WO1992015734A1 - Composite fiber having porous sheath part - Google Patents

Composite fiber having porous sheath part Download PDF

Info

Publication number
WO1992015734A1
WO1992015734A1 PCT/JP1992/000261 JP9200261W WO9215734A1 WO 1992015734 A1 WO1992015734 A1 WO 1992015734A1 JP 9200261 W JP9200261 W JP 9200261W WO 9215734 A1 WO9215734 A1 WO 9215734A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheath
fiber
porous
composite fiber
core
Prior art date
Application number
PCT/JP1992/000261
Other languages
French (fr)
Japanese (ja)
Inventor
Isamu Takahashi
Yoshio Iida
Original Assignee
Ube-Nitto Kasei Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nitto Kasei Co., Ltd. filed Critical Ube-Nitto Kasei Co., Ltd.
Priority to JP4506083A priority Critical patent/JP2989267B2/en
Publication of WO1992015734A1 publication Critical patent/WO1992015734A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43916Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres microcellular fibres, e.g. porous or foamed fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4391Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres
    • D04H1/43918Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece characterised by the shape of the fibres nonlinear fibres, e.g. crimped or coiled fibres

Definitions

  • the present invention relates to a composite fiber having a sheath portion formed by making a polyolefin-based synthetic resin porous, and more particularly to a porous fiber having practically usable fiber strength and force-treatability.
  • a porous water-absorbing polyester fiber or the like has been used as a fiber for clothing, and water absorbing performance has been provided to improve comfort.
  • polyolefin microporous fibers have been developed as various kinds of hollow fiber membranes for separation, and are widely used in the fields of medicine, engineering, and consumer use. Many such microporous fibers have been developed in the past, but there were technical difficulties in controlling the shape or size of the holes.
  • polyolefin-based porous fiber propylene or polyethylene is spun hollow at low temperature and high draft, and after heat treatment, is stretched to a predetermined magnification or stretched at cryogenic temperature. Then, it is known to obtain hollow fibers having strip-shaped voids by so-called lamellae, but these are mainly used as the above-mentioned hollow fiber membranes and the like.
  • the denier is relatively large and the pore size is relatively small, making it unsuitable for applications that make use of functions such as liquid retention and ripening.
  • the present inventors have studied porous fibers having relatively low denier, and as the porosity of the porous fiber is increased, the strength of the arrowhead fiber is significantly reduced, which causes a practical problem. Know that there is I got it. In other words, in the case of fibers with high porosity, the strength is greatly reduced, and when the fibers are processed into a nonwoven fabric, woven fabric, or the like, only low-strength fibers can be obtained. Further, for example, even if the porous fiber is made of high-density polyethylene and has a porosity of 30 to 50%, it is difficult to impart crimp in the fiber manufacturing process, and therefore, it is necessary to use a card. At the time of processing, there is a problem that the fiber sinks into the card cylinder, the web connection is poor, and uniform carding cannot be performed.
  • polyethylene-based porous fibers need to be sufficiently resistant to use in boiling water and disinfection by steam. It is mixed with a binder fiber consisting of a composite fiber of polyethylene fiber and polyethylene propylene, applied to a card and made into a web, and then passed through a heat roller such as an emboss roller or a force render roller to be thermally bonded.
  • a heat roller such as an emboss roller or a force render roller to be thermally bonded.
  • the overall effect is about 130 V in the case of a porous fiber, and shrinkage increases the effect and decreases the porosity.
  • the surface temperature of the heat roller could not be raised to 120 ° C. or more even when the fabric was formed, and the productivity of the nonwoven fabric was low. Accordingly, the present inventors have conducted intensive studies on the practical strength, good card permeability, and the structure of polyolefin-based porous fibers that can withstand higher temperatures during nonwoven fabric manufacturing and nonwoven fabric use, and completed the present invention. did.
  • the composite fiber according to the present invention is a sheath-core type composite fiber comprising a sheath made of a polyolefin-based synthetic resin made porous and a nonporous core, wherein the sheath has an apparent appearance.
  • the basic feature is that the cross-sectional area is in the range of 20 to 80% of the total cross-sectional area of the fiber.
  • Polyethylene and polypropylene are suitable as the polyolefin resin that can be used in the present invention.
  • the melt flow rate is determined by a measurement method according to ASTM D12238.
  • High-density polyethylene with an (MFR) value of 0.3 to 20 g / lO min (HDPE) is recommended.
  • the polypropylene has a density of about 0.90 or more and an MFR value in the range of 0.5 to 20 gZ10 minutes by the same measuring method.
  • the melt viscosity during melt spinning after mixing with paraffin-pack at the time of forming the porous body becomes inadequate, and a problem occurs during spinning.
  • a paraffin wax mainly composed of a saturated aliphatic compound, a hydrocarbon compound, etc. This can be achieved by eluting the wax with a solvent.
  • the resin component used in the core of the composite fiber of the present invention has a melting point difference from a homopolymer such as high-density polyethylene or polypropylene or a polyolefin resin such as copolymer, or HDPE in the sheath.
  • a homopolymer such as high-density polyethylene or polypropylene or a polyolefin resin such as copolymer, or HDPE in the sheath.
  • Approximately 70 or less low melting point or low melting point Polyester resin and the like can be mentioned, but polypropylene homopolymer is desirable from the viewpoint of fiber physical properties and suitability for composite spinning.
  • the cross-sectional area ratio between the sheath and the core should be such that the apparent cross-sectional area of the sheath is within the range of 2 ⁇ ⁇ of the total cross-sectional area of the fiber.
  • the ratio of the porous portion is small, and the function of the porous fiber cannot be sufficiently exhibited.
  • the content exceeds 80%, the strength retention by the core is insufficient and the strength becomes practical. I can't reach it.
  • the apparent cross-sectional area of the sheath is a cross-sectional area defined by the maximum outer periphery of the sheath and the outer periphery of the core, and is an area including a void portion.
  • the total cross-sectional area of the fiber is the sum of the apparent cross-sectional area of the sheath and the cross-sectional area of the core.
  • the composite fiber having a porous sheath portion of the present invention is composed of a porous sheath portion and a solid core portion, the crimping is performed on the core portion in the crimping process to the fiber. Therefore, crimping is sufficient, and strength can be ensured by the core, so that entanglement between single fibers is possible, and problems of card suitability and strength, which have been problems in the past, are effective. Can be resolved.
  • the composite fiber of the present invention is composed of a porous sheath and a solid core, the core suppresses shrinkage when heated, so that the shrinkage of the porous sheath is entirely reduced. It becomes smaller than the case where it is made of a porous material, the decrease in the porosity of the porous sheath portion due to heating is small, and the heat resistance of the entire composite fiber is improved.
