JP2004127846A - 複合イオン交換膜およびその製造方法 - Google Patents
複合イオン交換膜およびその製造方法 Download PDFInfo
- Publication number
- JP2004127846A JP2004127846A JP2002293968A JP2002293968A JP2004127846A JP 2004127846 A JP2004127846 A JP 2004127846A JP 2002293968 A JP2002293968 A JP 2002293968A JP 2002293968 A JP2002293968 A JP 2002293968A JP 2004127846 A JP2004127846 A JP 2004127846A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- ion exchange
- composite
- support
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
- Fuel Cell (AREA)
Abstract
【解決手段】膜面の任意の向きで正方形に切り出した乾燥状態の複合イオン交換膜の各辺の寸法に対する、80℃の純水中に24時間浸漬して含水させた該複合イオン交換膜の対応する各辺の寸法の変化率が5%以内の減少又は10%以内の増加の範囲であることを特徴とする複合イオン交換膜を提供する。
【選択図】図1
Description
【発明の属する技術分野】
本発明は寸法安定性とイオン伝導性に優れる複合イオン交換膜、特に高分子固体電解質膜に関するものである。
【0002】
【従来技術】
近年、エネルギー効率や環境性に優れた新しい発電技術が注目を集めている。中でも高分子固体電解質膜を使用した固体高分子形燃料電池はエネルギー密度が高く、また、他の方式の燃料電池に比べて運転温度が低いため起動、停止が容易であるなどの特徴を有し、電気自動車や分散発電等の電源装置としての開発が進んできている。また、同じく高分子固体電解質膜を使用し、燃料としてメタノールを直接供給するダイレクトメタノール形燃料電池も携帯機器の電源などの用途に向けた開発が進んでいる。高分子固体電解質膜には通常プロトン伝導性のイオン交換樹脂膜が使用される。高分子固体電解質膜にはプロトン伝導性以外にも、燃料の水素等の透過を防ぐ燃料透過抑止性や機械的強度などの特性が必要である。このような高分子固体電解質膜としては例えば米国デュポン社製ナフィオン(商品名)に代表されるようなスルホン酸基を導入したパーフルオロカーボンスルホン酸ポリマー膜が知られている。
【0003】
固体高分子形燃料電池の高出力化や高効率化のためには高分子固体電解質膜のイオン伝導抵抗を低減させることが有効であり、その方策のひとつとして膜厚の低減が挙げられる。ナフィオンに代表されるような高分子固体電解質膜でも膜厚を低減させる試みが行われている。しかしながら、膜厚を低減させると機械的強度が小さくなり、高分子固体電解質膜と電極をホットプレスで接合させる際などに膜が破損しやすくなったり、膜の寸法の変動により、高分子固体電解質膜に接合した電極がはがれて発電特性が低下したりするなどの問題点を有していた。さらに、膜厚を低減させることで燃料透過抑止性が低下し、起電力の低下や燃料の利用効率の低下を招くなどの問題点を有していた。
【0004】
さらに高分子固体電解質膜は上記に示した燃料電池のイオン交換樹脂膜としての用途だけでなく、アルカリ電解や水からの水素製造のような電解用途、リチウム電池やニッケル水素電池などの種々の電池における電解質用途などの電気化学分野での用途、微小アクチュエータや人工筋肉のような機械的機能材料用途、イオンや分子等の認識・応答機能材料用途、分離・精製機能材料用途など幅広い用途にも適用が可能であり、それぞれの用途においても高分子固体電解質膜の高強度化や薄膜化を達成することでこれまでにない優れた機能を提供することができると考えられる。
【0005】
高分子固体電解質膜の機械的強度を向上させ、寸法変化を抑制する方法として、高分子固体電解質膜に種々の補強材を組み合わせた複合高分子固体電解質膜が提案されている。特許文献1には、延伸多孔質ポリテトラフルオロエチレン膜の空隙部にイオン交換樹脂であるパーフルオロカーボンスルホン酸ポリマーを含浸し、一体化した複合高分子固体電解質膜が記載されている。しかしながら、これらの複合高分子固体電解質膜は補強材がポリテトラフルオロエチレンでできているため、発電時の熱により補強材が軟化し、クリープによる寸法変化を生じやすく、また補強材にパーフルオロカーボンスルホン酸ポリマーの溶液を含浸して乾燥する際に、補強材の空隙部分の容積がほとんど変化しないために補強材の空隙の内部で析出したパーフルオロカーボンスルホン酸ポリマーが偏在しやすく、空隙が該ポリマーで完全に充填されるためにはイオン交換樹脂溶液の含浸と乾燥のプロセスを複数回繰り返すなどの複雑なプロセスが必要であり、また、空隙が残りやすいために燃料透過抑止性に優れた膜が得られにくいといった問題点を有していた。また、特許文献2にはパーフルオロカーボンスルホン酸ポリマーの膜内に補強材としてフィブリル化されたポリテトラフルオロエチレンが分散された複合高分子固体電解質膜が記載されている。しかしながら、このような複合高分子固体電解質膜は、補強材が不連続な構造のため十分な機械的強度が得られず、膜の変形が抑制できないために電極のはがれや破れが生じるなどの問題点を有していた。
【0006】
ポリベンゾオキサゾール(PBO)やポリベンズイミダゾール(PBI)のようなポリベンザゾール系ポリマーは高耐熱性、高強度、高弾性率の点で優れることから、高分子固体電解質膜の補強材料に適していることが期待される。特許文献3にはPBO多孔質膜と種々のイオン交換樹脂を複合化した高分子固体電解質膜が記載されている。しかしながら、これに記載されているような液晶性を示すドープから製膜したPBO溶液膜を直接水浴で凝固する方法で得られるPBO多孔質膜は空隙率が大きくなく、イオン交換樹脂を複合化させた場合に複合膜中のイオン交換樹脂の含有率が低く、イオン交換樹脂本来のイオン伝導性などの特性が大幅に低下するといった問題点を有していた。また、これに記載された複合イオン交換膜は表面のイオン交換樹脂層の形成やその厚みを特に規定していないが、複合イオン交換膜における表面層の存在やその厚みは、複合イオン交換膜の表面に電極を形成する場合などにバインダーとなるイオン交換樹脂と高分子固体電解質膜を形成するイオン交換樹脂との密着性などに影響し、これらを最適に制御することが重要である。
