JP2004134588A - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- JP2004134588A JP2004134588A JP2002297747A JP2002297747A JP2004134588A JP 2004134588 A JP2004134588 A JP 2004134588A JP 2002297747 A JP2002297747 A JP 2002297747A JP 2002297747 A JP2002297747 A JP 2002297747A JP 2004134588 A JP2004134588 A JP 2004134588A
- Authority
- JP
- Japan
- Prior art keywords
- region
- electrode
- source
- drain
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
【課題】FETの製造方法において、GaAsをエッチングした合わせマークに全てのフォトリソグラフィ工程のマスクを合わせてソース領域、ドレイン領域およびソース電極、ドレイン電極、ゲート電極を形成していた。
【解決手段】FETのマスク合わせに、ソースドレイン領域上に設けた酸化膜を用い、マスク合わせ精度を向上する。ゲート幅を縮小してもFETの基本性能が向上しており、従来同等の特性で、ゲート幅をシュリンクし、FET間の離間距離を低減できるので、アイソレーションが向上した5GHzスイッチを実現できる。
【選択図】図2
【解決手段】FETのマスク合わせに、ソースドレイン領域上に設けた酸化膜を用い、マスク合わせ精度を向上する。ゲート幅を縮小してもFETの基本性能が向上しており、従来同等の特性で、ゲート幅をシュリンクし、FET間の離間距離を低減できるので、アイソレーションが向上した5GHzスイッチを実現できる。
【選択図】図2
Description
【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造方法に係り、特にフォトリソグラフィ工程におけるマスク合わせ精度を向上する半導体装置の製造方法に関する。
【0002】
【従来の技術】
携帯電話等の移動体用通信機器では、GHz帯のマイクロ波を使用している場合が多く、アンテナの切換回路や送受信の切換回路などに、これらの高周波信号を切り替えるためのスイッチ素子が用いられることが多い。その素子としては、高周波を扱うことからガリウム・砒素(GaAs)を用いた電界効果トランジスタ(以下FETという)を使用する事が多く、これに伴って前記スイッチ回路自体を集積化したモノリシックマイクロ波集積回路(MMIC)の開発が進められている。
【0003】
以下に、従来のGaAsFETを用いたスイッチ回路装置の一例を説明する(例えば、非特許文献1参照。)。
【0004】
図10(A)は、GaAs FETを用いたSPDT(Single Pole Double Throw)と呼ばれる化合物半導体装置の原理的な回路図の一例を示す。
【0005】
第1と第2のFET1、FET2のソース(又はドレイン)が共通入力端子INに接続され、各FET1、FET2のゲートが抵抗R1、R2を介して第1と第2の制御端子Ctl−1、Ctl−2に接続され、そして各FETのドレイン(又はソース)が第1と第2の出力端子OUT−1、OUT−2に接続されたものである。第1と第2の制御端子Ctl−1、Ctl−2に印加される信号は相補信号であり、Hレベルの信号が印加されたFETがONして、入力端子INに印加された信号をどちらか一方の出力端子に伝達するようになっている。抵抗R1、R2は、交流接地となる制御端子Ctl−1、Ctl−2の直流電位に対してゲート電極を介して高周波信号が漏出することを防止する目的で配置されている。
【0006】
図10(B)は上記の化合物半導スイッチ回路装置を集積化した平面図である。
【0007】
図に示す如く、GaAs基板にスイッチを行うFET1およびFET2(いずれもゲート幅600μm)を中央部に配置し、各FETのゲート電極に抵抗R1、R2が接続されている。また共通入力端子IN、出力端子OUT−1、OUT−2、制御端子Ctl−1、Ctl−2に対応するパッドが基板の周辺に設けられている。なお、点線で示した第2層目の配線は各FETのゲート電極形成時に同時に形成されるゲート金属層(Ti/Pt/Au)68であり、実線で示した第3層目の配線は各素子の接続およびパッドの形成を行うパッド金属層(Ti/Pt/Au)77である。第1層目の基板にオーミックに接触するオーミック金属層(AuGe/Ni/Au)は各FETのソース電極、ドレイン電極および各抵抗両端の取り出し電極を形成するものであり、図10では、パッド金属層と重なるために図示されていない。
【0008】
各電極パッドおよび配線が隣接する部分では、電極パッド及び配線の下全面(または周辺部)に当接して不純物領域60、61が設けられる。不純物領域60、61は、電極パッドまたは配線の基板当接部よりはみ出して設けられ、所定のアイソレーションを確保している。
【0009】
図11には、図10のスイッチ回路装置のFETの一部の断面図を示す。尚、スイッチ動作を行うFET1、FET2およびシャントFETであるFET3、FET4は全て同様の構成である。
【0010】
図11の如く、基板51にはn型イオン注入層による動作層52とその両側にソース領域56およびドレイン領域57を形成するn+型の不純物領域が設けられ、動作層52にはゲート電極69が設けられ、不純物領域には第1層目のオーミック金属層で形成されるドレイン電極66およびソース電極65が設けられる。更にこの上に前述したように3層目のパッド金属層77で形成されるドレイン電極76およびソース電極75が設けられ、各素子の配線等を行っている。
【0011】
図12〜図15を参照して、かかる化合物半導体スイッチ回路装置のFET、各端子となるパッドおよび配線の製造方法の一例を示す。尚、ここでは1つの電極パッドについて説明するが、上記の共通入力端子、第1および第2制御端子、第1および第2出力端子に接続する電極パッドはすべて同様の構造である。
【0012】
第1の工程:GaAs等で形成される化合物半導体基板51全面を約100Åから200Åの厚みのスルーイオン注入用シリコン窒化膜53で被覆する。次に、予定の動作層52上のレジスト層54を選択的に窓開けするフォトリソグラフィプロセスを行う。その後、このレジスト層54をマスクとして予定の動作層52へ動作層を選択するためにp−型を与える不純物(24Mg+)のイオン注入およびn型を与える不純物(29Si+)のイオン注入を行う。この結果、ノンドープの基板51にはp−型領域55と、その上にn型動作層52が形成される(図12(A))。
【0013】
第2の工程:前工程で用いたレジスト層54を除去し、新たに予定のソース領域56、ドレイン領域57、予定の配線62および電極パッド70上のレジスト層58を選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、このレジスト層58をマスクとして予定のソース領域56およびドレイン領域57、予定の配線62および電極パッド70の下の基板表面にn型を与える不純物(29Si+)のイオン注入を行う。これにより、n+型のソース領域56およびドレイン領域57を形成し、同時に予定の電極パッド70および配線62の下の基板表面に周辺n+型領域60、61を形成する(図12(B))。
【0014】
これにより配線62および電極パッド70と基板51は分離され、電極パッド70、配線62への空乏層が伸びないので、隣接する電極パッド70、配線62はお互いの離間距離を大幅に近接して設けることが可能となる。具体的には、離間距離を4μmにすれば、20dB以上のアイソレーションを確保するには十分であると割り出された。また、電磁界シミュレーションにおいても4μm程度の離間距離を設ければ2.4GHzにおいて40dB程度もアイソレーションを得られることがわかっている。次にアニール用のシリコン窒化膜53を約500Åデポし、イオン注入されたp−型領域、n型動作層およびn+型領域の活性化アニールを行う。
【0015】
第3の工程:まず、予定の第1ソース電極65および第1ドレイン電極66を形成する部分を選択的に窓開けするフォトリソグラフィプロセスを行う。予定の第1ソース電極65および第1ドレイン電極66上にあるシリコン窒化膜53をCF4プラズマにより除去し、引き続いてオーミック金属層64となるAnGe/Ni/Auの3層を順次真空蒸着して積層する。その後、レジスト層63を除去して、リフトオフによりソース領域56およびドレイン領域57上にコンタクトした第1ソース電極65および第1ドレイン電極66を残す。引き続いて合金化熱処理により第1ソース電極65とソース領域56、および第1ドレイン電極66とドレイン領域57のオーミック接合を形成する(図13)。
【0016】
第4の工程:図14(A)では、予定のゲート電極69、電極パッド70および配線62部分を選択的に窓開けするフォトリソグラフィプロセスを行う。予定のゲート電極69、電極パッド70および配線62部分から露出したシリコン窒化膜53をドライエッチングして、予定のゲート電極69部分の動作層52を露出し、予定の配線62および予定の電極パッド70部分の基板51を露出する。
【0017】
予定のゲート電極69部分の開口部は0.5μmとし微細化されたゲート電極69を形成できるようにする。このとき、第2の工程で説明したように従来では、アイソレーションを確保するために必要であった電極パッド70下の窒化膜が、周辺n+型領域60、61を設けたことにより除去できるので、ボンディングワイヤの圧着時の衝撃により、窒化膜および基板が割れることが無くなる。
【0018】
次に、図14(B)の如く、ゲート金属層68としてTi/Pt/Auの3層を順次真空蒸着して積層する。その後リフトオフにより、ゲート電極69、第1電極パッド70および配線62を形成する(図14(C))。
【0019】
第5の工程:ゲート電極69、配線62および第1電極パッド70を形成した後、ゲート電極69周辺の動作層52を保護するために、基板51表面はシリコン窒化膜よりなるパッシベーション膜72で被覆される。このパッシベーション膜72上にフォトリソグラフィプロセスを行い、第1ソース電極65、第1ドレイン電極66、ゲート電極69および第1電極パッド70とのコンタクト部に対して選択的にレジストの窓開けを行い、その部分のパッシベーション膜72をドライエッチングする。その後、レジスト層71は除去される(図15(A))。
【0020】
次に、基板51全面に新たなレジスト層73を塗布してフォトリソグラフィプロセスを行い、予定の第2ソース電極75および第2ドレイン電極76と第2電極パッド77上のレジストを選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、第3層目の電極としてのパッド金属層74となるTi/Pt/Auの3層を順次真空蒸着して積層し、第1ソース電極65、第1ドレイン電極66および第1電極パッド70にコンタクトする第2ソース電極75および第2ドレイン電極76と第2電極パッド77が形成される(図15(B))。パッド金属層74の他の部分はレジスト層73上に付着されるので、レジスト層73を除去してリフトオフにより第2ソース電極75および第2ドレイン電極76と第2電極パッド77のみを残し、他は除去される。なお、一部の配線部分はこのパッド金属層74を用いて形成されるので、当然その配線部分のパッド金属層74は残される(図15(C))。
【0021】
【非特許文献1】
特願2001−182687号明細書
【0022】
【発明が解決しようとする課題】
従来は、第1の工程においてGaAsをエッチングして合わせマークを形成し、その合わせマークにすべての工程のマスクを合わせていた。この場合、マスクアライナーの合わせ精度が0.1μmのため、ソース領域およびドレイン領域となるn+型領域とゲート電極の合わせ誤差は最大0.2μmとなる。このn+領域とゲート電極間は最低0.4μmの距離が無いと所定の耐圧が得られないので、マスク合わせ誤差による生産バラツキを考慮して、n+型領域とゲート電極の距離は0.6μmの設計となっていた。同様にn+型領域端部とオーミック接合を形成するソース電極端およびドレイン電極端間距離は最低0.2μm必要であるため、マスク合わせ誤差最大0.2μmを見込んで、0.4μmの設計となっていた。そのため基本素子の性能として、飽和電流値が上がらず、ON抵抗値が下がらないという問題があった。
【0023】
【課題を解決するための手段】
本発明は上述した諸々の事情に鑑み成されたものであり、第1に、基板上にイオン注入による不純物領域を形成する工程と、前記不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程とを具備することにより解決するものである。
【0024】
また、前記絶縁膜は、前記不純物領域のイオン注入後絶縁膜を堆積し、前記イオン注入のマスクとなったレジストをリフトオフにより除去して前記不純物領域上に形成することを特徴とするものである。
【0025】
