JP2004128877A - 自動周波数制御装置および自動周波数制御方法 - Google Patents

自動周波数制御装置および自動周波数制御方法 Download PDF

Info

Publication number
JP2004128877A
JP2004128877A JP2002290119A JP2002290119A JP2004128877A JP 2004128877 A JP2004128877 A JP 2004128877A JP 2002290119 A JP2002290119 A JP 2002290119A JP 2002290119 A JP2002290119 A JP 2002290119A JP 2004128877 A JP2004128877 A JP 2004128877A
Authority
JP
Japan
Prior art keywords
correlation
circuit
output
input signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002290119A
Other languages
English (en)
Other versions
JP3943474B2 (ja
Inventor
Fumihiro Yamashita
山下 史洋
Yoshinori Nakasuga
中須賀 好典
Hitoshi Mitsugi
三次 仁
Masazumi Ueha
上羽 正純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2002290119A priority Critical patent/JP3943474B2/ja
Publication of JP2004128877A publication Critical patent/JP2004128877A/ja
Application granted granted Critical
Publication of JP3943474B2 publication Critical patent/JP3943474B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Channel Selection Circuits, Automatic Tuning Circuits (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

【課題】±3fs/8以上の周波数誤差量を推定して除去することができるとともに、受信信号が設定周波数より±fs/8近傍または±3fs/8近傍の周波数誤差を受けている場合に雑音の影響を受けずに周波数誤差量を推定して除去する。
【解決手段】第1の相関回路、第2の相関回路、第3の相関回路、第4の相関回路の相関係数として、受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4,1/2で伝送されたときのビットパターンを設定し、判定回路は、周波数誤差信号の補正量として、第1の相関回路で入力信号と相関がとれた場合に0を出力し、第2の相関回路、第3の相関回路、第4の相関回路で入力信号と相関がとれた場合に、それぞれシンボルレートの−1/4、1/4、−1/4または1/4を出力し、いずれとの相関がとれない場合にα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は、4相位相変調方式の受信信号の周波数誤差を推定して除去する際に、相関回路を用いて受信信号の周波数オフセット領域を推定して周波数誤差を補償する自動周波数制御装置および自動周波数制御方法に関する。
【0002】
【従来の技術】
4相位相変調方式(QPSK)の変調信号を復調する復調回路では、位相平面をπ/2ずつ4つの領域(以下、第1象限〜第4象限という)に分割し、受信シンボルが存在する象限を判定することによりビット列に変換する。ここで、受信信号がドップラーシフトなどの影響により周波数オフセットされる場合には、受信シンボルは位相平面上を一定方向に回転することになる。例えばシンボルレートをfsとしたときに、1/fs時間に受信シンボルの位相が位相平面上で2π回転することは、周波数軸上で受信信号の周波数が割り当てられた設定周波数よりfsだけ周波数オフセットしていることになる。すなわち、1/fs時間あたり±π/4の位相回転であれば、受信信号が周波数軸上で割り当てられた設定周波数より±fs/8だけ周波数オフセットしていることになる。
【0003】
したがって、受信信号が設定周波数から大きな周波数オフセットを受ける場合、例えば1/fs時間にkπ/2+α(kは0以外の整数)のようなπ/2を越える大きなシンボル回転が想定される場合に、第1象限に設定したシンボル位相点からαだけオフセットしたシンボルが観測されたときに、本来第1象限のシンボルがαだけ周波数オフセットしているのか、本来第2象限のシンボルがα−π/2オフセットしているのか、区別がつかない。しかし、このような不確定な場合に、位相回転量をαと判断して周波数制御を行い、受信シンボルの位相が1/fs時間にα−π/2回転する場合でも、各象限でのシンボルは設定位相からαだけ位相回転した位相となるため、シンボル同期をとることは可能である。ただし、本来の象限とは異なる象限と領域判定されるため、変換されたビット列は誤ったものになる。以下、これを「誤同期」という。
【0004】
この誤同期の問題を解決するために、従来提案された相関回路を用いた自動周波数制御装置の構成例を図6に示す。本構成は、非特許文献1から従来技術として考えられる箇所を抜粋したものであり、3つの相関回路を用いることにより、1/fs時間に受信シンボルの位相が±π/4以上回転しても、周波数誤差を補償することができる特徴を有する。
【0005】
図6において、受信信号と発振回路69の出力信号が乗算回路61で乗算され、周波数変換された信号が遅延検波回路62に入力される。遅延検波回路62では、乗算回路61の出力信号を2分岐回路621で2分岐し、その一方の信号と遅延回路622を介して遅延させた他方の信号を直交検波回路623に入力して遅延検波し、その検波信号がクロック再生回路624に入力されてタイミング再生される。クロック再生回路624から出力される再生信号は2分岐回路625で2分岐され、検出回路626はその一方の再生信号を領域判定してデータビット列を出力する。
【0006】
2分岐回路625で2分岐された他方の再生信号を入力する自動周波数制御回路63は、再生信号から推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した信号(以下「復調信号」という)を出力する。この復調信号は3分岐回路70で3分岐され、それぞれ第1の相関回路64、第2の相関回路65、第3の相関回路66に入力され、各相関結果が判定回路67に出力される。判定回路67は3つの相関結果に応じて、自動周波数制御回路63から出力される周波数誤差信号の補正量Δθを判定し、その補正信号を出力する。加算回路68は、周波数誤差信号と補正信号を加算して発振回路69に与え、その発振周波数を制御する。