【0007】
特許文献4にはPBI多孔質膜の空隙に酸をトラップした燃料電池用ポリマーフィルムの製造方法が記載されている。しかしながら、これに記載されているような方法で得られる遊離の酸をトラップしたフィルムは、100℃以下といった低温領域でのイオン伝導性が先述のナフィオンのようなイオン交換膜に比べて低いほか、酸が漏出しやすいなどの問題点を有していた。さらに、特許文献5には光学異方性のポリベンザゾール系ポリマー溶液を製膜してから吸湿による等方化の過程を経て凝固しポリベンザゾールフィルムを得る方法が開示されているが、これに記載されているような方法で得られるポリベンザゾールフィルムは透明な緻密性の高いフィルムであり、イオン交換樹脂を含浸してイオン交換膜とする目的には適していなかった。
【0008】
【特許文献1】
特開平8−162132号公報
【特許文献2】
特開2001−35508号公報
【特許文献3】
国際公開第WO00/22684号パンフレット
【特許文献4】
国際公開第WO98/14505号パンフレット
【特許文献5】
特開2000−273214号公報
【0009】
【発明が解決しようとする課題】
本発明は、機械的強度が高く、触媒層の密着性に優れ、特に含水時の寸法変化が抑制された高分子固体電解質膜として使用するのに適した複合イオン交換膜ならびに、その製造方法を提供するものである。
【0010】
【課題を解決するための手段】
すなわち本発明は、連続した空隙を有するポリベンザゾール系ポリマーからなる支持体膜にイオン交換樹脂が含浸されてなる複合層と、該複合層を挟む形で該複合層の両面に形成された支持体膜を含まないイオン交換樹脂からなる表面層を有する複合イオン交換膜であって、膜面の任意の向きで正方形に切り出した乾燥状態の複合イオン交換膜の各辺の寸法に対する、80℃の純水中に24時間浸漬して含水させた該複合イオン交換膜の対応する各辺の寸法の変化率が5%以内の減少又は10%以内の増加の範囲であることを特徴とする複合イオン交換膜を提供する。本発明はまた、該表面層のそれぞれの厚みが、1μm以上50μm以下でありかつ該複合イオン交換膜の全厚みの半分を超えない範囲であることを特徴とする複合イオン交換膜を提供する。
さらに本発明は、ポリベンザゾール系ポリマー溶液を膜状に成型した後に凝固する該支持体膜の製造方法であって、該ポリベンザゾール系ポリマー溶液が0.5重量%以上2重量%以下のポリベンザゾール系ポリマーを含む等方性溶液であることを特徴とする上記に記載の支持体膜の製造方法を提供する。
【0011】
【発明の実施の形態】
以下、本発明の複合イオン交換膜について詳細に説明する。本発明の連続した空隙を有する多孔質のポリベンザゾール系ポリマーよりなる支持体膜は、等方相を示すポリベンザゾール系ポリマーの溶液から製膜され、貧溶媒と接触させて凝固することにより得られた膜を洗浄することにより得られる。光学異方性を示すポリベンザゾール系ポリマー溶液から製膜した支持体膜ではイオン交換樹脂を大量に含浸できるような空隙率の大きな連続した空隙を有する多孔質のポリベンザゾール系ポリマー膜が得られないため好ましくない。
本発明におけるポリベンザゾール系ポリマーとは、ポリベンゾオキサゾール(PBO)ホモポリマー、ポリベンゾチアゾール(PBT)ホモポリマー及びポリベンズイミダゾール(PBI)ホモポリマー、もしくは、それらPBO、PBT、PBIのランダム、交互あるいはブロック共重合ポリマーをいう。ここでポリベンゾオキサゾール、ポリベンゾチアゾール及びそれらのランダム、交互あるいはブロック共重合ポリマーは、例えば米国特許第4703103号、米国特許4533692号、米国特許第4533724号、米国特許第4533693号、米国特許第4539567号、米国特許第4578432号等に記載されたものである。
【0012】
ポリベンザゾール系ポリマーに含まれる構造単位としては、好ましくはライオトロピック液晶ポリマーから選択される。モノマー単位は構造式(a)〜(n)に記載されているモノマー単位からなり、さらに好ましくは、本質的に構造式(a)〜(f)から選択されたモノマー単位からなる。特に好ましくは、本質的に構造式(a)〜(b)から選択されたモノマー単位からなるPBOポリマー、あるいは構造式(e)〜(f)から選択されたモノマー単位からなるPBIポリマーである。
【0013】
【化1】
【0014】
【化2】
【0015】
前記ポリベンザゾール系ポリマーは、ポリ燐酸溶媒中で縮合重合されポリマーが得られる。ポリマーの重合度は極限粘度で表され、15dL/g以上35dL/g以下、好ましくは20dL/g以上26dL/g以下である。この範囲以下であれば、得られる支持体膜の強度が低く、またこの範囲以上であれば、等方性の溶液が得られるポリベンザゾール系ポリマー溶液の濃度範囲が限られ、等方性の条件での製膜が困難となるため好ましくない。
【0016】
ポリベンザゾール系ポリマー溶液の製膜方法としては、ドクターブレード等を用いてポリマー溶液を基体上にキャスティングする流延法と呼ばれる製膜方法のほかにも、直線状スリットダイから押し出す方法や円周状スリットダイからブロー押し出しする方法、二枚の基体に挟んだポリマー溶液をローラーでプレスするサンドイッチ法、スピンコート法など、溶液を膜状に成型するあらゆる方法が使用できる。本発明の目的に適した好ましい製膜方法は流延法、サンドイッチ法である。流延法の基板やサンドイッチ法の基体にはガラス板や金属板、樹脂フィルム等の他、凝固時の支持体膜の空隙構造を制御する等の目的で種々の多孔質材料を基板、基体として好ましく用いることができる。
【0017】
本発明で用いるポリベンザゾール系ポリマー溶液は、均一でかつ空隙率の大きな支持体膜を得るために等方性条件の組成で製膜することが重要であり、ポリベンザゾール系ポリマー溶液の好ましい濃度範囲は0.5%以上2%以下、より好ましくは0.8%以上1.5%以下である。この範囲よりも濃度が低いとポリマー溶液の粘度が小さくなり、適用できる製膜方法が限られるほか、得られる支持体膜の強度が小さくなるため好ましくない。またこの範囲よりも濃度が高いと空隙率の大きな支持体膜が得られないばかりか、ポリベンザゾール系ポリマーのポリマー組成や重合度によっては溶液が異方性を示すため好ましくない。
【0018】
ポリベンザゾール系ポリマー溶液の濃度を上記で示したような範囲に調整するには次に示すような方法をとる事ができる。すなわち、重合されたポリベンザゾール系ポリマー溶液から一旦ポリマー固体を分離し、再度溶媒を加えて溶解することで濃度調整を行なう方法。さらには、ポリ燐酸中で縮合重合されたままのポリマー溶液からポリマー固体を分離することなく、そのポリマー溶液に溶媒を加えて希釈し、濃度調整を行なう方法。さらにはポリマーの重合組成を調整することで上記濃度範囲のポリマー溶液を直接得る方法などである。