  • HDPE with MFR value of 5.5 g '10 min as raw material for sheath (Mitsui Petrochemical: Hi-Zex 220 J) 100 parts by weight, density 0.78 g / cc, melting point 59 ° C paraffin wax (Nippon Oil 135 degree paraffin ) After mechanically mixing with 100 parts by weight, put them in a flat bottomed container, put them in an oven of 150 hours for 2.5 hours, make them homogeneously compatible, cool and solidify. This was crushed to prepare a raw material for melt spinning.
  • a raw material for the core part polypropylene (TS365, manufactured by Ube Industries, Ltd.) with an MFR value of 8 OgZl0 was used, and two units with a screw diameter of 32 mm were used.
  • the above-mentioned raw material for the sheath portion is supplied to the extruder for the sheath portion by a sheath-core composite spinning device which is composed of an extruder and has a composite nozzle of 0.40 ⁇ 500 H attached thereto.
  • An undrawn yarn of 10 denier was spun at a nozzle temperature of 170 ° C. and a spinning speed of 400 m / min with a core cross-sectional area ratio of 5: 5.
  • the porosity will be about 15%.
  • the undrawn yarn is bundled to about 20,000 denier, and the first drawing roller speed is 8 m minutes and the second drawing roller speed is 32 mZ minutes under a 100 ° C. atmosphere using a drawing roller. And stretched 4 times and wound up on a bobbin.
  • the fiber wound on the bobbin is subjected to a constant-length heat treatment in an oven set at 110 ° C. for one hour, and then crimped at a rate of 12 pieces / inch using a lid box type crimper. After crimping with a target of, this fiber is pressed to about 51 mm to make it into a short fiber form, which is then put into a Soxhlet extractor and sheathed with n-hexane. Extract the paraffin mix of the Was done.
  • the resulting composite fiber had a denier of 2.5 densities, a strength of 2.59 g Zd, an elongation of 150 ° C., a number of crimps of 12.5 pieces, an inch, and a porosity of 35.3%.
  • the porosity was calculated from the following equation.
  • Diameter denier 1 R 2 X i) 0 x 9 0 0 0 X l 0 5
  • Example 2 In the same manner as in Example 1 except that the same sheath material and core material as in Example 1 were used, the cross-sectional area ratio of the sheath core was 8: 2, and the nozzle temperature was 160 ° C. After spinning 10 denier undrawn, and then drawing, heat treatment, crimping, and pressing as in Example 1, this was put into a Soxhlet extractor, and the sheath portion was similarly drawn. Porosity was performed.
  • the obtained fiber had a denier of 2.1, a strength of 1. gsg./d, and an elongation.
  • Example 4 The same material as that of Example 1 was used for the sheath portion, and polypropylene having an MFR value of 48 (Ube Industries, Ltd .: ZS-1238) was used as the core material. The one having a core ratio of 7: 3 (Example 3) and the other having a core ratio of 2: 8 (Example 4) were spun. In Example 4, the nozzle temperature was set at 200 ° C., and the other conditions were the same as in Example 1 for both Examples 3 and 4.
  • the composite fiber obtained was that of Example 3, 2.2 denier.
  • the strength was 2.15 g / d, the elongation was 95, the porosity was 46.5%, and that of Example 4 was 3.1 denier, strength 3.10 g Zd, elongation 150%, porosity 17.0%, all of which have good cardability.
  • Example 2 The same raw material as in Example 1 was used for the sheath, and the melting point was 176 to 18 (low melting point nylon of TC (Ube Industries, Ltd .: 3035U)) for the core, and the sheath-to-core ratio was 5: 5.
  • a composite fiber was obtained in the same manner as in Example 1 except that a 10-denier undrawn yarn was obtained at a nozzle temperature of 170.
  • the composite fiber had 2.4 denier, a strength of 2.36 g Zd, an elongation of 180%, and a porosity of 33.8 ⁇ 3 ⁇ 4, and had good force permeability. Comparative Examples 1 and 2
  • Polypropylene with an MFR value of 310 minutes (Ube Industries, Ltd .: YK121) 100 parts by weight and paraffin wax (Nippon Oil Co., Ltd .: 135 ° paraffin) After 100 parts by weight were mechanically mixed with the mixture, the mixture was placed in a flat-bottomed container and placed in a 180 ° C oven for 2.5 hours to allow both to be uniformly mixed, and then cooled. It was solidified and pulverized to obtain a sheath material for melt spinning.
  • the core is made of polypropylene (MFR value: 48, manufactured by Ube Industries, Ltd .: ZS-1238), and is composed of two extruders with a screw diameter of 32 mm.
  • the above-mentioned raw material for the sheath portion is supplied to the extruder for the sheath portion by the sheath-core compound spinning device having a composite nozzle of 0.4 ⁇ X500H attached, and the cross-sectional area ratio of the sheath core is set to 8 As a ratio of 2, a 10-denier undrawn yarn was spun at a nozzle temperature of 200 and a spinning speed of 400 minutes.
  • the undrawn yarns are bundled to about 20,000 denier, and the first drawing roller speed is 8 m / min and the second drawing port speed is 24 m / min by a drawing roller in an atmosphere of 100 ° C.
  • the film was stretched three times and wound on a bobbin.
  • the fiber as wound on this bobbin is heat-treated for 1 hour in an oven at 130 ° C, and then 12 pieces of Z-inch with a staffing box type crimper.
  • this fiber After crimping with the number of crimps as a target, this fiber is pressed to about 51 mm to make it into a short fiber, and then put into a Soxhlet extractor, and n-hex The paraffin wax in the sheath was extracted by Sun to make the sheath porous.
  • the obtained composite textile had a strength of 2.2 g Zd and an elongation of 360 porosity of 259, and had good force properties.
  • Example 6 the raw material of the sheath part of Example 6 was used, and a 0.4- ⁇ x 160-hole nozzle was attached to a single-screw spinning machine with a screw diameter of 25 mm. After spinning a 10-denier undrawn yarn at a nozzle temperature of 175 ° C., a porous fiber was obtained in the same manner as in Example 6, except that the drawing ratio was set to 3 times. The obtained fiber had a strength of 1.9 g d, an elongation of 450%, and a porosity of 2696.
  • the porosity is equal to or higher than that of the whole, despite the small content of paraffin wax.
  • Example 2 has a porosity of 48.8 ⁇ 3 ⁇ 4 with a paraffin wax of 40.
  • Comparative Example 1 is a 5 0 0 porosity 4 5 paraffin I Nwa click scan of.
  • the sheath of Example 2 has a porosity of 61% '.
  • the reason for this is considered as follows. In other words, the spinning temperature must be increased because a high-melting polypropylene component is added during spinning, and as a result, the porous sheath tends to cool more slowly. Spun in a lamellar crystal It is presumed that the length is promoted and the pore size increases.
  • Comparative Example 1 since the spinning is performed with a single PE porous portion, raising the nozzle temperature and performing the cooling conditions more slowly deteriorates the spinnability or deniers. It is not preferable because it causes an increase in unevenness.
  • the composite textile of Example 6 since the composite textile of Example 6 has high heat resistance, it is expected to be used as a liquid filter used in boiling water and can be subjected to high-temperature sterilization (130 ° C) using an autoclave. .
  • the strength is high, the card suitability is improved, and the heat resistance is also provided, so that a high-temperature liquid filter or high-temperature sterilization is possible. It can be used as a raw material for non-woven fabrics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)

Abstract

A composite fiber having a strength sufficient for practical use, easily going through carding process, and resistant to higher temperature when being processed into non-woven fabric or used as a non-woven fabric, which fiber is provided with a sheath part composed of porous polyolefin series synthetic resin and a non-porous core part. An apparent cross-sectional area of said sheath part is from 20 to 80 % of the entire cross-sectional area of the fiber. Said polyolefin series synthetic resin is preferably high density polyethylene or polyproylene. Said resin is made porous by mixing it with paraffin wax which is then removed after spinning process. The core part is selected from polyprolylene resin, nylon of low melting point, and polyester of low melting point.