【0007】
以上示した遅延検波回路62は一般的な構成である(非特許文献2)。また、自動周波数制御回路63は例えば逓倍法を用いて構成でき、その出力信号により発振周波数を制御する発振回路69は、電圧制御発振器(VCO)を用いて容易に構成できる(非特許文献3、非特許文献4)。
【0008】
本自動周波数制御装置の特徴は、3つの相関回路を用いて周波数誤差領域を推定する機能にある。以下、第1の相関回路64、第2の相関回路65、第3の相関回路66および判定回路67の設計方法および動作原理について説明する。
【0009】
本自動周波数制御装置は遅延検波方式に対応する構成であり、受信信号を遅延検波するために送信側で情報ビットを差動符号化している。一般に、通信フレームには、同期をとるためにユニークワード(UW)と呼ばれる固定ビットパターンが挿入されるが、上記のように送信側でUWも差動符号化されるために、受信側に差動符号化されたUWが固定ビットパターンとして受信される。周波数誤差がない状態におけるこの差動符号化されたUWの固定ビットパターンを(Si ,Sq )とする。以下に説明する従来例では、信号はグレイ符号化されていることを想定している。この(Si ,Sq )の固定ビットパターンを第1の相関回路64の相関係数として設定した場合、第1の相関回路64のビット数は、差動符号化されたUWのビット数分だけ存在することになる。
【0010】
ここで、自動周波数制御回路63から出力される復調信号を第1の相関回路64に入力して相関を調べ、雑音等の影響によりビット誤りを起こす可能性があることから閾値を設け、あらかじめ設定された閾値以上のビット数が一致する相関結果が得られたならば(本明細書ではこの状況を「相関がとれる」または「相関する」と表現し、図中では「相関回路が相関」と表現する)、受信信号の周波数誤差量は±fs/8以下であり、受信シンボルの1/fs時間あたりの位相回転量は±π/4以下であるという情報が得られる。
【0011】
一方、単位1/fs時間に、受信シンボルの位相がπ/4〜3π/4回転するような状況では、自動周波数制御回路63から出力される復調信号は、第1の相関回路64で相関がとれない。この状況では、受信信号の周波数は設定周波数よりfs/8〜3fs/8だけ周波数オフセットしており、受信信号の固定ビットパターンは、第1の相関回路64の値をπだけ+方向にオフセットした(−Sq ,Si )の固定ビットパターンと一致する。ただし、符号の「−」はビット反転を意味する。そこで、この(−Sq ,Si )の固定ビットパターンを第2の相関回路65の相関係数に設定し、第2の相関回路65で相関がとれた場合、受信信号が設定周波数からfs/8〜3fs/8だけ周波数オフセットしており、受信シンボルの位相が1/fs時間にπ/4〜3π/4回転しているという情報が得られる。
【0012】
同様に、1/fs時間に、受信シンボルの位相が−π/4〜−3π/4回転するような、受信信号の周波数が設定周波数より−fs/8〜−3fs/8だけ周波数オフセットしている状況では、自動周波数制御回路63から出力される復調信号は、第1の相関回路64および第2の相関回路65で相関がとれない。この状況では、受信信号の固定ビットパターンは、第1の相関回路64の値をπだけ、−方向にオフセットした(Sq ,−Si )となる。そこで、この(Sq ,−Si )の固定ビットパターンを第3の相関回路66の相関係数に設定し、第3の相関回路66で相関がとれた場合、受信信号が設定周波数から−fs/8〜−3fs/8だけ周波数オフセットしており、受信シンボルの位相が1/fs時間に−π/4〜−3π/4回転しているという情報が得られる。
【0013】
次に、判定回路67の動作について説明する。
判定回路67は、第1の相関回路64、第2の相関回路65、第3の相関回路66の相関結果を入力し、その3つの相関を調べて推定された1/fs時間あたりの受信シンボルの位相回転量に関する情報を用い、自動周波数制御回路63から出力される周波数誤差信号の補正量Δθを判定する。
【0014】
ここで、第1の相関回路64で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたり±π/4以下である。この場合は、正常な象限で同期がとれていると判断する。したがって、自動周波数制御回路63で検出される周波数誤差量は正常な象限で推定されている値であることから、補正する必要がないために判定回路67の出力(周波数誤差信号の補正量)Δθは0である。
【0015】
第2の相関回路65で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたりπ/4〜3π/4である。したがって、正常な象限で周波数誤差を除去するためには、受信シンボルの位相回転量が1/fs時間あたり±π/4以下になるように、自動周波数制御回路63から出力される周波数誤差信号の補正量を設定する必要がある。すなわち、第2の相関回路65で相関がとれた場合、判定回路67の出力Δθを−π/2とし、受信シンボルの位相回転量に1/fs時間あたり−π/2を加えてやればよい。この1/fs時間あたりに与える位相シフト量−π/2は、周波数誤差の判別値としてはシンボルレートの−1/4である。
【0016】
第3の相関回路66で相関がとれた場合、受信シンボルの位相回転量は1/fs時間あたり−3π/4〜−π/4である。したがって、同様に判定回路67の出力Δθを+π/2とし、受信シンボルの位相回転量に1/fs時間あたりπ/2を加えてやればよい。この1/fs時間あたりに与える位相シフト量+π/2は、周波数誤差の判別値としてはシンボルレートの1/4となる。
【0017】
図7は、従来の自動周波数制御装置の判定回路67の判定アルゴリズムを示す。
判定回路67は、第1の相関回路64で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路65で相関がとれず、第2の相関回路65で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。また、第1の相関回路64および第2の相関回路65で相関がとれず、第3の相関回路66で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。なお、従来の自動周波数制御装置では、第3の相関回路66で相関がとれない場合については特に考慮されておらず、処理を終了する。
【0018】
すなわち、第1の相関回路64で相関がとれた場合には、自動周波数制御回路63から出力される周波数誤差信号をそのまま発振回路69にフィードバックして処理を終了する。また、第2の相関回路65で相関がとれた場合には、周波数誤差信号に−π/2を加算して発振回路69にフィードバックすることにより、第1の相関回路64で相関がとれる状態になり処理を終了する。
【0019】
