JP2004119606A - Semiconductor substrate and method for filling through-hole thereof - Google Patents

Semiconductor substrate and method for filling through-hole thereof Download PDF

Info

Publication number
JP2004119606A
JP2004119606A JP2002279370A JP2002279370A JP2004119606A JP 2004119606 A JP2004119606 A JP 2004119606A JP 2002279370 A JP2002279370 A JP 2002279370A JP 2002279370 A JP2002279370 A JP 2002279370A JP 2004119606 A JP2004119606 A JP 2004119606A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
hole
substrate
conductive film
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002279370A
Other languages
Japanese (ja)
Inventor
Ippei Sawayama
沢山 一平
Masaki Okuyama
奥山 正樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2002279370A priority Critical patent/JP2004119606A/en
Publication of JP2004119606A publication Critical patent/JP2004119606A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To fill conductor members into a through-hole whose inner diameter is small, and whose aspect ratio is large in a semiconductor substrate. <P>SOLUTION: An insulating film 4 is formed on the inner peripheral face of a through-hole 2 formed in a semiconductor substrate 1, one surface of the semiconductor substrate is bonded to the surface of a shield substrate 5 on whose surface a conductive film 6 is formed, the inside of the through-hole is filled with conductor members 3 plated from the conductive film by carrying out plating treatment to the integrated semiconductor substrate and shield substrate, and the integrated semiconductor substrate and shield substrate are peeled. Thus, even the through-hole whose inner diameter is small, and whose aspect ratio is large can be filled with uniform conductor materials. Especially, solder materials are used for the conductive film so that the through-hole can be filled with much more uniform conductor members. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板に形成された貫通孔の埋め込み方法及びそれにより形成される半導体基板に関わるものである。
【0002】
【従来の技術】
従来から、半導体基板に貫通孔を形成しその内部を導体部材で埋め込み、半導体基板の表裏面の導通をとる事で三次元的な配線を形成し、高密度配線を実現した半導体装置が知られている。その半導体装置の製造方法は特開平9−092675に記載されている様に、まず半導体基板の表面に保護膜と、保護膜の形成されていない開口部を形成する。次に、開口部をエッチングする事で貫通孔を形成する。次に、熱酸化法もしくは化学的気相成長法を用いて半導体基板の表面及び貫通孔の内側表面に絶縁層を形成する。次に、メッキ処理する事により貫通孔を導電物で埋め込み、且つ半導体基板の表面及び裏面に導電体層を形成する。次に、半導体基板の表裏面の導電体層をエッチバックし、貫通孔に導電体層を残して半導体基板の表裏面の導電体層を除去する。この様にして、半導体基板に形成された貫通孔を導電物で埋め込む事により、半導体基板の表裏面の導通をとっている。
【0003】
また特開平2−239627には、半導体基板に貫通孔を形成し、その内部をハンダメッキで埋め込むことにより、表裏面に導通をとる事が記載されている。また、実施例における貫通孔の内径は200μmである。
【0004】
【発明が解決しようとする課題】
しかしながら近年半導体装置は、更なる高密度配線が要求されており、貫通孔の内径はより小さく、またアスペクト比はより大きくなってきている。また、単に表裏面の導通が取れているだけではなく、貫通孔を埋め込んだ導体部材をより均質に形成する事が必要となっている。
【0005】
特開平2−239627に記載されたようなハンダメッキは、図7に示す様に、半導体基板1のメッキを形成したい貫通孔2の内周面にシード金属100を形成し、半導体基板1をハンダメッキ液中に浸漬し電界をかける事により、シード金属100からメッキが成長するように形成される。しかしながら、一般にメッキは半導体基板1を浸漬するメッキ液の電流密度が高いほど成長しやすい。貫通孔2を形成した半導体基板1では、貫通孔2の開口部周辺の電流密度が高くなるため、貫通孔2の開口部におけるメッキ101の成長が、貫通孔内部のメッキの成長よりも早くなる。従って、貫通孔2の内径が30μm以下と小さく、アスペクト比が10以上と大きい場合には、図8に示す様に貫通孔2を完全にメッキで埋め込む前に開口部が塞がってしまう。そのため、貫通孔内部に空洞ができてしまい、均質な導体部材による埋め込みを行うことができない。ただし、メッキ速度を極端に遅くすれば良好な導体部材を形成することができるが、メッキ速度が遅くなると製造タクトが長くなるため製造コストが大幅にアップしてしまい、生産上使用する事ができるものではない。
【0006】
【課題を解決するための手段】
前記課題を解決するため本発明においては、貫通孔が形成された半導体基板の貫通孔の内周面に絶縁膜を形成する工程と、該半導体基板の一方の表面と、表面に導電膜が形成されたシード基板の導電膜が形成された表面とを接合し一体化する工程と、該一体化した半導体基板とシード基板をメッキ処理する事により該貫通孔の内部を、該導電膜からメッキ成長する導体部材により埋め込む工程と、該一体化した半導体基板とシード基板を剥離する工程を経る半導体基板の貫通孔埋め込み方法を提供している。
【0007】
また本発明においては、前記貫通孔の最小内径は30μm以下であり、アスペクト比は10〜100であることを特徴とする請求項1に記載の半導体基板の貫通孔埋め込み方法。
【0008】
半導体基板の貫通孔埋め込み方法を提供している。
【0009】
また本発明においては、前記一体化する工程は、該導電膜の表面の該半導体基板と接触する接合面に接着剤を塗布し、所定の圧力で加圧している半導体基板の貫通孔埋め込み方法を提供している。
【0010】
また本発明においては、前記接着剤の膜厚は10μm以下である半導体基板の貫通孔埋め込み方法を提供している。
【0011】
また本発明においては、前記導電膜はハンダ材であり、前記一体化する工程は、該ハンダ材を融点以上に加熱した状態で半導体基板とガラス基板を圧着した後冷却して行われ、前記剥離する工程は該ハンダ材を再度融点以上に加熱した状態で行われる半導体基板の貫通孔埋め込み方法を提供している。
【0012】
また本発明においては、前記ハンダ材は融点が200度以下である半導体基板の貫通孔埋め込み方法を提供している。
【0013】
また本発明においては、前記ハンダ材は膜厚が0.1μm〜10μmである半導体基板の貫通孔埋め込み方法を提供している。
【0014】
また本発明においては、前記半導体基板の一方の表面には、金属膜が形成されている半導体基板の貫通孔埋め込み方法を提供している。
【0015】
また本発明においては、前記半導体基板の貫通孔埋め込み方法により形成した半導体基板を提供している。
【0016】
【発明の実施の形態】