Description

明 細 書  Specification
多孔質鞘部を有する複合繊維  Composite fiber with porous sheath
技術分野 Technical field
本発明は、 ポリ オレフ イ ン系合成樹脂を多孔質化してなる 鞘部を有する複合繊維に関し、 とりわけ、 実用に供し得る繊 維強度や力一 ド処理性を有する多孔質繊維に関する。  TECHNICAL FIELD The present invention relates to a composite fiber having a sheath portion formed by making a polyolefin-based synthetic resin porous, and more particularly to a porous fiber having practically usable fiber strength and force-treatability.
背景技術 Background art
従来、 微細孔を有する合成繊維と しては、 衣料用繊維と し て多孔吸水性ポリエステル繊維等があり、 吸水性能をもたせ て着心地の向上を図っている。 一方、 ポリ オレフィ ン系微細 孔織維は各種の分離用中空糸膜として開発され、 医療, 工学, 民生等の分野で広く利用されている。 このような微細孔織維 は、 従来から数多く 開発されているが、 孔の形状ないしは大 きさを制御するこ とに、 技術的に困難な問題があった。  Conventionally, as a synthetic fiber having micropores, a porous water-absorbing polyester fiber or the like has been used as a fiber for clothing, and water absorbing performance has been provided to improve comfort. On the other hand, polyolefin microporous fibers have been developed as various kinds of hollow fiber membranes for separation, and are widely used in the fields of medicine, engineering, and consumer use. Many such microporous fibers have been developed in the past, but there were technical difficulties in controlling the shape or size of the holes.
例えば、 ポリ オレフイ ン系の多孔性縑維と して、 ポリ プロ ピレンあるいはポリエチレンを中空状に低温, 高 ドラフ トで 紡糸し、 熱処理後所定倍率に延伸し、 あるいは極低温下で延 伸するなどして、 いわゆるラメ ラスタ ッ クによる短冊状空隙 を有する中空繊維を得るこ とが知られているが、 これらは主 と して前述の中空糸膜等と して使用される ものであって、 デ ニールが比較的大き く孔径も比較的小さいものであり、 保液 性, 断熟性などの機能を活かした用途には不向きであった。  For example, as a polyolefin-based porous fiber, propylene or polyethylene is spun hollow at low temperature and high draft, and after heat treatment, is stretched to a predetermined magnification or stretched at cryogenic temperature. Then, it is known to obtain hollow fibers having strip-shaped voids by so-called lamellae, but these are mainly used as the above-mentioned hollow fiber membranes and the like. The denier is relatively large and the pore size is relatively small, making it unsuitable for applications that make use of functions such as liquid retention and ripening.
そこで、 本発明者等は、 比較的低デニールの多孔性繊維に ついて検討したところ、 多孔性織維の空隙率を増してい く と 鏃維の強度低下が著し く なり、 実用上の問題がある こ とを知 得した。 すなわち、 高空隙化した繊維では、 その強度が大き く低下し、 これを不織布, 織布等に加工した場合に低強度の ものしか得られない。 また、 例えば高密度ポリエチレンによ る空隙率が 3 0 〜 5 0 %の多孔質繊維であつても、 繊維の製 造過程において捲縮の付与がしにく く、 このためカー ドによ る加工に際して、 カー ドのシリ ンダーに繊維が沈み込んでゥ ェブのつながりが悪く、 均一なカーディ ングができないなど の問題がある。 Thus, the present inventors have studied porous fibers having relatively low denier, and as the porosity of the porous fiber is increased, the strength of the arrowhead fiber is significantly reduced, which causes a practical problem. Know that there is I got it. In other words, in the case of fibers with high porosity, the strength is greatly reduced, and when the fibers are processed into a nonwoven fabric, woven fabric, or the like, only low-strength fibers can be obtained. Further, for example, even if the porous fiber is made of high-density polyethylene and has a porosity of 30 to 50%, it is difficult to impart crimp in the fiber manufacturing process, and therefore, it is necessary to use a card. At the time of processing, there is a problem that the fiber sinks into the card cylinder, the web connection is poor, and uniform carding cannot be performed.
また、 ある種の用途では耐熱性が要求され、 例えば、 ポリ ェチレン系の多孔性繊維については、 沸騰水中での使用や、 蒸気による消毒等に十分耐えるこ とが必要である。 また、 ポ リエチレン線維ゃポリエチレンノポリ プロ ピレンの複合線維 からなるバインダー織維と混ぜてカー ドにかけウエ ッ ブとさ れた後、 エンボスローラや力 レンダーローラなどの熱ローラ を通過させて熱接着不織布とする場合に、 全体が多孔質の織 維では熱による収縮が原因で空隙率が低下したり、 不織布が 縮んだりするのを防ぐことが必要になる。 この場合、 ポリ プ ロピレン系多孔性織維においても、 全体が多孔質の繊維では 1 3 0 Vぐらいから収縮により影響が大き く なり空隙率が低 下する、 そのためバインダー繊維と混ぜてゥヱ ッ ブを作成し ても熱ロ ーラの表面温度を 1 2 0 °C以上に上げることができ ず、 不織布の生産性が低いという欠点があった。 そこで本発 明者らは、 実用的強度、 良好なカー ド通過性、 更に不織布の 製造時及び不織布の使用時により高温に耐えるポリオレフィ ン系多孔質繊維の構成について鋭意検討を重ね本発明を完成 した。 In addition, heat resistance is required for certain applications. For example, polyethylene-based porous fibers need to be sufficiently resistant to use in boiling water and disinfection by steam. It is mixed with a binder fiber consisting of a composite fiber of polyethylene fiber and polyethylene propylene, applied to a card and made into a web, and then passed through a heat roller such as an emboss roller or a force render roller to be thermally bonded. When a nonwoven fabric is used, it is necessary to prevent the porosity from decreasing due to heat shrinkage and to prevent the nonwoven fabric from shrinking when the fabric is entirely porous. In this case, even in the case of a polypropylene-based porous fiber, the overall effect is about 130 V in the case of a porous fiber, and shrinkage increases the effect and decreases the porosity. However, the surface temperature of the heat roller could not be raised to 120 ° C. or more even when the fabric was formed, and the productivity of the nonwoven fabric was low. Accordingly, the present inventors have conducted intensive studies on the practical strength, good card permeability, and the structure of polyolefin-based porous fibers that can withstand higher temperatures during nonwoven fabric manufacturing and nonwoven fabric use, and completed the present invention. did.
発明の開示 Disclosure of the invention
本発明にかかる複合繊維は、 ポリ オレ フ イ ン系合成樹脂を 多孔質化してなる鞘部と、 非多孔質の芯部とからなる鞘芯型 複合繊維であって、 前記鞘部の見掛けの断面積が繊維全断面 積の 2 0〜 8 0 %の範囲であるこ とを基本的な特徵と してい る。 本発明に使用できるポリ オレフイ ン樹脂と しては、 ポリ エチレ ン, ポリ プロ ピレ ンが好適であり、 ポリエチレンの場 合は、 A S TM D 1 2 3 8に準じた測定方法による メル ト フローレー ト (MF R) 値が 0. 3〜 2 0 g/ l 0分の高密度 ポリエチレン (以下、 HD P Eと略す) が推奨される。 また 、 ポリ プロ ピレンとしては、 密度が概ね 0. 9 0以上のもので あって、 同測定方法による MF R値が、 0. 5〜 2 0 gZ10分 の範囲内のものが好ま しい。  The composite fiber according to the present invention is a sheath-core type composite fiber comprising a sheath made of a polyolefin-based synthetic resin made porous and a nonporous core, wherein the sheath has an apparent appearance. The basic feature is that the cross-sectional area is in the range of 20 to 80% of the total cross-sectional area of the fiber. Polyethylene and polypropylene are suitable as the polyolefin resin that can be used in the present invention. In the case of polyethylene, the melt flow rate is determined by a measurement method according to ASTM D12238. High-density polyethylene with an (MFR) value of 0.3 to 20 g / lO min (HDPE) is recommended. Further, it is preferable that the polypropylene has a density of about 0.90 or more and an MFR value in the range of 0.5 to 20 gZ10 minutes by the same measuring method.