以上のように、判定回路67は、第1の相関回路64で相関がとれた場合には0、第2の相関回路65で相関がとれた場合には−π/2、第3の相関回路66で相関がとれた場合には+π/2を加算回路68に出力し、自動周波数制御回路63から出力される周波数誤差信号に加算し、発振回路69の発振周波数を制御する。このようにして制御された周波数の信号を乗算回路61に入力し、受信信号と乗算することにより、受信信号が割り当てられた設定周波数から周波数オフセットしている周波数誤差成分を除去することができる。
【0020】
【非特許文献1】
五十嵐、外5名、「複数の相関器を用いたAFC方法に関する一検討」、1994年電子情報通信学会秋季大会、B−290
【非特許文献2】
藤野忠著「ディジタル移動通信」昭晃堂、第1版、2000年6月10日発行、pp.52−78、pp.122−152
【非特許文献3】
飯田尚志著「衛星通信」オーム社、第1版、平成10年5月30日発行、pp.301−333
【非特許文献4】
山本平一、加藤修三共著「TDMA通信」電子情報通信学会、第1版、平成9年5月1日発行、pp.76−89
【0021】
【発明が解決しようとする課題】
ところで、従来の自動周波数制御装置は、図6に示すように3つの相関回路を用い、図7に示すように第3の相関回路66で相関がとれない場合については考慮していないので、補償できる最大周波数誤差は、位相面では1/fs時間あたり受信シンボル位相が最大±3π/4の回転量、周波数軸上では±3fs/8の周波数誤差量となる。
【0022】
また、図7に示す従来の判定アルゴリズムでは周波数誤差を補正できない(受信シンボルの同期がとれない)場合があり、以下この現象について図8を参照して説明する。図8は、自動周波数制御回路63の入力信号の1/fs時間あたりの周波数誤差によるシンボルの位相回転量を位相面で表す。
【0023】
まず、送信側の送信シンボル位置を位相面で♯0とする。図8は、周波数誤差によるシンボルの位相回転量を表すので、周波数誤差がなければ、受信シンボルの位相回転量は♯0となり(以下「受信シンボル♯0」または「♯0」という)、送信シンボル位置と一致する。この前提において、受信シンボルは周波数誤差の影響を受け、雑音がなければ1/fs時間あたりπ/4よりやや小さい位相量で回転している状況を仮定し、図8に受信シンボル♯1として表す。雑音がなければ、受信シンボル♯1は第1の相関回路64で相関がとれる。したがって、自動周波数制御回路63で周波数誤差成分が除去され、受信シンボル♯1の位相回転量を補正して送信シンボル♯0を推定することができる。
【0024】
しかし、一般に受信信号には、伝搬路や変復調回路において雑音が付加されるので、以下のような状況が一例として想定される。雑音が付加された状況では、受信シンボル♯1は、1/fs時間あたりπ/4より大きく回転することがある。このとき、受信シンボル♯1は位相面において♯2の位置に動き、受信シンボル♯2は第2の相関回路65で相関がとれる。ここで、判定回路67が出力する−π/2を自動周波数制御回路63が出力する周波数誤差信号に加算して発振回路69の発振周波数を制御すれば、次に自動周波数制御回路63に入力する受信シンボルは♯3となる。
【0025】
この受信シンボル♯3は、雑音が付加されることで♯4の位置に動くことがある。このとき、受信シンボル♯4は第3の相関回路66で相関がとれる。ここで、判定回路67が出力する+π/2を自動周波数制御回路63が出力する周波数誤差信号に加算して発振回路69の発振周波数を制御すれば、次に自動周波数制御回路63に入力する受信シンボルは♯5となり、受信シンボル♯1の近傍になる。
【0026】
このように、受信シンボル♯1が雑音付加により受信シンボル♯2に遷移し、−π/2のシンボル位相量の回転後に受信シンボル♯3になるが、雑音付加により受信シンボル♯4に遷移したために+π/2のシンボル位相量の回転が行われ、受信シンボル♯1の近傍の受信シンボル♯5になると、再び雑音の付加により受信シンボル♯2に遷移する状況が想定される。このようなシンボル遷移が繰り返し起こった場合には、図6の自動周波数制御回路63は推定する周波数誤差量が雑音の影響で時間とともに大きく変動し、正確に周波数誤差量を推定することができない。すなわち、受信開始後に受信信号の同期が長時間とれず、回線品質が大幅に劣化する状況になる。
【0027】
また、別の例として、自動周波数制御回路63に入力されるシンボルが♯1と♯2の間を雑音の影響によりふらつく場合には、相関結果が閾値を越えないために、第1の相関回路64および第2の相関回路65でともに相関がとれない状態になる。この場合も同様に図6の自動周波数制御回路63は正確に周波数誤差量を推定することができず、受信信号の同期が長時間とれないために回線品質が大幅に劣化する状況になる。
【0028】
このように、雑音の影響により、自動周波数制御回路63へ入力される受信シンボルの1/fs時間あたりの位相回転量が変わり、時間とともに相関がとれる相関回路が異なる場合や、相関がとれる相関回路がない場合には、判定回路67において周波数誤差領域の推定ができないために、受信信号の回線品質が大幅に劣化する。このような状況は、具体的には1/fs時間あたりの受信シンボルの位相回転量が±π/4近傍または±3π/4近傍であり、周波数軸上では±fs/8近傍、または±3fs/8近傍の周波数オフセットを受けている場合に生じる。以下この±fs/8および±3fs/8近傍の周波数誤差領域を「自動周波数制御不安定領域」という。
【0029】
本発明は、相関回路を用いて周波数誤差量を推定して除去する自動周波数制御装置において、±3fs/8以上の周波数誤差量を推定して除去することができるとともに、受信信号が設定周波数より±fs/8近傍または±3fs/8近傍の周波数誤差を受けている場合に雑音の影響を受けずに周波数誤差量を推定して除去し、回線品質の劣化を抑えることができる自動周波数制御装置を提供することを目的とする。
【0030】
【課題を解決するための手段】
本発明の自動周波数制御装置は、設定周波数より±3fs/8を越える周波数オフセットした信号を検出するために第4の相関回路を設けることを特徴とする。従来技術では、周波数誤差の制御範囲の上限が±3fs/8であったのに対して、本発明により制御範囲が±3fs/8を越える広範囲な周波数誤差量を推定して除去することができる。
【0031】
また、本発明の自動周波数制御装置は、すべての相関回路で相関がとれない場合には、周波数誤差信号の補正量としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する判定回路を設けることを特徴とする。
【0032】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の第1の実施形態の全体構成を示す。
【0033】
図において、受信信号と発振回路8の出力信号が乗算回路1で乗算され、周波数変換された信号が復調回路2に入力される。復調回路2は、入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する。 復調信号は4分岐回路10で4分岐され、それぞれ第1の相関回路3、第2の相関回路4、第3の相関回路5、第4の相関回路6に入力され、各相関結果が判定回路7に出力される。判定回路7は4つの相関結果に応じて、復調回路2から出力される周波数誤差信号の補正量Δθを判定し、その補正信号を出力する。加算回路9は、周波数誤差信号と補正信号を加算して発振回路8に与え、その発振周波数を制御する。
