet. The invention of Patent Document 1 discloses the range of melting points of the sheath material and the core material, but does not disclose how much the temperature difference between the sheath material and the core material should be. The melting point difference calculated from the disclosed melting point range is 60 ° C. to 160 ° C., but even the maximum value of 160 ° C. is slightly insufficient for easily molding a composite or the like.

さらに大きな問題として、芯材と鞘材の融点の乖離に伴う芯鞘複合繊維の強度低下が挙げられる。
強度が高く、補強材料として優れた芯鞘複合繊維を実現するためには、芯材と鞘材が強固に接着していることが必要である。しかし、コンポジット等の成形性向上のために鞘材と芯材の融点差を大きくすれば、一方で芯材と鞘材との分離が発生しやすくなる。特許文献1の発明はこの芯と鞘の分離による強度低下に対処していないため、補強の用途で使用するには強度が不足していると考えられる。
このような状況を踏まえ、本発明は、コンポジット等の成形が容易であり、かつ強度にも優れた芯鞘複合繊維を提供することを課題とする。
An even bigger problem is the decrease in strength of the core-sheath composite fiber due to the difference in melting points between the core material and the sheath material.
In order to realize a core-sheath composite fiber having high strength and excellent as a reinforcing material, it is necessary that the core material and the sheath material are firmly adhered to each other. However, if the melting point difference between the sheath material and the core material is increased in order to improve the moldability of the composite or the like, on the other hand, the core material and the sheath material are likely to be separated. Since the invention of Patent Document 1 does not deal with the decrease in strength due to the separation of the core and the sheath, it is considered that the strength is insufficient for use in the purpose of reinforcement.
In view of such a situation, it is an object of the present invention to provide a core-sheath composite fiber which is easy to form a composite or the like and has excellent strength.

発明の芯鞘複合繊維は、芯材の主成分がポリアミドであり、鞘材の主成分は不飽和官能基が付与された変性ポリエチレンであり、前記芯材の融点が、前記鞘材の融点よりも180℃以上高いことを特徴とする。 In the core-sheath composite fiber of the present invention, the main component of the core material is polyamide, the main component of the sheath material is modified polyethylene to which an unsaturated functional group is added, and the melting point of the core material is the melting point of the sheath material. It is characterized by being 180 ° C or more higher than that.

本発明によればコンポジット等の成形が容易であり、かつ強度にも優れた芯鞘複合繊維を提供することができる。 According to the present invention, it is possible to provide a core-sheath composite fiber that can be easily formed into a composite or the like and has excellent strength.

芯鞘複合繊維を輪切りにした横断面図である。It is a cross-sectional view of the core-sheath composite fiber sliced into round slices. 芯鞘複合繊維を長辺方向に切った縦断面図である。It is a vertical cross-sectional view which cut the core-sheath composite fiber in the long side direction. 芯鞘複合繊維の剛性測定実験に使用する装置の概略図である。It is the schematic of the apparatus used for the rigidity measurement experiment of a core-sheath composite fiber. 複数の芯鞘複合繊維からなるコンポジットの概略図である。It is the schematic of the composite composed of a plurality of core-sheath composite fibers. 複数の芯鞘複合繊維からなるシートの概略図である。It is the schematic of the sheet composed of a plurality of core-sheath composite fibers. 複数の芯鞘複合繊維からなるシートの断面の拡大図である。It is an enlarged view of the cross section of the sheet composed of a plurality of core-sheath composite fibers. 燃料タンクを芯鞘複合繊維からなるカバーで補強する例を示す斜視図である。It is a perspective view which shows the example which reinforces a fuel tank with a cover made of a core-sheath composite fiber. 燃料タンクのブロー成形の前段階におけるカバーの配置を示す図である。It is a figure which shows the arrangement of the cover in the stage before blow molding of a fuel tank. 燃料タンクのブロー成形を示す図である。It is a figure which shows the blow molding of a fuel tank. 燃料タンクのブロー成形において挟み込みが完了した状態を示す図である。It is a figure which shows the state which the sandwiching is completed in the blow molding of a fuel tank.

次に、本発明の実施形態に係る芯鞘構造糸について説明する。
なお、本発明は、以下の実施形態に限定されるものではない。
Next, the core-sheath structure yarn according to the embodiment of the present invention will be described.
The present invention is not limited to the following embodiments.