以下図面を参照して本発明の実施の形態を説明する。
【0017】
図1は本発明の実施の形態を示す半導体基板の断面図である。図中1はシリコン等からなる半導体基板である。半導体基板1の厚さは100〜500μm程度である。2は半導体基板1に均等間隔に形成された複数の貫通孔である。貫通孔の内径は5〜30μm程度である。また貫通孔2のアスペクト比は10〜100であり、この値は一般的に半導体基板の貫通孔としては高アスペクト比と言うことができる。貫通孔の形状は円形以外に楕円形状や矩形状であっても良い。楕円形状や矩形状の場合貫通孔の最小内径が5〜30μm程度であれば良く、アスペクト比は、半導体基板の厚さに対するこの最小内径の比とする。3は貫通孔2の内部を埋め込んでいる導体部材であり、メッキ処理により形成されている。メッキの材料としてはNi・Cu・Sn・Ag・Au・Alなどの単体又はその合金を用いる事ができる。
【0018】
次に前述の半導体基板の製造方法を説明する。図2は、各製造工程(ステップ)を示すフローチャートであり、図3(a)〜(h)は図2に示した半導体装置の各製造工程(ステップ)における断面図である。
【0019】
まずS1(ステップ1)において、図3(a)に示す様に、厚さは100〜500μmのシリコンウエハ等の半導体基板1を準備する。半導体基板の形状はウエハ状ではなく正方形や長方形の矩形状であってもかまわない。
【0020】
次にS2(ステップ2)において、図3(b)に示す様に、半導体基板1に内径5〜50μmの複数の貫通孔2を形成する。貫通孔2は湿式エッチングによる化学処理、レーザ加工、プラズマ加工、D−RIEなどによる物理処理、ドリル等による機械処理の何れも使用可能である。特にD−RIEやエキシマレーザを使用すれば、直線的で、貫通孔の内周面の表面精度が良好な貫通孔を形成することができる。
【0021】
次にS3(ステップ3)において、図3(c)に示す様に、半導体基板1の表裏面と、貫通孔2の内周面に絶縁膜4を形成する。絶縁膜4は半導体基板1の表面を酸化しSiO膜を形成する。絶縁膜4は貫通孔3の内周面には必ず必要であるが、半導体基板1の表裏面の少なくとも一方の面に形成されていれば良い。
【0022】
次にS4(ステップ4)において、図3(d)に示す様に、後述のS6のメッキ処理に使用する治具となるシード基板5を準備する。シード基板5は厚さ20mm程度のガラス等からなる基板を使用する。尚、シード基板5の外形は、半導体基板1の外形よりも大きくなっている。
【0023】
次にS5(ステップ5)において、図3(e)に示す様に、シード基板5の表面にメッキ等により導電膜6を形成する。導電膜6には、Ni・Cu・Sn・Ag・Au・Al、ハンダ材等の金属を使用することができる。尚前述のS1〜S3とS4〜S5は並行して行われる。
【0024】
次にS6(ステップ6)において、図3(f)に示す様に、S1〜S3を経た半導体基板1とS4〜S5を経たシード基板5の導電膜6側表面とを接合し一体化する。接合方法は、シード基板5の導電膜6がNi・Cu・Sn・Ag・Au・Alの場合は、シード基板5の導電膜の表面に貫通孔2の位置をマスクした状態で接着剤を塗布し、所定の圧力で加圧して接合する。接着剤の膜厚は後述のS7のメッキ処理における、メッキをより均一に形成するためには薄い方が良く10μm以下が好ましい。また後述のS8の基板剥離を容易に行うため、特定の処理によりその密着力が低下するものが好ましい。また、導電膜6がハンダ材であれば、ハンダ材自体に密着力があるため、ハンダ材を融点以上に加熱した状態で半導体基板1と所定時間圧着した後、冷却して事により接合する。S6においては、両基板を空隙が無く高密着力で接合する事ができる。
【0025】
次にS7(ステップ7)において、図3(g)に示す様に、図3(f)に示した半導体基板1とシード基板4を接合し一体化した状態で、メッキ浴に浸漬し、メッキ処理を行う。図4はメッキ処理の方法を示した図である。図中10は保持具であり、ワークである接合された半導体基板1とシード基板4を保持している。保持具10により、シード基板4の半導体基板1と接合されていない部分は完全に覆われた状態となっている。11はメッキ槽である。12はメッキ槽11に満たされたメッキ液であり、通常硫酸銅を使用する。13は電極板であり通常銅板を使用する。14は電源であり、シード基板5の導電膜6にはマイナス(−)電極が接続され、電極板13にはプラス(+)電極が接続されている。15は定電流回路である。電源14により電流を供給する事により、貫通孔2内の導電膜6からメッキが成長し、貫通孔2の内部を導体部材3により完全に埋め込む事ができる。この時、保持具10により、シード基板4の半導体基板1と接合されていない部分は完全に覆っているため、半導体基板以外の部分ではメッキが進行せずメッキ処理の効率を高めている。
【0026】
次にS8(ステップ8)において、図3(h)に示す様に、半導体基板1とシード基板4を剥離する。導電膜6がNi・Cu・Sn・Ag・Au・Alの場合は、接着剤を引き剥がすが、接着剤の密着力が低下するような処理を施してから剥離することが好ましい。尚、導電膜に使用する金属と、メッキにより成長する金属が同じ場合は、引き剥がすことが困難となるため、異なる材料にすることが好ましい。また導電膜6がハンダ材の場合は再度融点以上に加熱する事により容易に剥離する事ができる。
【0027】
以上説明したようにS1〜S8を経ることにより、貫通孔に導体部材3を埋め込んだ半導体基板1に形成する事ができる。
【0028】
次に、前述の導電膜6の材質について述べる。導電膜6には前述のように、Ni・Cu・Sn・Ag・Au・Al、ハンダ材等の金属を使用することができるが、より均質な導体部材3により貫通孔2を埋め込むためには、ハンダ材が最も好適である。
【0029】
均質な導体部材3により貫通孔2を埋め込むためには、導電膜6から均一にメッキが成長する事が必要である。メッキの成長にばらつきがあるとボイド等の発生要因となり、貫通孔3の内部に均質な導体部材3を形成することができない。半導体基板1とシード基板4の間に少しでも間隙が存在すると、メッキ液の電流密度にばらつきが生じ、電界集中が発生してしまう。電界集中が発生すると、その部分からメッキが成長するため、均等にメッキが成長する事は困難となる。従って、電界集中が発生せず均等な電流密度を得るため、導電膜6には非常に強い密着力で隙間のないように半導体基板1とシード基板4を接合する必要がある。
【0030】
また、S6の基板接合における加熱、冷却により半導体基板1とシード基板4に反りが発生する可能性もある。そのため、より低温で接合し基板の温度変化を少なくする事が必要である。また加熱温度が低ければ製造上のタクトが短くなり、また取り扱いが容易となる。
【0031】
また、S7の基板剥離において半導体基板1とシード基板4に損傷を与えることなく剥離することが必要である。またこの際の加熱温度も低温である事が好ましい。
【0032】
以上を考慮すると、導電膜6に低融点金属であるハンダ材を使用する事が最も好ましい。ハンダ材は常温でそれ自体が強い密着性を有している。また、接着剤等を使用する必要がないため、導電膜と半導体基板1の間には接着剤の厚みによる10μm程度の隙間も発生しない。そのため、非常に強い密着力で隙間のないように半導体基板1とシード基板4を接合する事ができる。また、低温で溶融する事が可能であるため、半導体基板1とシード基板4の温度変化による反りも少ない。また、再加熱することにより簡便に半導体基板1とシード基板4を剥離する事ができ、半導体基板の接合面に損傷を与えることもない。また、あらかじめ半導体基板1の接合面にNi・Cu・Sn・Ag・Au・Al等の金属膜をスパッタ等で形成しておくことにより、ハンダ材との接合面を、機械的接合のみではなく金属結合させる事もできるため、接合の信頼性を更に向上させることができる。尚、ハンダ材には、Sn・ビスマス・鉛・インジウムなどの単体又はその合金が使用できる。望ましくは200度以下の融点を有する低融点金属が、製造上のタクトや取り扱いを考慮すると好適であると思われる。
【0033】
尚ハンダ材の膜厚は、10μm以上だとシリコンウエハとガラス基板を接合する際に、溶融したハンダ材がシリコンウエハに形成された貫通孔に流入してしまい、メッキ処理において形成される導体部材の形状精度を損なってしまう。また0.1μm以下だとシリコンウエハとガラス基板の密着力が弱く簡単に剥がれてしまう。従ってハンダ材の膜厚は、0.1〜10μmが好ましい範囲である。
【0034】
(実施例1)
前述の半導体基板の製造方法に従い、以下のようにして貫通孔に導電部材を埋め込んだ。まず、直径6inch、厚さ200μmのシリコンウエハを準備し、内径20μmの複数の貫通孔をD−RIEにより形成した。したがって貫通孔のアスペクト比は10である。シリコンウエハの表面及び貫通孔の内周面に絶縁膜である2μmのSiO2を形成した。これと平行して、直径160mm、厚さ1mmのガラス基板を準備する。ガラス基板の表面に2mmの厚さのAuを導電膜として形成した。この様に処理したガラス基板は、後工程のメッキ処理の際のシード基板となる。
【0035】