【0019】
ポリマー溶液の濃度調整に用いるのに好ましい溶媒としては、メタンスルホン酸、ジメチル硫酸、ポリ燐酸、硫酸、トリフルオロ酢酸などがあげられ、あるいはこれらの溶媒を組み合わせた混合溶媒を用いることもできる。中でも特にメタンスルホン酸、ポリリン酸が好ましい。
【0020】
支持体膜の多孔質構造を実現する手段としては、製膜された等方性のポリベンザゾール系ポリマー溶液を、貧溶媒と接触させて凝固する方法を用いる。貧溶媒はポリマー溶液の溶媒と混和できる溶媒であって、液相状態であっても気相状態であっても良い。さらに、気相状態の貧溶媒による凝固と液相状態の貧溶媒による凝固を組み合わせることも好ましく用いることができる。凝固に用いる貧溶媒としては、水、酸水溶液や無機塩水溶液の他、アルコール類、グリコール類、グリセリンなどの有機溶媒等を利用することができるが、使用するポリベンザゾール系ポリマー溶液との組み合わせによっては、支持体膜の表面開孔率や空隙率が小さくなったり、支持体膜の内部に不連続な空洞ができたりするなどの問題が生じるため、凝固に用いる貧溶媒の選択には特に注意が必要である。本発明における等方性のポリベンザゾール系ポリマー溶液の凝固においては、水蒸気、メタンスルホン酸水溶液、リン酸水溶液、グリセリン水溶液の他、塩化マグネシウム水溶液などの無機塩水溶液などの中から貧溶媒と凝固条件を選択することにより支持体膜表面および内部の構造、空隙率を制御するに至った。特に好ましい凝固の手段は水蒸気と接触させて凝固する方法や、凝固の初期において水蒸気に短時間接触させた後に水に接触させて凝固する方法、メタンスルホン酸水溶液に接触させて凝固する方法などである。
【0021】
ポリマーの凝固が進むと、支持体膜は収縮しようとする。凝固が進行する間は支持体膜の不均一な収縮によるシワの発生などを抑制する目的でテンターや固定枠を用いる場合もある。また、ガラス板などの基板上に成型したポリマー溶液を凝固する場合には、基板面の粗さを制御することで基板上での収縮を制御する場合もある。
【0022】
上記のようにして凝固された支持体膜は、残留する溶媒によるポリマーの分解の促進や、複合電解質膜を使用する際に残留溶媒が流出するなどの問題を避ける目的で、十分に洗浄することが望ましい。洗浄は支持体膜を洗浄液に浸漬することで行なうことができる。特に好ましい洗浄液は水である。水による洗浄は、支持体膜を水中に浸漬したときの洗液のpHが5〜8の範囲になるまで行なうことが好ましく、さらに好ましくはpHが6.5〜7.5の範囲である。
【0023】
上記に述べた特定の濃度範囲のポリベンザゾール系ポリマー等方性溶液を用い、上記に述べたような方法から選ばれた適当な凝固手段を用いることにより本発明の目的に適した構造を有するポリベンザゾール系ポリマーよりなる支持体膜が得られる。すなわち、支持体膜の少なくとも一方の表面に開口部を持つ連続した空隙を有する多孔質の支持体膜である。支持体膜はポリベンザゾール系ポリマーのフィブリル状繊維から形成される立体網目構造からなり、三次元的に連続した空隙を有することを、実施例に示したような原子間力顕微鏡を用いる水中での支持体膜表面の観察、および、エポキシ包埋−脱エポキシにより水中の構造を保持した支持体膜の透過型電子顕微鏡観察による断面観察から確認した。特開2002−203576には膜の厚さ方向に貫通する連通孔を有する膜支持体にイオン伝導性物質が導入された電解質膜が記載されているが、これに記載されているような連通孔の方向性が主に膜の厚さ方向に限定されている支持体を燃料電池の電解質膜に用いた場合、膜の面方向のイオン伝導性物質の連続性が小さいために燃料電池のイオン交換膜に用いた場合に燃料ガスの濃度分布や電極触媒の付着量など面方向に不均一な状態が生じるとイオン交換膜の局所的な劣化が生じやすいなどの問題があるため好ましくない。
【0024】
本発明の支持体膜の空隙率は90体積%以上であることが好ましく、さらに好ましくは95体積%以上である。空隙率がこの範囲よりも小さいと、イオン交換樹脂を複合化させた場合のイオン交換樹脂の含有率が小さく、イオン導電性が低下するため好ましくない。
【0025】
本発明の支持体膜は、少なくとも一方の面の開孔率が40%以上であることが好ましく、さらに好ましくは50%以上、特に好ましくは60%以上である。少なくとも一方の面の開孔率がこの範囲よりも小さいと、支持体膜とイオン交換樹脂を複合化させる際に支持体膜の空隙内部にイオン交換樹脂が含浸されにくくなるため好ましくない。
【0026】
上述のような方法で得られたポリベンザゾール系ポリマーよりなる多孔質の該支持体膜にイオン交換樹脂を複合化させ、複合イオン交換膜を得る方法について説明する。即ち、該支持体膜を乾燥させずに、イオン交換樹脂溶液に浸漬し、該支持体膜内部の液をイオン交換樹脂溶液に置換してから乾燥させる方法により複合イオン交換膜を得る方法である。支持体膜内部の液がイオン交換樹脂溶液の溶媒組成と異なる場合には、その溶媒組成にあわせてあらかじめ内部の液を置換しておく方法も採られる。
【0027】
本発明の支持体膜は乾燥により空隙内部の液体の体積が減少するのにしたがって空隙構造が収縮し、支持体膜の見かけの体積が大幅に減少するという特徴を有する。該支持体膜の内部にイオン交換樹脂を含浸することなく金属の枠などに固定して面方向の収縮を制限して乾燥させた場合には、収縮は膜厚方向に起こり、該支持体膜の乾燥後の見かけの膜厚は、乾燥前の膜厚の0.5%から10%の範囲である。本発明の支持体膜以外の多孔質支持体膜、例えば、延伸ポリテトラフルオロエチレンポリマー多孔質膜からなる支持体膜ではこのような大幅な収縮は起こらない。
【0028】
該支持体膜のこのような特徴により、該支持体膜の空隙内部の液をイオン交換樹脂溶液に置換してから乾燥させた場合、空隙内部に含浸された該イオン交換樹脂溶液の溶媒が蒸発して、該イオン交換樹脂溶液の体積が減少するにつれて該支持体膜も収縮するので、該支持体膜内部の空隙が析出したイオン交換樹脂によって満たされた緻密な複合膜構造を容易に得ることができる。この複合膜構造により、本発明の複合イオン交換膜は優れた燃料透過抑止性を示す。本発明の支持体膜以外の多孔質支持体膜、例えば、延伸ポリテトラフルオロエチレンポリマー多孔質膜からなる支持体膜では空隙内部に含浸されたイオン交換樹脂溶液の溶媒が蒸発して該イオン交換樹脂溶液の体積が減少しても、それに伴う支持体膜の収縮が少ないため、乾燥後の複合膜内部にはイオン交換樹脂で満たされていない空隙が多数できるばかりでなく、支持体膜の両面に支持体を含まないイオン交換樹脂の表面層が形成されないため好ましくない。