<芯鞘構造>
図1Aに本実施形態の芯鞘複合繊維10を輪切りにした横断面図を、図1Bに本実施形態の芯鞘複合繊維10を長辺方向に切った縦断面図を示す。
本実施形態の芯鞘複合繊維10は、芯材11と、芯材11をくるむ鞘材12とから成り、押出成形によって製造される。本実施形態の芯材11と鞘材12は共に丸断面の外径を持つ。なお、芯材の外径はこのような丸断面に限定されることはなく、例えば複数の突起を有する異型断面であってもよい。
<Core sheath structure>
FIG. 1A shows a cross-sectional view of the core-sheath composite fiber 10 of the present embodiment cut into round slices, and FIG. 1B shows a vertical cross-sectional view of the core-sheath composite fiber 10 of the present embodiment cut in the long side direction.
The core-sheath composite fiber 10 of the present embodiment is composed of a core material 11 and a sheath material 12 that wraps the core material 11, and is manufactured by extrusion molding. Both the core material 11 and the sheath material 12 of the present embodiment have an outer diameter having a round cross section. The outer diameter of the core material is not limited to such a round cross section, and may be, for example, a modified cross section having a plurality of protrusions.

図1Aのような、長さ方向に垂直に輪切りにした横断面における芯材11と鞘材12の比率は、99:1〜1:99であることが好ましく、90:10〜10:90であることがより好ましい。芯材の割合を増加させることにより剛性を向上させることができる。一方、鞘材の割合を増加させることにより接着性を向上させることができる。 The ratio of the core material 11 to the sheath material 12 in the cross section vertically sliced in the length direction as shown in FIG. 1A is preferably 99: 1 to 1:99, and is 90:10 to 10:90. More preferably. Rigidity can be improved by increasing the proportion of the core material. On the other hand, the adhesiveness can be improved by increasing the proportion of the sheath material.

芯鞘複合繊維10は、偏芯構造を取ることもできるが、図1のように芯材11が鞘材12の略中央に配置される方が望ましい。芯材11を鞘材12の略中央に配置することにより、芯鞘複合繊維10からコンポジット100(図3参照)等を成形する際に、鞘材12からの芯材11の露出を抑制することができる。芯材11の露出の抑制により、鞘材12同士を強固に結着させ、コンポジット100等を強固に成形することができる。 The core-sheath composite fiber 10 may have an eccentric structure, but it is desirable that the core material 11 is arranged substantially in the center of the sheath material 12 as shown in FIG. By arranging the core material 11 substantially in the center of the sheath material 12, the exposure of the core material 11 from the sheath material 12 is suppressed when the composite 100 (see FIG. 3) or the like is formed from the core sheath composite fiber 10. Can be done. By suppressing the exposure of the core material 11, the sheath materials 12 can be firmly bonded to each other, and the composite 100 or the like can be firmly formed.

<芯鞘複合繊維の剛性>
芯鞘複合繊維10の用途としては、例えば自動車等の燃料タンク等の補強が考えられる。このような燃料タンク等の外側表皮には、ポリエチレンが多く用いられる。よって、芯鞘複合繊維10と外側表皮との融着性を向上するために、鞘材12にポリエチレンを含有させることが考えられる。
<Rigidity of core-sheath composite fiber>
As an application of the core-sheath composite fiber 10, for example, reinforcement of a fuel tank of an automobile or the like can be considered. Polyethylene is often used for the outer skin of such a fuel tank or the like. Therefore, in order to improve the fusion property between the core-sheath composite fiber 10 and the outer skin, it is conceivable to include polyethylene in the sheath material 12.

しかし、ポリエチレンは一般に他の物質と結合を作りづらい物質であり、芯材11とポリエチレンを含有する鞘材12とを強固に接着させることは難しい。よって、芯材11へポリエチレンを使用すると、芯材11と鞘材12の分離により芯鞘複合繊維10の剛性が低下する恐れがある。特に、芯鞘複合繊維10からコンポジット100(図3参照)等を成形する際、成形を容易にするために芯材11と鞘材12の融点差を大きくすると、芯材11と鞘材12との分離が起こりやすくなるため、上記剛性の低下がより問題となる。なお、このコンポジット100の成形については後述する。 However, polyethylene is generally a substance that is difficult to form a bond with other substances, and it is difficult to firmly bond the core material 11 and the sheath material 12 containing polyethylene. Therefore, when polyethylene is used for the core material 11, the rigidity of the core-sheath composite fiber 10 may decrease due to the separation of the core material 11 and the sheath material 12. In particular, when molding the composite 100 (see FIG. 3) from the core-sheath composite fiber 10, if the melting point difference between the core material 11 and the sheath material 12 is increased in order to facilitate the molding, the core material 11 and the sheath material 12 become The decrease in rigidity becomes more problematic because the separation is likely to occur. The molding of the composite 100 will be described later.