次に、ガラス基板の導電膜の表面に貫通孔の位置をマスクした状態で接着剤7を10μm塗布し、接着剤を介してガラス基板とシリコンウエハを所定の圧力で加圧する事により接合した。次に接合して一体化したシリコンウエハとガラス基板を、ガラス基板の接合面以外の表面を覆うように保持具により保持し、硫酸銅5g/L、水塩95g/L、硫酸180g/Lの硫酸銅メッキ浴に浸漬し、1.5A/dm2の電解条件にて15時間メッキ処理した。この時の貫通孔内部の導電膜との接合部における電流密度の分布を図5に示す。導電膜と半導体基板の間には接着剤7の厚み分に相当する10μmの隙間がある。そのため図5に示す様に、貫通孔の内部には電流密度は接合面で若干差があるが、概ね均一であると言える。従って貫通孔の底面となる導電膜の表面から、ほぼ一応に銅メッキが成長し、貫通孔は銅で完全に埋め込まれる。
【0036】
次に、一体化したシリコンウエハとガラス基板を硫酸銅メッキ浴から取り出し、所定の力を加えることにより、シリコンウエハとガラス基板を剥離した。剥離したシリコンウエハの接合面は、剥離の際に損傷する可能性もあるので、必要に応じてCMPにより研磨し平滑化した。また接合面の裏面に銅メッキが盛り上がっている場合も、CMPにより研磨し平滑化した。この様にしてシリコンウエハに形成された、小径で高アスペクトの貫通孔に埋め込まれた金属は、ボイド等のない良好な状態をなしていた。
【0037】
(実施例2)
前述の半導体基板の製造方法に従い、以下のようにして貫通孔に導電部材を埋め込んだ。前述の実施例1と異なり実施例2では、導電膜にハンダ材を使用した。まず、直径6inch、厚さ300μmのシリコンウエハを準備し、内径10μmの複数の貫通孔をD−RIEにより形成した。したがって貫通孔のアスペクト比は30である。シリコンウエハの表面及び貫通孔の内周面に絶縁膜である2μmのSiO2を形成した。更に、シリコン基板の接合面には、Ni膜をスパッタにより形成する。
【0038】
これと平行して、直径160mm、厚さ1mmのガラス基板を準備する。ガラス基板の表面にスパッタにより0.1μmのTi膜、続いて0.1μmのAu膜を形成した。Ti膜はガラス基板との密着製を向上させるための膜であり、Au膜は次に行うハンダメッキのシードとなるための膜である。更にその表面にハンダメッキ法にて、Sn・鉛ハンダの比率が6対4となるハンダ材を0.2μ析出させ導電膜とした。このハンダ材の融点は183℃である。この様に処理したガラス基板は、後工程のメッキ処理の際のシード基板となる。
【0039】
次に、シリコンウエハの一方の面とガラス基板の導電膜側の面とを、185℃に加熱した状態で圧着する事により接合した。次に接合して一体化したシリコンウエハとガラス基板を、ガラス基板の接合面以外の表面を覆うように保持具により保持し、硫酸銅5g/L、水塩95g/L、硫酸180g/Lの硫酸銅メッキ浴に浸漬し、1.5A/dm2の電解条件にて15時間メッキ処理した。この時の貫通孔内部の導電膜との接合部における電流密度の分布を図6に示す。図6に示す様に、貫通孔の内部には電流密度の差が全くないことがわかる。従って貫通孔の底面となる導電膜の表面から、一応に銅メッキが成長し、貫通孔は銅で完全に埋め込まれる。
【0040】
次に、一体化したシリコンウエハとガラス基板を硫酸銅メッキ浴から取り出し、再度185℃に加熱する事により、ハンダ材が溶けシリコンウエハとガラス基板を剥離した。剥離したシリコンウエハの接合面には全く損傷はなかった。また接合面の裏面に銅メッキが盛り上がっている場合は、CMPにより研磨し平滑化した。この様にしてシリコンウエハに形成された、小径で高アスペクトの貫通孔に埋め込まれた金属は、ボイド等のない良好な状態をなしていた。
【0041】
【発明の効果】
以上説明したように本発明においては、貫通孔が形成された半導体基板の貫通孔の内周面に絶縁膜を形成する工程と、該半導体基板の一方の表面と、表面に導電膜が形成されたガラス基板の導電膜が形成された表面とを接合し一体化する工程と、該一体化した半導体基板とガラス基板をメッキ処理する事により該貫通孔の内部を、該導電膜からメッキ成長する導体部材により埋め込む工程と、該一体化した半導体基板とガラス基板を剥離する工程とを経ることにより、半導体基板に形成された貫通孔を生産上問題とならない短いタクトで完全に導体部材で埋め込むことができる。
【0042】
また、貫通孔の最小内径は5〜30μmであり、アスペクト比は10〜100である場合においても、貫通孔を完全に導体部材で埋め込むことができる。
【0043】
また、導電膜に常温でそれ自体が強い密着性を有するハンダ材を使用することにより、基板を一体化する工程はハンダ材を融点以上に加熱した状態で半導体基板とガラス基板を圧着した後冷却して行う事ができるため、接着剤を使用することなく強い密着力で接合する事ができる。また、接着剤を使用しないため、半導体基板とガラス基板を隙間ない状態で接合できるため、貫通孔により均一にメッキを成長させることができる。また、基板を剥離する工程はハンダ材を再度融点以上に加熱する事で行う事ができるため、大きな力で引き剥がす事なく、簡便に基板を剥離する事ができ、両基板に損傷を与えることもない。また、半導体基板の接合面にあらかじめ金属膜を形成しておけば、機械的接合のみではなく金属結合する事もできるため、接合の信頼性を更に向上させることができる。
【0044】
また、ハンダ材の融点が200度以下のものを使用することにより、基板を加熱する事により発生する反りを小さくすることができ、温度変化により基板が剥離することがなく接合状態を保つことができる。また加熱温度が低ければ製造上のタクトが短くなり、取り扱いも容易となる。
【0045】
また、ハンダ材は膜厚を0.1μm〜10μmとする事により、溶融したハンダ材がシリコンウエハに形成された貫通孔に流入してしまい、メッキ処理において形成される導体部材の形状精度を損なうこともなく、また、シリコンウエハとガラス基板の密着力が弱く簡単に剥がれてしまう事もない。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す半導体基板の断面図
【図2】本発明の実施の形態の各製造工程を示すフローチャート
【図3】図2に示した半導体装置の各製造工程における断面図
【図4】メッキ処理の方法を示した断面図
【図5】実施例1における貫通孔内部の電流密度の分布を示した図
【図6】実施例2における貫通孔内部の電流密度の分布を示した図
【図7】従来の技術を示す断面図
【図8】従来の技術を示す断面図
【符号の説明】
1 半導体基板
2 貫通孔
3 導体部材
4 絶縁膜
5 シード基板
6 導電膜
10 保持具
11 メッキ槽
12 メッキ液
13 電極板
14 電源
15 定電流回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for filling a through hole formed in a semiconductor substrate and a semiconductor substrate formed by the method.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a semiconductor device in which a through hole is formed in a semiconductor substrate, the inside thereof is buried with a conductor member, and three-dimensional wiring is formed by conducting conduction between the front and back surfaces of the semiconductor substrate, thereby realizing high density wiring. ing. As described in Japanese Patent Application Laid-Open No. 9-092675, a method of manufacturing the semiconductor device first forms a protective film and an opening where the protective film is not formed on the surface of a semiconductor substrate. Next, a through hole is formed by etching the opening. Next, an insulating layer is formed on the surface of the semiconductor substrate and the inner surface of the through hole by using a thermal oxidation method or a chemical vapor deposition method. Next, the through holes are filled with a conductive material by plating, and a conductive layer is formed on the front and back surfaces of the semiconductor substrate. Next, the conductor layers on the front and back surfaces of the semiconductor substrate are etched back, and the conductor layers on the front and back surfaces of the semiconductor substrate are removed while leaving the conductor layers in the through holes. By burying the through-hole formed in the semiconductor substrate with a conductive material in this manner, conduction between the front and back surfaces of the semiconductor substrate is achieved.