MF Rが上記範囲を外れると、 多孔質化する際にパラフィ ン ヮ ッ クスと混合した後における溶融紡糸時の溶融粘度が不 適性となり紡糸の際に問題が生じる。 鞘部の多孔質化は、 例 えば鞘部を溶融紡糸するに際して、 飽和脂肪族、 炭化水素化 合物等を主体とするパラフ ィ ン ワ ッ ク スを混合して紡糸した 後、 パラ フ ィ ン ワ ッ ク スを溶剤によ り溶出する こ とによ り達 成できる。  When the MFR is out of the above range, the melt viscosity during melt spinning after mixing with paraffin-pack at the time of forming the porous body becomes inadequate, and a problem occurs during spinning. To make the sheath porous, for example, when melt-spinning the sheath, after mixing and spinning a paraffin wax mainly composed of a saturated aliphatic compound, a hydrocarbon compound, etc. This can be achieved by eluting the wax with a solvent.
本発明の複合繊維の芯部に使用する樹脂成分は、 高密度ポ リエチレン, ポリ プロ ピレ ン等のホモポリマーあるいはコポ リマー等のポリ オレ フイ ン樹脂、 あるいは鞘部の HD P Eと の融点差が概ね 7 0て以内の低融点ナイ 口 ンあるいは低融点 ポリエステル樹脂等が挙げられるが、 線維物性、 複合紡糸適 性等の点からはポリ プロピレンホモポリマーが望ま しい。 鞘部と芯部の断面積比率は、 鞘部の見掛けの断面積を繊維 全断面積の 2 Ο δ Ο ^の範囲とする必要がある。 2 0 <¾未 満では、 多孔質部分の比率が少く、 多孔質性織維の機能を十 分発現できないし、 8 0 %を超えると芯部による強度保持が 不十分となつて実用強度に達し得ない。 The resin component used in the core of the composite fiber of the present invention has a melting point difference from a homopolymer such as high-density polyethylene or polypropylene or a polyolefin resin such as copolymer, or HDPE in the sheath. Approximately 70 or less low melting point or low melting point Polyester resin and the like can be mentioned, but polypropylene homopolymer is desirable from the viewpoint of fiber physical properties and suitability for composite spinning. The cross-sectional area ratio between the sheath and the core should be such that the apparent cross-sectional area of the sheath is within the range of 2ΟδΟ ^ of the total cross-sectional area of the fiber. When the value is less than 20 <¾, the ratio of the porous portion is small, and the function of the porous fiber cannot be sufficiently exhibited.When the content exceeds 80%, the strength retention by the core is insufficient and the strength becomes practical. I can't reach it.
なお、 本発明における鞘部の見掛けの断面積は、 鞘部の最 大外周と芯部の外周により画される断面積であって、 空隙部 分をも含めた面積である。 また、 織維全断面積とは、 上述の 鞘部の見掛け断面積と芯部の断面積との和である。  In the present invention, the apparent cross-sectional area of the sheath is a cross-sectional area defined by the maximum outer periphery of the sheath and the outer periphery of the core, and is an area including a void portion. The total cross-sectional area of the fiber is the sum of the apparent cross-sectional area of the sheath and the cross-sectional area of the core.
本発明の多孔質鞘部を有する複合織維は、 多孔質の鞘部と 中実の芯部とからなつているので、 繊維への捲縮加工におい て捲縮が芯部に賦形されるので捲縮付与が十分であり、 かつ、 芯部により強度が確保できるので、 単繊維間の絡合が可能と なつて従来において問題となつていたカー ド適性の問題や、 強度の問題を有効に解決でぎる。  Since the composite fiber having a porous sheath portion of the present invention is composed of a porous sheath portion and a solid core portion, the crimping is performed on the core portion in the crimping process to the fiber. Therefore, crimping is sufficient, and strength can be ensured by the core, so that entanglement between single fibers is possible, and problems of card suitability and strength, which have been problems in the past, are effective. Can be resolved.
また、 本発明の複合繊維は、 多孔質の鞘部と中実の芯部と からなつているので、 加熱した時に芯部が収縮を抑制するの で、 多孔質鞘部の収縮が、 全体を多孔質で構成した場合より も小さ く なり、 加熱に対する多孔質鞘部の空隙率の減少が小 さ く、 複合繊維全体の耐熱性が向上する。  In addition, since the composite fiber of the present invention is composed of a porous sheath and a solid core, the core suppresses shrinkage when heated, so that the shrinkage of the porous sheath is entirely reduced. It becomes smaller than the case where it is made of a porous material, the decrease in the porosity of the porous sheath portion due to heating is small, and the heat resistance of the entire composite fiber is improved.
以下、 本発明につき好適な実施例により説明する。  Hereinafter, preferred embodiments of the present invention will be described.
実施例 1 Example 1
鞘部の原料と して M F R値が 5. 5 g ' 1 0分の H D P E (三井石油化学 : ハイゼッ クス 2 2 0 0 J ) 1 0 0重量部と 密度 0. 7 8 g /cc, 融点 5 9 °Cのパラフ ィ ンワ ッ ク ス (日本 石油製 1 3 5度パラフィ ン) 1 0 0重量部とを機械的に混合 した後、 平型底の容器に入れ 1 5 0 のオーブン中に 2. 5時 間入れて、 両者を均一に相溶させた後、 冷却固化し、 これを 粉砕して溶融紡糸用の原料を調整した。 HDPE with MFR value of 5.5 g '10 min as raw material for sheath (Mitsui Petrochemical: Hi-Zex 220 J) 100 parts by weight, density 0.78 g / cc, melting point 59 ° C paraffin wax (Nippon Oil 135 degree paraffin ) After mechanically mixing with 100 parts by weight, put them in a flat bottomed container, put them in an oven of 150 hours for 2.5 hours, make them homogeneously compatible, cool and solidify. This was crushed to prepare a raw material for melt spinning.
一方、 芯部用の原料と して、 M F R値が 8 O g Z l 0分の ポリ プロ ピレン (宇部興産製 : T S 3 6 5 ) を使用し、 スク リ ュー径 3 2 mmの 2台の押出機で構成し、 0. 4 0 x 5 0 0 H の複合ノ ズルを取着した鞘芯型複合紡糸装置により、 鞘部用 の押出機には前記の鞘部用原料を供給し、 鞘芯の断面積比を 5 : 5 と して、 ノ ズル温度 1 7 0 °C、 紡糸速度 4 0 0 m /分 で 1 0 デニールの未延伸糸を紡糸した。  On the other hand, as a raw material for the core part, polypropylene (TS365, manufactured by Ube Industries, Ltd.) with an MFR value of 8 OgZl0 was used, and two units with a screw diameter of 32 mm were used. The above-mentioned raw material for the sheath portion is supplied to the extruder for the sheath portion by a sheath-core composite spinning device which is composed of an extruder and has a composite nozzle of 0.40 × 500 H attached thereto. An undrawn yarn of 10 denier was spun at a nozzle temperature of 170 ° C. and a spinning speed of 400 m / min with a core cross-sectional area ratio of 5: 5.
なお、 この段階でパラ フ ィ ンワ ッ ク スを抽出すると空隙率 は、 約 1 5 %程度になる。  At this stage, if the paraffin wax is extracted, the porosity will be about 15%.
この未延伸糸を合束して約 2万デニールと し、 1 0 0 °Cの 雰囲気下で延伸ローラーによ'り、 第 1 延伸ローラー速度 8 m 分、 第 2延伸ローラー速度 3 2 mZ分で 4倍に延伸してボ ビンに巻取った。  The undrawn yarn is bundled to about 20,000 denier, and the first drawing roller speed is 8 m minutes and the second drawing roller speed is 32 mZ minutes under a 100 ° C. atmosphere using a drawing roller. And stretched 4 times and wound up on a bobbin.