第2に、チャネル領域上のソース領域およびドレイン領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程によりソース電極およびドレイン電極およびゲート電極を形成する工程とを具備することにより解決するものである。
【0026】
第3に、基板表面に動作層を形成する工程と、前記動作層に接して一導電型不純物を注入・拡散してソース領域およびドレイン領域を形成する工程と、前記ソース領域およびドレイン領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層にゲート金属層を付着しゲート電極を形成する工程と、前記第1ソースおよび第1ドレイン電極上にパッド金属層を付着し第2ソースおよび第2ドレイン電極を形成する工程とを具備することにより解決するものである。
【0027】
第4に、基板表面に動作層を形成する工程と、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する工程と、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する工程と、前記第1ソースおよび第1ドレイン電極と前記第1電極パッド上に、パッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する工程とを具備することにより解決するものである。
【0028】
また、前記高濃度不純物領域は、前記ゲート金属層が形成される領域の端から数μm離間して形成されることを特徴とするものである。
【0029】
また、前記絶縁膜は、前記一導電型不純物を注入・拡散後、フォトレジストを残したまま全面に堆積され、リフトオフにより前記一導電型不純物領域上に形成されることを特徴とするものである。
【0030】
また、第1ソースおよび第1ドレイン電極は、該電極上に形成された絶縁膜の一部を除去して前記ソース領域およびドレイン領域を露出し、前記オーミック金属層を付着して形成することを特徴とするものである。
【0031】
また、前記ゲート電極は、最下層がPtである多層のゲート金属層を順次蒸着し、熱処理によりPt層を前記基板表面に埋め込んで形成することを特徴とするものである。
【0032】
また、前記絶縁膜は酸化膜であることを特徴とするものである。
【0033】
【発明の実施の形態】
以下に本発明の実施の形態について図1から図9を参照して説明する。
【0034】
図1は、本実施形態のスイッチ回路装置を説明する回路図であり、図1(A)は等価回路図、図1(B)はチップパターンに沿った回路概要図である。
【0035】
この回路では、スイッチを行うFET1とFET2の出力端子OUT−1とOUT−2と接地間にシャントFET3、FET4を接続し、このシャントFET3、FET4のゲートにはFET2とFET1への制御端子Ctl−2、Ctl−1の相補信号を印可している。この結果、FET1がONのときはシャントFET4がONし、FET2およびシャントFET3がOFFしている。
【0036】
この回路で、共通入力端子IN−出力端子OUT−1の信号経路がオンし、共通入力端子IN−出力端子OUT−2の信号経路がオフした場合は、シャントFET4がオンしているので出力端子OUT−2への入力信号の漏れは接地された外付けのコンデンサCを介して接地に逃げ、シャントFETが無かった従来例に比べアイソレーションが向上できる。
【0037】
図2は、図1のスイッチ回路装置を集積化した化合物半導体スイッチ回路装置の一例を示す平面図である。
【0038】
基板は、化合物半導体基板(例えばGaAs)であり、この基板にスイッチを行うFET1およびFET2(いずれもゲート幅600μm)を左右の中央部に配置し、その下方にシャントFET3およびシャントFET4(いずれもゲート幅300μm)を配置し、各FETのゲート電極に抵抗R1、R2、R3、R4が接続されている。また共通入力端子IN、出力端子OUT−1、OUT−2、制御端子Ctl−1、Ctl−2、接地端子GNDに対応する電極パッドI、O1、O2、C1、C2、Gが基板の周辺に設けられている。スイッチを行うFET1およびFET2を設け、更にシャントFET3およびシャントFET4のソース電極は接続されて接地端子GNDに接続されている。尚、ここでの図示は省略するが接地のためのコンデンサCが外付けで接地端子GNDに接続する。なお、点線で示した第2層目の配線は各FETのゲート電極形成時に同時に形成されるゲート金属層68(Pt/Mo/Ti/Pt/Au)であり、実線で示した第3層目の配線は各素子の接続およびパッドの形成を行うパッド金属層77(Ti/Pt/Au)である。第1層目の基板にオーミックに接触するオーミック金属層(AuGe/Ni/Au)は各FETのソース電極、ゲート電極および各抵抗両端の取り出し電極を形成するものであり、図2では、パッド金属層と重なるために図示されていない。
【0039】
図2で、FET1(FET2も同様)は、下側から伸びる6本の櫛歯状の第3層目のパッド金属層77が出力端子OUT−1に接続されるソース電極75(あるいはドレイン電極)であり、この下に第1層目オーミック金属層で形成されるソース電極65(あるいはドレイン電極)がある。また上側から伸びる櫛歯状の6本の第3層目のパッド金属層77が共通入力端子INに接続されるドレイン電極76(あるいはソース電極)であり、この下に第1層目のオーミック金属層で形成されるドレイン電極66(あるいはソース電極)がある。この両電極は櫛歯をかみ合わせた形状に配置され、その間に第2層目のゲート金属層68で形成されるゲート電極69が櫛歯形状に配置され、FETのチャネル領域を構成している。
【0040】
また、シャントFETであるFET3(FET4も同様)は、下側から伸びる櫛歯状の4本の第3層目のパッド金属層77が接地端子GNDに接続されるソース電極75(あるいはドレイン電極)であり、この下に第1層目オーミック金属層で形成されるソース電極65(あるいはドレイン電極)がある。また上側から伸びる櫛歯状の4本の第3層目のパッド金属層77が出力端子OUT−1に接続されるドレイン電極76(あるいはソース電極)であり、この下に第1層目のオーミック金属層で形成されるドレイン電極66(あるいはソース電極)がある。この両電極は櫛歯をかみ合わせた形状に配置され、その間に第2層目のゲート金属層68で形成されるゲート電極69が櫛歯形状に配置されて、チャネル領域を構成している。
【0041】
更に、各FETのゲート電極69近傍の基板表面に、n+型の高濃度不純物領域100aを設ける。具体的には、FET1の櫛歯状のゲート電極69の先端部分69aおよびFET2の櫛歯状のゲート電極69の先端部分69aが、対向配置されるFET3およびFET4と少なくとも隣接する部分である。ここでゲート電極の先端部分69aとは、櫛歯状のゲート電極69を束ねた側と逆側をいい、また、ゲート電極69がチャネル領域から延在され、基板とショットキー接合を形成している領域である。高濃度不純物領域100aは、各ゲート電極先端部分69aから約4μmの離間距離で配置される。
【0042】
また、高濃度不純物領域100aは、FET1およびFET2と対向配置されるFET3のゲート電極先端部分69aとFET4のゲート電極先端部分69aからも4μmの離間距離で配置されている。すなわち、本実施形態のパターンにおいては高濃度不純物領域100aはスイッチの動作を行うFET1、FET2と、対向配置されるシャントFETであるFET3、FET4間に設けられる。
【0043】
この高濃度不純物領域100aにより、基板とショットキー接合を形成するゲート電極69から前記基板に延びる空乏層の広がりを抑制することができる。基板とショットキー接合を形成する金属層においては、その金属層を伝わる高周波信号に応じて、基板に広がる空乏層の電界が変動することにより、空乏層が到達する隣接した電極などに高周波信号が漏れる場合がある。
【0044】
しかし、ゲート電極69が隣接するように配置されたFET1とFET3およびEFT2とFET4の間の基板51表面にn+型の高濃度不純物領域100aが設けられれば、不純物がドープされていない基板51(半絶縁性であるが、基板抵抗値は1×107〜1×108Ω・cm)表面と異なり、不純物濃度が高くなる(イオン種 29Si+で濃度は1〜5×108cm−3)。これにより各FETのゲート電極69は分離され、隣接するFET(ソース領域、ドレイン領域、チャネル領域の不純物領域やゲート電極)への空乏層が伸びないので、隣接するFETはお互いの離間距離を大幅に近接して設けることが可能となる。
【0045】
前述の如く、ゲート電極69は微細なパターンで形成されるため、本実施形態においては、ゲート電極69から数μm離間して高濃度不純物領域100aを配置することとした。このように高濃度不純物領域100aを設けることにより、FET1およびFET2のゲート電極から基板に広がる空乏層が、隣接して対向配置されたFET3およびFET4のゲート電極、ソース領域およびドレイン領域、チャネル領域に到達することを防ぎ、高周波信号の漏出を抑制できる。
【0046】
具体的には、ゲート電極69の先端部分69aから高濃度不純物領域100aまでの離間距離を4μmにすれば、所定のアイソレーションを確保するには十分である。
【0047】
ここで、高濃度不純物領域100aについて説明する。高濃度不純物領域100aの不純物濃度は1×1017cm−3以上である。また、その一部が金属電極200と接続し、DC電位、GND電位または高周波GND電位が印加されると、アイソレーションの向上により効果的である。
【0048】
また、基板とショットキー接合を形成するゲート金属層68からなる電極パッド70および配線62の近傍にも高濃度不純物領域100bを配置する。更には1つのFETのゲート電極が、ゲート金属層68からなる電極パッドおよび配線62と隣接する領域にも高濃度不純物領域100cを設ける。これにより、基板とショットキー接合を形成するゲート電極68、電極パッド70および配線62から基板に広がる空乏層により高周波信号が漏出することを抑制できる。
【0049】
図3には、図2のスイッチ回路装置のFETの一部の断面図を示す。尚、スイッチ動作を行うFET1、FET2およびシャントFETであるFET3、FET4は全て同様の構成である。
【0050】
図3の如く、基板51にはn型イオン注入層による動作層52とその両側にソース領域56およびドレイン領域57を形成するn+型の不純物領域が設けられ、動作層52にはゲート電極69が設けられ、不純物領域には第1層目のオーミック金属層で形成されるドレイン電極66およびソース電極65が設けられる。更にこの上に前述したように3層目のパッド金属層77で形成されるドレイン電極76およびソース電極75が設けられ、各素子の配線等を行っている。従来のFETがTiでチャネル領域とショットキ接合を形成しているのに対し、本実施形態のゲート電極69はPtを埋め込んだゲート電極69とし、FETの飽和電流値を上げ、ON抵抗値を下げている点にある。次にドレイン電極66およびソース電極65の周囲を覆う窒化膜の上に、ドレイン電極66およびソース電極65に沿って酸化膜120が設けられることにある。
【0051】
この酸化膜120は、後に詳述するが、本実施形態のFETを製造する工程において必要となるものであり、ゲート電極69のマスク合わせ精度を向上させるため、FETのソース領域56、ドレイン領域57を形成するn+型領域上に設けられるものである。その製法上、ソース電極65およびドレイン電極66に沿って2本ずつ形成される各酸化膜120は、1つの側面がソース領域56またはドレイン領域57の端部とほぼ一致しており、他の側面がソース電極65またはドレイン電極66の端部とほぼ一致している。この酸化膜120を設けることによりマスク合わせ精度が向上し、d21およびd22が従来よりも縮小する。つまりソースードレイン領域間の距離およびソース−ドレイン電極間の距離を縮め、さらにFETの飽和電流値を上げ、ON抵抗値を下げている。
【0052】
ここで、ゲート長Lgは、ソース領域56とドレイン領域57間のチャネル領域44(動作層52)にあるゲート電極69の長さをいい、通常短チャネル効果が発生しない0.5μmに設計される。ゲート幅Wgは、ソース領域56およびドレイン領域57に沿ってチャネル領域44(動作層52)にあるゲート電極69の幅(櫛歯の総和)をいい、従来では、スイッチ動作を行うFETのゲート幅Wgが従来600μmであったところを500μmにシュリンクし、シャントFETのゲート幅Wgは300μmである。
【0053】
このように、FET自身のゲート幅Wgを小さくすることにより、FETのOFF容量を減らすこともアイソレーションを向上させるのに大きな効果がある。しかし、一般的にはFETのゲート幅Wgを従来の600μmから500μmに小さくすると飽和電流値が下がり、ON抵抗値が上がってしまう。そこで、ゲート幅Wgを縮小しても従来どおりの飽和電流値、ON抵抗値を保つため、基本素子としてのFETの能力を向上させる必要がある。本実施形態では、従来Tiのショットキー接合によるゲート電極であったものを、Ptを埋め込んだゲート電極のFETとする。
【0054】
ゲート電極69は、最下層から、Pt/Mo/Ti/Pt/Auの多層蒸着金属層であり、Pt層の一部を動作層に埋め込んだ電極構造である。埋め込みのための熱処理後、もともと最下層にPtのあった部分は主にPtGaとなり、GaAsにPtが拡散した部分は主にPtAs2となる。