[0003]
Japanese Patent Application Laid-Open No. 2-239627 describes that a through hole is formed in a semiconductor substrate, and the inside of the through hole is buried by solder plating, so that conduction is provided between the front and back surfaces. The inner diameter of the through hole in the example is 200 μm.
[0004]
[Problems to be solved by the invention]
However, in recent years, further high-density wiring has been required for semiconductor devices, and the inside diameter of the through-hole is smaller and the aspect ratio is larger. In addition, it is necessary to form not only a continuity between the front and back surfaces but also to form the conductor member in which the through-holes are embedded more uniformly.
[0005]
In the solder plating described in Japanese Patent Application Laid-Open No. Hei 2-239627, as shown in FIG. 7, a seed metal 100 is formed on the inner peripheral surface of a through hole 2 where a plating of a semiconductor substrate 1 is to be formed, and the semiconductor substrate 1 is soldered. By immersing in the plating solution and applying an electric field, the plating is formed so as to grow from the seed metal 100. However, plating generally grows more easily as the current density of the plating solution in which the semiconductor substrate 1 is immersed is higher. In the semiconductor substrate 1 in which the through-hole 2 is formed, the current density around the opening of the through-hole 2 is high, so that the growth of the plating 101 in the opening of the through-hole 2 is faster than the growth of the plating inside the through-hole. . Therefore, when the inner diameter of the through-hole 2 is as small as 30 μm or less and the aspect ratio is as large as 10 or more, the opening is closed before the through-hole 2 is completely filled with plating as shown in FIG. For this reason, a cavity is formed inside the through hole, and it is impossible to embed with a uniform conductor member. However, if the plating speed is extremely reduced, a good conductor member can be formed. However, if the plating speed is reduced, the production tact becomes longer, so that the production cost is significantly increased and the production cost can be increased. Not something.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, in the present invention, a step of forming an insulating film on an inner peripheral surface of a through hole of a semiconductor substrate in which a through hole is formed, and forming a conductive film on one surface and the surface of the semiconductor substrate Bonding the integrated surface of the seed substrate with the conductive film formed thereon and integrating the surface, and plating the integrated semiconductor substrate and the seed substrate to grow the inside of the through hole from the conductive film by plating. The present invention provides a method of embedding a through hole in a semiconductor substrate through a step of embedding with a conductive member and a step of separating the integrated semiconductor substrate and the seed substrate.
[0007]
2. The method according to claim 1, wherein a minimum inner diameter of the through hole is 30 μm or less, and an aspect ratio is 10 to 100.
[0008]
A method for embedding a through hole in a semiconductor substrate is provided.
[0009]
Further, in the present invention, the integrating step includes a method of embedding a through-hole in a semiconductor substrate, in which an adhesive is applied to a bonding surface of the conductive film, which is in contact with the semiconductor substrate, and a predetermined pressure is applied. providing.