次いで、 このボビンに巻取ったままの繊維を 1 1 0てのォ ーブン中で 1 時間定長熱処理した後、 フタ ッ フイ ングボッ ク スタイプのク リ ンパーで 1 2個 /イ ンチの捲縮数を目標と し て捲縮加工した後、 この繊維を約 5 1 mmに力 ッ ト して短繊維 状とした後、 これをソ ッ クスレー抽出器に入れて、 n —へキ サンにより鞘部のパラフ ィ ン ヮ ッ ク スを抽出して鞘部の多孔 化を行なつた。 Next, the fiber wound on the bobbin is subjected to a constant-length heat treatment in an oven set at 110 ° C. for one hour, and then crimped at a rate of 12 pieces / inch using a lid box type crimper. After crimping with a target of, this fiber is pressed to about 51 mm to make it into a short fiber form, which is then put into a Soxhlet extractor and sheathed with n-hexane. Extract the paraffin mix of the Was done.
得られた複合織維は、 2· 5デニール、 強度 2. 5 9 g Z d、 伸度 1 5 0 °ό 捲縮数 1 2. 5個 Ζイ ンチ、 空隙率 3 5. 3 %で あった。 これを、 テス トカー ド機大和機ェ㈱製 S C - 3 6 0 D Rに通して力一 ド通過性をテス ト したところ良好であり、 上記強度も含めて実用可能な繊維である。 なお、 空隙率は次 式より計算した。  The resulting composite fiber had a denier of 2.5 densities, a strength of 2.59 g Zd, an elongation of 150 ° C., a number of crimps of 12.5 pieces, an inch, and a porosity of 35.3%. Was. This was passed through a test card machine, SC-360DR manufactured by Daiwa Kikai Co., Ltd., and was tested for force-passability. The porosity was calculated from the following equation.
直径デニール一重量デニール  Diameter denier one weight denier
空隙率 (%) = X 1 0 0  Porosity (%) = X 100
- 直径デニール π  -Denier diameter π
直径デニール =一 R 2 X i) 0x 9 0 0 0 X l 05 Diameter denier = 1 R 2 X i) 0 x 9 0 0 0 X l 0 5
4  Four
R : パラフィ ンワッ クス抽出後の見かけ 直径 ( c m) 芯部の重量十鞘部の重量  R: Apparent diameter after paraffin wax extraction (cm) Weight of core and weight of sheath
P 0 =  P 0 =
芯部の体積 +鞘部の樹脂の体積  Core volume + sheath resin volume
実施例 2 Example 2
実施例 1 と同一の鞘部用原料及び、 芯部用原料を使用し、 鞘芯の断面積比を 8 : 2 としノズル温度を 1 6 0 °Cとした他 は、 実施例 1 と同様にして 1 0デニールの未延伸を紡糸した, しかる後、 実施例 1 と同様、 延伸、 熱処理、 捲縮加工、 力 ッ ト した後、 これをソ ッ クスレー抽出器に入れて、 同様に鞘部 の多孔化を行なった。  In the same manner as in Example 1 except that the same sheath material and core material as in Example 1 were used, the cross-sectional area ratio of the sheath core was 8: 2, and the nozzle temperature was 160 ° C. After spinning 10 denier undrawn, and then drawing, heat treatment, crimping, and pressing as in Example 1, this was put into a Soxhlet extractor, and the sheath portion was similarly drawn. Porosity was performed.
得られた線維は、 2. 1 デニール, 強度 1. g s g ./ d , 伸度 The obtained fiber had a denier of 2.1, a strength of 1. gsg./d, and an elongation.
8 6 °ύ , 捲縮数 1 3個, 'イ ンチ, 空隙率 4 8. 8 06であった。 この繊維の力一 ド通過性をテス ト したところ、 実施例 1 より は若干ウェ ブの垂れが観察される ものの、 カー ド作業性は実 用上は問題ないと判断された。 8 6 ° ύ, number 1 three crimped, 'inch was porosity 4 8.8 0 6. When the force passing property of this fiber was tested, the sagging of the web was slightly observed compared to Example 1, but the card workability was actually higher. It was judged that there was no problem in use.
実施例 3, 4 Examples 3 and 4
鞘部の原料は実施例 1 と同一のものを使用 し、 芯部の原料 と して M F R値が 4 8 のポリ プロ ピレ ン (宇部興産株式会社 製 : Z S — 1 2 3 8 ) を使用 し、 芯部の比率を 7 : 3 と した もの (実施例 3 ) 及び 2 : 8 と したもの (実施例 4 ) を紡糸 した。 なお、 実施例 4ではノ ズル温度は 2 0 0 °Cと し、 その 他は実施例 3, 4 とも実施例 1 と同一の条件である。  The same material as that of Example 1 was used for the sheath portion, and polypropylene having an MFR value of 48 (Ube Industries, Ltd .: ZS-1238) was used as the core material. The one having a core ratio of 7: 3 (Example 3) and the other having a core ratio of 2: 8 (Example 4) were spun. In Example 4, the nozzle temperature was set at 200 ° C., and the other conditions were the same as in Example 1 for both Examples 3 and 4.
得られた複合織維は、 実施例 3のものが、 2. 2 デニール. 強度 2. 1 5 g / d , 伸度 9 5 空隙率 4 6. 5 %であり、 実 施例 4 のものが、 3. 1 デニール, 強度 3. 1 0 g Z d , 伸度 1 5 0 %, 空隙率 1 7. 0 %であり、 何れもカー ド適性は良好 であ つ 丁二 o  The composite fiber obtained was that of Example 3, 2.2 denier. The strength was 2.15 g / d, the elongation was 95, the porosity was 46.5%, and that of Example 4 was 3.1 denier, strength 3.10 g Zd, elongation 150%, porosity 17.0%, all of which have good cardability.
実施例 5 Example 5
鞘部に実施例 1 と同一の原料を使用し、 芯部に融点が 176 〜 1 8 (TCの低融点ナイ ロ ン (宇部興産株式会社製 : 3035U ) を使用し、 鞘芯比率 5 : 5で、 ノ ズル温度 1 7 0てで 1 0 デ ニールの未延伸糸を得、 他は実施例 1 と同様にして複合繊維 を得た。  The same raw material as in Example 1 was used for the sheath, and the melting point was 176 to 18 (low melting point nylon of TC (Ube Industries, Ltd .: 3035U)) for the core, and the sheath-to-core ratio was 5: 5. A composite fiber was obtained in the same manner as in Example 1 except that a 10-denier undrawn yarn was obtained at a nozzle temperature of 170.
この複合繊維は、 2. 4 デニール, 強度 2. 3 6 g Z d , 伸度 1 8 0 % , 空隙率 3 3. 8 <¾で、 力一 ド通過性も良好であつた。 比較例 1 , 2  The composite fiber had 2.4 denier, a strength of 2.36 g Zd, an elongation of 180%, and a porosity of 33.8 <¾, and had good force permeability. Comparative Examples 1 and 2
複合紡糸設備を用いるこ となく、 スク リ ュー径 2 5 mmの単 軸紡糸機に 0. 4 ø X 1 6 0 ホールのノ ズルを取付け、 ノ ズル 温度 1 4 5でで 1 0 デニールの未延伸糸を紡糸した後、 延伸 倍率を 3倍 (比較例 1 ) 、 4倍 (比較例 2 ) と した他は実施 例 1 と同様にして多孔性鏃維を得た。 得られた繊維は、 比較 例 1 のものが、 2. 2デニール, 強度 1. 1 0 g / d , 伸度 270 96, 空隙率 4 5 、 比較例 2によるものが 1. 7デニール, 強 度 1. 7 4 gZ d, 伸度 1 3 0 %, 空隙率 3 7。ό、 比較例 1 , 2 ともカー ド通過性が全く不良であり、 単独でのカーディ ン グは困難である。 Without using multi-spinning equipment, a 0.4-øX160-hole nozzle was attached to a single-spin spinning machine with a screw diameter of 25 mm, and a 10-denier nozzle with a nozzle temperature of 144 was used. After spinning the drawn yarn, drawing A porous arrowhead fiber was obtained in the same manner as in Example 1 except that the magnification was 3 times (Comparative Example 1) and 4 times (Comparative Example 2). The fiber obtained in Comparative Example 1 had 2.2 denier, strength 1.10 g / d, elongation 270 96, porosity 45, and the fiber obtained in Comparative Example 2 had 1.7 denier, strength. 1.74 gZd, elongation 130%, porosity 37. ό) In both Comparative Examples 1 and 2, the cardability was quite poor, and it was difficult to carry out carding alone.
実施例 6  Example 6