【0055】
GaAsFETの動作領域とショットキ接合を形成する金属として、PtはTiに比べGaAsに対するバリアハイトが高いため、Tiでショットキ接合を形成する従来のFETに比べPt埋め込みゲートFETは高い飽和電流値と低いON抵抗値が得られる。さらにPt埋め込みゲートFETはゲート電極の一部をチャネル領域に埋め込むことにより、ゲート電極直下の電流の流れる部分がチャネル領域表面から下がる。すなわち動作領域は予め所望のFET特性が得られるようにゲート電極の埋設分を考慮して深く形成されているため、表面自然空乏層領域から離れ、結晶が良好な低抵抗領域を電流が流れるような動作領域の設計となっている。以上の理由によってもTiゲートFETに比べPt埋め込みゲートFETは飽和電流値、ON抵抗値や高周波歪み特性が大幅に改善される。
【0056】
さらに、本実施形態のFETは、従来に比べ、ゲート電極形成のマスク合わせ精度を向上させ、製造プロセスを工夫することにより、ソースードレイン間の距離を縮め、基本素子としての特性をますます向上させている。しかし、そのために、製造工程においてソース領域56およびドレイン領域57となるn+型領域上にマスク合わせ用の酸化膜120を同時に形成し、且つゲート電極69をPt層の埋め込みで形成している。このため、後に詳述するが、従来例で示した電極パッド70および配線62と当接する周辺n+型領域60、61が形成できないことになる。
【0057】
そのため、チップ上の1つの電極パッド70および配線62となるゲート金属層68から基板に延びる空乏層の拡がりを抑制するため、当該ゲート金属層68と、FETや他のゲート金属層68(他の配線62および他の電極パッド70)、不純物拡散領域からなる抵抗R1〜R4のいずれかとが少なくとも隣接する部分、または1つのFETのゲート電極と、ゲート金属層68、抵抗R1〜R4とが少なくとも隣接する部分に、高濃度不純物領域100b、100cを設けるものである。
【0058】
尚、高濃度不純物領域100a〜100cは、その配置される場所を明確にするために符号を変えているだけであり、本実施形態においてアイソレーションを向上させる効果としては全く同一の構成要素である。すなわち、高濃度不純物領域100b、100cの不純物濃度は、高濃度不純物領域100aと同様1×1017cm−3以上である。また、図示は省略するが、この高濃度不純物領域100b、100cに金属電極を接続し、金属電極をGNDに接続すると、アイソレーション向上に効果的である。
【0059】
本実施形態では、近接するFET間に高濃度領域100aを設けることで、アイソレーションを向上させ、各FET間の離間距離を大幅に低減できる。
【0060】
また、FETを形成するためにマスク合わせ用の酸化膜120を設けることにより、ゲート電極69とソース領域56またはドレイン領域57とのマスク合わせずれに最大で0.1μm確保すればよく、従来0.2μm確保しなければならなかったので、その差0.1μm分、ゲート電極69とソース領域56またはドレイン領域57間距離(d22)をシュリンクできる。具体的には、ソース領域56およびドレイン領域57とゲート電極69間距離を0.6μmから0.5μmに縮小でき、さらに同様の理由によりソース領域56端―ソース電極65端距離およびドレイン領域57端―ドレイン電極66端距離(d21)を0.4μmから0.3μmに縮小できる。
【0061】
つまり、ソース領域56、ドレイン領域57とゲート電極69のマスク合わせ精度を向上し、ソース領域56、ドレイン領域57とゲート電極69の距離をそれぞれ0.1μm縮め、ソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせ精度を向上し、ソース領域56端―ソース電極65端距離およびドレイン領域57端―ドレイン電極66端距離をそれぞれ0.1μm縮め、トータルとしてソース電極―ドレイン電極間距離を0.4μm縮めることができるので、飽和電流値の向上および、ON抵抗値の低減が実現できる。この効果と前述のTiショットキゲートFETからPt埋め込みゲートFETへの変更の効果を合わせて、スイッチ動作を行うFETのゲート幅Wgを500μmに低減しても、従来どおりの飽和電流値およびON抵抗値を確保できることになり、ゲート幅Wg低減によるアイソレーション向上に大きく寄与している。
【0062】
更に、FETの基本素子としての性能を向上するために、その製造プロセス上電極パッド70および配線62の下に設けていた周辺n+型領域60、61が形成できなくなるが、電極パッド70および配線62の近傍に高濃度不純物領域100b、100cを設けることで、従来どおりの所定のアイソレーションを確保することができる。
【0063】
具体的には、高濃度不純物領域100aと各FETのゲート電極69は4μm程度あれば空乏層の拡がりを抑制することができ、高濃度不純物領域100aは2μmあれば十分効果を発揮できるので、高濃度不純物領域100aを挟んだ場合10μm程度まで近接できる。従来では、20μm以上離間する必要があった隣接するFET間の離間距離を大幅に縮小することができる。
【0064】
次に、本発明の半導体装置の製造方法を、上記のスイッチ回路装置を例に図4から図9を参照して説明する。
【0065】
尚、ここでは1つの電極パッドについて説明する。例えば、以下の製造方法により、図2に示すスイッチ回路装置を製造する場合、共通入力端子用の電極パッド、第1および第2制御端子用の電極パッド、第1および第2出力端子用の電極パッドはすべて同様に形成される。尚、高濃度不純物領域100a〜100cは同一構成要素であり、その配置も様々であるので、以下高濃度不純物領域100として説明する。
【0066】
本発明の製造方法は、基板表面に動作層を形成する工程と、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する工程と、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する工程と、前記第1ソースおよび第1ドレイン電極と前記第1電極パッド上に、パッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する工程とから構成される。
【0067】
第1工程:まず、図4に示す如く、基板51表面に動作層52を形成する。
【0068】
すなわち、GaAs等で形成される化合物半導体基板51全面を約100Åから200Åの厚みのスルーイオン注入用シリコン窒化膜53で被覆する。次に、チップの最外周又は、マスクの所定の領域のGaAsをエッチングして合わせマーク(不図示)を形成し、予定の動作層52上のレジスト層54を選択的に窓開けするフォトリソグラフィプロセスを行う。その後、このレジスト層54をマスクとして予定の動作層52へ動作層を選択するためにp−型を与える不純物(24Mg+)のイオン注入およびn型を与える不純物(29Si+)のイオン注入を行う。この結果、ノンドープの基板51にはp−型領域55と、その上にn型動作層52が形成される。次にアニール用シリコン窒化膜を約500Åをデポする。
【0069】
第2工程:次に図5に示す如く、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する。
【0070】
前工程で用いたレジスト層54を除去し、新たに予定のソース領域56、ドレイン領域57、予定のショットキー金属層が設けられる近傍のレジスト層58を選択的に窓開けするフォトリソグラフィプロセスを行う。ショットキー金属層とは、半絶縁基板とショットキー接合を形成するゲート電極および配線、電極パッドの最下層となる金属層(以下ゲート金属層と称する)であるので、予定の配線62および予定の電極パッド70部分の近傍が露出することになる。
【0071】
続いて、このレジスト層58をマスクとして予定のソース領域56およびドレイン領域57、予定の高濃度不純物領域100の基板表面にn型を与える不純物(29Si+)のイオン注入を行う。これにより、n+型のソース領域56およびドレイン領域57を形成し、同時に高濃度不純物領域100を形成する。高濃度不純物領域100は、所定のアイソレーションを確保するため、ゲート金属層が、他のゲート金属層または不純物領域と隣接する領域に、少なくとも設けられる。また、高濃度不純物領域100は、ゲート金属層の端部から4μm程度離間した基板表面に設けられる。チップの最外周又は、マスクの所定の領域に後の工程においてマスク合わせをするためのあわせマーク用にレジスト58が除去されている。
【0072】
図5の断面図では、高濃度不純物領域100がFETのチャネル領域44、予定の配線62、予定の電極パッド層70の近傍でそれぞれを分離するように設けられる図を示している。しかし実際には図2の如く、1つのFETのゲート電極69が他のFETと隣接する領域(高濃度不純物100a)や、電極パッド70および配線62となるゲート金属層が、FET、他の電極パッド70および配線62、不純物領域からなる抵抗R1〜R4のいずれかと少なくとも隣接する領域(高濃度不純物100b)のゲート金属層の近傍に形成される。
【0073】
GaAs基板上にショットキー接合を形成する金属層(本実施形態においてはゲート金属層)を直接設けると、高周波信号に応じた空乏層距離の変化により、空乏層が隣接する他のゲート金属層、FET、抵抗(不純物領域)まで到達する場合そこで高周波信号の漏れを発生することが考えられる。
【0074】
しかし、ゲート金属層の近傍の基板51表面にn+型の高濃度不純物領域100が設けられれば、不純物がドープされていない基板51(半絶縁性であるが、基板抵抗値は1×107〜1×108Ω・cm)表面と異なり、不純物濃度が高くなる(イオン種 29Si+で濃度は1〜5×108cm−3)。これによりゲート金属層と基板51は分離され、空乏層が伸びないので、隣接する他のゲート金属層、FET、抵抗とはお互いの離間距離を大幅に近接して設けることが可能となる。
【0075】
第3工程:次に図6の如く、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する。高濃度不純物領域100を形成したレジスト58を残したまま、全面に酸化膜120を堆積する(図6(A))。その後リフトオフによりレジスト58を除去することで、ソース領域56およびドレイン領域57と高濃度不純物領域100上に酸化膜120が残される(図6(B))。あわせマーク用にレジスト54を除去した部分にも酸化膜120が残され、これらの酸化膜120を以降の工程において合わせマーク130として利用する。次にイオン注入されたp−型領域、n型動作層、およびソース領域、ドレイン領域、高濃度不純物領域となるn+型領域の活性化アニールを行う。
【0076】
第4工程:更に、図7の如く、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する。
【0077】
まず、新たなレジスト63を設け、予定の第1ソース電極65および第1ドレイン電極66を形成する部分を選択的に窓開けするフォトリソグラフィプロセスを行う(図7(A))。露出した酸化膜120とその下層のシリコン窒化膜53をCF4プラズマにより除去して、ソース領域56およびドレイン領域57を露出し(図7(B))、引き続いてオーミック金属層64となるAnGe/Ni/Auの3層を順次真空蒸着して積層する(図7(C))。その後、レジスト層63を除去して、リフトオフによりソース領域56およびドレイン領域57上にコンタクトした第1ソース電極65および第1ドレイン電極66を残す。引き続いて合金化熱処理により第1ソース電極65とソース領域56、および第1ドレイン電極66とドレイン領域57のオーミック接合を形成する(図7D))。
【0078】
従来はGaAsをエッチングした合わせマークを用いて、動作層52形成、ソースドレイン領域56、57形成、ソースドレイン電極65、66形成工程を行っており、マスクアライナーの合わせ精度が0.1μmであるので、ソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせの誤差が最大で0.2μmの誤差となっていた。ソース領域56端―ソース電極65端間距離およびドレイン領域57端―ドレイン電極66端間距離(図11d11参照)は0.2μmが耐圧の限界であるので、合わせずれを考慮して設計中心で0.4μmの離間距離を確保しなければならなかった。しかし、本実施形態のごとく、合わせマーク130形成と同時にソース領域56およびドレイン領域57上に酸化膜120を残すことで、ソース領域及びドレイン領域とソース電極及びドレイン電極を直接マスク合わせできるので、ソース領域56端―ソース電極65端間距離およびドレイン領域57端―ドレイン電極66端間距離(図3 d21参照)を縮小できる。つまりソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせずれは最大でも0.1μmに抑えることができるので、設計中心で0.3μmの離間距離を確保すればよいことになる。
【0079】
第5工程:更に図8の如く、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する。
【0080】