【0034】
第1の相関回路3、第2の相関回路4、第3の相関回路5は、図6に示す従来の構成の相関回路64,65,66と同様の構成である。以下、本実施形態の特徴である第4の相関回路6の回路設計法、判定回路7で第4の相関回路6を追加することにより新しく付け加わった制御機能について説明する。
【0035】
図6に示す従来の構成では、設定周波数から最大±3fs/8の周波数誤差を補正することは可能であったが、まずこの最大周波数誤差以上の周波数誤差量として、受信信号に3fs/8〜5fs/8の周波数誤差がある状況を想定する。
【0036】
3fs/8〜5fs/8の周波数誤差がある状況では、復調回路2から出力される復調信号は、受信信号が設定周波数からfs/8〜3fs/8オフセットしている状況から、さらにシンボル位相が1/fs時間あたり+π/2回転している。結果として±fs/8以下の周波数オフセットを受けた場合から、シンボル位相が1/fs時間あたり+π回転していることになる。±fs/8以下の周波数オフセットを有する信号が相関する第1の相関回路の固定ビットパターンは、従来技術の欄で説明したように(Si ,Sq )である。したがって、この場合よりさらに、シンボル位相が1/fs時間あたり+π回転している場合、入力信号と相関がとれる固定ビットパターンは、第1の相関回路の固定ビットパターンを+π回転させた(−Si ,−Sq )となる。
【0037】
一方、−5fs/8〜−3fs/8の周波数誤差がある状況では、復調回路2から出力される復調信号は、受信信号が設定周波数から−3fs/8〜−fs/8オフセットしている状況から、さらにシンボル位相が1/fs時間あたり−π/2回転している。結果として±fs/8以下の周波数オフセットを受けた場合から、シンボル位相が1/fs時間あたり−π回転していることになる。±fs/8以下の周波数オフセットを有する信号が相関する第1の相関回路の固定ビットパターンは、従来技術の欄で説明したように(Si ,Sq )である。したがって、この場合よりさらに、シンボル位相が1/fs時間あたり−π回転している場合、入力信号と相関がとれる固定ビットパターンは、第1の相関回路の固定ビットパターンを−π回転させた(−Si ,−Sq )となる。
【0038】
以上により、(−Si ,−Sq )の固定ビットパターンを第4の相関回路6に設定し、入力信号と相関がとれた場合には、受信信号の周波数誤差量が3fs/8〜5fs/8または−5fs/8〜−3fs/8の範囲にあることを推定することができる。
【0039】
ここで、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すれば、シンボルの位相回転量は1/fs時間に3π/4〜5π/4になる。この場合、シンボルの位相を1/fs時間に−π/2回転させることにより、1/fs時間あたりのシンボルの位相回転量はπ/4〜3π/4になり、第2の相関回路4で相関がとれる。第2の相関回路4で相関がとれた場合、受信シンボルの位相は−π/2回転されるので、シンボルの位相回転量は1/fs時間あたり、最終的に±π/4以下まで補正される。これにより、復調回路2内に存在する自動周波数制御回路において周波数誤差の除去が可能となる。したがって、第4の相関回路6で相関がとれた場合、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すれば、判定回路7から出力する周波数誤差信号の補正量は−π/2とすればよい。
【0040】
一方、設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に受信信号が存在すれば、シンボルの位相回転量は1/fs時間に−5π/4〜−3π/4になる。この場合、シンボルの位相を1/fs時間にπ/2回転させることにより、1/fs時間あたりのシンボルの位相回転量は−3π/4〜−π/4になり、第3の相関回路5で相関がとれる。第3の相関回路5で相関がとれた場合、受信シンボルの位相はπ/2回転されるので、シンボルの位相回転量は1/fs時間あたり、最終的に±π/4以下まで補正される。これにより、復調回路2内に存在する自動周波数制御回路において周波数誤差の除去が可能となる。したがって、第4の相関回路6で相関がとれた場合、設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に受信信号が存在すれば、判定回路7から出力する周波数誤差信号の補正量はπ/2とすればよい。
【0041】
しかし、第4の相関回路6で相関がとれた場合、受信信号の周波数誤差量が3fs/8〜5fs/8、または−5fs/8〜−3fs/8の範囲にあることを推定することができるが、いずれの周波数誤差領域にあっても同じように相関結果が出力されるので、どちらの周波数誤差領域なのかを特定することができない。すなわち、判定回路7から出力する周波数誤差信号の補正量Δθが−π/2かπ/2かを決定することができない。そこで、第4の相関回路6で相関がとれた後に判定回路7の出力を制御する手順について、以下に図2を参照して説明する。
【0042】
第4の相関回路6で相関がとれたときに、判定回路7は、設定周波数から3fs/8〜5fs/8の周波数誤差領域に受信信号が存在すると仮定し、その出力を−π/2とする。これにより、発振回路8は周波数誤差信号に−π/2加算して制御されるので、仮定が正しければ第2の相関回路4で相関がとれる状態になる。したがって、第2の相関回路4で相関がとれた場合には、判定回路7の出力は最終的に−π/2と確定できる。
【0043】
一方、上記の仮定が誤っていれば、判定回路7の出力が−π/2とされたために、1/fs時間あたりのシンボルの位相回転量が−7π/4〜−5π/4となる。この場合には、受信信号は設定周波数よりさらに大きく周波数オフセットするため、いずれの相関回路でも相関しない状態になる。したがって、判定回路7の出力を−π/2とした後に、第2の相関回路4の相関結果に着目し、第2の相関回路4で相関しなければ仮定に誤りがあると判断し、受信信号は設定周波数から−5fs/8〜−3fs/8の周波数誤差領域に存在すると判断する。
【0044】
この周波数誤差の場合、本来は判定回路7の出力がπ/2でなければならないが、先に誤った仮定で−π/2が判定回路7の出力として発振回路8を制御しているので、それを打ち消してさらに出力を+π/2とするには、判定回路7の出力を+πとする必要がある。これにより、誤った仮定に基づく発振回路8の周波数制御は相殺され、第3の相関回路5で相関がとれる状態になる。したがって、第3の相関回路5で相関がとれた場合には、判定回路7の出力は最終的に+π/2と確定できる。
【0045】
以上のように第4の相関回路6および判定回路7を構成することにより、設定周波数から最大±5fs/8までの周波数誤差を除去することができる。
【0046】
(判定回路7の判定アルゴリズム)
図3および図4は、第1の実施形態における判定回路7の判定アルゴリズムを示す。
【0047】
図3において、判定回路7は、第1の相関回路3で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路3で相関がとれず、第2の相関回路4で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路3の相関を調べる手順に戻る。また、第1の相関回路3および第2の相関回路4で相関がとれず、第3の相関回路5で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路3の相関を調べる手順に戻る。以上の手順(a) は、図7に示す従来構成のものと同じである。
【0048】
本実施形態の自動周波数制御装置では、第3の相関回路5で相関がとれない場合に第4の相関回路6に移行し、第4の相関回路6で相関を調べて相関がとれた場合に、上述したように判定回路出力Δθとして−π/2を出力し、第2の相関回路4で相関を調べる。第2の相関回路4で相関がとれた場合には、判定回路出力Δθとして−π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。一方、第2の相関回路4で相関がとれない場合には、判定回路出力Δθとして+πを出力し、第3の相関回路5で相関を調べる。第3の相関回路5で相関がとれた場合には、判定回路出力Δθとして+π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。
【0049】
なお、第4の相関回路6で相関がとれない場合には処理を終了する。ただし、ここで待機状態になるか、または各相関回路から判定回路7への入力を再開するかを含めて、ここでは処理終了としている。
【0050】
図4に示す判定回路7の判定アルゴリズムは、第4の相関回路6で相関がとれた場合に、図2および図3の場合の上記仮定を逆にして判定回路出力Δθとして+π/2を出力する。この場合には、第3の相関回路5で相関を調べ、第3の相関回路5で相関がとれた場合には、判定回路出力Δθとして+π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。一方、第3の相関回路5で相関がとれない場合には、判定回路出力Δθとして−πを出力し、第2の相関回路4で相関を調べる。第2の相関回路4で相関がとれた場合には、判定回路出力Δθとして−π/2を確定し、第1の相関回路3の相関を調べる手順に戻る。
【0051】
また、本実施形態の説明では、判定回路7の出力を±π/2および±πとしたが、これらの値は厳密なものではなく、例えば±0.49πというように多少の誤差を許容している。
【0052】
また、第4の相関回路で相関がとれた場合に判定回路の出力として±π/2を出力するのではなく、受信シンボルの位相を正常に同期がとれる象限が存在する方向の象限に遷移できるような出力値を設定してもよい。例えば、図3の判定アルゴリズムでは、「第4の相関回路−[−π/2位相操作]−第2の相関回路−[−π/2位相操作]−第1の相関回路」、あるいは「第4の相関回路−[−π/2位相操作]−第2の相関回路−[+π位相操作]−第3の相関回路−[+π/2位相操作]−第1の相関回路」というように、2段階または3段階で同期がとれる象限にシンボルが遷移するように位相量を順次制御しており、図4の判定アルゴリズムでも同様であるが、第4の相関回路で相関がとれた場合の位相操作量を例えば−πとして「第4の相関回路−[−π位相操作]−第1の相関回路」というように、1段階で同期をとるようなアルゴリズムとしてもよい。ただし、このとき第1の相関回路で相関がとれない場合には、判定回路の出力を+2πとし、「第4の相関回路−[−π位相操作]−第1の相関回路−[+2π位相操作]−第1の相関回路」というように、2段階で同期をとるようなアルゴリズムになる。
【0053】
また、図3および図4(後述する図11および図12)の判定アルゴリズムにおいて、第2の相関回路と第3の相関回路の順番を入れ替えて入力信号との相関を調べる手順としてもよい。
【0054】
(復調回路2の構成例)
復調回路2の検波方式として遅延検波方式を採用する場合には、図6に示す遅延検波回路62と自動周波数制御回路63により復調回路2とすることができる。すなわち、クロック再生回路624から出力される再生信号を入力する自動周波数制御回路63から、推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した復調信号を出力し、この復調信号を4分岐して各相関回路に入力する。
【0055】
図5は、復調回路2の他の構成例を示す。図5(1) の構成例は、検波方式として絶対同期検波方式を採用した場合であり、図5(2) の構成例は、検波方式として差動符号同期検波方式を採用した場合である。
【0056】
図5(1) において、復調回路2の入力信号(乗算回路1の出力信号)を直交検波回路21に入力して直交検波し、その検波信号がクロック再生回路22に入力されてタイミング再生される。クロック再生回路22から出力される再生信号を入力する自動周波数制御回路23は、再生信号から推定された周波数誤差量を示す周波数誤差信号と、この周波数誤差量を再生信号から除去した信号を出力する。周波数誤差信号は、復調回路2の出力として図1に示す加算回路9に入力される。周波数誤差量が除去された信号は搬送波再生回路24に入力され、位相オフセット成分が除去された信号となる。この信号は2分岐回路25で2分岐され、検出回路26はその一方の信号領域判定してデータビット列を出力する。
【0057】
2分岐回路24で2分岐された他方の信号は1シンボル差分回路27に入力され、入力信号とそれを1シンボル時間遅延させた信号との差分信号が生成される。この差分信号は、復調回路2の復調信号として図1に示す4分岐回路10を介して各相関回路(3〜6)に入力される。
【0058】
ここで、1シンボル分の差分値をとる理由は、差動符号化されたUWの固定ビットパターンを(Si ,Sq )とし、そのパターンをもとに各相関回路の相関係数を設定しているためである。絶対同期検波方式は、送信側で差動符号化しないため、相関回路の相関係数を上記パターンに設定するために、受信側で差動符号化する必要がある。また、絶対同期検波方式では、自動周波数制御回路23で±fs/8以下の周波数誤差を補償することができるので、自動周波数制御回路23で検出した周波数誤差信号を加算回路9に出力しない場合もある。
【0059】
図5(2) に示す復調回路2は、基本的な構成は図5(1) に示す絶対同期検波方式のものと同じであるが、差動符号同期検波方式をとるために送信側で情報ビットを差動符号化しており、1シンボル差分回路27が不要になるところが異なる。また、差動符号同期検波方式では、自動周波数制御回路23で±fs/8以下の周波数誤差を補償することができるので、自動周波数制御回路23で検出した周波数誤差信号を加算回路9に出力しない場合もある。
【0060】
なお、本発明の自動周波数制御装置に用いる復調回路2は、上記のように検波方式として、遅延検波方式、絶対同期検波方式、差動符号同期検波方式などを採用した構成例を示したが、各回路構成に限定されるものではない。また、本実施形態では、入力信号の符号化方式としてグレイ符号を想定したが、他の符号化方式にも同様に本発明の原理を適用することができる。
【0061】
(第2の実施形態)
第2の実施形態は、従来の自動周波数制御装置における判定回路67の判定アルゴリズムの改良例を示す。従来構成では、図8を用いて説明したように、設定周波数より±fs/8近傍または±3fs/8近傍の周波数誤差がある場合に、雑音の影響により周波数誤差の除去ができないことにより回線品質が劣化する問題があったが、本実施形態はこれを解決するものである。
【0062】
図9は、第2の実施形態における判定回路67の判定アルゴリズムを示す。本実施形態における自動周波数制御装置は図6に示す従来構成を例に説明するが、例えば遅延検波回路62と自動周波数制御回路63の部分は、図5に示すような他の復調回路の構成をとることもできる。
【0063】
判定回路67は、第1の相関回路64で相関を調べて相関がとれた場合には、判定回路出力Δθとして0を出力して処理を終了する。次に、第1の相関回路65で相関がとれず、第2の相関回路65で相関を調べて相関がとれた場合には、判定回路出力Δθとして−π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。また、第1の相関回路64および第2の相関回路65で相関がとれず、第3の相関回路66で相関を調べて相関がとれた場合には、判定回路出力Δθとして+π/2を出力し、第1の相関回路64の相関を調べる手順に戻る。以上の手順は、図7に示す従来構成のものと同じである。
【0064】
本実施形態では、第1の相関回路64、第2の相関回路65、第3の相関回路66のいずれでも相関がとれない場合に、判定回路67は周波数誤差信号の補正量としてα(ただし、αはnπ/2(nは整数)とは異なる値)を出力し、第1の相関回路64の相関を調べる手順に戻る。
【0065】
このような判定アルゴリズムにより、雑音の影響により周波数誤差の除去ができない状態を回避できる例について図10を参照して説明する。図10は、図8と同様に、自動周波数制御回路63の入力信号の1/fs時間あたりの周波数誤差によるシンボルの位相回転量を位相面で表す。
【0066】
まず、αの一例としてπ/4と設定し、受信シンボルが1/fs時間あたり−7π/32回転している状況を想定する。この状況において大きな雑音が信号に加わると、同期がとれない自動周波数制御不安定領域(図中ハッチングで示す領域)と想定する。例えば雑音の影響により、受信シンボルが第1の相関回路の相関周波数誤差領域と第3の相関回路の相関周波数誤差領域の間でふらつくと、すべての相関回路の相関値が設定閾値を越えない状況になる。このとき、判定回路67は、図9の判定アルゴリズムに従い、α(=π/4)を出力する。
【0067】
図10では、送信シンボルが♯0であるのに対して、受信シンボルが♯1であることを想定している。この想定では、受信シンボル♯1の位相量は1/fs時間あたり−7π/32回転しているため、判定回路67の出力としてα(=π/4)を設定すると、受信シンボルの位相は差し引き1/fs時間あたりπ/32回転し、受信シンボル♯2の位置に遷移する。この回転量は、上記のように自動周波数制御回路63で除去可能な1/fs時間あたり±π/4以内の回転量であるので、容易に自動周波数制御回路63で除去することができる。その結果、第1の相関回路64で相関がとれ、判定回路67の出力は0となり、図9の処理が終了する。
【0068】
(第3の実施形態)
第3の実施形態は、図1の第1の実施形態における判定回路7の判定アルゴリズムの改良例を示す。図3に示す判定アルゴリズムの改良例を図11に示し、図4に示す判定アルゴリズムの改良例を図12に示す。
【0069】
いずれも、第1の相関回路3、第2の相関回路4、第3の相関回路5、第4の相関回路6のいずれでも相関がとれない場合に、判定回路7は周波数誤差信号の補正量としてα(ただし、αはnπ/2(nは整数)とは異なる値)を出力し、第1の相関回路3の相関を調べる手順に戻る。αを出力した後の動作は、第2の実施形態で示した動作と同じである。
【0070】
【発明の効果】
以上説明したように、本発明の自動周波数制御装置は、設定周波数より±3fs/8を越える周波数誤差を補正することができるので、高速に移動している移動体でドップラーシフトにより生じる大きな周波数誤差を補正できることになり、移動体通信の利用範囲を拡大することができる。
【0071】
また、安価で小型であるが周波数安定性の悪い発振器を利用することにより生じる大きな周波数誤差を補正することができるので、端末のコスト低減を図ることができる。
【0072】
また、受信信号が設定周波数より±fs/8近傍または±3fs/8近傍の周波数オフセットを受けている場合に、雑音を受けた場合でも安定して周波数誤差量を推定して除去することができるので、回線品質の劣化を抑えることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の全体構成を示すブロック図。
【図2】第1の実施形態の判定回路7の判定アルゴリズムの主要部を示すフローチャート。
【図3】第1の実施形態の判定回路7の判定アルゴリズムを示すフローチャート。
【図4】第1の実施形態の判定回路7の判定アルゴリズムを示すフローチャート。
【図5】第1の実施形態の復調回路2の他の構成例を示すブロック図。
【図6】従来の自動周波数制御装置の構成例を示すブロック図。
【図7】従来の自動周波数制御装置の判定回路67の判定アルゴリズムを示すフローチャート。
【図8】従来の判定アルゴリズムで受信シンボルの同期がとれない例を説明する図。
【図9】第2の実施形態における判定回路67の判定アルゴリズムを示すフローチャート。
【図10】第2の実施形態における判定アルゴリズムの改善例を説明する図。
【図11】図3に示す判定アルゴリズムの改良例を示すフローチャート。
【図12】図4に示す判定アルゴリズムの改良例を示すフローチャート。
【符号の説明】
1  乗算回路
2  復調回路
21 直交検波回路
22 クロック再生回路
23 自動周波数制御回路
24 搬送波再生回路
25 2分岐回路
26 検出回路
27 1シンボル差分回路
3  第1の相関回路
4  第2の相関回路
5  第3の相関回路
6  第4の相関回路
7  判定回路
8  発振回路
9  加算回路
10 4分岐回路
61 乗算回路
62 遅延検波回路
621 2分岐回路
622 遅延回路
623 直交検波回路
624 クロック再生回路
625 2分岐回路
626 検出回路
63 自動周波数制御回路
64 第1の相関回路
65 第2の相関回路
66 第3の相関回路
67 判定回路
68 加算回路
69 発振回路
70 3分岐回路

Claims (10)

  1. 発振周波数制御端子に入力する制御信号に応じて発振周波数の制御が可能な発振回路と、
    4相位相変調された受信信号と前記発振回路の出力信号を乗算して周波数変換する乗算回路と、
    前記周波数変換された信号を入力し、その入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する復調回路と、
    前記復調信号を4分岐する4分岐回路と、
    4分岐された前記復調信号をそれぞれ入力し、それぞれ所定の相関係数との相関をとる4つの相関回路と、
    前記4つの相関回路の各相関結果に応じて、前記周波数誤差信号の補正量を判定する判定回路と、
    前記周波数誤差信号と前記補正量を加算し、前記発振回路の発振周波数制御端子に与える加算回路とを備え、
    前記4つの相関回路を第1の相関回路、第2の相関回路、第3の相関回路、第4の相関回路としたときに、それぞれの相関係数として、前記受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4,1/2で伝送されたときのビットパターンを設定し、
    前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路で入力信号と相関がとれた場合に0を出力し、前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4または1/4を出力する構成である
    ことを特徴とする自動周波数制御装置。
  2. 請求項1に記載の自動周波数制御装置において、
    前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で相関がとれず、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力してさらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力してさらに前記第2の相関回路で入力信号と相関がとれない場合にシンボルレートの1/2を出力してさらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力する構成である
    ことを特徴とする自動周波数制御装置。
  3. 請求項1に記載の自動周波数制御装置において、
    前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で相関がとれず、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力してさらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第4の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力してさらに前記第3の相関回路で入力信号と相関がとれない場合にシンボルレートの−1/2を出力してさらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力する構成である
    ことを特徴とする自動周波数制御装置。
  4. 発振周波数制御端子に入力する制御信号に応じて発振周波数の制御が可能な発振回路と、
    4相位相変調された受信信号と前記発振回路の出力信号を乗算して周波数変換する乗算回路と、
    前記周波数変換された信号を入力し、その入力信号から推定した周波数誤差量を示す周波数誤差信号と、この周波数誤差量を入力信号から除去した復調信号と、この復調信号から検出されたデータを出力する復調回路と、
    前記復調信号を3分岐する3分岐回路と、
    3分岐された前記復調信号をそれぞれ入力し、それぞれ所定の相関係数との相関をとる3つの相関回路と、
    前記3つの相関回路の各相関結果に応じて、前記周波数誤差信号の補正量を判定する判定回路と、
    前記周波数誤差信号と前記補正量を加算し、前記発振回路の発振周波数制御端子に与える加算回路とを備え、
    前記3つの相関回路を第1の相関回路、第2の相関回路、第3の相関回路としたときに、それぞれの相関係数として、前記受信信号の周波数誤差量がシンボルレートの0,−1/4,1/4で伝送されたときのビットパターンを設定し、
    前記判定回路は、前記周波数誤差信号の補正量として、前記第1の相関回路で入力信号と相関がとれた場合に0を出力し、前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、いずれの相関回路でも入力信号と相関がとれない場合にα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する構成である
    ことを特徴とする自動周波数制御装置。
  5. 請求項1〜請求項3のいずれかに記載の自動周波数制御装置において、
    前記判定回路は、前記周波数誤差信号の補正量として、いずれの相関回路でも入力信号と相関がとれない場合にα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力する構成である
    ことを特徴とする自動周波数制御装置。
  6. 請求項2に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
    前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
    前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、前記第4の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、さらに前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、逆に前記第2の相関回路で入力信号との相関を調べて相関がとれない場合に判定回路出力としてシンボルレートの1/2を出力し、さらに前記第3の相関回路で入力信号と相関がとれた場合にシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻る
    ことを特徴とする自動周波数制御方法。
  7. 請求項3に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
    前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
    前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、前記第4の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、さらに前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、逆に前記第3の相関回路で入力信号との相関を調べて相関がとれない場合に判定回路出力としてシンボルレートの−1/2を出力し、さらに前記第2の相関回路で入力信号と相関がとれた場合にシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻る
    ことを特徴とする自動周波数制御方法。
  8. 請求項4に記載の自動周波数制御装置の判定回路が行う自動周波数制御方法において、
    前記第1の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力として0を出力して処理を終了し、
    前記第1の相関回路で相関がとれないときに、前記第2の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの−1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路および前記第2の相関回路で入力信号との相関がとれないときに、前記第3の相関回路で入力信号との相関を調べて相関がとれた場合に判定回路出力としてシンボルレートの1/4を出力し、前記第1の相関回路の相関を調べる手順に戻り、
    前記第1の相関回路、前記第2の相関回路および前記第3の相関回路で入力信号との相関がとれないときに、判定回路出力としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力し、前記第1の相関回路の相関を調べる手順に戻る
    ことを特徴とする自動周波数制御方法。
  9. 請求項6または請求項7に記載の自動周波数制御方法において、
    前記第1の相関回路、前記第2の相関回路、前記第3の相関回路および前記第4の相関回路で入力信号との相関がとれないときに、判定回路出力としてα(ただし、αはシンボルレートのn/4(nは整数)とは異なる値)を出力し、前記第1の相関回路の相関を調べる手順に戻る
    ことを特徴とする自動周波数制御方法。
  10. 請求項6〜8のいずれかに記載の自動周波数制御方法において、
    前記第2の相関回路と前記第3の相関回路の順番を入れ替えて入力信号との相関を調べる手順とする
    ことを特徴とする自動周波数制御方法。
JP2002290119A 2002-10-02 2002-10-02 自動周波数制御装置および自動周波数制御方法 Expired - Lifetime JP3943474B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002290119A JP3943474B2 (ja) 2002-10-02 2002-10-02 自動周波数制御装置および自動周波数制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002290119A JP3943474B2 (ja) 2002-10-02 2002-10-02 自動周波数制御装置および自動周波数制御方法