MF R値が 3 1 0分のポリ プロ ピレン (宇部興産株式 会社製 : YK 1 2 1 ) 1 0 0重量部とパラフ ィ ンワ ッ クス (日本石油株式会社製 : 1 3 5 ° パラ フィ ン) 1 0 0重量部 とを機械的に混合した後、 平型底の容器に入れ 1 8 0 °Cのォ —ブン中に 2. 5時間入れて、 両者を均一に相溶させた後、 冷 却固化し、 これを粉碎して溶融紡糸用の鞘部原料とした。 芯 部の原料として MF R値が 4 8のポリ プロ ピレン (宇部興産 株式会社製 : Z S— 1 2 3 8 ) を使用し、 スク リ ュー径 3 2 mmの 2台の押出機で構成し、 0. 4 ø X 5 0 0 Hの複合ノズル を取着した鞘芯型複合紡糸装置により、 鞘部用の押出機には 前記の鞘部用原料を供給し、 鞘芯の断面積比を 8 : 2 として, ノズル温度 2 0 0て、 紡糸速度 4 0 0 ΙΉΖ分で 1 0 デニール の未延伸糸を紡糸した。  Polypropylene with an MFR value of 310 minutes (Ube Industries, Ltd .: YK121) 100 parts by weight and paraffin wax (Nippon Oil Co., Ltd .: 135 ° paraffin) After 100 parts by weight were mechanically mixed with the mixture, the mixture was placed in a flat-bottomed container and placed in a 180 ° C oven for 2.5 hours to allow both to be uniformly mixed, and then cooled. It was solidified and pulverized to obtain a sheath material for melt spinning. The core is made of polypropylene (MFR value: 48, manufactured by Ube Industries, Ltd .: ZS-1238), and is composed of two extruders with a screw diameter of 32 mm. The above-mentioned raw material for the sheath portion is supplied to the extruder for the sheath portion by the sheath-core compound spinning device having a composite nozzle of 0.4 øX500H attached, and the cross-sectional area ratio of the sheath core is set to 8 As a ratio of 2, a 10-denier undrawn yarn was spun at a nozzle temperature of 200 and a spinning speed of 400 minutes.
この未延伸糸を合束して約 2万デニールとし、 1 0 0 °Cの 雰囲気下で延伸ローラーにより、 第 1 延伸ローラー速度 8 m /分、 第 2延伸口一ラー速度 2 4 m /分で 3倍に延伸してボ ビンに巻取つた。 次いで、 このボビンに巻取ったままの繊維を 1 3 0 °Cのォ ーブン中で 1 時間定長熱処理した後、 スタ ッ フ イ ン グボッ ク スタイプのク リ ンパーで 1 2個 Zイ ンチの捲縮数を目標と し て捲縮加工した後、 この織維を約 5 1 mmに力 ッ ト して短繊維 状とした後、 これをソ ッ クスレー抽出器に入れて、 n —へキ サンにより鞘部のパラフ ィ ンワ ッ クスを抽出して鞘部の多孔 化を行なつた。 The undrawn yarns are bundled to about 20,000 denier, and the first drawing roller speed is 8 m / min and the second drawing port speed is 24 m / min by a drawing roller in an atmosphere of 100 ° C. The film was stretched three times and wound on a bobbin. Next, the fiber as wound on this bobbin is heat-treated for 1 hour in an oven at 130 ° C, and then 12 pieces of Z-inch with a staffing box type crimper. After crimping with the number of crimps as a target, this fiber is pressed to about 51 mm to make it into a short fiber, and then put into a Soxhlet extractor, and n-hex The paraffin wax in the sheath was extracted by Sun to make the sheath porous.
得られた複合織維は、 強度 2. 2 g Z d , 伸度 3 6 0 空 隙率 2 5 96であり、 力一 ド特性は良好であつた。  The obtained composite textile had a strength of 2.2 g Zd and an elongation of 360 porosity of 259, and had good force properties.
比較例 3 Comparative Example 3
複合紡糸設備を用いるこ とな く 、 実施例 6 の鞘部原料を使 用し、 スク リ ュー径 2 5 mmの単軸紡糸機に 0. 4 φ x 1 6 0 ホ ールのノズルを取付け、 ノ ズル温度 1 7 5 °Cで 1 0 デニール の未延伸糸を紡糸した後、 延伸倍率を 3倍と した他は実施例 6 と同様にして多孔性繊維を得た。 得られた繊維は、 強度 1. 9 gノ d, 伸度 4 5 0 % , 空隙率 2 6 96であった。  Instead of using the multi-spinning equipment, the raw material of the sheath part of Example 6 was used, and a 0.4-φ x 160-hole nozzle was attached to a single-screw spinning machine with a screw diameter of 25 mm. After spinning a 10-denier undrawn yarn at a nozzle temperature of 175 ° C., a porous fiber was obtained in the same manner as in Example 6, except that the drawing ratio was set to 3 times. The obtained fiber had a strength of 1.9 g d, an elongation of 450%, and a porosity of 2696.
上記実施例および比較例の紡糸条件、 物性などをま とめて 以下の表 1 に示している。 The spinning conditions, physical properties, and the like of the above Examples and Comparative Examples are summarized in Table 1 below.
o o
Figure imgf000012_0001
Figure imgf000012_0001
a : パラフィ ンワックス, p. ί) :ポリプロピレン, カード性: 〇…良好, X…不良 a: paraffin wax, p. ί): polypropylene, cardability: 〇: good, X: bad
耐熱性試験 Heat resistance test
実施例 2 , 6 および比較例 1 , 3で得られた各繊維につい て、 8 0 ° (:〜 1 3 0てのオーブン内に 3 0分間入れて、 加熱 前後の空隙率の変化を測定した。 以下の表 2 はその測定結果 を示している。  Each of the fibers obtained in Examples 2 and 6 and Comparative Examples 1 and 3 was placed in an oven at 80 ° (: 1130) for 30 minutes, and the change in porosity before and after heating was measured. Table 2 below shows the measurement results.
(表 2 ) (Table 2)
Figure imgf000013_0001
Figure imgf000013_0001
表 2に示した結果から明らかなように、 実施例の繊維は、 中実の芯部が収縮を抑えるため加熟による空隙率の低下が小 さ く耐熱性がすぐれているこ とがわかる。  As is clear from the results shown in Table 2, it can be seen that the fibers of the examples are excellent in heat resistance because the solid core suppresses shrinkage, so that the porosity does not decrease due to ripening.
また、 表 1 からもわかる力 実施例では、 全体におけるパ ラフィ ンワ ッ クスの含量が少ないにも拘らず同等以上の空隙 率を有している。 例えば、 実施例 2では、 4 0 のパラフィ ンワ ッ クスで 4 8. 8 <¾の空隙率を有している。 一方比較例 1 は、 5 0 0 のパラフ ィ ンワ ッ ク スで 4 5 の空隙率である。 つま り実施例 2の鞘部は、 6 1 %'の空隙率を有しているこ と になる。 このようになる理由は次のように考えられる。 すな わち、 紡糸の際、 高融点のポリ プロ ピレン成分を添加してい るので、 紡糸温度を上げる必要があって、 その結果と して、 多孔質の鞘部がよ り徐冷却の方向で紡糸され、 ラ メ ラ晶の成 長が促進され、 空孔サイズが大き く なるためであろう と推測さ れる。 Further, in the force examples that can be seen from Table 1, the porosity is equal to or higher than that of the whole, despite the small content of paraffin wax. For example, Example 2 has a porosity of 48.8 <¾ with a paraffin wax of 40. Meanwhile Comparative Example 1 is a 5 0 0 porosity 4 5 paraffin I Nwa click scan of. In other words, the sheath of Example 2 has a porosity of 61% '. The reason for this is considered as follows. In other words, the spinning temperature must be increased because a high-melting polypropylene component is added during spinning, and as a result, the porous sheath tends to cool more slowly. Spun in a lamellar crystal It is presumed that the length is promoted and the pore size increases.
—方、 比較例 1 の場合には、 P E多孔部単一の紡糸となる ので、 ノズル温度を上げるこ とや、 冷却条件をよりゆるやか に行うことが、 紡糸性を悪化させたり、 あるいは、 デニール ムラの増大を引き起こすため好ま しくない。 また、 実施例 6 の複合織維では、 耐熱性が大きいので、 沸騰水中で用いられ る液体フィ ルターなどの用途が期待されるとともにオー ト ク レーブによる高温滅菌 (130 °C ) も可能になる。  On the other hand, in the case of Comparative Example 1, since the spinning is performed with a single PE porous portion, raising the nozzle temperature and performing the cooling conditions more slowly deteriorates the spinnability or deniers. It is not preferable because it causes an increase in unevenness. In addition, since the composite textile of Example 6 has high heat resistance, it is expected to be used as a liquid filter used in boiling water and can be subjected to high-temperature sterilization (130 ° C) using an autoclave. .
産業上の利用可能性 Industrial applicability
以上のように、 本発明に係る鞘部を有する複合緞維によれ ば、 強度が大き く、 カー ド適性が向上され、 耐熱性も備えて いるので、 高温液体のフィルターや、 高温滅菌の可能な不織 布の原料として用いることができる。  As described above, according to the composite curtain having the sheath according to the present invention, the strength is high, the card suitability is improved, and the heat resistance is also provided, so that a high-temperature liquid filter or high-temperature sterilization is possible. It can be used as a raw material for non-woven fabrics.

Claims

求 の 範 囲 Range of request
(1 ) ポリ オレ フイ ン系合成樹脂を多孔質化してなる鞘部と、 非多孔質の芯部とからなる鞘芯型複合繊維であって、 前記鞘 部の見掛けの断面積が織維全断面積の 2 0 〜 8 0 %の範囲で あるこ とを特徴とする多孔質鞘部を有する複合繊維。  (1) A sheath-core composite fiber comprising a sheath made of a polyolefin-based synthetic resin made porous and a nonporous core, wherein the apparent cross-sectional area of the sheath is a fiber A composite fiber having a porous sheath portion, having a cross-sectional area of 20 to 80%.
(2) 前記ポリ オレフィ ン系合成樹脂は、 高密度ポリエチレ ン であるこ とを特徴とする請求の範囲第 1 項記載の多孔質鞘部 を有する複合繊維。  (2) The composite fiber having a porous sheath according to claim 1, wherein the polyolefin-based synthetic resin is high-density polyethylene.
(3) 前記ポリ オレフイ ン系合成樹脂は、 ポリ プロ ピレンであ るこ とを特徵とする請求の範囲第 1 項記載の多孔質鞘部を有 する複合繊維。  (3) The composite fiber having a porous sheath according to claim 1, wherein the polyolefin-based synthetic resin is polypropylene.
(4) 前記多孔質化は、 前記ポリオレフイ ン系樹脂にパラフィ ンワ ッ クスを混合し、 このパラフィ ンワ ッ クスを紡糸後に除 去するこ とにより行なわれるこ とを特徵とする請求の範囲第 1 項から第 3項までのいずれか 1 項に記載の多孔質鞘部を有 する複合繊維。  (4) The first aspect of the present invention is characterized in that the porosification is performed by mixing paraffin wax with the polyolefin-based resin and removing the paraffin wax after spinning. Item 4. The composite fiber having a porous sheath portion according to any one of items 3 to 3.
(5) 前記芯部は、 ポリ プロ ピレン樹脂であるこ とを特徵とす る請求の範囲第 1 項から第 3項のいずれか 1 項に記載の多孔 質鞘部を有する複合織維。  (5) The composite fiber having a porous sheath portion according to any one of claims 1 to 3, wherein the core portion is a polypropylene resin.
(6) 前記芯部は、 低融点ナイロ ン樹脂であるこ とを特徵とす る請求の範囲第 1 項から第 3項のいずれか 1 項に記載の多孔 質鞘部を有する複合繊維。  (6) The composite fiber having a porous sheath portion according to any one of claims 1 to 3, wherein the core portion is a low melting point nylon resin.
(7) 前記芯部は、 低融点ポリエステル樹脂であるこ とを特徵 とする請求の範囲第 1 項から第 3項のいずれか 1 項に記載の 多孔質鞘部を有する複合繊維。  (7) The composite fiber having a porous sheath according to any one of claims 1 to 3, wherein the core is a low-melting polyester resin.
PCT/JP1992/000261 1991-03-05 1992-03-05 Composite fiber having porous sheath part WO1992015734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4506083A JP2989267B2 (en) 1991-03-05 1992-03-05 Composite fiber with porous sheath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6237391 1991-03-05
JP3/62373 1991-03-05