[0010]
Further, the present invention provides a method of filling a through hole in a semiconductor substrate, wherein the thickness of the adhesive is 10 μm or less.
[0011]
Further, in the present invention, the conductive film is a solder material, and the step of integrating is performed by pressing a semiconductor substrate and a glass substrate in a state where the solder material is heated to a melting point or higher, and then cooling the semiconductor substrate and the glass substrate. The method provides a method of embedding a through hole in a semiconductor substrate, which is performed in a state where the solder material is heated to the melting point or more again.
[0012]
The present invention also provides a method for filling a through hole in a semiconductor substrate, wherein the solder material has a melting point of 200 degrees or less.
[0013]
The present invention also provides a method for filling a through hole in a semiconductor substrate, wherein the thickness of the solder material is 0.1 μm to 10 μm.
[0014]
Further, the present invention provides a method for filling a through hole in a semiconductor substrate, wherein a metal film is formed on one surface of the semiconductor substrate.
[0015]
The present invention also provides a semiconductor substrate formed by the method for filling a through hole in a semiconductor substrate.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a sectional view of a semiconductor substrate showing an embodiment of the present invention. In the figure, reference numeral 1 denotes a semiconductor substrate made of silicon or the like. The thickness of the semiconductor substrate 1 is about 100 to 500 μm. Reference numeral 2 denotes a plurality of through holes formed at equal intervals in the semiconductor substrate 1. The inner diameter of the through hole is about 5 to 30 μm. The aspect ratio of the through hole 2 is 10 to 100, and this value can be generally referred to as a high aspect ratio for a through hole of a semiconductor substrate. The shape of the through hole may be an ellipse or a rectangle other than the circle. In the case of an elliptical shape or a rectangular shape, the minimum inner diameter of the through hole may be about 5 to 30 μm, and the aspect ratio is the ratio of this minimum inner diameter to the thickness of the semiconductor substrate. Reference numeral 3 denotes a conductor member that buries the inside of the through-hole 2, and is formed by plating. As a material for plating, a simple substance such as Ni, Cu, Sn, Ag, Au, or Al or an alloy thereof can be used.
[0018]
Next, a method for manufacturing the above-described semiconductor substrate will be described. FIG. 2 is a flowchart showing each manufacturing step (step), and FIGS. 3A to 3H are cross-sectional views in each manufacturing step (step) of the semiconductor device shown in FIG.
[0019]
First, in S1 (step 1), as shown in FIG. 3A, a semiconductor substrate 1 such as a silicon wafer having a thickness of 100 to 500 μm is prepared. The shape of the semiconductor substrate may be not a wafer but a square or a rectangular shape.
[0020]
Next, in S2 (Step 2), a plurality of through holes 2 having an inner diameter of 5 to 50 μm are formed in the semiconductor substrate 1 as shown in FIG. The through hole 2 can use any of chemical processing by wet etching, laser processing, plasma processing, physical processing by D-RIE or the like, and mechanical processing by a drill or the like. In particular, if a D-RIE or an excimer laser is used, a straight through hole with good surface accuracy on the inner peripheral surface of the through hole can be formed.
[0021]
Next, in S3 (Step 3), as shown in FIG. 3C, the insulating film 4 is formed on the front and back surfaces of the semiconductor substrate 1 and the inner peripheral surface of the through hole 2. The insulating film 4 oxidizes the surface of the semiconductor substrate 1 to form a SiO film. The insulating film 4 is indispensable on the inner peripheral surface of the through hole 3, but may be formed on at least one of the front and back surfaces of the semiconductor substrate 1.
[0022]
Next, in step S4 (step 4), as shown in FIG. 3 (d), a seed substrate 5 serving as a jig used for a plating process in step S6 described below is prepared. As the seed substrate 5, a substrate made of glass or the like having a thickness of about 20 mm is used. Note that the outer shape of the seed substrate 5 is larger than the outer shape of the semiconductor substrate 1.
[0023]
Next, in S5 (Step 5), as shown in FIG. 3E, a conductive film 6 is formed on the surface of the seed substrate 5 by plating or the like. Metal such as Ni, Cu, Sn, Ag, Au, Al, or a solder material can be used for the conductive film 6. Note that S1 to S3 and S4 to S5 are performed in parallel.
[0024]
Next, in S6 (Step 6), as shown in FIG. 3F, the semiconductor substrate 1 after S1 to S3 and the surface of the seed substrate 5 on S4 to S5 on the conductive film 6 side are joined and integrated. When the conductive film 6 of the seed substrate 5 is made of Ni, Cu, Sn, Ag, Au, or Al, an adhesive is applied to the surface of the conductive film of the seed substrate 5 with the position of the through hole 2 being masked. Then, pressure bonding is performed at a predetermined pressure to perform bonding. The thickness of the adhesive is preferably thinner and more preferably 10 μm or less in order to form plating more uniformly in the plating process in S7 described below. In addition, in order to easily perform the substrate peeling in S8 described below, it is preferable that the adhesion is reduced by a specific treatment. If the conductive film 6 is a solder material, since the solder material itself has an adhesive force, the solder material is press-bonded to the semiconductor substrate 1 for a predetermined time in a state where the solder material is heated to a temperature equal to or higher than the melting point, and then cooled and joined. In S6, both substrates can be joined with a high adhesion without a gap.
[0025]
Next, in step S7 (step 7), as shown in FIG. 3 (g), the semiconductor substrate 1 and the seed substrate 4 shown in FIG. Perform processing. FIG. 4 is a diagram showing a plating method. In the figure, reference numeral 10 denotes a holder, which holds the bonded semiconductor substrate 1 and seed substrate 4 which are works. The portion of the seed substrate 4 that is not bonded to the semiconductor substrate 1 is completely covered by the holder 10. 11 is a plating tank. Reference numeral 12 denotes a plating solution filled in the plating tank 11, and usually uses copper sulfate. Reference numeral 13 denotes an electrode plate, which usually uses a copper plate. Reference numeral 14 denotes a power supply, and a negative (−) electrode is connected to the conductive film 6 of the seed substrate 5, and a positive (+) electrode is connected to the electrode plate 13. Reference numeral 15 denotes a constant current circuit. By supplying a current from the power supply 14, plating grows from the conductive film 6 in the through-hole 2, and the inside of the through-hole 2 can be completely filled with the conductor member 3. At this time, the portion of the seed substrate 4 that is not bonded to the semiconductor substrate 1 is completely covered by the holder 10, so that plating does not proceed in portions other than the semiconductor substrate, thereby increasing the efficiency of the plating process.
[0026]
Next, in S8 (step 8), the semiconductor substrate 1 and the seed substrate 4 are separated as shown in FIG. When the conductive film 6 is made of Ni, Cu, Sn, Ag, Au, or Al, the adhesive is peeled off. However, it is preferable that the conductive film 6 be peeled off after performing a treatment that reduces the adhesive force of the adhesive. Note that when the metal used for the conductive film and the metal grown by plating are the same, it is difficult to peel off the metal. Therefore, it is preferable to use different materials. In the case where the conductive film 6 is a solder material, it can be easily peeled off by heating it to a temperature higher than the melting point again.
[0027]
By going through S1 to S8 as described above, it is possible to form the semiconductor substrate 1 in which the conductor member 3 is embedded in the through hole.
[0028]
Next, the material of the conductive film 6 will be described. As described above, the conductive film 6 can be made of a metal such as Ni, Cu, Sn, Ag, Au, Al, or a solder material. , And a solder material is most preferable.
[0029]
In order to fill the through-hole 2 with the uniform conductor member 3, it is necessary that plating grows uniformly from the conductive film 6. Variations in plating growth cause voids and the like, making it impossible to form a uniform conductor member 3 inside the through-hole 3. If there is any gap between the semiconductor substrate 1 and the seed substrate 4, the current density of the plating solution varies, and electric field concentration occurs. When the electric field concentration occurs, the plating grows from that portion, so that it is difficult to grow the plating uniformly. Therefore, in order to obtain a uniform current density without causing electric field concentration, it is necessary to join the semiconductor substrate 1 and the seed substrate 4 with very strong adhesion to the conductive film 6 without any gap.
[0030]
Further, the semiconductor substrate 1 and the seed substrate 4 may be warped by heating and cooling in the bonding of the substrates in S6. Therefore, it is necessary to reduce the temperature change of the substrate by bonding at a lower temperature. In addition, if the heating temperature is low, the tact in production becomes short, and the handling becomes easy.
[0031]
Further, it is necessary to separate the semiconductor substrate 1 and the seed substrate 4 without damaging the substrate in S7. Also, the heating temperature at this time is preferably low.
[0032]
In consideration of the above, it is most preferable to use a solder material that is a low melting point metal for the conductive film 6. The solder material itself has strong adhesion at room temperature. Further, since it is not necessary to use an adhesive or the like, a gap of about 10 μm due to the thickness of the adhesive does not occur between the conductive film and the semiconductor substrate 1. Therefore, the semiconductor substrate 1 and the seed substrate 4 can be bonded together with a very strong adhesion without any gap. Further, since the semiconductor substrate 1 and the seed substrate 4 can be melted at a low temperature, warpage due to a temperature change between the semiconductor substrate 1 and the seed substrate 4 is small. Further, by reheating, the semiconductor substrate 1 and the seed substrate 4 can be easily separated from each other without damaging the bonding surface of the semiconductor substrate. Further, by forming a metal film such as Ni, Cu, Sn, Ag, Au, or Al on the bonding surface of the semiconductor substrate 1 in advance by sputtering or the like, the bonding surface with the solder material can be formed not only by mechanical bonding, but also by mechanical bonding. Since metal bonding can be performed, the reliability of bonding can be further improved. As the solder material, a simple substance such as Sn, bismuth, lead, and indium or an alloy thereof can be used. Desirably, a low-melting-point metal having a melting point of 200 ° C. or less seems to be suitable in view of manufacturing tact and handling.
[0033]
If the thickness of the solder material is 10 μm or more, when joining the silicon wafer and the glass substrate, the molten solder material flows into the through-hole formed in the silicon wafer, and the conductive member formed in the plating process is formed. Shape accuracy is lost. If the thickness is less than 0.1 μm, the adhesion between the silicon wafer and the glass substrate is weak, and the silicon wafer is easily peeled off. Therefore, the thickness of the solder material is preferably in the range of 0.1 to 10 μm.
[0034]
(Example 1)
According to the method for manufacturing a semiconductor substrate described above, a conductive member was embedded in the through hole as follows. First, a silicon wafer having a diameter of 6 inches and a thickness of 200 μm was prepared, and a plurality of through holes having an inner diameter of 20 μm were formed by D-RIE. Therefore, the aspect ratio of the through hole is 10. 2 μm of SiO 2 as an insulating film was formed on the surface of the silicon wafer and the inner peripheral surface of the through hole. In parallel with this, a glass substrate having a diameter of 160 mm and a thickness of 1 mm is prepared. Au having a thickness of 2 mm was formed as a conductive film on the surface of the glass substrate. The glass substrate treated in this manner becomes a seed substrate in a later plating process.
[0035]
Next, an adhesive 7 was applied to the surface of the conductive film on the glass substrate while masking the position of the through hole, and the glass substrate and the silicon wafer were joined by applying a predetermined pressure through the adhesive. Next, the bonded silicon wafer and the glass substrate are held by a holder so as to cover a surface other than the bonding surface of the glass substrate, and 5 g / L of copper sulfate, 95 g / L of water salt, and 180 g / L of sulfuric acid. It was immersed in a copper sulfate plating bath and plated for 15 hours under electrolysis conditions of 1.5 A / dm2. FIG. 5 shows the current density distribution at the junction with the conductive film inside the through hole at this time. There is a gap of 10 μm corresponding to the thickness of the adhesive 7 between the conductive film and the semiconductor substrate. Therefore, as shown in FIG. 5, the current density inside the through hole slightly differs at the joint surface, but it can be said that the current density is substantially uniform. Therefore, copper plating grows almost tentatively from the surface of the conductive film serving as the bottom surface of the through hole, and the through hole is completely filled with copper.
[0036]
Next, the integrated silicon wafer and glass substrate were taken out of the copper sulfate plating bath, and the silicon wafer and the glass substrate were separated by applying a predetermined force. Since there is a possibility that the bonded surface of the peeled silicon wafer may be damaged at the time of peeling, it is polished and smoothed by CMP as needed. Also, when the copper plating was raised on the back surface of the joint surface, it was polished and smoothed by CMP. The metal buried in the small-diameter, high-aspect through-hole formed in the silicon wafer in this manner was in a good state without voids or the like.
[0037]
(Example 2)
According to the method for manufacturing a semiconductor substrate described above, a conductive member was embedded in the through hole as follows. Unlike Example 1 described above, in Example 2, a solder material was used for the conductive film. First, a silicon wafer having a diameter of 6 inches and a thickness of 300 μm was prepared, and a plurality of through holes having an inner diameter of 10 μm were formed by D-RIE. Therefore, the aspect ratio of the through hole is 30. 2 μm of SiO 2 as an insulating film was formed on the surface of the silicon wafer and the inner peripheral surface of the through hole. Further, a Ni film is formed on the bonding surface of the silicon substrate by sputtering.
[0038]
In parallel with this, a glass substrate having a diameter of 160 mm and a thickness of 1 mm is prepared. A 0.1 μm Ti film and then a 0.1 μm Au film were formed on the surface of the glass substrate by sputtering. The Ti film is a film for improving the adhesion to the glass substrate, and the Au film is a film for serving as a seed for the next solder plating. Further, 0.2 μm of a solder material having a Sn: lead solder ratio of 6: 4 was deposited on the surface by solder plating to form a conductive film. The melting point of this solder material is 183 ° C. The glass substrate treated in this manner becomes a seed substrate in a later plating process.
[0039]
Next, one surface of the silicon wafer and the surface on the conductive film side of the glass substrate were joined by pressure bonding while being heated to 185 ° C. Next, the bonded silicon wafer and the glass substrate are held by a holder so as to cover a surface other than the bonding surface of the glass substrate, and 5 g / L of copper sulfate, 95 g / L of water salt, and 180 g / L of sulfuric acid. It was immersed in a copper sulfate plating bath and plated for 15 hours under electrolysis conditions of 1.5 A / dm2. FIG. 6 shows the current density distribution at the junction with the conductive film inside the through hole at this time. As shown in FIG. 6, it can be seen that there is no difference in current density inside the through hole. Therefore, copper plating grows temporarily from the surface of the conductive film serving as the bottom surface of the through hole, and the through hole is completely filled with copper.
[0040]
Next, the integrated silicon wafer and glass substrate were taken out of the copper sulfate plating bath and heated again to 185 ° C., whereby the solder material was melted and the silicon wafer and glass substrate were separated. The bonded surface of the peeled silicon wafer was not damaged at all. When copper plating was raised on the back surface of the bonding surface, it was polished and smoothed by CMP. The metal buried in the small-diameter, high-aspect through-hole formed in the silicon wafer in this manner was in a good state without voids or the like.
[0041]
【The invention's effect】
As described above, in the present invention, a step of forming an insulating film on an inner peripheral surface of a through hole of a semiconductor substrate in which a through hole is formed, and forming a conductive film on one surface and the surface of the semiconductor substrate Bonding and integrating the surface of the glass substrate on which the conductive film is formed, and plating the integrated semiconductor substrate and the glass substrate to grow the inside of the through hole from the conductive film by plating. Through the step of embedding with a conductor member and the step of peeling off the integrated semiconductor substrate and glass substrate, the through hole formed in the semiconductor substrate is completely embedded with the conductor member with a short tact that does not pose a problem in production. Can be.
[0042]
Further, even when the minimum inner diameter of the through hole is 5 to 30 μm and the aspect ratio is 10 to 100, the through hole can be completely buried with the conductor member.
[0043]
In addition, by using a solder material having strong adhesion at room temperature for the conductive film, the process of integrating the substrates is performed by pressing the semiconductor substrate and the glass substrate in a state where the solder material is heated to a melting point or higher and then cooling. Therefore, bonding can be performed with strong adhesion without using an adhesive. Further, since no adhesive is used, the semiconductor substrate and the glass substrate can be joined without any gap, so that the plating can be grown more uniformly by the through holes. In addition, since the step of peeling the substrate can be performed by heating the solder material again to a temperature equal to or higher than the melting point, the substrate can be easily peeled without being peeled off by a large force, and both substrates can be damaged. Nor. Further, if a metal film is formed in advance on the bonding surface of the semiconductor substrate, not only mechanical bonding but also metal bonding can be performed, so that the reliability of bonding can be further improved.
[0044]
In addition, by using a solder material having a melting point of 200 degrees or less, the warpage generated by heating the substrate can be reduced, and the bonded state can be maintained without the substrate being separated due to a temperature change. it can. In addition, when the heating temperature is low, the takt time in production becomes short, and handling becomes easy.
[0045]
Further, by setting the thickness of the solder material to 0.1 μm to 10 μm, the molten solder material flows into the through-hole formed in the silicon wafer, thereby impairing the shape accuracy of the conductor member formed in the plating process. In addition, the adhesion between the silicon wafer and the glass substrate is weak, and the silicon wafer does not easily come off.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a semiconductor substrate showing an embodiment of the present invention. FIG. 2 is a flowchart showing each manufacturing process of an embodiment of the present invention. FIG. 3 is a view showing each manufacturing process of the semiconductor device shown in FIG. FIG. 4 is a cross-sectional view showing a plating method. FIG. 5 is a view showing a current density distribution inside a through hole in Example 1. FIG. 6 is a view showing a current density inside a through hole in Example 2. FIG. 7 is a cross-sectional view showing a conventional technique. FIG. 8 is a cross-sectional view showing a conventional technique.
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Through hole 3 Conductor member 4 Insulating film 5 Seed substrate 6 Conductive film 10 Holder 11 Plating tank 12 Plating solution 13 Electrode plate 14 Power supply 15 Constant current circuit

Claims (9)

貫通孔が形成された半導体基板の該貫通孔の内周面に絶縁膜を形成する工程と、該半導体基板の一方の表面と、導電膜が形成されたシード基板の該導電膜が形成された表面とを接合し一体化する工程と、該一体化した半導体基板とシード基板をメッキ処理する事により、該貫通孔の内部を該導電膜からメッキ成長する導体部材により埋め込む工程と、該一体化した半導体基板とシード基板を剥離する工程とを経ることを特徴とするより半導体基板の貫通孔埋め込み方法。Forming an insulating film on the inner peripheral surface of the through hole of the semiconductor substrate having the through hole formed therein, and forming the conductive film on one surface of the semiconductor substrate and the seed substrate on which the conductive film is formed; Joining the surface and integrating the surface, plating the integrated semiconductor substrate and the seed substrate, and embedding the inside of the through hole with a conductive member plated and grown from the conductive film; A method of embedding a through hole in a semiconductor substrate, comprising a step of peeling off the semiconductor substrate and the seed substrate. 前記貫通孔の最小内径は30μm以下であり、アスペクト比は10〜100であることを特徴とする請求項1に記載の半導体基板の貫通孔埋め込み方法。2. The method according to claim 1, wherein the through hole has a minimum inner diameter of 30 [mu] m or less and an aspect ratio of 10 to 100. 前記一体化する工程は、該導電膜の該半導体基板と接合する表面に接着剤を塗布した後、所定の圧力で加圧する事を特徴とする請求項1に記載の半導体基板の貫通孔埋め込み方法。The method of filling a through hole in a semiconductor substrate according to claim 1, wherein in the integrating step, an adhesive is applied to a surface of the conductive film to be joined to the semiconductor substrate, and then a predetermined pressure is applied. . 前記接着剤の膜厚は10μm以下である事を特徴とする請求項3に記載の半導体基板の貫通孔埋め込み方法。4. The method according to claim 3, wherein the adhesive has a thickness of 10 [mu] m or less. 前記導電膜はハンダ材であり、前記一体化する工程は該ハンダ材を融点以上に加熱した状態で半導体基板とガラス基板を圧着した後冷却して行われ、前記剥離する工程は該ハンダ材を再度融点以上に加熱した状態で行われる事を特徴とする請求項1に記載の半導体基板の貫通孔埋め込み方法。The conductive film is a solder material, and the unifying step is performed by compressing the semiconductor substrate and the glass substrate in a state where the solder material is heated to a temperature equal to or higher than the melting point and then cooling. 2. The method of embedding a through hole in a semiconductor substrate according to claim 1, wherein the method is performed while heating to a temperature equal to or higher than the melting point again. 前記ハンダ材は融点が200度以下である事を特徴とする請求項5に記載の半導体基板の貫通孔埋め込み方法。6. The method according to claim 5, wherein the melting point of the solder material is 200 degrees or less. 前記ハンダ材は膜厚が0.1μm〜10μmであることを特徴とする請求項5に記載の半導体基板の貫通孔埋め込み方法。6. The method according to claim 5, wherein the thickness of the solder material is 0.1 μm to 10 μm. 前記半導体基板の前記シード基板と接合する表面には、金属膜が形成されていることを特徴とする請求項5に記載の半導体基板の貫通孔埋め込み方法。6. The method according to claim 5, wherein a metal film is formed on a surface of the semiconductor substrate that is bonded to the seed substrate. 前記請求項1乃至請求項8のいずれか1項に記載の半導体基板の貫通孔埋め込み方法により形成した事を特徴とする半導体基板。9. A semiconductor substrate formed by the method of burying a through hole in a semiconductor substrate according to claim 1.