【0029】
該複合イオン交換膜はまた、該支持体膜が大幅に収縮するため、該イオン交換樹脂溶液の濃度や粘度、溶媒の揮発性などの物性と、該支持体膜の膜厚や空隙率等の組み合わせを調整することで、該イオン交換樹脂が該支持体膜の内部空隙を満たした複合層を形成するのと並行して該支持体膜の両面に付着していた過剰なイオン交換樹脂溶液や、該支持体膜の収縮に伴って該支持体膜内部から排出されたイオン交換樹脂溶液が該支持体膜の表面外部で乾燥して該支持体を含まないイオン交換樹脂層を形成することにより、結果として該複合層を挟む形で該複合層の両面に支持体膜を含まないイオン交換樹脂の表面層を形成した構造を容易に実現することができる。
【0030】
本発明の支持体膜以外の膜、例えばポリテトラフルオロエチレンポリマーからなる多孔質支持体膜は上記で述べたように、大幅な収縮が起こらないため、イオン交換樹脂溶液を含浸して乾燥する際に支持体膜内部にイオン交換樹脂が析出しても空隙が残ったままの状態となり、また、支持体膜複合層を挟む形のイオン交換樹脂層も形成されない。この状態を解消するためにはイオン交換樹脂溶液の含浸、乾燥を複数回繰り返す必要があり、工程が複雑になるため好ましくない。
【0031】
本発明の複合イオン交換膜に使用されるイオン交換樹脂は特に限定されるものではなく、前述のパーフルオロカーボンスルホン酸ポリマー以外にも、例えばポリスチレンスルホン酸、ポリ(トリフルオロスチレン)スルホン酸、ポリビニルホスホン酸、ポリビニルカルボン酸、ポリビニルスルホン酸ポリマーの少なくとも一つのアイオノマー、ポリスルホン、ポリフェニレンオキシド、ポリフェニレンスルホキシド、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリフェニルキノキサリン、ポリアリールケトン、ポリエーテルケトン、ポリベンザゾール及びポリアラミドポリマーなどの芳香族ポリマーの少なくとも一つがスルホン化、ホスホン化またはカルボキシル化されたアイオノマー等が適用できる。ここでいうポリスルホンポリマーにはポリエーテルスルホン、ポリアリールスルホン、ポリアリールエーテルスルホン、ポリフェニルスルホン及びポリフェニレンスルホンポリマーの少なくとも一つが含まれる。また、ここでいうポリエーテルケトンポリマーにはポリエーテルエーテルケトン、ポリエーテルケトン−ケトン、ポリエーテルエーテルケトン−ケトンおよびポリエーテルケトンエーテル−ケトンポリマーの少なくとも一つが含まれる。
【0032】
上記に記述したイオン交換樹脂溶液の溶媒はポリベンザゾール系ポリマー支持体膜を溶解、分解あるいは極端に膨潤させず、かつイオン交換樹脂を溶解できる溶媒の中から選ぶことができる。ただし、イオン交換樹脂溶液を支持体膜に含浸させた後に溶媒を除去してイオン交換樹脂を析出させる為、溶媒は加熱や減圧などの手段を用いて蒸発させるなどして除去することができるものであることが好ましい。ここで、本発明のポリベンザゾール系ポリマー支持体膜は高い耐熱性を有することから、100℃程度の温度からクリープを生じるポリテトラフルオロエチレン製の支持体膜を用いる複合イオン交換膜の作製では使用できない高沸点の溶媒を含むイオン交換樹脂溶液を使用して複合イオン交換膜を作製できることも、多くの種類のイオン交換樹脂が選択できるという観点から優れた特徴である。
【0033】
上記に記述したイオン交換樹脂溶液の濃度および、イオン交換樹脂の分子量は特に限定されるものではないが、イオン交換樹脂の種類や得ようとする複合イオン交換膜の膜厚などに応じて適宜選択される。
【0034】
上記のようにして得られる複合イオン交換膜に占めるイオン交換樹脂の含有率は50重量%以上であることが好ましい。さらに好ましくは80重量%以上である。この範囲より小さい含有率の場合、膜の導電抵抗が大きくなったり、膜の保水性が低下したりして、十分な発電性能が得られないため好ましくない。
【0035】
本発明の複合イオン交換膜は膜面の任意の向きで正方形に切り出した乾燥状態の複合イオン交換膜の各辺の寸法に対する、80℃の純水中に24時間浸漬して含水させた該複合イオン交換膜の対応する各辺の寸法の変化率が5%以内の減少又は10%以内の増加の範囲であることを特徴とする。寸法の変化率が上記範囲を超えると、複合イオン交換膜の表面に触媒層を形成する際や複合イオン交換膜を燃料電池の高分子固体電解質膜として適用して運転する際に、触媒分散液の溶媒や加湿ガス中の水分などを吸収して複合イオン交換膜の寸法が変化し、触媒層の良好な密着が得られなかったりイオン交換膜が破れたりなどするため好ましくない。
【0036】
また、本発明の複合イオン交換膜は、上記で記述したように複合層を挟む形で複合層の両面に支持体を含まないイオン交換樹脂からなる表面層を有することを特徴とする。複合イオン交換膜が該複合層と該表面層を有することにより、該複合イオン交換膜は高い機械的強度を有し、かつ、表面に電極層を形成させた場合の電極層との密着性に優れるという特長を有する。該表面層の厚みはそれぞれ1μm以上50μm以下であり、かつ、それぞれが該複合イオン交換膜の全厚みの半分を超えない範囲であることが好ましい。該表面層の厚みが上記範囲よりも小さいと電極層との密着性が悪くなり、イオン伝導性が低下するなどするため好ましくない。また該表面層の厚みが上記範囲よりも大きいと、複合層による補強の効果が複合イオン交換膜の最外表面まで及ばず、複合イオン交換膜が吸湿した場合に表面層のみが大きく膨潤して表面層が複合層から剥離するなどするため好ましくない。該表面層の厚みのさらに好ましい範囲は2μm以上30μm以下である。
【0037】
複合イオン交換膜は機械的強度やイオン伝導性、表面に形成されるイオン交換樹脂層の耐剥離性などの特性をさらに向上させる目的で、複合イオン交換膜を適当な条件で熱処理する方法も好ましく用いることができる。また、表面に形成されるイオン交換樹脂の表面層の厚みを調整するために、該複合イオン交換膜をさらにイオン交換樹脂溶液に浸漬したり、該複合イオン交換膜にイオン交換樹脂溶液を塗布したりしてから乾燥することによりイオン交換樹脂層の付着量を増加させたり、あるいは、イオン交換樹脂溶液に浸漬した後に支持体膜の表面に付着したイオン交換樹脂溶液の一部をスクレーパー、エアナイフ、ローラーなどで掻き落としたり、ろ紙やスポンジのような溶液吸収性のある材料で吸収したりすることにより、イオン交換樹脂層の付着量を減少させたりする方法も用いることができる。あるいは、熱プレスをかけることによりイオン交換樹脂層の密着性をさらに向上させるなどの方法を併せて用いることもできる。