Publications (1)

Publication Number Publication Date
WO1992015734A1 true WO1992015734A1 (en) 1992-09-17

Family

ID=13198253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1992/000261 WO1992015734A1 (en) 1991-03-05 1992-03-05 Composite fiber having porous sheath part

Country Status (2)

Country Link
EP (1) EP0528048A4 (en)
WO (1) WO1992015734A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130347A (en) * 1993-10-28 1995-05-19 Ube Nitto Kasei Co Ltd Battery separator
JPH07145512A (en) * 1993-11-17 1995-06-06 Japan Vilene Co Ltd Production of porous fiber
JP2017512920A (en) * 2014-04-10 2017-05-25 スリーエム イノベイティブ プロパティズ カンパニー Fiber and article containing the fiber
JP2019534956A (en) * 2016-09-26 2019-12-05 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Infrared-transparent polymer fiber woven fabric for human body cooling

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315663B2 (en) * 2002-10-17 2009-08-19 ユニチカ株式会社 Method for producing nonwoven fabric comprising core-sheath composite long fiber
CN106948028A (en) * 2017-02-17 2017-07-14 武汉纺织大学 Porous core-skin composite fiber and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943118A (en) * 1982-08-31 1984-03-10 Chisso Corp Foamed polyolefin fiber and its manufacture
JPS5976919A (en) * 1982-10-22 1984-05-02 Chisso Corp Dyeable expanded polyolefin fiber and production thereof
JPS6028565A (en) * 1983-07-22 1985-02-13 チッソ株式会社 Nonwoven fabric
JPS6244046B2 (en) * 1983-12-28 1987-09-18 Mitsubishi Rayon Co
JPH0240764B2 (en) * 1984-04-04 1990-09-13 Mitsui Petrochemical Ind

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342811A (en) * 1979-12-28 1982-08-03 Albany International Corp. Open-celled microporous sorbent-loaded textile fibers and films and methods of fabricating same
JPS60232927A (en) * 1984-05-07 1985-11-19 Mitsui Petrochem Ind Ltd Manufacture of orientated polyethylene
JPH0192414A (en) * 1987-03-02 1989-04-11 Ube Nitto Kasei Co Ltd Deodorizing composite fiber
JP2550204B2 (en) * 1990-05-01 1996-11-06 宇部日東化成 株式会社 Porous fiber manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943118A (en) * 1982-08-31 1984-03-10 Chisso Corp Foamed polyolefin fiber and its manufacture
JPS5976919A (en) * 1982-10-22 1984-05-02 Chisso Corp Dyeable expanded polyolefin fiber and production thereof
JPS6028565A (en) * 1983-07-22 1985-02-13 チッソ株式会社 Nonwoven fabric
JPS6244046B2 (en) * 1983-12-28 1987-09-18 Mitsubishi Rayon Co
JPH0240764B2 (en) * 1984-04-04 1990-09-13 Mitsui Petrochemical Ind

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0528048A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130347A (en) * 1993-10-28 1995-05-19 Ube Nitto Kasei Co Ltd Battery separator
JPH07145512A (en) * 1993-11-17 1995-06-06 Japan Vilene Co Ltd Production of porous fiber
JP2017512920A (en) * 2014-04-10 2017-05-25 スリーエム イノベイティブ プロパティズ カンパニー Fiber and article containing the fiber
US10704172B2 (en) 2014-04-10 2020-07-07 3M Innovative Properties Company Fibers and articles including them
JP2019534956A (en) * 2016-09-26 2019-12-05 ザ ボード オブ トラスティーズ オブ ザ レランド スタンフォード ジュニア ユニバーシティー Infrared-transparent polymer fiber woven fabric for human body cooling

Also Published As

Publication number Publication date
EP0528048A4 (en) 1994-03-18
EP0528048A1 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
KR101259968B1 (en) Conjugate fiber having low-temperature processability, nonwoven fabric and formed article using the conjugate fiber
US4189338A (en) Method of forming autogenously bonded non-woven fabric comprising bi-component fibers
US4814032A (en) Method for making nonwoven fabrics
EP1452633A1 (en) MACHINE CRIMPED SYNTHETIC FIBER HAVING LATENT THREE&amp;minus;DIMENSIONAL CRIMPABILITY AND METHOD FOR PRODUCTION THEREOF
US5043216A (en) Porous polyethylene fibers
JPH0137505B2 (en)
JP2000507654A (en) Polypropylene fibers and products made therefrom
WO2006105836A1 (en) Thermally bound non-woven material
TWI787248B (en) Splittable conjugate fiber and fiber structure using the same
TW201546341A (en) Polyester binder fiber
US20050142325A1 (en) Primary carpet backing
WO1992015734A1 (en) Composite fiber having porous sheath part
JP6345938B2 (en) Thermal adhesive long fiber
EP3640378B1 (en) Low leachable fibers and fiber structure
JP2004115980A (en) Non-woven fabric and separator for lithium-ion secondary battery
JP2001192936A (en) Splittable conjugate fiber, method of producing the same, and ultrafine fiber nonwoven fabric using the same
JP2741123B2 (en) Stretchable long-fiber nonwoven fabric and method for producing the same
WO2020203286A1 (en) Drawn composite fibers, non-woven cloth, and production method for drawn composite fibers
JP2989267B2 (en) Composite fiber with porous sheath
JPS6139409B2 (en)
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JP2741122B2 (en) Stretchable bulky long-fiber nonwoven fabric and method for producing the same
JP3060629B2 (en) Low density polyolefin fiber and nonwoven fabric using the same
WO2019181827A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT NL

WWE Wipo information: entry into national phase

Ref document number: 1992905966

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1992905966

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1992905966

Country of ref document: EP