JP2002279370A 2002-09-25 2002-09-25 Semiconductor substrate and method for filling through-hole thereof Withdrawn JP2004119606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279370A JP2004119606A (en) 2002-09-25 2002-09-25 Semiconductor substrate and method for filling through-hole thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279370A JP2004119606A (en) 2002-09-25 2002-09-25 Semiconductor substrate and method for filling through-hole thereof

Publications (1)

Publication Number Publication Date
JP2004119606A true JP2004119606A (en) 2004-04-15

Family

ID=32274402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279370A Withdrawn JP2004119606A (en) 2002-09-25 2002-09-25 Semiconductor substrate and method for filling through-hole thereof

Country Status (1)

Country Link
JP (1) JP2004119606A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024653A (en) * 2004-07-06 2006-01-26 Tokyo Electron Ltd Through substrate and manufacturing method thereof
JP2006344725A (en) * 2005-06-08 2006-12-21 Shinko Electric Ind Co Ltd Manufacturing method of substrate
JP2007059796A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Manufacturing method of pierced hole interconnect line
JP2008021739A (en) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd Method for manufacturing substrate
US7866038B2 (en) 2004-07-06 2011-01-11 Tokyo Electron Limited Through substrate, interposer and manufacturing method of through substrate
JP2011202194A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Method of manufacturing metal filling fine structure
JP2012028533A (en) * 2010-07-22 2012-02-09 Canon Inc Method of filling metal into substrate penetration hole, and substrate
JP2012518084A (en) * 2009-02-17 2012-08-09 アトテック ドイチェランド ゲーエムベーハー Process for electrodeposition of chip-to-chip, chip-wafer and wafer-wafer copper interconnects in through-silicon vias (TSV)
JP2016046347A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Method of manufacturing through-electrode substrate, pressure sensitive adhesive sheet and electrolytic plating method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024653A (en) * 2004-07-06 2006-01-26 Tokyo Electron Ltd Through substrate and manufacturing method thereof
US7866038B2 (en) 2004-07-06 2011-01-11 Tokyo Electron Limited Through substrate, interposer and manufacturing method of through substrate
JP2006344725A (en) * 2005-06-08 2006-12-21 Shinko Electric Ind Co Ltd Manufacturing method of substrate
JP4509869B2 (en) * 2005-06-08 2010-07-21 新光電気工業株式会社 Circuit board manufacturing method
JP2007059796A (en) * 2005-08-26 2007-03-08 Matsushita Electric Works Ltd Manufacturing method of pierced hole interconnect line
JP4581915B2 (en) * 2005-08-26 2010-11-17 パナソニック電工株式会社 Manufacturing method of through-hole wiring
JP2008021739A (en) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd Method for manufacturing substrate
JP2012518084A (en) * 2009-02-17 2012-08-09 アトテック ドイチェランド ゲーエムベーハー Process for electrodeposition of chip-to-chip, chip-wafer and wafer-wafer copper interconnects in through-silicon vias (TSV)
JP2011202194A (en) * 2010-03-24 2011-10-13 Fujifilm Corp Method of manufacturing metal filling fine structure
JP2012028533A (en) * 2010-07-22 2012-02-09 Canon Inc Method of filling metal into substrate penetration hole, and substrate
JP2016046347A (en) * 2014-08-21 2016-04-04 大日本印刷株式会社 Method of manufacturing through-electrode substrate, pressure sensitive adhesive sheet and electrolytic plating method

Similar Documents

Publication Publication Date Title
JP3904484B2 (en) Through-hole plugging method of silicon substrate
JPH02246335A (en) Bump structure for reflow bonding of ic device
US3480412A (en) Method of fabrication of solder reflow interconnections for face down bonding of semiconductor devices
JP6009300B2 (en) Wiring board and manufacturing method thereof
JP2005019830A (en) Manufacturing method of semiconductor device
JP2004119606A (en) Semiconductor substrate and method for filling through-hole thereof
US7565739B2 (en) Method of making zinc-aluminum alloy connection
JP4604641B2 (en) Semiconductor device
JP2002343931A (en) Wiring board, manufacturing method thereof, multi-chip module, manufacturing method thereof, and multi-chip module mounting structure body
JP2008004862A (en) Printed circuit board and method for manufacturing it
JP3297177B2 (en) Method for manufacturing semiconductor device
WO2009142077A1 (en) Process for fabricating semiconductor device
JP2000294923A (en) Filling method of metal into ceramic board and metal- filled ceramic board
JP4520665B2 (en) Printed wiring board, manufacturing method thereof, and component mounting structure
JP4326428B2 (en) Through-hole plating method
JP2008251935A (en) Manufacturing method of dielectric substrate
JP7178713B2 (en) Power semiconductor module device and power semiconductor module manufacturing method
JP2600669B2 (en) Metal bump for transfer bump
US6602431B2 (en) Enhancements in sheet processing and lead formation
JPH0521538A (en) Film carrier device
JPS6086840A (en) Manufacture of semiconductor device
JPH04116891A (en) Formation of via in wiring board
JP2004158737A (en) Manufacturing method for wiring board
JPH0992675A (en) Semiconductor device and its manufacturing method
JP3045697U (en) Package substrate for chip mounting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060110