【0038】
本発明の複合イオン交換膜は高いイオン交換樹脂含有率を有しながら、吸水時の寸法安定性に優れる。また、その特性を生かして、高分子固体電解質膜、特に固体高分子形燃料電池の高分子固体電解質膜として利用することができる。
【0039】
実施例
以下に本発明の実施例を示すが本発明はこれらの実施例に限定されるものではない。
以下に本発明を実施するに当たり用いた評価法および解析法を示す。
<透過型電子顕微鏡による構造観察>
透過型電子顕微鏡(TEM)による膜の断面構造の観察は以下の方法で行った。まず、観察用試料切片を次のようにして作成した。すなわち、水洗後の支持体膜試料内部の水をエタノールに置換、さらにエポキシモノマーに十分置換した。試料はそのままエポキシモノマー中で45℃、6時間保持した後、さらに60℃、20時間熱処理することでエポキシを硬化させた(エポキシ包埋)。このようにしてエポキシ包埋された試料はダイヤモンドナイフを備えたミクロトームを用いて、干渉色が銀から金色を示す程度の厚みの超薄切片に調製し、KOH飽和エタノール溶液で15分処理することでエポキシを除去した(脱エポキシ)。さらにエタノール、続いて水で洗浄し、RuO4で染色した試料にカーボン蒸着し、JEOL製TEM(JEM−2010)を用いて加速電圧200kVで観察した。
【0040】
<原子間力顕微鏡による構造観察>
原子間力顕微鏡(AFM)による構造観察は以下の方法で行った。すなわち、Seiko Instruments社製のAFM(SPA300[観察モード:DFMモード、カンチレバー:SI−DF3、スキャナー:FS−100A])を使用し、水中の試料ステージに保持した未乾燥の支持体膜の表面構造を観察した。
【0041】
<走査型電子顕微鏡による構造観察>
走査型電子顕微鏡(SEM)による構造観察は以下の方法で行った。まず、水洗した支持体膜内部の水をエタノールに置換、さらに酢酸イソアミルに十分置換した後、日立製臨界点乾燥装置(HCP−1)を用いて、CO2臨界点乾燥を施した。このようにして臨界点乾燥した支持体膜に厚さ150オングストロームの白金コートを施し、日立製SEM(S−800)を用いて加速電圧10kV、試料傾斜角度30度で観察を行った。
【0042】
<極限粘度>
メタンスルホン酸を溶媒として、0.5g/Lの濃度に調整したポリマー溶液の粘度をウベローデ型粘度計を用いて25℃恒温槽中で測定し、算出した。
【0043】
<支持体膜厚み>
未乾燥の支持体膜の厚みは次に示す方法により測定した。測定荷重を変更可能なマイクロメータを用い、各荷重における水中での支持体膜の厚みを測定した。測定した厚みを荷重に対してプロットし、直線部分を荷重0に外挿したときの切片の値を厚みとし、一つの試料について5ヶ所で測定した厚みの平均値を支持体膜の厚みとした。
【0044】
<支持体膜の表面開孔率>
支持体膜の表面開孔率は次の方法により測定した。すなわち、上述した方法で撮影した支持体膜の表面の撮影倍率1万倍の走査型電子顕微鏡写真上で5μm角に相当する視野を選び、膜の最外表面に相当するポリマー部分を白、それ以外の部分を黒に色分けした後、イメージスキャナーを用いて画像をコンピューターに取り込み、米国Scion社製の画像解析ソフトScion Imageを用いて画像のヒストグラムから画像中の黒部分が占める比率を測定した。この操作を一つのサンプルに対して重複しない3視野について行い、その平均を表面開孔率とした。
【0045】
<支持体膜の空隙率>
支持体膜の空隙率は次の方法により測定した。含水状態の支持体膜の重量と絶乾状態の支持体膜の重量の差から求められた水の重量を水の密度で除して膜内の空隙を満たす水の体積Vw[mL]が得られる。Vwと含水状態の膜の体積Vm[mL]から以下の計算により支持体膜の空隙率を求めた。
支持体膜の空隙率[%]=Vw/Vm×100 ・・・(式1)
【0046】
<イオン交換膜の厚さおよび、それを構成する層の厚さ>
該複合イオン交換膜を構成する複合層および該複合層を挟む形で複合層の両面に形成された支持体膜を含まないイオン交換樹脂からなる表面層の厚さは、幅300μm×長さ5mmに切り出した複合膜片を、ルベアック812(ナカライテスク製)/ルベアックNMA(ナカライテスク製)/DMP30(TAAB製)=100/89/4の組成とした樹脂で包埋し、60℃で12時間硬化させて試料ブロックを作製した。ウルトラミクロトーム(LKB製2088ULTROTOME 5)を用いて平滑な断面が露出するようブロックの先端をダイヤモンドナイフ(住友電工製SK2045)で切削した。このようにして露出させた複合膜の断面を光学顕微鏡で写真撮影し、既知の長さのスケールを同倍率で撮影したものと比較することで測定した。支持体の空隙率が大きい場合等で、少なくとも一方の面の表面層とその内側の複合層とが明確な界面を形成せずに界面付近の構造が連続的に変化している場合があるが、その場合は光学顕微鏡で連続的な構造の変化が確認できる部分のうち、複合イオン交換膜の外表面に最も近い部分を複合層の最外表面として、そこから複合イオン交換膜の外表面までの距離を該表面層の厚みとした。
【0047】
<イオン交換膜の寸法変化率>
イオン交換膜の含水前後の寸法変化率は以下の方法により測定した。すなわち、110℃で6時間真空乾燥させたイオン交換膜から1辺の長さがAcmの正方形の切片を切り出し、80℃の純水中に24時間浸漬して含水させた時のたて、よこ各辺の長さをそれぞれBcm、Ccmとしたとき、以下の各式で求められる値をそれぞれたて、よこの寸法変化率とした。ここでいうたて、よことは寸法変化率測定サンプルの向きに関する便宜上の呼称であり、膜のある特定の方向を指すものではないが、イオン交換膜の製造時の方向性が明らかな場合には、製造時の長さ方向をたての方向とすると便利である。
たての寸法変化率[%]=((B−A)/A)×100 ・・・(式2)
よこの寸法変化率[%]=((C−A)/A)×100 ・・・(式3)
なお、上記の式の計算結果が正の数であるときはその辺の寸法が増加したことを、また計算結果が負の数であるときはその辺の寸法が減少したことを、それぞれ表している。
【0048】
<複合イオン交換膜のイオン交換樹脂(ICP)含有率>