まず図8(A)では、予定のゲート電極69、電極パッド70および配線62部分を選択的に窓開けするフォトリソグラフィプロセスを行い、予定のゲート電極69、電極パッド70および配線62部分から露出したシリコン窒化膜53をドライエッチングして、予定のゲート電極69部分の動作層52を露出し、予定の配線62および予定の電極パッド70部分の基板51を露出する。予定のゲート電極69部分の開口部は0.5μmとし微細化されたゲート電極69を形成できるようにする。
【0081】
次に、図8(B)では、動作層52および露出した基板51に第2層目の電極としてのゲート金属層68を付着しゲート電極69、配線62および第1電極パッド70を形成する。すなわち、基板51に第2層目の電極としてのゲート金属層68となるPt/Mo/Ti/Pt/Auの5層を順次真空蒸着して積層する。
【0082】
その後図8(C)の如くレジスト層67を除去してリフトオフにより動作層52にコンタクトするゲート長0.5μmのゲート電極69と、第1電極パッド70および配線62を形成し、Ptを埋め込む熱処理を施す。これにより、ゲート電極69は基板とのショットキー接合を保ったまま動作層52に一部が埋設される。ここで、この場合の動作層52の深さは第1の工程で動作層52を形成する場合に、このゲート電極69の埋め込み分を考慮して、所望のFET特性を得られるように深く形成しておく。
【0083】
動作層52表面(例えば表面から500Å程度)は、自然空乏層が発生したり、結晶が不均一な領域であるなどで電流が流れず、チャネルとしては有効でない。ゲート電極69の一部をチャネル領域52に埋め込むことにより、ゲート電極69直下の電流の流れる部分がチャネル領域52表面から下がる。チャネル領域52は予め所望のFET特性が得られるようにゲート電極69の埋設分を考慮して深く形成されているため、チャネルとして有効活用できる。具体的には電流密度、チャネル抵抗や高周波歪み特性が大幅に改善される利点を有する。
【0084】
ここで、ゲート電極69形成のマスクも、合わせマーク130を用いる。すなわち、ソース、ドレイン領域とゲート電極を直接マスク合わせする。これにより、ゲート電極69とソース領域56またはドレイン領域57との合わせずれは、つまりマスクアライナーの合わせ精度と同等となり、最大で0.1μmに抑えることができる。従来では、別にGaAsをエッチングすることにより設けた合わせマークを介して間接的にゲート電極69とソース領域56またはドレイン領域57をマスク合わせしていたため、ゲート電極69とソース領域56またはドレイン領域57の合わせずれは、マスクアライナーの合わせ精度が0.1μmのため、最大で0.2μmとなる。ソース領域56及びドレイン領域57とゲート電極69間は、最低0.4μm離間しないと所定の耐圧が確保できないため、マスク合わせ誤差による生産バラツキを考慮して設計中心で0.6μmの離間距離を確保する必要があった(図11 d12参照)が、本実施形態によれば設計中心で0.5μm確保すればよいことになる(図3 d22参照)。
【0085】
ここで、酸化膜120は、ソース領域56、ドレイン領域57と同時に形成される高濃度不純物領域100上にも設けられるものである。つまり従来の如く電極パッド70や配線62下の全面(または周辺部)にアイソレーションの向上のための高濃度不純物領域100を形成すると、ゲート金属層68は酸化膜120の上に堆積することになる。特に、本実施形態ではFETの基本性能を向上させるため、Ptの埋め込みによってゲート電極69を形成している。すなわち、酸化膜120上にPtを配置することになるが、酸化膜120とPtは接着強度が弱く、ゲート金属層68が酸化膜120からはがれる問題が発生する。
【0086】
そこで、図2および図8(C)の如く、電極パッド70や配線62とは当接させず、隣接する他のゲート金属層、FET、不純物領域との間に高濃度不純物領域100を配置することとした。これにより、ゲート金属層から基板に広がる空乏層が、隣接する他のゲート金属層、FET、不純物領域へ到達することを抑制できる。
【0087】
つまり、FETとしての基本性能を向上できる製造方法であり尚且つ、電極パッド70および配線62を構成するゲート金属層からの空乏層の広がりを、近傍に設けた高濃度不純物領域100により抑制することができ、高周波信号の漏れを防げるものである。
【0088】
第7工程:更に、第1ソースおよび第1ドレイン電極と前記第1電極パッド上に第3層目の電極としてのパッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する。
【0089】
ゲート電極69、配線62および第1電極パッド70を形成した後、ゲート電極69周辺の動作層52を保護するために、基板51表面はシリコン窒化膜よりなるパッシベーション膜72で被覆される。このパッシベーション膜72上にフォトリソグラフィプロセスを行い、第1ソース電極65、第1ドレイン電極66、ゲート電極69および第1電極パッド70とのコンタクト部に対して選択的にレジストの窓開けを行い、その部分のパッシベーション膜72をドライエッチングする。その後、レジスト層71は除去される(図9(A))。
【0090】
更に、基板51全面に新たなレジスト層73を塗布してフォトリソグラフィプロセスを行い、予定の第2ソース電極75および第2ドレイン電極76と第2電極パッド77上のレジストを選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、第3層目の電極としてのパッド金属層74となるTi/Pt/Auの3層を順次真空蒸着して積層し、第1ソース電極65、第1ドレイン電極66および第1電極パッド70にコンタクトする第2ソース電極75および第2ドレイン電極76と第2電極パッド77が形成される(図9(B))。パッド金属層74の他の部分はレジスト層73上に付着されるので、レジスト層73を除去してリフトオフにより第2ソース電極75および第2ドレイン電極76と第2電極パッド77のみを残し、他は除去される。なお、一部の配線部分はこのパッド金属層74を用いて形成されるので、当然その配線部分のパッド金属層74は残される(図9(C))。
【0091】
尚、高濃度不純物領域100の配置例は一例であり、基板とショットキー接合を形成するゲート金属層68に印可される高周波信号を基板51を介して他のゲート金属層68に伝達することを防止する配置であればよい。
【0092】
以上、ショットキー接合を形成する基板として化合物半導体基板を例に説明したが、半絶縁基板とはこれに限らず、不純物濃度が1×1014cm−3以下であり、抵抗率は1×106Ω・cm以上であれば、どのような基板であっても同様の効果が得られる。更に、半絶縁基板以外でも、例えばシリコン半導体基板にイオン注入することにより絶縁化した絶縁化層でもよい。この場合絶縁化層の抵抗率は1×103Ω・cm以上とする。
【0093】
【発明の効果】
以上に詳述した如く、本発明に依れば以下の効果が得られる。
【0094】
ゲート電極と隣接するFET間に高濃度不純物領域を設けることにより、アイソレーションを向上させることができる。ゲート金属層の下に周辺n+型領域を設ける従来の方法では、微細なゲート電極下に設けることができなかった。しかし本発明によれば、ゲート電極の近傍で、少なくとも他のFET、ゲート金属層、不純物領域と隣接する部分に高濃度不純物領域を配置することで、基板に広がる空乏層による高周波信号の漏出を防止できる。
【0095】
また、ゲート金属層となるパッドおよび配線の近傍に設けることにより、パッドおよび配線からの空乏層の広がりも抑制できる。
【0096】
更に、n+型領域とゲートマスクを直接マスク合わせすることにより、n+工程とゲートの合わせ誤差は最大でも0.1μmとなる。すなわちマスク合わせ誤差による生産バラツキを考慮してもn+型領域とゲート電極の距離は0.6μmから0.5μmに縮めることができ、その分FETの飽和電流値を上げ、ON抵抗値を下げることができる。n+型領域端とオーミック電極(ソース電極やドレイン電極)の距離も全く同じ理由により設計値を0.4μmから0.3μmに縮めることができ、その分FETの飽和電流値を上げ、ON抵抗値をげることができる。
【0097】
また、上記に加えゲートを埋め込むことでFETの基本性能をより向上できるので、従来と同等の特性でゲート幅Wgを500μmにすることができ、容量低減によるアイソレーション向上の利点も有する。
【0098】
このとき、n+領域上には酸化膜が残るため、特にゲート埋め込みをする場合に同時に設けられる配線や電極パッドの最下層のPtとの接着強度が弱くなる恐れがあるが、本実施形態では、パッドおよび配線と高濃度不純物は当接せず、近傍して配置するので、空乏層の広がりを抑制できる。
【図面の簡単な説明】
【図1】本発明を説明するための回路図である。
【図2】本発明を説明するための平面図である。
【図3】本発明を説明するための断面図である。
【図4】本発明を説明するための断面図である。
【図5】本発明を説明するための断面図である。
【図6】本発明を説明するための断面図である。
【図7】本発明を説明するための断面図である。
【図8】本発明を説明するための断面図である。
【図9】本発明を説明するための断面図である。
【図10】従来例を説明するための(A)回路図、(B)平面図である。
【図11】従来例を説明するための断面図である。
【図12】従来例を説明するための断面図である。
【図13】従来例を説明するための断面図である。
【図14】従来例を説明するための断面図である。
【図15】従来例を説明するための断面図である。
【符号の説明】
44 チャネル領域
51 GaAs基板
52 動作層
53 窒化膜
54 レジスト
56 ソース領域
57 ドレイン領域
58 レジスト
60 周辺n+型領域
61 周辺n+型領域
62 配線
63 レジスト
64 オーミック金属層
65 第1ソース電極
66 第1ドレイン電極
67 レジスト
68 ゲート金属層
69 ゲート電極
70 第1電極パッド
71 レジスト
72 窒化膜
74 パッド金属層
75 第2ソース電極
76 第2ドレイン電極
77 第2電極パッド
100 高濃度不純物領域
100a 高濃度不純物領域
100b 高濃度不純物領域
120 酸化膜
130 合わせマーク
【発明の属する技術分野】
本発明は、半導体装置の製造方法に係り、特にフォトリソグラフィ工程におけるマスク合わせ精度を向上する半導体装置の製造方法に関する。
【0002】
【従来の技術】
携帯電話等の移動体用通信機器では、GHz帯のマイクロ波を使用している場合が多く、アンテナの切換回路や送受信の切換回路などに、これらの高周波信号を切り替えるためのスイッチ素子が用いられることが多い。その素子としては、高周波を扱うことからガリウム・砒素(GaAs)を用いた電界効果トランジスタ(以下FETという)を使用する事が多く、これに伴って前記スイッチ回路自体を集積化したモノリシックマイクロ波集積回路(MMIC)の開発が進められている。
【0003】
以下に、従来のGaAsFETを用いたスイッチ回路装置の一例を説明する(例えば、非特許文献1参照。)。
【0004】
図10(A)は、GaAs FETを用いたSPDT(Single Pole Double Throw)と呼ばれる化合物半導体装置の原理的な回路図の一例を示す。
【0005】
第1と第2のFET1、FET2のソース(又はドレイン)が共通入力端子INに接続され、各FET1、FET2のゲートが抵抗R1、R2を介して第1と第2の制御端子Ctl−1、Ctl−2に接続され、そして各FETのドレイン(又はソース)が第1と第2の出力端子OUT−1、OUT−2に接続されたものである。第1と第2の制御端子Ctl−1、Ctl−2に印加される信号は相補信号であり、Hレベルの信号が印加されたFETがONして、入力端子INに印加された信号をどちらか一方の出力端子に伝達するようになっている。抵抗R1、R2は、交流接地となる制御端子Ctl−1、Ctl−2の直流電位に対してゲート電極を介して高周波信号が漏出することを防止する目的で配置されている。
【0006】
図10(B)は上記の化合物半導スイッチ回路装置を集積化した平面図である。
【0007】
図に示す如く、GaAs基板にスイッチを行うFET1およびFET2(いずれもゲート幅600μm)を中央部に配置し、各FETのゲート電極に抵抗R1、R2が接続されている。また共通入力端子IN、出力端子OUT−1、OUT−2、制御端子Ctl−1、Ctl−2に対応するパッドが基板の周辺に設けられている。なお、点線で示した第2層目の配線は各FETのゲート電極形成時に同時に形成されるゲート金属層(Ti/Pt/Au)68であり、実線で示した第3層目の配線は各素子の接続およびパッドの形成を行うパッド金属層(Ti/Pt/Au)77である。第1層目の基板にオーミックに接触するオーミック金属層(AuGe/Ni/Au)は各FETのソース電極、ドレイン電極および各抵抗両端の取り出し電極を形成するものであり、図10では、パッド金属層と重なるために図示されていない。
【0008】
各電極パッドおよび配線が隣接する部分では、電極パッド及び配線の下全面(または周辺部)に当接して不純物領域60、61が設けられる。不純物領域60、61は、電極パッドまたは配線の基板当接部よりはみ出して設けられ、所定のアイソレーションを確保している。
【0009】
図11には、図10のスイッチ回路装置のFETの一部の断面図を示す。尚、スイッチ動作を行うFET1、FET2およびシャントFETであるFET3、FET4は全て同様の構成である。
【0010】
図11の如く、基板51にはn型イオン注入層による動作層52とその両側にソース領域56およびドレイン領域57を形成するn+型の不純物領域が設けられ、動作層52にはゲート電極69が設けられ、不純物領域には第1層目のオーミック金属層で形成されるドレイン電極66およびソース電極65が設けられる。更にこの上に前述したように3層目のパッド金属層77で形成されるドレイン電極76およびソース電極75が設けられ、各素子の配線等を行っている。
【0011】
図12〜図15を参照して、かかる化合物半導体スイッチ回路装置のFET、各端子となるパッドおよび配線の製造方法の一例を示す。尚、ここでは1つの電極パッドについて説明するが、上記の共通入力端子、第1および第2制御端子、第1および第2出力端子に接続する電極パッドはすべて同様の構造である。
【0012】
第1の工程:GaAs等で形成される化合物半導体基板51全面を約100Åから200Åの厚みのスルーイオン注入用シリコン窒化膜53で被覆する。次に、予定の動作層52上のレジスト層54を選択的に窓開けするフォトリソグラフィプロセスを行う。その後、このレジスト層54をマスクとして予定の動作層52へ動作層を選択するためにp−型を与える不純物(24Mg+)のイオン注入およびn型を与える不純物(29Si+)のイオン注入を行う。この結果、ノンドープの基板51にはp−型領域55と、その上にn型動作層52が形成される(図12(A))。
【0013】
第2の工程:前工程で用いたレジスト層54を除去し、新たに予定のソース領域56、ドレイン領域57、予定の配線62および電極パッド70上のレジスト層58を選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、このレジスト層58をマスクとして予定のソース領域56およびドレイン領域57、予定の配線62および電極パッド70の下の基板表面にn型を与える不純物(29Si+)のイオン注入を行う。これにより、n+型のソース領域56およびドレイン領域57を形成し、同時に予定の電極パッド70および配線62の下の基板表面に周辺n+型領域60、61を形成する(図12(B))。
【0014】
これにより配線62および電極パッド70と基板51は分離され、電極パッド70、配線62への空乏層が伸びないので、隣接する電極パッド70、配線62はお互いの離間距離を大幅に近接して設けることが可能となる。具体的には、離間距離を4μmにすれば、20dB以上のアイソレーションを確保するには十分であると割り出された。また、電磁界シミュレーションにおいても4μm程度の離間距離を設ければ2.4GHzにおいて40dB程度もアイソレーションを得られることがわかっている。次にアニール用のシリコン窒化膜53を約500Åデポし、イオン注入されたp−型領域、n型動作層およびn+型領域の活性化アニールを行う。
【0015】
第3の工程:まず、予定の第1ソース電極65および第1ドレイン電極66を形成する部分を選択的に窓開けするフォトリソグラフィプロセスを行う。予定の第1ソース電極65および第1ドレイン電極66上にあるシリコン窒化膜53をCF4プラズマにより除去し、引き続いてオーミック金属層64となるAnGe/Ni/Auの3層を順次真空蒸着して積層する。その後、レジスト層63を除去して、リフトオフによりソース領域56およびドレイン領域57上にコンタクトした第1ソース電極65および第1ドレイン電極66を残す。引き続いて合金化熱処理により第1ソース電極65とソース領域56、および第1ドレイン電極66とドレイン領域57のオーミック接合を形成する(図13)。
【0016】
第4の工程:図14(A)では、予定のゲート電極69、電極パッド70および配線62部分を選択的に窓開けするフォトリソグラフィプロセスを行う。予定のゲート電極69、電極パッド70および配線62部分から露出したシリコン窒化膜53をドライエッチングして、予定のゲート電極69部分の動作層52を露出し、予定の配線62および予定の電極パッド70部分の基板51を露出する。
【0017】
予定のゲート電極69部分の開口部は0.5μmとし微細化されたゲート電極69を形成できるようにする。このとき、第2の工程で説明したように従来では、アイソレーションを確保するために必要であった電極パッド70下の窒化膜が、周辺n+型領域60、61を設けたことにより除去できるので、ボンディングワイヤの圧着時の衝撃により、窒化膜および基板が割れることが無くなる。
【0018】
次に、図14(B)の如く、ゲート金属層68としてTi/Pt/Auの3層を順次真空蒸着して積層する。その後リフトオフにより、ゲート電極69、第1電極パッド70および配線62を形成する(図14(C))。
【0019】
第5の工程:ゲート電極69、配線62および第1電極パッド70を形成した後、ゲート電極69周辺の動作層52を保護するために、基板51表面はシリコン窒化膜よりなるパッシベーション膜72で被覆される。このパッシベーション膜72上にフォトリソグラフィプロセスを行い、第1ソース電極65、第1ドレイン電極66、ゲート電極69および第1電極パッド70とのコンタクト部に対して選択的にレジストの窓開けを行い、その部分のパッシベーション膜72をドライエッチングする。その後、レジスト層71は除去される(図15(A))。
【0020】
次に、基板51全面に新たなレジスト層73を塗布してフォトリソグラフィプロセスを行い、予定の第2ソース電極75および第2ドレイン電極76と第2電極パッド77上のレジストを選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、第3層目の電極としてのパッド金属層74となるTi/Pt/Auの3層を順次真空蒸着して積層し、第1ソース電極65、第1ドレイン電極66および第1電極パッド70にコンタクトする第2ソース電極75および第2ドレイン電極76と第2電極パッド77が形成される(図15(B))。パッド金属層74の他の部分はレジスト層73上に付着されるので、レジスト層73を除去してリフトオフにより第2ソース電極75および第2ドレイン電極76と第2電極パッド77のみを残し、他は除去される。なお、一部の配線部分はこのパッド金属層74を用いて形成されるので、当然その配線部分のパッド金属層74は残される(図15(C))。
【0021】
【非特許文献1】
特願2001−182687号明細書
【0022】
【発明が解決しようとする課題】
従来は、第1の工程においてGaAsをエッチングして合わせマークを形成し、その合わせマークにすべての工程のマスクを合わせていた。この場合、マスクアライナーの合わせ精度が0.1μmのため、ソース領域およびドレイン領域となるn+型領域とゲート電極の合わせ誤差は最大0.2μmとなる。このn+領域とゲート電極間は最低0.4μmの距離が無いと所定の耐圧が得られないので、マスク合わせ誤差による生産バラツキを考慮して、n+型領域とゲート電極の距離は0.6μmの設計となっていた。同様にn+型領域端部とオーミック接合を形成するソース電極端およびドレイン電極端間距離は最低0.2μm必要であるため、マスク合わせ誤差最大0.2μmを見込んで、0.4μmの設計となっていた。そのため基本素子の性能として、飽和電流値が上がらず、ON抵抗値が下がらないという問題があった。
【0023】
【課題を解決するための手段】
本発明は上述した諸々の事情に鑑み成されたものであり、第1に、基板上にイオン注入による不純物領域を形成する工程と、前記不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程とを具備することにより解決するものである。
【0024】
また、前記絶縁膜は、前記不純物領域のイオン注入後絶縁膜を堆積し、前記イオン注入のマスクとなったレジストをリフトオフにより除去して前記不純物領域上に形成することを特徴とするものである。
【0025】
第2に、チャネル領域上のソース領域およびドレイン領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程によりソース電極およびドレイン電極およびゲート電極を形成する工程とを具備することにより解決するものである。
【0026】
第3に、基板表面に動作層を形成する工程と、前記動作層に接して一導電型不純物を注入・拡散してソース領域およびドレイン領域を形成する工程と、前記ソース領域およびドレイン領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層にゲート金属層を付着しゲート電極を形成する工程と、前記第1ソースおよび第1ドレイン電極上にパッド金属層を付着し第2ソースおよび第2ドレイン電極を形成する工程とを具備することにより解決するものである。
【0027】
第4に、基板表面に動作層を形成する工程と、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する工程と、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する工程と、前記第1ソースおよび第1ドレイン電極と前記第1電極パッド上に、パッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する工程とを具備することにより解決するものである。
【0028】
また、前記高濃度不純物領域は、前記ゲート金属層が形成される領域の端から数μm離間して形成されることを特徴とするものである。
【0029】
また、前記絶縁膜は、前記一導電型不純物を注入・拡散後、フォトレジストを残したまま全面に堆積され、リフトオフにより前記一導電型不純物領域上に形成されることを特徴とするものである。
【0030】
また、第1ソースおよび第1ドレイン電極は、該電極上に形成された絶縁膜の一部を除去して前記ソース領域およびドレイン領域を露出し、前記オーミック金属層を付着して形成することを特徴とするものである。
【0031】
また、前記ゲート電極は、最下層がPtである多層のゲート金属層を順次蒸着し、熱処理によりPt層を前記基板表面に埋め込んで形成することを特徴とするものである。
【0032】
また、前記絶縁膜は酸化膜であることを特徴とするものである。
【0033】
【発明の実施の形態】
以下に本発明の実施の形態について図1から図9を参照して説明する。
【0034】
図1は、本実施形態のスイッチ回路装置を説明する回路図であり、図1(A)は等価回路図、図1(B)はチップパターンに沿った回路概要図である。
【0035】
この回路では、スイッチを行うFET1とFET2の出力端子OUT−1とOUT−2と接地間にシャントFET3、FET4を接続し、このシャントFET3、FET4のゲートにはFET2とFET1への制御端子Ctl−2、Ctl−1の相補信号を印可している。この結果、FET1がONのときはシャントFET4がONし、FET2およびシャントFET3がOFFしている。
【0036】
この回路で、共通入力端子IN−出力端子OUT−1の信号経路がオンし、共通入力端子IN−出力端子OUT−2の信号経路がオフした場合は、シャントFET4がオンしているので出力端子OUT−2への入力信号の漏れは接地された外付けのコンデンサCを介して接地に逃げ、シャントFETが無かった従来例に比べアイソレーションが向上できる。
【0037】
図2は、図1のスイッチ回路装置を集積化した化合物半導体スイッチ回路装置の一例を示す平面図である。
【0038】
基板は、化合物半導体基板(例えばGaAs)であり、この基板にスイッチを行うFET1およびFET2(いずれもゲート幅600μm)を左右の中央部に配置し、その下方にシャントFET3およびシャントFET4(いずれもゲート幅300μm)を配置し、各FETのゲート電極に抵抗R1、R2、R3、R4が接続されている。また共通入力端子IN、出力端子OUT−1、OUT−2、制御端子Ctl−1、Ctl−2、接地端子GNDに対応する電極パッドI、O1、O2、C1、C2、Gが基板の周辺に設けられている。スイッチを行うFET1およびFET2を設け、更にシャントFET3およびシャントFET4のソース電極は接続されて接地端子GNDに接続されている。尚、ここでの図示は省略するが接地のためのコンデンサCが外付けで接地端子GNDに接続する。なお、点線で示した第2層目の配線は各FETのゲート電極形成時に同時に形成されるゲート金属層68(Pt/Mo/Ti/Pt/Au)であり、実線で示した第3層目の配線は各素子の接続およびパッドの形成を行うパッド金属層77(Ti/Pt/Au)である。第1層目の基板にオーミックに接触するオーミック金属層(AuGe/Ni/Au)は各FETのソース電極、ゲート電極および各抵抗両端の取り出し電極を形成するものであり、図2では、パッド金属層と重なるために図示されていない。
【0039】
図2で、FET1(FET2も同様)は、下側から伸びる6本の櫛歯状の第3層目のパッド金属層77が出力端子OUT−1に接続されるソース電極75(あるいはドレイン電極)であり、この下に第1層目オーミック金属層で形成されるソース電極65(あるいはドレイン電極)がある。また上側から伸びる櫛歯状の6本の第3層目のパッド金属層77が共通入力端子INに接続されるドレイン電極76(あるいはソース電極)であり、この下に第1層目のオーミック金属層で形成されるドレイン電極66(あるいはソース電極)がある。この両電極は櫛歯をかみ合わせた形状に配置され、その間に第2層目のゲート金属層68で形成されるゲート電極69が櫛歯形状に配置され、FETのチャネル領域を構成している。
【0040】
また、シャントFETであるFET3(FET4も同様)は、下側から伸びる櫛歯状の4本の第3層目のパッド金属層77が接地端子GNDに接続されるソース電極75(あるいはドレイン電極)であり、この下に第1層目オーミック金属層で形成されるソース電極65(あるいはドレイン電極)がある。また上側から伸びる櫛歯状の4本の第3層目のパッド金属層77が出力端子OUT−1に接続されるドレイン電極76(あるいはソース電極)であり、この下に第1層目のオーミック金属層で形成されるドレイン電極66(あるいはソース電極)がある。この両電極は櫛歯をかみ合わせた形状に配置され、その間に第2層目のゲート金属層68で形成されるゲート電極69が櫛歯形状に配置されて、チャネル領域を構成している。
【0041】
更に、各FETのゲート電極69近傍の基板表面に、n+型の高濃度不純物領域100aを設ける。具体的には、FET1の櫛歯状のゲート電極69の先端部分69aおよびFET2の櫛歯状のゲート電極69の先端部分69aが、対向配置されるFET3およびFET4と少なくとも隣接する部分である。ここでゲート電極の先端部分69aとは、櫛歯状のゲート電極69を束ねた側と逆側をいい、また、ゲート電極69がチャネル領域から延在され、基板とショットキー接合を形成している領域である。高濃度不純物領域100aは、各ゲート電極先端部分69aから約4μmの離間距離で配置される。
【0042】
また、高濃度不純物領域100aは、FET1およびFET2と対向配置されるFET3のゲート電極先端部分69aとFET4のゲート電極先端部分69aからも4μmの離間距離で配置されている。すなわち、本実施形態のパターンにおいては高濃度不純物領域100aはスイッチの動作を行うFET1、FET2と、対向配置されるシャントFETであるFET3、FET4間に設けられる。
【0043】
この高濃度不純物領域100aにより、基板とショットキー接合を形成するゲート電極69から前記基板に延びる空乏層の広がりを抑制することができる。基板とショットキー接合を形成する金属層においては、その金属層を伝わる高周波信号に応じて、基板に広がる空乏層の電界が変動することにより、空乏層が到達する隣接した電極などに高周波信号が漏れる場合がある。
【0044】
しかし、ゲート電極69が隣接するように配置されたFET1とFET3およびEFT2とFET4の間の基板51表面にn+型の高濃度不純物領域100aが設けられれば、不純物がドープされていない基板51(半絶縁性であるが、基板抵抗値は1×107〜1×108Ω・cm)表面と異なり、不純物濃度が高くなる(イオン種 29Si+で濃度は1〜5×108cm−3)。これにより各FETのゲート電極69は分離され、隣接するFET(ソース領域、ドレイン領域、チャネル領域の不純物領域やゲート電極)への空乏層が伸びないので、隣接するFETはお互いの離間距離を大幅に近接して設けることが可能となる。
【0045】
前述の如く、ゲート電極69は微細なパターンで形成されるため、本実施形態においては、ゲート電極69から数μm離間して高濃度不純物領域100aを配置することとした。このように高濃度不純物領域100aを設けることにより、FET1およびFET2のゲート電極から基板に広がる空乏層が、隣接して対向配置されたFET3およびFET4のゲート電極、ソース領域およびドレイン領域、チャネル領域に到達することを防ぎ、高周波信号の漏出を抑制できる。
【0046】
具体的には、ゲート電極69の先端部分69aから高濃度不純物領域100aまでの離間距離を4μmにすれば、所定のアイソレーションを確保するには十分である。
【0047】
ここで、高濃度不純物領域100aについて説明する。高濃度不純物領域100aの不純物濃度は1×1017cm−3以上である。また、その一部が金属電極200と接続し、DC電位、GND電位または高周波GND電位が印加されると、アイソレーションの向上により効果的である。
【0048】
また、基板とショットキー接合を形成するゲート金属層68からなる電極パッド70および配線62の近傍にも高濃度不純物領域100bを配置する。更には1つのFETのゲート電極が、ゲート金属層68からなる電極パッドおよび配線62と隣接する領域にも高濃度不純物領域100cを設ける。これにより、基板とショットキー接合を形成するゲート電極68、電極パッド70および配線62から基板に広がる空乏層により高周波信号が漏出することを抑制できる。
【0049】
図3には、図2のスイッチ回路装置のFETの一部の断面図を示す。尚、スイッチ動作を行うFET1、FET2およびシャントFETであるFET3、FET4は全て同様の構成である。
【0050】
図3の如く、基板51にはn型イオン注入層による動作層52とその両側にソース領域56およびドレイン領域57を形成するn+型の不純物領域が設けられ、動作層52にはゲート電極69が設けられ、不純物領域には第1層目のオーミック金属層で形成されるドレイン電極66およびソース電極65が設けられる。更にこの上に前述したように3層目のパッド金属層77で形成されるドレイン電極76およびソース電極75が設けられ、各素子の配線等を行っている。従来のFETがTiでチャネル領域とショットキ接合を形成しているのに対し、本実施形態のゲート電極69はPtを埋め込んだゲート電極69とし、FETの飽和電流値を上げ、ON抵抗値を下げている点にある。次にドレイン電極66およびソース電極65の周囲を覆う窒化膜の上に、ドレイン電極66およびソース電極65に沿って酸化膜120が設けられることにある。
【0051】
この酸化膜120は、後に詳述するが、本実施形態のFETを製造する工程において必要となるものであり、ゲート電極69のマスク合わせ精度を向上させるため、FETのソース領域56、ドレイン領域57を形成するn+型領域上に設けられるものである。その製法上、ソース電極65およびドレイン電極66に沿って2本ずつ形成される各酸化膜120は、1つの側面がソース領域56またはドレイン領域57の端部とほぼ一致しており、他の側面がソース電極65またはドレイン電極66の端部とほぼ一致している。この酸化膜120を設けることによりマスク合わせ精度が向上し、d21およびd22が従来よりも縮小する。つまりソースードレイン領域間の距離およびソース−ドレイン電極間の距離を縮め、さらにFETの飽和電流値を上げ、ON抵抗値を下げている。
【0052】
ここで、ゲート長Lgは、ソース領域56とドレイン領域57間のチャネル領域44(動作層52)にあるゲート電極69の長さをいい、通常短チャネル効果が発生しない0.5μmに設計される。ゲート幅Wgは、ソース領域56およびドレイン領域57に沿ってチャネル領域44(動作層52)にあるゲート電極69の幅(櫛歯の総和)をいい、従来では、スイッチ動作を行うFETのゲート幅Wgが従来600μmであったところを500μmにシュリンクし、シャントFETのゲート幅Wgは300μmである。
【0053】
このように、FET自身のゲート幅Wgを小さくすることにより、FETのOFF容量を減らすこともアイソレーションを向上させるのに大きな効果がある。しかし、一般的にはFETのゲート幅Wgを従来の600μmから500μmに小さくすると飽和電流値が下がり、ON抵抗値が上がってしまう。そこで、ゲート幅Wgを縮小しても従来どおりの飽和電流値、ON抵抗値を保つため、基本素子としてのFETの能力を向上させる必要がある。本実施形態では、従来Tiのショットキー接合によるゲート電極であったものを、Ptを埋め込んだゲート電極のFETとする。
【0054】
ゲート電極69は、最下層から、Pt/Mo/Ti/Pt/Auの多層蒸着金属層であり、Pt層の一部を動作層に埋め込んだ電極構造である。埋め込みのための熱処理後、もともと最下層にPtのあった部分は主にPtGaとなり、GaAsにPtが拡散した部分は主にPtAs2となる。
【0055】
GaAsFETの動作領域とショットキ接合を形成する金属として、PtはTiに比べGaAsに対するバリアハイトが高いため、Tiでショットキ接合を形成する従来のFETに比べPt埋め込みゲートFETは高い飽和電流値と低いON抵抗値が得られる。さらにPt埋め込みゲートFETはゲート電極の一部をチャネル領域に埋め込むことにより、ゲート電極直下の電流の流れる部分がチャネル領域表面から下がる。すなわち動作領域は予め所望のFET特性が得られるようにゲート電極の埋設分を考慮して深く形成されているため、表面自然空乏層領域から離れ、結晶が良好な低抵抗領域を電流が流れるような動作領域の設計となっている。以上の理由によってもTiゲートFETに比べPt埋め込みゲートFETは飽和電流値、ON抵抗値や高周波歪み特性が大幅に改善される。
【0056】
さらに、本実施形態のFETは、従来に比べ、ゲート電極形成のマスク合わせ精度を向上させ、製造プロセスを工夫することにより、ソースードレイン間の距離を縮め、基本素子としての特性をますます向上させている。しかし、そのために、製造工程においてソース領域56およびドレイン領域57となるn+型領域上にマスク合わせ用の酸化膜120を同時に形成し、且つゲート電極69をPt層の埋め込みで形成している。このため、後に詳述するが、従来例で示した電極パッド70および配線62と当接する周辺n+型領域60、61が形成できないことになる。
【0057】
そのため、チップ上の1つの電極パッド70および配線62となるゲート金属層68から基板に延びる空乏層の拡がりを抑制するため、当該ゲート金属層68と、FETや他のゲート金属層68(他の配線62および他の電極パッド70)、不純物拡散領域からなる抵抗R1〜R4のいずれかとが少なくとも隣接する部分、または1つのFETのゲート電極と、ゲート金属層68、抵抗R1〜R4とが少なくとも隣接する部分に、高濃度不純物領域100b、100cを設けるものである。
【0058】
尚、高濃度不純物領域100a〜100cは、その配置される場所を明確にするために符号を変えているだけであり、本実施形態においてアイソレーションを向上させる効果としては全く同一の構成要素である。すなわち、高濃度不純物領域100b、100cの不純物濃度は、高濃度不純物領域100aと同様1×1017cm−3以上である。また、図示は省略するが、この高濃度不純物領域100b、100cに金属電極を接続し、金属電極をGNDに接続すると、アイソレーション向上に効果的である。
【0059】
本実施形態では、近接するFET間に高濃度領域100aを設けることで、アイソレーションを向上させ、各FET間の離間距離を大幅に低減できる。
【0060】
また、FETを形成するためにマスク合わせ用の酸化膜120を設けることにより、ゲート電極69とソース領域56またはドレイン領域57とのマスク合わせずれに最大で0.1μm確保すればよく、従来0.2μm確保しなければならなかったので、その差0.1μm分、ゲート電極69とソース領域56またはドレイン領域57間距離(d22)をシュリンクできる。具体的には、ソース領域56およびドレイン領域57とゲート電極69間距離を0.6μmから0.5μmに縮小でき、さらに同様の理由によりソース領域56端―ソース電極65端距離およびドレイン領域57端―ドレイン電極66端距離(d21)を0.4μmから0.3μmに縮小できる。
【0061】
つまり、ソース領域56、ドレイン領域57とゲート電極69のマスク合わせ精度を向上し、ソース領域56、ドレイン領域57とゲート電極69の距離をそれぞれ0.1μm縮め、ソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせ精度を向上し、ソース領域56端―ソース電極65端距離およびドレイン領域57端―ドレイン電極66端距離をそれぞれ0.1μm縮め、トータルとしてソース電極―ドレイン電極間距離を0.4μm縮めることができるので、飽和電流値の向上および、ON抵抗値の低減が実現できる。この効果と前述のTiショットキゲートFETからPt埋め込みゲートFETへの変更の効果を合わせて、スイッチ動作を行うFETのゲート幅Wgを500μmに低減しても、従来どおりの飽和電流値およびON抵抗値を確保できることになり、ゲート幅Wg低減によるアイソレーション向上に大きく寄与している。
【0062】
更に、FETの基本素子としての性能を向上するために、その製造プロセス上電極パッド70および配線62の下に設けていた周辺n+型領域60、61が形成できなくなるが、電極パッド70および配線62の近傍に高濃度不純物領域100b、100cを設けることで、従来どおりの所定のアイソレーションを確保することができる。
【0063】
具体的には、高濃度不純物領域100aと各FETのゲート電極69は4μm程度あれば空乏層の拡がりを抑制することができ、高濃度不純物領域100aは2μmあれば十分効果を発揮できるので、高濃度不純物領域100aを挟んだ場合10μm程度まで近接できる。従来では、20μm以上離間する必要があった隣接するFET間の離間距離を大幅に縮小することができる。
【0064】