そこで、本研究者らは、ポリエチレンに不飽和官能基を付加した変性ポリエチレンを鞘材12に使用することにより、当該官能基と鞘材12との間に水素結合を形成することで、芯材11と鞘材12の融点差が大きく、かつ、剛性も高い芯鞘複合繊維10を実現することを試みた。 Therefore, the present researchers used modified polyethylene in which an unsaturated functional group was added to polyethylene for the sheath material 12, and formed a hydrogen bond between the functional group and the sheath material 12 to form a core material. An attempt was made to realize a core-sheath composite fiber 10 having a large melting point difference between 11 and the sheath material 12 and high rigidity.

図2に芯鞘複合繊維10の剛性測定実験に使用する装置の概略図を示す。
実施例として、芯材11にポリアミドを用い、鞘材12にマレイン酸変性ポリエチレンを用いた芯鞘複合繊維10を使用する。比較例として、芯材11にポリアミドを用い、鞘材12にポリエチレンを用いた芯鞘複合繊維を使用する。
FIG. 2 shows a schematic view of an apparatus used for a rigidity measurement experiment of the core-sheath composite fiber 10.
As an example, a core-sheath composite fiber 10 using polyamide as the core material 11 and maleic acid-modified polyethylene as the sheath material 12 is used. As a comparative example, a core-sheath composite fiber using polyamide for the core material 11 and polyethylene for the sheath material 12 is used.

両芯鞘複合繊維10を図2のように2つのローラー2上に固定し、上方から下方に向けて、つまり図中の矢印の方向に向けて0.5Nの力を加えて、芯鞘複合繊維10に発生した伸びによる変位を測定し比較する。 The core-sheath composite fiber 10 is fixed on two rollers 2 as shown in FIG. 2, and a force of 0.5 N is applied from above to downward, that is, in the direction of the arrow in the figure, to form the core-sheath composite. The displacement due to the elongation generated in the fiber 10 is measured and compared.

測定の結果、比較例の芯鞘複合繊維10の変位は2.140mmであった。一方、実施例の芯鞘複合繊維10の変位は1.762mmであった。両者の比較により、無変性ポリエチレンを鞘材12に使用した比較例の芯鞘複合繊維10よりも、マレイン酸変性ポリエチレンを鞘材12に使用した実施例の芯鞘複合繊維10の方が、剛性が17%向上することが判明した。 As a result of the measurement, the displacement of the core-sheath composite fiber 10 of the comparative example was 2.140 mm. On the other hand, the displacement of the core-sheath composite fiber 10 of the example was 1.762 mm. By comparing the two, the core-sheath composite fiber 10 of the example in which the maleic acid-modified polyethylene was used for the sheath material 12 was more rigid than the core-sheath composite fiber 10 of the comparative example in which the non-modified polyethylene was used for the sheath material 12. Was found to improve by 17%.

以上により、芯鞘複合繊維10の芯材11の主成分はポリアミドとし、鞘材12の主成分は変性ポリエチレンとする。なお、芯材11の主成分とは、芯材11の成分全体に対して40質量%以上含有されることをいう。鞘材12の主成分とは、鞘材12の成分全体に対して40質量%以上含有されることをいう。 As described above, the main component of the core material 11 of the core-sheath composite fiber 10 is polyamide, and the main component of the sheath material 12 is modified polyethylene. The main component of the core material 11 means that it is contained in an amount of 40% by mass or more with respect to the entire components of the core material 11. The main component of the sheath material 12 means that it is contained in an amount of 40% by mass or more based on the total components of the sheath material 12.

<芯鞘複合繊維の材料>
芯材11と鞘材12の融点差は170℃以上であり、180℃以上であることが好ましい。
融点差が170℃以上あれば、鞘材12を溶融させる際に芯材11も溶融させてしまうという失敗が起こりづらくなり、芯鞘複合繊維10からコンポジット100(図3参照)等を成形することが容易になる。なお、コンポジット100の成形については後述する。
したがって、芯材11の主成分のポリアミドと、鞘材12の主成分の変性ポリエステルは、両者の融点差が170℃以上になるような組み合わせで選択する。
<Material of core-sheath composite fiber>
The melting point difference between the core material 11 and the sheath material 12 is 170 ° C. or higher, preferably 180 ° C. or higher.
If the melting point difference is 170 ° C. or higher, the failure of melting the core material 11 when melting the sheath material 12 is unlikely to occur, and the composite 100 (see FIG. 3) or the like is formed from the core-sheath composite fiber 10. Becomes easier. The molding of the composite 100 will be described later.
Therefore, the polyamide as the main component of the core material 11 and the modified polyester as the main component of the sheath material 12 are selected in a combination such that the melting point difference between the two is 170 ° C. or more.

以下、芯材と鞘材の成分それぞれについて詳細を記載する。
(芯材)
本実施形態の芯材11の主成分であるポリアミドは、鞘材12の主成分である変性ポリエチレンとの融点差が170℃以上となるものであれば、特に限定されないが、補強材として使用する観点から高い剛性を備えることが好ましい。ポリアミドとしては、例えば、ポリアミド6、ポリアミド12、ポリアミド66などを使用することができる。
Details of each of the components of the core material and the sheath material will be described below.
(Core material)
The polyamide, which is the main component of the core material 11 of the present embodiment, is not particularly limited as long as it has a melting point difference of 170 ° C. or more from the modified polyethylene, which is the main component of the sheath material 12, but is used as a reinforcing material. From the viewpoint, it is preferable to have high rigidity. As the polyamide, for example, polyamide 6, polyamide 12, polyamide 66 and the like can be used.

(鞘材)
本実施形態の鞘材12の主成分である変性ポリエチレンは、融着させる対象である燃料タンク等のブロー成形において溶融することができ、かつ、芯材11の主成分であるポリアミドとの融点差が170℃以上となる融点を有し、さらに当該ポリアミドと水素結合を形成できるものであれば、特に限定されない。
(Sheath material)
The modified polyethylene, which is the main component of the sheath material 12 of the present embodiment, can be melted in blow molding of a fuel tank or the like to be fused, and has a melting point difference from the polyamide, which is the main component of the core material 11. Is not particularly limited as long as it has a melting point of 170 ° C. or higher and can form a hydrogen bond with the polyamide.

変性ポリエチレンを得る方法としては、例えば、グラフト変性が挙げられる。これは、ポリエチレンの炭素−水素結合を開裂させて発生させた炭素ラジカルに、不飽和官能基を付与する方法である。炭素ラジカルは、電子線や電離放射線の照射や、有機、無機過酸化物等のラジカル発生剤の使用等により発生させることができる。
変性に用いる官能基は、カルボキシル基、アミノ基、水酸基及びシラノール基等から選ぶことができる。これら官能基の中でも水酸基が好ましく、カルボキシル基がより好ましい。
Examples of the method for obtaining modified polyethylene include graft modification. This is a method of imparting an unsaturated functional group to a carbon radical generated by cleaving a carbon-hydrogen bond of polyethylene. Carbon radicals can be generated by irradiation with electron beams or ionizing radiation, or by using radical generators such as organic and inorganic peroxides.
The functional group used for the modification can be selected from a carboxyl group, an amino group, a hydroxyl group, a silanol group and the like. Among these functional groups, a hydroxyl group is preferable, and a carboxyl group is more preferable.

前記官能基を含む構造単位としては、例えば、不飽和カルボン酸又はその誘導体、水酸基含有エチレン性不飽和化合物、アミノ基含有エチレン性不飽和化合物、ビニル基含有有機ケイ素化合物などの化合物に由来する構造単位が挙げられる。これら構造単位の中でも水酸基含有エチレン性不飽和化合物が好ましく、不飽和カルボン酸又はその誘導体がより好ましい。
不飽和カルボン酸又はその誘導体としては、カルボン酸基を1以上有する不飽和化合物、カルボン酸基を有する化合物とアルキルアルコールとのエステル、無水カルボン酸基を1以上有する不飽和化合物等を挙げることができる。
The structural unit containing the functional group includes, for example, a structure derived from a compound such as an unsaturated carboxylic acid or a derivative thereof, a hydroxyl group-containing ethylenically unsaturated compound, an amino group-containing ethylenically unsaturated compound, or a vinyl group-containing organic silicon compound. The unit is mentioned. Among these structural units, a hydroxyl group-containing ethylenically unsaturated compound is preferable, and an unsaturated carboxylic acid or a derivative thereof is more preferable.
Examples of the unsaturated carboxylic acid or a derivative thereof include an unsaturated compound having one or more carboxylic acid groups, an ester of a compound having a carboxylic acid group and an alkyl alcohol, and an unsaturated compound having one or more anhydrous carboxylic acid groups. it can.

不飽和カルボン酸としては、例えばアクリル酸、マレイン酸、フマル酸、テトラヒドロフタル酸、イタコン酸、シトラコン酸、クロトン酸、イソクロトン酸、ナジック酸〔商標〕(エンドシス−ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボン酸)等が挙げられる。
不飽和カルボン酸の誘導体としては、例えばマレイミド、無水マレイン酸、無水シトラコン酸、マレイン酸モノメチル、マレイン酸ジメチル、グリシジルマレエート等が挙げられる。
Examples of unsaturated carboxylic acids include acrylic acid, maleic acid, fumaric acid, tetrahydrophthalic acid, itaconic acid, citraconic acid, crotonic acid, isocrotonic acid, and nadic acid [trademark] (endosys-bicyclo [2.2.1] hept -5-ene-2,3-dicarboxylic acid) and the like.
Examples of the unsaturated carboxylic acid derivative include maleimide, maleic anhydride, citraconic anhydride, monomethyl maleate, dimethyl maleate, and glycidyl maleate.

これらの不飽和カルボン酸及び/又はその誘導体は、1種単独で使用することもできるし、2種以上を組み合せて使用することもでき、中でもアクリル酸が好ましく、無水マレイン酸が反応性が高い点でより好ましい。 These unsaturated carboxylic acids and / or their derivatives can be used alone or in combination of two or more, with acrylic acid being preferred and maleic anhydride having high reactivity. More preferable in terms of points.

<コンポジット成形>
図3に、複数の芯鞘複合繊維10からなるコンポジット100の概略図を示す。
図3上図のように複数本の芯鞘複合繊維10を並べて束にし、加熱により鞘材12を溶融させた後、コールドプレスにより成形させることにより、図3下図のように、多角形の断面を有するコンポジット100とすることができる。
このように芯鞘複合繊維10をコンポジット100に加工すると、芯鞘複合繊維10のままであるより、シート101(図4A参照)に加工するのが容易である。
<Composite molding>
FIG. 3 shows a schematic view of a composite 100 composed of a plurality of core-sheath composite fibers 10.
FIG. 3 As shown in the upper figure of FIG. 3, a plurality of core-sheath composite fibers 10 are arranged side by side to form a bundle, and the sheath material 12 is melted by heating and then molded by cold pressing to form a polygonal cross section as shown in the lower figure of FIG. It can be a composite 100 having.
When the core-sheath composite fiber 10 is processed into the composite 100 in this way, it is easier to process the core-sheath composite fiber 10 into a sheet 101 (see FIG. 4A) than the core-sheath composite fiber 10 remains.

加熱の方法は特に限定されず、IR(赤外線)ヒータ、熱風加熱、熱板加熱等が考えられるが、中でも、安価で簡便であるという点でIRヒータや熱風加熱が好ましい。 The heating method is not particularly limited, and IR (infrared) heater, hot air heating, hot plate heating, and the like can be considered. Among them, an IR heater and hot air heating are preferable because they are inexpensive and simple.

IRヒータや熱風加熱は、安価な反面、熱源からの距離の違いにより温度差が発生しやすく温度管理が困難である。しかし、本実施形態の芯鞘複合繊維10であれば、芯材11と鞘材12の融点差が170℃以上あるため、熱源から遠い鞘材12が溶融するまで加熱を続けると熱源近くの鞘材12の温度が必要以上に高くなってしまう場合であっても、芯材11が溶融しづらい。よって、本発明の芯鞘複合繊維10は安価なIRヒータや熱風加熱でもって、精密な温度管理を要することなくコストを抑えて簡便にコンポジット100を形成することができる。 Although IR heaters and hot air heating are inexpensive, temperature differences are likely to occur due to differences in distance from the heat source, making temperature control difficult. However, in the case of the core-sheath composite fiber 10 of the present embodiment, the melting point difference between the core material 11 and the sheath material 12 is 170 ° C. or more. Even if the temperature of the material 12 becomes higher than necessary, the core material 11 is difficult to melt. Therefore, the core-sheath composite fiber 10 of the present invention can easily form the composite 100 by using an inexpensive IR heater or hot air heating at a low cost without requiring precise temperature control.

<シート成形>
図4Aに、複数の芯鞘複合繊維10からなるシート101の概略図を、図4Bにシート101の断面の拡大図を示す。
複数本の芯鞘複合繊維10、またはコンポジット100を並べて、加熱により鞘材12同士を溶融させ融着させることにより、図4Aのようにシート101とすることができる。図4Bのように、シート101の断面では、溶融し融着した変性ポリエチレンの中に複数の芯材が並び、単なる樹脂シートよりも高い強度を実現している。
<Sheet molding>
FIG. 4A shows a schematic view of a sheet 101 composed of a plurality of core-sheath composite fibers 10, and FIG. 4B shows an enlarged view of a cross section of the sheet 101.
A sheet 101 can be obtained as shown in FIG. 4A by arranging a plurality of core-sheath composite fibers 10 or composite 100 and melting and fusing the sheath materials 12 to each other by heating. As shown in FIG. 4B, in the cross section of the sheet 101, a plurality of core materials are arranged in the melted and fused modified polyethylene, and the strength is higher than that of a simple resin sheet.

このようなシート101は、芯鞘複合繊維10のままであるより、燃料タンク等の外側表皮に密着させるカバー102に加工するのが容易である。一般に、燃料タンク等は複雑な形状を有しており、燃料タンク等の外側と同一の形状を有しこれに密着可能なカバー102を作成するためには、加工性の高さが重要となる。 Such a sheet 101 can be easily processed into a cover 102 that is in close contact with the outer skin of a fuel tank or the like, rather than the core-sheath composite fiber 10 as it is. Generally, a fuel tank or the like has a complicated shape, and in order to create a cover 102 that has the same shape as the outside of the fuel tank or the like and can be closely attached to the cover 102, high workability is important. ..

<燃料タンクとカバーの融着>
図5に、燃料タンクを芯鞘複合繊維10からなるカバーで補強する例を示す斜視図を示す。
燃料タンクは、タンク本体Tと、2つのカバー102とから構成される。なお、図5では、タンク本体Tと、カバー102とが分離しているが、実際には、タンク本体Tと上下のカバー102とは、以下の工程で融着される。
<Fusion of fuel tank and cover>
FIG. 5 is a perspective view showing an example in which the fuel tank is reinforced with a cover made of core-sheath composite fiber 10.
The fuel tank is composed of a tank body T and two covers 102. In FIG. 5, the tank body T and the cover 102 are separated, but in reality, the tank body T and the upper and lower covers 102 are fused in the following steps.

図6〜8に、ブロー成形を行う装置の概略図を示す。
まず、図6に示すように、カバー102の配置に先立ち、エア吸引装置が、吸引孔44からエアの吸引を開始する(破線矢印)。その後、金型42の内側に予め成形済みのカバー102が配置される。カバー102は、成形されるタンク本体Tの外形と同じ形状を有し、金型42に嵌合した状態となっている。
6 to 8 show a schematic view of an apparatus for performing blow molding.
First, as shown in FIG. 6, the air suction device starts sucking air from the suction hole 44 prior to the arrangement of the cover 102 (dashed line arrow). After that, the preformed cover 102 is arranged inside the mold 42. The cover 102 has the same shape as the outer shape of the tank body T to be molded, and is in a state of being fitted to the mold 42.

次に、図7に示すように、融解状態のパリソンPがダイス41から、例えば、筒状に吐出される。この吐出とともに、左右の金型42が吐出されているパリソンPを挟み込む。さらに、この挟み込みと同時に、エアピン43を介して、パリソンP内部に圧縮エアが供給され(実線矢印)、ブロー成形が行われる。これにより、パリソンPが膨張し、膨張したパリソンPはカバー102に押し付けられる(図8参照)。 Next, as shown in FIG. 7, the melted parison P is discharged from the die 41, for example, in a tubular shape. Along with this discharge, the parison P from which the left and right molds 42 are discharged is sandwiched. Further, at the same time as this sandwiching, compressed air is supplied to the inside of the parison P via the air pin 43 (solid arrow), and blow molding is performed. As a result, the parison P expands, and the expanded parison P is pressed against the cover 102 (see FIG. 8).

パリソンPと、カバー102とが接すると、パリソンPの熱によって、カバー102のうち、パリソンPに接する部分が融解する。この結果、タンク本体T(パリソンP)と、カバー102とが融着する。なお、パリソンPの温度は、160℃〜190℃であることが好ましく、180℃〜190℃であることがより好ましい。 When the parison P and the cover 102 come into contact with each other, the heat of the parison P melts the portion of the cover 102 in contact with the parison P. As a result, the tank body T (Parison P) and the cover 102 are fused. The temperature of the parison P is preferably 160 ° C. to 190 ° C., more preferably 180 ° C. to 190 ° C.

10 芯鞘複合繊維
11 芯材
12 鞘材
100 コンポジット
101 シート
102 カバー
2 ローラー
41 ダイス
42 金型
43 エアピン
44 吸引孔(金型に開けられた孔、固定機構)
P パリソン(ポリエチレンに代表される熱可塑性樹脂)
T タンク本体
10 Core-sheath composite fiber 11 Core material 12 Sheath material 100 Composite 101 Sheet 102 Cover 2 Roller 41 Die 42 Mold 43 Air pin 44 Suction hole (hole drilled in mold, fixing mechanism)
P parison (thermoplastic resin typified by polyethylene)
T tank body

Claims (6)

芯材の主成分がポリアミドであり、
鞘材の主成分は不飽和官能基が付与された変性ポリエチレンであり、
前記芯材の融点が、前記鞘材の融点よりも180℃以上高いことを特徴とする芯鞘複合繊維。
The main component of the core material is polyamide,
The main component of the sheath material is modified polyethylene with unsaturated functional groups.
A core-sheath composite fiber characterized in that the melting point of the core material is 180 ° C. or more higher than the melting point of the sheath material.
芯材の主成分がポリアミドであり、
鞘材の主成分は不飽和官能基が付与された変性ポリエチレンであり、
前記芯材の融点が、前記鞘材の融点よりも180℃以上高い芯鞘複合繊維のコンポジットであり、
前記芯材は断面円形状で複数本含まれ、
全体の断面形状が多角形であることを特徴とするコンポジット
The main component of the core material is polyamide,
The main component of the sheath material is modified polyethylene with unsaturated functional groups.
A composite of core-sheath composite fibers in which the melting point of the core material is 180 ° C. or higher higher than the melting point of the sheath material.
The core material has a circular cross section and includes a plurality of core materials.
A composite characterized in that the overall cross-sectional shape is polygonal.
燃料タンクに用いられることを特徴とする請求項1に記載の芯鞘複合繊維。 The core-sheath composite fiber according to claim 1, wherein the core-sheath composite fiber is used in a fuel tank. 燃料タンクに用いられることを特徴とする請求項2に記載のコンポジット。The composite according to claim 2, wherein the composite is used for a fuel tank. ポリアミドを主成分とする芯材の融点が、不飽和官能基が付与された変性ポリエチレンを主成分とする鞘材の融点よりも180℃以上高くなるように構成する工程を含むことを特徴とする芯鞘複合繊維の製造方法。 It is characterized by including a step of configuring the core material containing polyamide as a main component so that the melting point of the core material containing an unsaturated functional group is 180 ° C. or more higher than the melting point of a sheath material containing modified polyethylene as a main component. A method for producing a core-sheath composite fiber. ポリアミドを主成分とする芯材の融点が、不飽和官能基が付与された変性ポリエチレンを主成分とする鞘材の融点よりも180℃以上高くなるように構成して芯鞘複合繊維を形成する工程と、
前記鞘材を溶融させた前記芯鞘複合繊維の束をコールドプレスにより押し出して、断面形状が多角形のコンポジットに成形する工程とを含むことを特徴とするコンポジットの製造方法。
The core-sheath composite fiber is formed by configuring the core material containing polyamide as the main component so that the melting point of the core material containing unsaturated functional groups is 180 ° C. or more higher than the melting point of the sheath material containing modified polyethylene as the main component. Process and
A method for producing a composite , which comprises a step of extruding a bundle of the core-sheath composite fibers in which the sheath material is melted by a cold press to form a composite having a polygonal cross section.
JP2018220474A 2018-11-26 2018-11-26 Manufacturing method of core-sheath composite fiber and core-sheath composite fiber Active JP6871892B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018220474A JP6871892B2 (en) 2018-11-26 2018-11-26 Manufacturing method of core-sheath composite fiber and core-sheath composite fiber
CN201911164893.2A CN111218728A (en) 2018-11-26 2019-11-25 Core-sheath composite fiber and method for producing core-sheath composite fiber
US16/693,449 US20200165749A1 (en) 2018-11-26 2019-11-25 Core-sheath composite fiber and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018220474A JP6871892B2 (en) 2018-11-26 2018-11-26 Manufacturing method of core-sheath composite fiber and core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JP2020084371A JP2020084371A (en) 2020-06-04
JP6871892B2 true JP6871892B2 (en) 2021-05-19

Family

ID=70770569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018220474A Active JP6871892B2 (en) 2018-11-26 2018-11-26 Manufacturing method of core-sheath composite fiber and core-sheath composite fiber

Country Status (3)

Country Link
US (1) US20200165749A1 (en)
JP (1) JP6871892B2 (en)
CN (1) CN111218728A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699621A (en) * 2021-10-11 2021-11-26 南通新帝克单丝科技股份有限公司 Polyamide-polyester composite monofilament and preparation method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380477A (en) * 1993-05-25 1995-01-10 Basf Corporation Process of making fiber reinforced laminates
US5424115A (en) * 1994-02-25 1995-06-13 Kimberly-Clark Corporation Point bonded nonwoven fabrics
JPH08151483A (en) * 1994-11-30 1996-06-11 Idemitsu Petrochem Co Ltd Fiber reinforced polyolefin resin molding material, molding method, and molded article
JP4315663B2 (en) * 2002-10-17 2009-08-19 ユニチカ株式会社 Method for producing nonwoven fabric comprising core-sheath composite long fiber
CN100372885C (en) * 2006-02-23 2008-03-05 广州金发科技股份有限公司 Continuous long fiber reinforced composite nylon/polyolefin material and its prepn
TW200829741A (en) * 2007-01-12 2008-07-16 Far Eastern Textile Ltd Modifying copolymer, sheath layer material modified with the same and core-sheath composite fiber
JP2008207777A (en) * 2007-02-28 2008-09-11 Teijin Fibers Ltd Vehicle interior trim material
CN103709742B (en) * 2012-09-29 2016-03-23 黑龙江鑫达企业集团有限公司 A kind of modification of aramid fiber reinforced plastic PA66 material and preparation method thereof
EP3026149B1 (en) * 2013-07-23 2018-09-05 Ube Exsymo Co., Ltd. Method for producing drawn conjugated fiber, and drawn conjugated fiber
JP6561414B2 (en) * 2014-01-17 2019-08-21 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. Polyamide fiber
CN106917160A (en) * 2015-12-28 2017-07-04 东丽纤维研究所(中国)有限公司 A kind of hygroscopicity sheath-core type conjugate fiber, false twist yarn and fiber body structure
JP6836765B2 (en) * 2017-04-20 2021-03-03 ユニチカ株式会社 Method for manufacturing drawn multifilament yarn
CN107723838B (en) * 2017-09-19 2020-05-15 广东省化学纤维研究所 Hot-melt adhesive composite fiber and preparation method thereof

Also Published As

Publication number Publication date
CN111218728A (en) 2020-06-02
US20200165749A1 (en) 2020-05-28
JP2020084371A (en) 2020-06-04

Similar Documents

Publication Publication Date Title
US20140154494A1 (en) Method of manufacturing a bonded body
CN105172144B (en) A kind of multistage wire feed printhead of continuous fiber reinforced composite materials 3D printing
JP4813654B2 (en) Method of prepreg with resin and novel prepreg produced by the method
JP6871892B2 (en) Manufacturing method of core-sheath composite fiber and core-sheath composite fiber
JP2019018399A (en) Manufacturing method and manufacturing apparatus of molded article
CN101342787A (en) Compound material special piece molding method and molding central spindle
KR20150132190A (en) Composite-material joining device, method for producing joined body, and joined body
JP2011218559A (en) Composite member and method of manufacturing the same
JP2015093479A (en) Fiber reinforced composite molding and method for manufacturing the same
KR20190135491A (en) Method of manufacturing fiber board
KR20150116859A (en) Method for producing a pvc long fibre thermoplastic
JP2005329567A (en) Resin panel and its manufacturing method
KR101061914B1 (en) FRP treated synthetic resin tube
JPH079589A (en) Production of bamper beam
WO1994003322A1 (en) Molded laminate and method of producing the same
JPH0565357A (en) Fiber-reinforced thermoplastic resin sheet
US11673350B2 (en) Production method and production system for producing a continuous-fiber-reinforced component
JP2008128168A (en) Duct and its manufacturing method
JP2006001035A (en) Polypropylene resin laminating and molding material and laminate thereof
CN104277328A (en) LFT-D automobile seat framework and manufacturing method thereof
CN108025523A (en) For manufacturing the multilayer materials of improved plastics structural shape, the container that is made of the composite material, and the method for manufacturing the container
US9470355B2 (en) Method for producing a tube or semi-finished tube and tube or semi-finished tube for chemical apparatus construction
JPH03234522A (en) Fibrous matter reinforcing sheet for reinforced plastic
JPH08174701A (en) Manufacture of hollow fiber reinforced thermoplastic resin product
KR102388892B1 (en) Post-forming method of carbon-fiber-reinforced thermoplastic composite using stitching technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210330

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210416

R150 Certificate of patent or registration of utility model

Ref document number: 6871892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150