複合イオン交換膜のイオン交換樹脂含有率は以下の方法により測定した。110℃で6時間真空乾燥させた複合イオン交換膜の目付けDc[g/m2]を測定し、複合イオン交換膜の作製に用いたのと同じ製造条件の支持体膜をイオン交換樹脂を複合化させずに乾燥させて測定した乾燥支持体膜の目付けDs[g/m2]とから、以下の計算によりイオン交換樹脂含有率を求めた。
イオン交換樹脂含有率[重量%]=(Dc−Ds)/Dc×100
また、複合イオン交換膜のイオン交換樹脂含有率は以下の方法によって測定することもできる。すなわち、複合イオン交換膜を複合イオン交換膜中の支持体膜成分あるいは、イオン交換樹脂成分のいずれかのみを溶解可能な溶剤に浸漬して一方の成分を抽出、除去した後、元の複合イオン交換膜との重量変化を測定することでイオン交換樹脂の含有率を求めることができる。
【0049】
<強度・引張弾性率>
イオン交換膜の強度特性は、気温25℃、相対湿度50%の雰囲気で、オリエンテック社製テンシロンを用いて測定した。試料は幅10mmの短冊状とし、支間長40mm、引っ張り速度20mm/secで測定した応力歪み曲線から算出した。
【0050】
<イオン導電率>
イオン導電率σは次のようにして測定した。自作測定用プローブ(ポリテトラフルオロエチレン製)上で幅10mmの短冊状膜試料の表面に白金線(直径:0.2mm)を押しあて、80℃、相対湿度95%の恒温恒湿槽中に試料を保持し、白金線間の10kHzにおける交流インピーダンスをSOLARTRON社1250FREQUENCY RESPONSE ANALYSERにより測定した。極間距離を10mmから40mmまで10mm間隔で変化させて測定し、極間距離と抵抗測定値をプロットした直線の勾配Dr[Ω/cm]から下記の式により膜と白金線間の接触抵抗をキャンセルして算出した。
σ[S/cm]=1/(膜幅×膜厚[cm]×Dr)
【0051】
<触媒層接着>
デュポン社製20%ナフィオン(商品名)溶液(品番:SE−20192)に、白金担持カーボン(カーボン:Cabot社製ValcanXC−72、白金担持量:40重量%)を、白金とナフィオンの重量比が2.7:1になるように加え、撹拌して触媒ペーストを調製した。この触媒ペーストを、東レ製カーボンペーパーTGPH−060に白金の付着量が1mg/cm2になるように塗布、乾燥して、電極触媒層付きガス拡散層を作成した。2枚の電極触媒層付きガス拡散層の間に、電極層の密着性がよくなるように少量の水を塗布したイオン交換膜試料を、電極触媒層が膜試料に接するように挟み、ホットプレス法により120℃、2MPaにて3分間加圧、加熱することにより、膜−電極接合体とした。
【0052】
実施例1
ポリ燐酸中にIV=24dL/gのポリパラフェニレンシスベンゾビスオキサゾールポリマーを14重量%含んだドープにメタンスルホン酸を加えて希釈し、ポリパラフェニレンシスベンゾビスオキサゾール濃度1重量%の等方性溶液を調製した。この溶液を、90℃に加熱したガラス板上にクリアランス300μmのアプリケータを用いて製膜速度5mm/秒で製膜した。このようにしてガラス板上に製膜したドープ膜をそのまま25℃、相対湿度80%の恒温恒湿槽中に置いて1時間凝固し、生成した膜を洗液がpH7±0.5を示すまで水洗を行って支持体膜を作成した。作成した支持体膜は両面に開口部を持つ連続した空孔を有する多孔質の膜であることを原子間力顕微鏡による表面形態観察および、透過型電子顕微鏡による断面形態観察により確認した。この支持体膜を水中でステンレス製のフレームに固定し、支持体膜の内部の水をイオン交換樹脂溶液であるデュポン社製20%ナフィオン(商品名)溶液(品番:SE−20192)の溶媒組成とほぼ同じ水:エタノール:1−プロパノール=26:26:48(重量比)の混合溶媒で置換した。この支持体膜を20%ナフィオン(商品名)溶液に25℃で1時間浸漬した後溶液から取り出し、膜の内部に含浸および膜表面に付着したナフィオン(商品名)溶液の溶媒を風乾により揮発させ乾燥させた。乾燥させた膜は60℃のオーブン中で1時間予備熱処理して残留した溶媒を除いた後、窒素雰囲気下、150℃で1時間熱処理を行なうことにより実施例1の複合イオン交換膜を調製した。
【0053】
実施例2
水洗した支持体膜を水中でステンレス製のフレームに固定し、支持体膜内部の水を置換せずにデュポン社製10%ナフィオン水溶液(品番:SE−10192)に浸漬したことを除き、実施例1で示したのと同じ方法で実施例2の複合イオン交換膜を調製した。
【0054】
比較例1
比較例1として、市販されているデュポン社製ナフィオン112(商品名)膜を用いた。この膜は実施例1で用いた20%ナフィオン溶液や実施例2で用いた10%ナフィオン水溶液に含まれるナフィオンポリマーと同じパーフルオロカーボンスルホン酸ポリマーからなるプロトン交換膜であり、固体高分子形燃料電池用のプロトン交換膜として広く用いられているものである。
【0055】
比較例2
ナフィオン溶液に浸漬した支持体膜をナフィオン溶液から取り出す際に、支持体膜の表面が露出するように支持体膜の両面に付着したナフィオン溶液をポリテトラフルオロエチレン(商品名)製のスクレーパーで掻き取ったことを除き、実施例1で示したのと同じ方法で比較例2の複合イオン交換膜を調製した。
【0056】
比較例3
支持体膜に含浸され、または支持体膜の表面に付着したナフィオン溶液の溶媒を風乾により揮発させ乾燥させた後、熱処理を行う前に、さらに20%ナフィオン溶液に25℃で1分間浸漬して取り出し、ナフィオン溶液の溶媒を風乾により揮発させ乾燥させる工程を2回加えたことを除き、実施例1で示したのと同じ方法で比較例3の複合イオン交換膜を調製した。
【0057】
実施例1、2、比較例1、2、3の物性値を表1に示す。
【0058】
【表1】
【0059】
実施例1および2の複合イオン交換膜は比較例1である市販のナフィオン112膜と対比して寸法変化率が小さいイオン交換膜であることがわかる。比較例1のナフィオン112膜では、触媒層接着時に触媒層とイオン交換膜との密着性を向上させるためにイオン交換膜表面を水で濡らすと寸法変化のために膜面が波打って変形し、作業性が著しく低下したのに対して、実施例1、2ともにイオン交換膜表面を水で濡らしても膜の変形は小さく、作業性に優れている。また実施例1および2の複合イオン交換膜は内部に支持体を有するにもかかわらず、支持体を含まない比較例1に比べてイオン導電率の低下は小さく、燃料電池の高分子固体電解質膜として優れた特性を備えていることがわかる。
【0060】
【発明の効果】
機械的強度が高く、触媒層の密着性に優れ、特に含水時の寸法変化が抑制された高分子固体電解質膜として使用するのに適した高分子固体電解質膜を提供することができる。
【図面の簡単な説明】
【図1】複合イオン交換膜の断面構造の模式図である。