次に、本発明の半導体装置の製造方法を、上記のスイッチ回路装置を例に図4から図9を参照して説明する。
【0065】
尚、ここでは1つの電極パッドについて説明する。例えば、以下の製造方法により、図2に示すスイッチ回路装置を製造する場合、共通入力端子用の電極パッド、第1および第2制御端子用の電極パッド、第1および第2出力端子用の電極パッドはすべて同様に形成される。尚、高濃度不純物領域100a〜100cは同一構成要素であり、その配置も様々であるので、以下高濃度不純物領域100として説明する。
【0066】
本発明の製造方法は、基板表面に動作層を形成する工程と、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する工程と、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する工程と、前記第1ソースおよび第1ドレイン電極と前記第1電極パッド上に、パッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する工程とから構成される。
【0067】
第1工程:まず、図4に示す如く、基板51表面に動作層52を形成する。
【0068】
すなわち、GaAs等で形成される化合物半導体基板51全面を約100Åから200Åの厚みのスルーイオン注入用シリコン窒化膜53で被覆する。次に、チップの最外周又は、マスクの所定の領域のGaAsをエッチングして合わせマーク(不図示)を形成し、予定の動作層52上のレジスト層54を選択的に窓開けするフォトリソグラフィプロセスを行う。その後、このレジスト層54をマスクとして予定の動作層52へ動作層を選択するためにp−型を与える不純物(24Mg+)のイオン注入およびn型を与える不純物(29Si+)のイオン注入を行う。この結果、ノンドープの基板51にはp−型領域55と、その上にn型動作層52が形成される。次にアニール用シリコン窒化膜を約500Åをデポする。
【0069】
第2工程:次に図5に示す如く、前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する。
【0070】
前工程で用いたレジスト層54を除去し、新たに予定のソース領域56、ドレイン領域57、予定のショットキー金属層が設けられる近傍のレジスト層58を選択的に窓開けするフォトリソグラフィプロセスを行う。ショットキー金属層とは、半絶縁基板とショットキー接合を形成するゲート電極および配線、電極パッドの最下層となる金属層(以下ゲート金属層と称する)であるので、予定の配線62および予定の電極パッド70部分の近傍が露出することになる。
【0071】
続いて、このレジスト層58をマスクとして予定のソース領域56およびドレイン領域57、予定の高濃度不純物領域100の基板表面にn型を与える不純物(29Si+)のイオン注入を行う。これにより、n+型のソース領域56およびドレイン領域57を形成し、同時に高濃度不純物領域100を形成する。高濃度不純物領域100は、所定のアイソレーションを確保するため、ゲート金属層が、他のゲート金属層または不純物領域と隣接する領域に、少なくとも設けられる。また、高濃度不純物領域100は、ゲート金属層の端部から4μm程度離間した基板表面に設けられる。チップの最外周又は、マスクの所定の領域に後の工程においてマスク合わせをするためのあわせマーク用にレジスト58が除去されている。
【0072】
図5の断面図では、高濃度不純物領域100がFETのチャネル領域44、予定の配線62、予定の電極パッド層70の近傍でそれぞれを分離するように設けられる図を示している。しかし実際には図2の如く、1つのFETのゲート電極69が他のFETと隣接する領域(高濃度不純物100a)や、電極パッド70および配線62となるゲート金属層が、FET、他の電極パッド70および配線62、不純物領域からなる抵抗R1〜R4のいずれかと少なくとも隣接する領域(高濃度不純物100b)のゲート金属層の近傍に形成される。
【0073】
GaAs基板上にショットキー接合を形成する金属層(本実施形態においてはゲート金属層)を直接設けると、高周波信号に応じた空乏層距離の変化により、空乏層が隣接する他のゲート金属層、FET、抵抗(不純物領域)まで到達する場合そこで高周波信号の漏れを発生することが考えられる。
【0074】
しかし、ゲート金属層の近傍の基板51表面にn+型の高濃度不純物領域100が設けられれば、不純物がドープされていない基板51(半絶縁性であるが、基板抵抗値は1×107〜1×108Ω・cm)表面と異なり、不純物濃度が高くなる(イオン種 29Si+で濃度は1〜5×108cm−3)。これによりゲート金属層と基板51は分離され、空乏層が伸びないので、隣接する他のゲート金属層、FET、抵抗とはお互いの離間距離を大幅に近接して設けることが可能となる。
【0075】
第3工程:次に図6の如く、前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する。高濃度不純物領域100を形成したレジスト58を残したまま、全面に酸化膜120を堆積する(図6(A))。その後リフトオフによりレジスト58を除去することで、ソース領域56およびドレイン領域57と高濃度不純物領域100上に酸化膜120が残される(図6(B))。あわせマーク用にレジスト54を除去した部分にも酸化膜120が残され、これらの酸化膜120を以降の工程において合わせマーク130として利用する。次にイオン注入されたp−型領域、n型動作層、およびソース領域、ドレイン領域、高濃度不純物領域となるn+型領域の活性化アニールを行う。
【0076】
第4工程:更に、図7の如く、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する。
【0077】
まず、新たなレジスト63を設け、予定の第1ソース電極65および第1ドレイン電極66を形成する部分を選択的に窓開けするフォトリソグラフィプロセスを行う(図7(A))。露出した酸化膜120とその下層のシリコン窒化膜53をCF4プラズマにより除去して、ソース領域56およびドレイン領域57を露出し(図7(B))、引き続いてオーミック金属層64となるAnGe/Ni/Auの3層を順次真空蒸着して積層する(図7(C))。その後、レジスト層63を除去して、リフトオフによりソース領域56およびドレイン領域57上にコンタクトした第1ソース電極65および第1ドレイン電極66を残す。引き続いて合金化熱処理により第1ソース電極65とソース領域56、および第1ドレイン電極66とドレイン領域57のオーミック接合を形成する(図7D))。
【0078】
従来はGaAsをエッチングした合わせマークを用いて、動作層52形成、ソースドレイン領域56、57形成、ソースドレイン電極65、66形成工程を行っており、マスクアライナーの合わせ精度が0.1μmであるので、ソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせの誤差が最大で0.2μmの誤差となっていた。ソース領域56端―ソース電極65端間距離およびドレイン領域57端―ドレイン電極66端間距離(図11d11参照)は0.2μmが耐圧の限界であるので、合わせずれを考慮して設計中心で0.4μmの離間距離を確保しなければならなかった。しかし、本実施形態のごとく、合わせマーク130形成と同時にソース領域56およびドレイン領域57上に酸化膜120を残すことで、ソース領域及びドレイン領域とソース電極及びドレイン電極を直接マスク合わせできるので、ソース領域56端―ソース電極65端間距離およびドレイン領域57端―ドレイン電極66端間距離(図3 d21参照)を縮小できる。つまりソース領域56とソース電極65間、ドレイン領域57とドレイン電極66間のマスク合わせずれは最大でも0.1μmに抑えることができるので、設計中心で0.3μmの離間距離を確保すればよいことになる。
【0079】
第5工程:更に図8の如く、前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する。
【0080】
まず図8(A)では、予定のゲート電極69、電極パッド70および配線62部分を選択的に窓開けするフォトリソグラフィプロセスを行い、予定のゲート電極69、電極パッド70および配線62部分から露出したシリコン窒化膜53をドライエッチングして、予定のゲート電極69部分の動作層52を露出し、予定の配線62および予定の電極パッド70部分の基板51を露出する。予定のゲート電極69部分の開口部は0.5μmとし微細化されたゲート電極69を形成できるようにする。
【0081】
次に、図8(B)では、動作層52および露出した基板51に第2層目の電極としてのゲート金属層68を付着しゲート電極69、配線62および第1電極パッド70を形成する。すなわち、基板51に第2層目の電極としてのゲート金属層68となるPt/Mo/Ti/Pt/Auの5層を順次真空蒸着して積層する。
【0082】
その後図8(C)の如くレジスト層67を除去してリフトオフにより動作層52にコンタクトするゲート長0.5μmのゲート電極69と、第1電極パッド70および配線62を形成し、Ptを埋め込む熱処理を施す。これにより、ゲート電極69は基板とのショットキー接合を保ったまま動作層52に一部が埋設される。ここで、この場合の動作層52の深さは第1の工程で動作層52を形成する場合に、このゲート電極69の埋め込み分を考慮して、所望のFET特性を得られるように深く形成しておく。
【0083】
動作層52表面(例えば表面から500Å程度)は、自然空乏層が発生したり、結晶が不均一な領域であるなどで電流が流れず、チャネルとしては有効でない。ゲート電極69の一部をチャネル領域52に埋め込むことにより、ゲート電極69直下の電流の流れる部分がチャネル領域52表面から下がる。チャネル領域52は予め所望のFET特性が得られるようにゲート電極69の埋設分を考慮して深く形成されているため、チャネルとして有効活用できる。具体的には電流密度、チャネル抵抗や高周波歪み特性が大幅に改善される利点を有する。
【0084】
ここで、ゲート電極69形成のマスクも、合わせマーク130を用いる。すなわち、ソース、ドレイン領域とゲート電極を直接マスク合わせする。これにより、ゲート電極69とソース領域56またはドレイン領域57との合わせずれは、つまりマスクアライナーの合わせ精度と同等となり、最大で0.1μmに抑えることができる。従来では、別にGaAsをエッチングすることにより設けた合わせマークを介して間接的にゲート電極69とソース領域56またはドレイン領域57をマスク合わせしていたため、ゲート電極69とソース領域56またはドレイン領域57の合わせずれは、マスクアライナーの合わせ精度が0.1μmのため、最大で0.2μmとなる。ソース領域56及びドレイン領域57とゲート電極69間は、最低0.4μm離間しないと所定の耐圧が確保できないため、マスク合わせ誤差による生産バラツキを考慮して設計中心で0.6μmの離間距離を確保する必要があった(図11 d12参照)が、本実施形態によれば設計中心で0.5μm確保すればよいことになる(図3 d22参照)。
【0085】
ここで、酸化膜120は、ソース領域56、ドレイン領域57と同時に形成される高濃度不純物領域100上にも設けられるものである。つまり従来の如く電極パッド70や配線62下の全面(または周辺部)にアイソレーションの向上のための高濃度不純物領域100を形成すると、ゲート金属層68は酸化膜120の上に堆積することになる。特に、本実施形態ではFETの基本性能を向上させるため、Ptの埋め込みによってゲート電極69を形成している。すなわち、酸化膜120上にPtを配置することになるが、酸化膜120とPtは接着強度が弱く、ゲート金属層68が酸化膜120からはがれる問題が発生する。
【0086】
そこで、図2および図8(C)の如く、電極パッド70や配線62とは当接させず、隣接する他のゲート金属層、FET、不純物領域との間に高濃度不純物領域100を配置することとした。これにより、ゲート金属層から基板に広がる空乏層が、隣接する他のゲート金属層、FET、不純物領域へ到達することを抑制できる。
【0087】
つまり、FETとしての基本性能を向上できる製造方法であり尚且つ、電極パッド70および配線62を構成するゲート金属層からの空乏層の広がりを、近傍に設けた高濃度不純物領域100により抑制することができ、高周波信号の漏れを防げるものである。
【0088】
第7工程:更に、第1ソースおよび第1ドレイン電極と前記第1電極パッド上に第3層目の電極としてのパッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する。
【0089】
ゲート電極69、配線62および第1電極パッド70を形成した後、ゲート電極69周辺の動作層52を保護するために、基板51表面はシリコン窒化膜よりなるパッシベーション膜72で被覆される。このパッシベーション膜72上にフォトリソグラフィプロセスを行い、第1ソース電極65、第1ドレイン電極66、ゲート電極69および第1電極パッド70とのコンタクト部に対して選択的にレジストの窓開けを行い、その部分のパッシベーション膜72をドライエッチングする。その後、レジスト層71は除去される(図9(A))。
【0090】
更に、基板51全面に新たなレジスト層73を塗布してフォトリソグラフィプロセスを行い、予定の第2ソース電極75および第2ドレイン電極76と第2電極パッド77上のレジストを選択的に窓開けするフォトリソグラフィプロセスを行う。続いて、第3層目の電極としてのパッド金属層74となるTi/Pt/Auの3層を順次真空蒸着して積層し、第1ソース電極65、第1ドレイン電極66および第1電極パッド70にコンタクトする第2ソース電極75および第2ドレイン電極76と第2電極パッド77が形成される(図9(B))。パッド金属層74の他の部分はレジスト層73上に付着されるので、レジスト層73を除去してリフトオフにより第2ソース電極75および第2ドレイン電極76と第2電極パッド77のみを残し、他は除去される。なお、一部の配線部分はこのパッド金属層74を用いて形成されるので、当然その配線部分のパッド金属層74は残される(図9(C))。
【0091】
尚、高濃度不純物領域100の配置例は一例であり、基板とショットキー接合を形成するゲート金属層68に印可される高周波信号を基板51を介して他のゲート金属層68に伝達することを防止する配置であればよい。
【0092】
以上、ショットキー接合を形成する基板として化合物半導体基板を例に説明したが、半絶縁基板とはこれに限らず、不純物濃度が1×1014cm−3以下であり、抵抗率は1×106Ω・cm以上であれば、どのような基板であっても同様の効果が得られる。更に、半絶縁基板以外でも、例えばシリコン半導体基板にイオン注入することにより絶縁化した絶縁化層でもよい。この場合絶縁化層の抵抗率は1×103Ω・cm以上とする。
【0093】
【発明の効果】
以上に詳述した如く、本発明に依れば以下の効果が得られる。
【0094】
ゲート電極と隣接するFET間に高濃度不純物領域を設けることにより、アイソレーションを向上させることができる。ゲート金属層の下に周辺n+型領域を設ける従来の方法では、微細なゲート電極下に設けることができなかった。しかし本発明によれば、ゲート電極の近傍で、少なくとも他のFET、ゲート金属層、不純物領域と隣接する部分に高濃度不純物領域を配置することで、基板に広がる空乏層による高周波信号の漏出を防止できる。
【0095】
また、ゲート金属層となるパッドおよび配線の近傍に設けることにより、パッドおよび配線からの空乏層の広がりも抑制できる。
【0096】
更に、n+型領域とゲートマスクを直接マスク合わせすることにより、n+工程とゲートの合わせ誤差は最大でも0.1μmとなる。すなわちマスク合わせ誤差による生産バラツキを考慮してもn+型領域とゲート電極の距離は0.6μmから0.5μmに縮めることができ、その分FETの飽和電流値を上げ、ON抵抗値を下げることができる。n+型領域端とオーミック電極(ソース電極やドレイン電極)の距離も全く同じ理由により設計値を0.4μmから0.3μmに縮めることができ、その分FETの飽和電流値を上げ、ON抵抗値をげることができる。
【0097】
また、上記に加えゲートを埋め込むことでFETの基本性能をより向上できるので、従来と同等の特性でゲート幅Wgを500μmにすることができ、容量低減によるアイソレーション向上の利点も有する。
【0098】
このとき、n+領域上には酸化膜が残るため、特にゲート埋め込みをする場合に同時に設けられる配線や電極パッドの最下層のPtとの接着強度が弱くなる恐れがあるが、本実施形態では、パッドおよび配線と高濃度不純物は当接せず、近傍して配置するので、空乏層の広がりを抑制できる。
【図面の簡単な説明】
【図1】本発明を説明するための回路図である。
【図2】本発明を説明するための平面図である。
【図3】本発明を説明するための断面図である。
【図4】本発明を説明するための断面図である。
【図5】本発明を説明するための断面図である。
【図6】本発明を説明するための断面図である。
【図7】本発明を説明するための断面図である。
【図8】本発明を説明するための断面図である。
【図9】本発明を説明するための断面図である。
【図10】従来例を説明するための(A)回路図、(B)平面図である。
【図11】従来例を説明するための断面図である。
【図12】従来例を説明するための断面図である。
【図13】従来例を説明するための断面図である。
【図14】従来例を説明するための断面図である。
【図15】従来例を説明するための断面図である。
【符号の説明】
44 チャネル領域
51 GaAs基板
52 動作層
53 窒化膜
54 レジスト
56 ソース領域
57 ドレイン領域
58 レジスト
60 周辺n+型領域
61 周辺n+型領域
62 配線
63 レジスト
64 オーミック金属層
65 第1ソース電極
66 第1ドレイン電極
67 レジスト
68 ゲート金属層
69 ゲート電極
70 第1電極パッド
71 レジスト
72 窒化膜
74 パッド金属層
75 第2ソース電極
76 第2ドレイン電極
77 第2電極パッド
100 高濃度不純物領域
100a 高濃度不純物領域
100b 高濃度不純物領域
120 酸化膜
130 合わせマーク
Claims (10)
- 基板上にイオン注入による不純物領域を形成する工程と、
前記不純物領域上に絶縁膜を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程とを具備することを特徴とする半導体装置の製造方法。 - 前記絶縁膜は、前記不純物領域のイオン注入後絶縁膜を堆積し、前記イオン注入のマスクとなったレジストをリフトオフにより除去して前記不純物領域上に形成することを特徴とする請求項1に記載の半導体装置の製造方法。
- チャネル領域上のソース領域およびドレイン領域上に絶縁膜を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程によりソース電極およびドレイン電極およびゲート電極を形成する工程とを具備することを特徴とする半導体装置の製造方法。 - 基板表面に動作層を形成する工程と、
前記動作層に接して一導電型不純物を注入・拡散してソース領域およびドレイン領域を形成する工程と、
前記ソース領域およびドレイン領域上に絶縁膜を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層にゲート金属層を付着しゲート電極を形成する工程と、
前記第1ソースおよび第1ドレイン電極上にパッド金属層を付着し第2ソースおよび第2ドレイン電極を形成する工程とを具備することを特徴とする半導体装置の製造方法。 - 基板表面に動作層を形成する工程と、
前記基板表面に一導電型不純物を注入・拡散して、前記動作層に接してソースおよびドレイン領域を形成し、同時に基板とショットキー接合を形成するゲート金属層が設けられる領域の近傍に高濃度不純物領域を形成する工程と、
前記ソース領域、ドレイン領域および高濃度不純物領域上に絶縁膜を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記ソースおよびドレイン領域にオーミック金属層を付着し第1ソースおよび第1ドレイン電極を形成する工程と、
前記絶縁膜にマスク合わせを行うフォトリソグラフィ工程により前記動作層および前記基板表面とショットキー接合を形成するゲート金属層を付着しゲート電極および第1電極パッドおよび配線を形成する工程と、
前記第1ソースおよび第1ドレイン電極と前記第1電極パッド上に、パッド金属層を付着し第2ソースおよび第2ドレイン電極と第2電極パッドを形成する工程とを具備することを特徴とする半導体装置の製造方法。 - 前記高濃度不純物領域は、前記ゲート金属層が形成される領域の端から数μm離間して形成されることを特徴とする請求項5に記載の半導体装置の製造方法。
- 前記絶縁膜は、前記一導電型不純物を注入・拡散後、フォトレジストを残したまま全面に堆積され、リフトオフにより前記一導電型不純物領域上に形成されることを特徴とする請求項3から請求項5のいずれかに記載の半導体装置の製造方法。
- 第1ソースおよび第1ドレイン電極は、該電極上に形成された絶縁膜の一部を除去して前記ソース領域およびドレイン領域を露出し、前記オーミック金属層を付着して形成することを特徴とする請求項3から請求項5のいずれかに記載の半導体装置の製造方法。
- 前記ゲート電極は、最下層がPtである多層のゲート金属層を順次蒸着し、熱処理によりPt層を前記基板表面に埋め込んで形成することを特徴とする請求項3から請求項5のいずれかに記載の半導体装置の製造方法。
- 前記絶縁膜は酸化膜であることを特徴とする請求項1または請求項3または請求項4または請求項5のいずれかに記載の半導体装置の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297747A JP2004134588A (ja) | 2002-10-10 | 2002-10-10 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297747A JP2004134588A (ja) | 2002-10-10 | 2002-10-10 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004134588A true JP2004134588A (ja) | 2004-04-30 |
Family
ID=32287367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002297747A Withdrawn JP2004134588A (ja) | 2002-10-10 | 2002-10-10 | 半導体装置の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004134588A (ja) |
-
2002
- 2002-10-10 JP JP2002297747A patent/JP2004134588A/ja not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100710775B1 (ko) | 화합물 반도체 장치 및 그 제조 방법 | |
US7498616B2 (en) | Compound semiconductor switch circuit device | |
US7294900B2 (en) | Compound semiconductor device and manufacturing method thereof | |
US7358788B2 (en) | Compound semiconductor switching circuit device | |
KR100684241B1 (ko) | 반도체 장치 및 그 제조 방법 | |
US6853072B2 (en) | Semiconductor switching circuit device and manufacturing method thereof | |
JP4236442B2 (ja) | スイッチ回路装置 | |
US6580107B2 (en) | Compound semiconductor device with depletion layer stop region | |
KR100742067B1 (ko) | 반도체 장치 | |
JP2004134589A (ja) | 半導体装置 | |
JPH09260405A (ja) | 半導体装置とその製造方法 | |
JP2004103786A (ja) | 半導体装置 | |
JP2005340550A (ja) | 半導体装置 | |
JP2004134588A (ja) | 半導体装置の製造方法 | |
KR100621502B1 (ko) | 화합물 반도체 장치의 제조 방법 | |
JP2004134434A (ja) | スイッチ回路装置および化合物半導体装置の製造方法 | |
JP2007149885A (ja) | 化合物半導体スイッチ回路装置およびその製造方法 | |
EP1198006B1 (en) | Compound semiconductor device | |
JP2004186537A (ja) | スイッチ回路装置および化合物半導体装置の製造方法 | |
KR100676357B1 (ko) | 스위치 회로 장치 | |
JP2007149886A (ja) | 化合物半導体スイッチ回路装置およびその製造方法 | |
JPH10261651A (ja) | 化合物半導体装置及びその製造方法 | |
JP2003007725A (ja) | 化合物半導体装置の製造方法 | |
JP2004134433A (ja) | スイッチ回路装置および化合物半導体装置の製造方法 | |
JP2004158782A (ja) | 化合物半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051006 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20051226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080108 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20090709 |