Publications (2)

Publication Number Publication Date
JP2004128877A true JP2004128877A (ja) 2004-04-22
JP3943474B2 JP3943474B2 (ja) 2007-07-11

Family

ID=32282097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002290119A Expired - Lifetime JP3943474B2 (ja) 2002-10-02 2002-10-02 自動周波数制御装置および自動周波数制御方法

Country Status (1)

Country Link
JP (1) JP3943474B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021041A1 (ja) * 2008-08-21 2010-02-25 富士通株式会社 受信機および受信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021041A1 (ja) * 2008-08-21 2010-02-25 富士通株式会社 受信機および受信方法
US8243858B2 (en) 2008-08-21 2012-08-14 Fujitsu Limited Receiver and method for receiving

Also Published As

Publication number Publication date
JP3943474B2 (ja) 2007-07-11

Similar Documents

Publication Publication Date Title
AU621183B2 (en) A method of rapidly controlling the frequency of a coherent radio receiver and apparatus for carrying out the method
JPH09266499A (ja) デジタル復調回路、最大値検出回路及び受信装置
JP2009050033A (ja) 信号送信方法
JP3633497B2 (ja) 周波数誤差推定を行う受信機および周波数誤差の推定方法
JP4514616B2 (ja) 周波数同期または位相同期を自動確立する無線受信装置
US7042925B2 (en) Correlation detection improvement by averaging spread spectrum signals
US5740204A (en) Digital radiocommuncation receiver
US5914985A (en) Digital demodulator
JP2002335294A (ja) 曲線当てはめによる位相同期ループ初期化
US20030138055A1 (en) Decoder and decoding method
US7046743B2 (en) Demodulator for demodulating digital modulated signals
EP2806584B1 (en) Apparatus, method and computer program for recovering a phase of a received signal
JP3943474B2 (ja) 自動周波数制御装置および自動周波数制御方法
JP4268498B2 (ja) 位相誤差補正回路、これを用いた受信装置及び位相誤差補正方法
JP4054032B2 (ja) フレーム同期検出方法
JPH06120995A (ja) ディジタル無線用受信機のフレーム同期回路
JP4485297B2 (ja) 復調回路集積の半導体集積回路、復調方法及び受信機
JPH118659A (ja) クロックタイミング再生方法および回路
KR100325690B1 (ko) 엘엠에스 기법을 이용한 결정-지향 반송파 복원장치 및 방법
JPH11103326A (ja) 復調器
JP4438581B2 (ja) 復調装置及び復調方法
JP2022072447A (ja) デジタル受信装置
JP2010074506A (ja) クロック再生回路、復調回路、受信機、及び無線通信システム、並びにクロック再生回路の動作方法
JP2006287672A (ja) Ofdm復調装置およびofdm復調方法
JP2009267714A (ja) 復調回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070405

R150 Certificate of patent or registration of utility model

Ref document number: 3943474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term