【図2】イオン交換樹脂複合化前の支持体膜を臨界点乾燥して、その表面を走査型電子顕微鏡で観察した像の模式図である。
【符号の説明】1 表面層A、 2 複合層、 3 表面層B、 4 支持体膜のフィブリル、 5 空隙
Claims (3)
- 連続した空隙を有するポリベンザゾール系ポリマーからなる支持体膜にイオン交換樹脂が含浸されてなる複合層と、該複合層を挟む形で該複合層の両面に形成された支持体膜を含まないイオン交換樹脂からなる表面層を有する複合イオン交換膜であって、膜面の任意の向きで正方形に切り出した乾燥状態の複合イオン交換膜の各辺の寸法に対する、80℃の純水中に24時間浸漬して含水させた該複合イオン交換膜の対応する各辺の寸法変化率が5%以内の減少又は10%以内の増加の範囲であることを特徴とする複合イオン交換膜。
- 該表面層のそれぞれの厚みが、1μm以上50μm以下でありかつ該複合イオン交換膜の全厚みの半分を超えない範囲であることを特徴とする請求項1に記載の複合イオン交換膜。
- ポリベンザゾール系ポリマー溶液を膜状に成型した後に凝固する該支持体膜の製造方法であって、該ポリベンザゾール系ポリマー溶液が0.5重量%以上2重量%以下のポリベンザゾール系ポリマーを含む等方性溶液であることを特徴とする請求項1および2に記載の支持体膜の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002293968A JP4269211B2 (ja) | 2002-10-07 | 2002-10-07 | 複合イオン交換膜およびその製造方法 |
EP03703150A EP1477515B8 (en) | 2002-02-15 | 2003-02-03 | Cluster ion exchange membrane, and electrolyte membrane electrode connection body |
CNB03803994XA CN100381487C (zh) | 2002-02-15 | 2003-02-03 | 复合离子交换膜、及电解质膜-电极接合体 |
PCT/JP2003/001080 WO2003068853A1 (fr) | 2002-02-15 | 2003-02-03 | Membrane d'echange ionique de cluster et corps de connexion d'electrode a membrane d'electrolyte |
US10/503,926 US7537852B2 (en) | 2002-02-15 | 2003-02-03 | Composite ion exchange membrane and electrolyte membrane electrode assembly |
DK03703150.7T DK1477515T3 (da) | 2002-02-15 | 2003-02-03 | klyngeionbyttermembran og elektrolytmembran-elektrodeforbindelseslegeme |
AU2003208104A AU2003208104A1 (en) | 2002-02-15 | 2003-02-03 | Cluster ion exchange membrane, and electrolyte membrane electrode connection body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002293968A JP4269211B2 (ja) | 2002-10-07 | 2002-10-07 | 複合イオン交換膜およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004127846A true JP2004127846A (ja) | 2004-04-22 |
JP4269211B2 JP4269211B2 (ja) | 2009-05-27 |
Family
ID=32284718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002293968A Expired - Fee Related JP4269211B2 (ja) | 2002-02-15 | 2002-10-07 | 複合イオン交換膜およびその製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4269211B2 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048022A (ja) * | 2003-07-31 | 2005-02-24 | Toyobo Co Ltd | 複合イオン交換膜およびその製造方法 |
JP2006155924A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Chemicals Corp | 高分子電解質積層膜 |
JP2007329015A (ja) * | 2006-06-08 | 2007-12-20 | Hitachi Ltd | 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池 |
WO2008093795A1 (ja) * | 2007-01-31 | 2008-08-07 | Asahi Glass Company, Limited | 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池およびそれらの製造方法 |
JP2008300317A (ja) * | 2007-06-04 | 2008-12-11 | Asahi Glass Co Ltd | 固体高分子形燃料電池用膜電極接合体およびその製造方法 |
JP2014046264A (ja) * | 2012-08-31 | 2014-03-17 | Dai Ichi Kogyo Seiyaku Co Ltd | 高耐熱性・高耐久性イオン交換体及びそれを用いた有用金属・有害金属の捕集方法 |
JP2017183223A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成株式会社 | 多孔質膜及び固体高分子型燃料電池用電解質膜 |
JP2019204753A (ja) * | 2018-05-25 | 2019-11-28 | トヨタ自動車株式会社 | 燃料電池用膜電極接合体の製造方法 |
JPWO2021221112A1 (ja) * | 2020-05-01 | 2021-11-04 |
-
2002
- 2002-10-07 JP JP2002293968A patent/JP4269211B2/ja not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005048022A (ja) * | 2003-07-31 | 2005-02-24 | Toyobo Co Ltd | 複合イオン交換膜およびその製造方法 |
JP2006155924A (ja) * | 2004-11-25 | 2006-06-15 | Asahi Kasei Chemicals Corp | 高分子電解質積層膜 |
JP2007329015A (ja) * | 2006-06-08 | 2007-12-20 | Hitachi Ltd | 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池 |
WO2008093795A1 (ja) * | 2007-01-31 | 2008-08-07 | Asahi Glass Company, Limited | 固体高分子形燃料電池用膜電極接合体、固体高分子形燃料電池およびそれらの製造方法 |
US7838170B2 (en) | 2007-01-31 | 2010-11-23 | Asahi Glass Company, Limited | Membrane/electrode assembly with multilayered cathode catalyst for polymer electrolyte fuel cells |
JP2008300317A (ja) * | 2007-06-04 | 2008-12-11 | Asahi Glass Co Ltd | 固体高分子形燃料電池用膜電極接合体およびその製造方法 |
JP2014046264A (ja) * | 2012-08-31 | 2014-03-17 | Dai Ichi Kogyo Seiyaku Co Ltd | 高耐熱性・高耐久性イオン交換体及びそれを用いた有用金属・有害金属の捕集方法 |
JP2017183223A (ja) * | 2016-03-31 | 2017-10-05 | 旭化成株式会社 | 多孔質膜及び固体高分子型燃料電池用電解質膜 |
JP2019204753A (ja) * | 2018-05-25 | 2019-11-28 | トヨタ自動車株式会社 | 燃料電池用膜電極接合体の製造方法 |
JPWO2021221112A1 (ja) * | 2020-05-01 | 2021-11-04 | ||
WO2021221112A1 (ja) * | 2020-05-01 | 2021-11-04 | ダイキン工業株式会社 | 複合体、ポリマー電解質、電気化学デバイス、ポリマー系固体電池及びアクチュエーター |
Also Published As
Publication number | Publication date |
---|---|
JP4269211B2 (ja) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1477515B1 (en) | Cluster ion exchange membrane, and electrolyte membrane electrode connection body | |
US10381672B2 (en) | Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same | |
KR101376362B1 (ko) | 연료전지용 고분자 전해질막 및 그 제조방법 | |
EP1566251A1 (en) | Heat-resistant film and composite ion-exchange membrane | |
JP2013503436A (ja) | 燃料電池用の高分子電解質膜及びその製造方法 | |
WO2012046777A1 (ja) | フッ素系高分子電解質膜 | |
JP6868685B2 (ja) | 複合高分子電解質膜 | |
JP2005050561A (ja) | 複合イオン交換膜 | |
JP4269211B2 (ja) | 複合イオン交換膜およびその製造方法 | |
JP2005068396A (ja) | 複合イオン交換膜 | |
JP3791685B2 (ja) | 複合イオン交換膜およびその製造方法 | |
JP3978663B2 (ja) | 電解質膜−電極接合体 | |
JP2005044610A (ja) | 複合イオン交換膜およびその製造方法 | |
JP3978669B2 (ja) | イオン交換膜およびその製造方法 | |
JP2005044611A (ja) | 複合イオン交換膜およびそれを用いた固体高分子型燃料電池 | |
JP4228062B2 (ja) | 多孔膜、複合イオン交換膜およびその製造方法 | |
JP3978668B2 (ja) | イオン交換膜およびその製造方法 | |
JP2004143388A (ja) | 複合イオン交換膜 | |
JP2004139837A (ja) | 複合イオン交換膜 | |
JP2005036055A (ja) | ポリベンザゾール複合体およびその製造方法 | |
JP2004217715A (ja) | 複合イオン交換膜 | |
JP2004235051A (ja) | 高分子固体電解質およびそれを用いた固体高分子型燃料電池 | |
JP2004216227A (ja) | 複合イオン交換膜 | |
JP2004139836A (ja) | 複合イオン交換膜 | |
JP2004164854A (ja) | 燃料電池用電極作製用高分子電解質溶液 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050920 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081030 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090129 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090211 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |