JP2004103758A - 電子部品用ヒートシンクの製造方法およびそれを用いて作製された電子部品用ヒートシンク - Google Patents

電子部品用ヒートシンクの製造方法およびそれを用いて作製された電子部品用ヒートシンク Download PDF

Info

Publication number
JP2004103758A
JP2004103758A JP2002262408A JP2002262408A JP2004103758A JP 2004103758 A JP2004103758 A JP 2004103758A JP 2002262408 A JP2002262408 A JP 2002262408A JP 2002262408 A JP2002262408 A JP 2002262408A JP 2004103758 A JP2004103758 A JP 2004103758A
Authority
JP
Japan
Prior art keywords
heat
heat sink
electronic component
metal structure
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002262408A
Other languages
English (en)
Other versions
JP3937984B2 (ja
JP2004103758A5 (ja
Inventor
Yasuhiro Fujiwara
藤原 康弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002262408A priority Critical patent/JP3937984B2/ja
Publication of JP2004103758A publication Critical patent/JP2004103758A/ja
Publication of JP2004103758A5 publication Critical patent/JP2004103758A5/ja
Application granted granted Critical
Publication of JP3937984B2 publication Critical patent/JP3937984B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】半導体等の電子部品からの発熱を効率よく放熱でき、電子部品の動作安定性を確保できる小型で高性能な電子部品用ヒートシンクの製造方法およびそれを用いて作製された電子部品用ヒートシンクを提供することを目的とする。
【解決手段】受熱面を底辺とする略三角形状もしくは略台形状の断面形状をなす伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、前記伝熱部の前記受熱面側から、部分的に貫通した穴部を形成して、前記穴部内に、銀や亜鉛等の金属を含有する接着剤、もしくは酸化物や窒化物を含有するシリコーン系の接着剤からなる熱伝導層を介在させ、前記金属構成体よりも熱伝導率が高い円柱部材を圧入することにより配置固定する電子部品用ヒートシンクの製造方法およびその構成を用いたヒートシンク。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、IC、CPUおよびMPU等と省略して表現される半導体等の発熱体や、その他の発熱部を有する電子部品の冷却に用いられる電子部品用ヒートシンクの製造方法、およびそれにより作製された電子部品用ヒートシンクに関するものである。
【0002】
【従来の技術】
近年、電子機器においては半導体等の電子部品の高集積化、動作クロックの高周波数化等に伴う発熱量の増大に対して、電子部品の正常動作の為に、それぞれの電子部品の接点温度を動作温度範囲内に如何に保つかが大きな問題となってきている。特に、半導体等のマイクロプロセッシングユニット(以下、MPUと略す)の高集積化、高周波数化はめざましく、動作の安定性、また動作寿命の確保などの点からも放熱による半導体冷却が重要な問題となってきている。
【0003】
一般に、電子機器からの放熱は、放熱面積を広げ、空気等の冷媒と効率よく熱を交換させるためのヒートシンクによる自然空冷や、このヒートシンクに空気などの冷媒を強制的に送り込むためのモータ付きのファンとを組み合わせた冷却装置による強制空冷によりなされる。
【0004】
ここで従来の技術を図10および図11を用いて説明する。
【0005】
図10(a),(b)は従来のヒートシンクの構成を示す斜視図で、図11(a),(b)は従来のヒートシンクとファンとを組み合わせた冷却装置の構成を示す上面図および側面図である。これらのヒートシンクは、図10(a)のように伝熱部であるベースプレート32上に多数の薄板よりなるプレート状フィン30を配列したプレート型と、図10(b)のようにベースプレート32上に多数のピン状フィン31を配列したピン型などに分類される。これらのヒートシンクは、熱伝導率が比較的良好で、軽量のアルミニウムを材料として、押出成形、冷間鍛造、ダイキャストおよび薄板積層等の方法で製造されている。図11(b)に示すようにこのようなヒートシンクを発熱体であるMPU33へ取り付ける場合、ピン型のヒートシンク等ではMPU33の上に直接ヒートシンクが搭載される。この冷却装置の冷却原理は、MPU33で発生した熱が、アルミニウム等の比較的高い伝熱性を有するベースプレート32を経てピン状フィン31へと伝わり、更にその熱はピン状フィン31の表面で冷却ファン34から送られてくる空気へ熱伝達されることで空気中へ放散され冷却されることになる。
【0006】
このような冷却装置の性能を高めるには、ヒートシンクの伝熱部であるベースプレート32の全体に均一に熱が分散し、形成されている全ての放熱用のピン状フィン31あるいはプレート状フィン30から十分な放熱を行える状態とするのが望ましい。しかし、図10及び図11に示されるようなプレート型やピン型のヒートシンクでは発熱体(例えばMPU33)からの熱は、発熱体自体が伝熱部に比べて非常に小さく接触面積が狭いことに加え、伝熱部が平板状であるために断面積が小さいことなどが原因で、発熱体直上近傍の放熱フィンには集中的に熱が伝わり易く、周辺部の放熱フィンには相対的に熱が伝わりにくいという傾向があり、結果的に放熱フィン全体が有効に機能していない場合が多い。伝熱効率はヒートシンクを構成する材料により決定されるが、材料であるアルミニウムは比較的熱伝導率は高いものの、高熱伝導材である銅などと比べるとまだ熱伝導率は低いため、伝熱の効率には限界があり伝熱効率悪化の原因の一つとなっている。
【0007】
そのため、伝熱の効率を向上させるために従来の技術では、ヒートシンクの伝熱部の一部分に銅を配置したり、あるいは他のヒートシンクのように、アルミニウム製ヒートシンクの一部に銅製ヒートシンクを挿入した構造、つまり伝熱部だけでなくフィンの一部までも銅に置換したものが示されている(例えば、特許文献1参照)。
【0008】
次に放熱の効率を向上させるためには、放熱フィンの周りの風量が同じならばフィン数を増やして表面積を増やせば、放熱効率は高まるのであるが、実際は、単位面積当たりで考えた場合、放熱フィン断面積が増加すると、空気が流入可能な部分、例えば図10(a)に示す放熱フィン以外の部分の空気流入面35の面積が減少し、流入総風量自体も減少するため、結果的には逆に放熱能力が低下する場合もある。つまり、単純に放熱フィンだけを増やしても効果がないことになる。
【0009】
すなわちMPUからの熱を伝熱部に効率よく伝え、充分な風量を確保できるフィン密度下で伝熱部により、可能な限り広範囲の放熱フィンに拡大していくことができるかということが重要なのである。
【0010】
【特許文献1】
特開平10−92985号公報
【0011】
【発明が解決しようとする課題】
半導体等の電子部品では、今後、更なる高速化の進展等によって益々発熱が大きくなる傾向にあり、従来の構成の冷却装置では十分な冷却等を行うことができにくくなって来ている。特にMPUなどの高発熱電子部品では、性能の低下や熱暴走などを起こし、電子機器に異常が生じる等の重大な問題が生じる。それゆえ、更に高性能の冷却装置が求められているが、ヒートシンク等の冷却装置による放熱性能を向上させるにはMPUなどの高発熱電子部品からの熱を充分な冷却風量を確保できるフィン密度下で冷却装置の伝熱部で効率よく拡散させてフィンに伝えることが重要であり、これにより良好な放熱を得ることができる。
【0012】
一般的にヒートシンクの材料としては軽量であるアルミニウム系合金を用いられることが多いが、その伝熱部における熱の拡散効率を向上させるには熱伝導率の高い銅等を使用することが効果的である。しかしながら、銅はアルミニウム系合金と比較して比重や価格が高いため、例えば、ヒートシンク等の全体を銅で構成すると、重量が増大し、経済的にも好ましくない。ここで、ヒートシンク重量の増大は、電子部品に直接取り付けて使用する際に電子部品自体にダメージを与える可能性があり、また使用する姿勢により電子部品とヒートシンクの接触状態が変化しやすいという問題がある。そのため、アルミニウム系合金による伝熱部の一部のみを銅などの高熱伝導材に置換する方法も試みられており、銅などの熱伝導率が高い材料を平板状にして伝熱部に貼り付けるか、鍛造法等により一体成形して複合化する方法が取られる。しかしながら、小さな発熱体に対接した放熱機器では、熱が受熱面から等方的材料の内部に流入すると半球体状の温度分布を持って拡散する傾向にあるため伝熱部が平板状であると、受熱面の全体面積に対し断面積が小さいことにより発熱体と対接する受熱面に対して鉛直方向の熱拡散が期待できない、もちろん平板状であっても充分な断面積を有していれば良いのであるが、ヒートシンクの形状制限や重量増大が生じるため現実的にはむずかしい。このように考えると、平板状の伝熱部の一部を銅などの高熱伝導材に置換しても充分な効果が期待できないことに加え、2種類の金属を広い面積で密着させる必要があるため特殊な工法を必要とするといった問題がある。あるいは、アルミニウム製ヒートシンクの一部に銅製ヒートシンクを挿入した構造、つまり伝熱部だけでなくフィンの一部も銅に置換することも考えられるが、伝熱部が平板状のままで、そのアルミニウム製の伝熱部の一部を銅に置換してもアルミニウムと銅の接触面積を充分確保できないため、銅とアルミニウム間での熱伝導が不充分となりやすく、そのためアルミニウムの部分を含むヒートシンク全体の性能を充分活かせず、銅製のヒートシンク部分のみの性能しか発揮できない可能性がある。また、ヒートシンクの一部のみ銅製のヒートシンクに置換する場合、銅部分の伝熱部及びフィン部の関係に留意する必要がある。すなわち、フィン高さに対し伝熱部の体積及びフィン部の断面積が小さい場合、伝熱部からフィン部へ熱が充分に伝わりにくく、そのためフィンからの放熱も不十分となることが考えられ、銅製のヒートシンク部の性能を充分に引き出せない可能性があるといった問題も考えられる。
【0013】
本発明は上記のような課題を解決するもので、発熱体であるMPUなどの電子部品から発生した熱を効率よくヒートシンク全体に伝えることができ、さらに放熱効率に優れた電子部品用ヒートシンクを容易にしかも生産性良く製造できる電子部品用ヒートシンクの製造方法を提供する事を目的とする。また本発明は、その製造方法を用いて製作された伝熱効率、放熱効率の高い高性能のヒートシンクを提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明の電子部品用ヒートシンクの製造方法は、受熱面を長い底辺とする略三角形状もしくは略台形状の伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、前記伝熱部の前記受熱面側から円柱状の穴部を形成して、前記穴部内に、前記金属構成体よりも熱伝導率が高い円柱部材を圧入することにより配置固定することを特徴とする。
【0015】
本発明の電子部品用ヒートシンクの製造方法によれば、高い放熱特性を有するヒートシンクを圧入工法といった簡便な方法で効率よく生産できる。
【0016】
さらに、受熱面を底辺とする伝熱部と複数の放熱フィン部とを有する金属構成体を作製し、前記金属部材よりも熱伝導率が高い円柱部材の一端面側を加工して半球状もしくは円錐状の先端部を形成し、前記金属構成体もしくは前記円柱部材のいずれか一方を高速で回転させながら前記受熱面と前記先端部を接触させ、双方を加圧する際に発生する摩擦熱を利用して前記金属構成体と前記円柱部材を接合させることを特徴とする。
【0017】
本発明の電子部品用ヒートシンクの製造方法によれば、2種類の材料を高い強度で密着度良く接合することができるため、高い放熱特性を有するヒートシンクを摩擦熱を利用した接合工法といった信頼性の高い安定した方法で効率よく生産できる。
【0018】
さらに、本発明の電子部品用ヒートシンクは、本発明の電子部品用ヒートシンクの製造方法により作製され、円柱部材の露出面の形状が円形状となることを特徴とする。
【0019】
本発明によれば、半導体装置や電子部品など発熱体と円柱部材の露出面とが回転などによる位置ずれを起こし難いため発熱体からの熱を効率よく受熱し、ヒートシンクに導くことができるためヒートシンクの能力を効率よく活用できるヒートシンクが得られる。
【0020】
さらに、本発明の電子部品用ヒートシンクは、本発明の電子部品用ヒートシンクの製造方法により作製され、円柱部材が金属構成体の受熱面よりも突出していることを特徴とする。
【0021】
本発明によれば、半導体装置や電子部品など発熱体からの熱を効率よく受熱し、さらにすみやかに熱を拡散し、ヒートシンク全体に導くことができ、さらに冷却風の流れが阻害されにくいため高い放熱特性を有するヒートシンクが得られる。
【0022】
【発明の実施の形態】
請求項1に記載の発明は、受熱面を底辺とする略三角形状もしくは略台形状の断面形状をなす伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、伝熱部の受熱面側から、部分的に貫通した穴部を形成して、穴部内に、銀や亜鉛等の金属を含有する接着剤、もしくは酸化物や窒化物を含有するシリコーン系の接着剤からなる熱伝導層を介在させ、金属構成体よりも熱伝導率が高い円柱部材を圧入することにより配置固定する電子部品用ヒートシンクの製造方法としたものであり、熱伝導率が高く、圧入に適した円柱形状をした金属を伝熱部へ圧入により配置固定することにより、特殊な設備を必要とせずに製作が可能であると同時に熱伝導材がその界面に存在するため、更に効率よく電子部品などから発生した熱をヒートシンク全体に効率よく拡散した上に放熱させることができる高性能なヒートシンクを生産性よく製造できる製造方法を得ることができるという作用を有する。
【0023】
請求項2に記載の発明は、受熱面を底辺とする略三角形状もしくは略台形状の断面形状をなす伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、伝熱部の受熱面側から部分的に貫通した穴部を形成して、穴部内に、金属構成体よりも熱伝導率が高く、側面の面粗度が最大高さで、0.0005mm以上で、0.01mm以下である円柱部材を圧入することにより配置固定する電子部品用ヒートシンクの製造方法としたものであり、熱伝導率が高く、圧入に適した円柱形状をした金属を伝熱部へ圧入により配置固定することにより、特殊な設備を必要とせずに製作が可能であり、また、面粗度を規定しているため圧入時に金属構成体と円柱部材の間でいずれかの部材が他方の部材により削られることがおきにくく、双方の部材が密着しやすいため、電子部品などから発生した熱を効率よく放熱させることができる高性能なヒートシンクを生産性良く製造できる製造方法を得ることができるという作用を有する。
【0024】
請求項3に記載の発明は、金属構成体としてアルミニウム系合金を用い、円柱部材として熱的な線膨張率がアルミニウム系合金よりも低い銅を用い、円柱部材の圧入時に加熱を行うことを特徴とする請求項1および2に記載の電子部品用ヒートシンクの製造方法としたものであり、熱伝導率が高く、圧入に適した円柱形状をした金属を伝熱部へ圧入により配置固定することにより、特殊な設備を必要とせずに製作が可能であり、さらに圧入時に加熱を行うため強固な圧入状態簡単に得られるため、電子部品などから発生した熱を効率よく放熱させることができる高性能なヒートシンクを生産性よく製造できる製造方法を得ることができるという作用を有する。
【0025】
請求項4に記載の発明は、受熱面を底辺とする伝熱部と複数の放熱フィン部とを有する金属構成体を作製し、金属部材よりも熱伝導率が高い円柱部材の一端面側を加工して半球状もしくは円錐状の先端部を形成し、金属構成体もしくは円柱部材のいずれか一方を高速で回転させながら受熱面と先端部を接触させ、双方を加圧する際に発生する摩擦熱を利用して金属構成体と円柱部材を接合させる電子部品用ヒートシンクの製造方法としたものであり、摩擦熱を利用した接合方法により円柱形状の高熱伝導材を配置固定することにより、ヒートシンクと高熱伝導材がすきまなく強固に一体化するため機械的接合強度が高く、さらに、双方の材料間の熱伝導に優れ、電子部品などから発生した熱をヒートシンク全体に効率よく拡散した上に放熱させることができる高性能なヒートシンクを信頼性よく製造できる製造方法を得ることができるという作用を有する。
【0026】
請求項5に記載の発明は、金属構成体としてアルミニウム系合金を用い、円柱部材として融点がアルミニウム系合金よりも高い銅を用い、金属構成体と円柱部材の接触時に加熱を行うことを特徴とする請求項4に記載の電子部品用ヒートシンクの製造方法としたものであり、摩擦熱を利用して金属構成体と円柱部材を接合する際に、双方の接触時に加熱を行い融点が低いアルミニウム系合金のみが軟化する温度に加熱を行えば、銅製の円柱部材をアルミニウム系合金製の金属構成体に埋まりこむ状態で密着度よく接合することができ、より大きな接触面積が確保できるため、更に機械的接合強度が高く、かつ双方の材料間の熱伝導に優れ、電子部品などから発生した熱をヒートシンク全体に効率よく拡散した上に放熱させることができる高性能なヒートシンクを信頼性よく製造できる製造方法を得ることができるという作用を有する。
【0027】
請求項6に記載の発明は、請求項1から請求項5いずれか1記載の電子部品用ヒートシンクの製造方法により作製され、円柱部材の露出面の形状が円形状となる電子部品用ヒートシンクとしたものであり、最も高い熱伝導率を有する材料が受熱面に露出しているため、発熱体からの熱を直接受熱でき、さらに、露出部の形状が円形状であるため、等方的熱伝導に有利であり、効率よくヒートシンク全体に熱を伝えることが出来るので、放熱効率を向上させることが出来る。また、露出部が円形状であるため、成形と配置が容易、回転による発熱体との位置ずれが起こりにくいという作用を有する。
【0028】
請求項7に記載の発明は、請求項1から請求項5いずれか1記載の電子部品用ヒートシンクの製造方法により作製され、円柱部材が金属構成体の受熱面よりも突出していることを特徴とする電子部品用ヒートシンクとしたものであり、受熱面が伝熱部よりも突出していることにより、発熱体とヒートシンクの間に空隙が生ずるため、ヒートシンク内を流れる冷却風の流れが阻害されにくく、ヒートシンクの放熱効率を向上させることが出来る。
【0029】
請求項8に記載の発明は、円柱部材の少なくとも一方の端部もしくは全体の形状が半球状あるいは円錐状あるいは円錐台であることを特徴とする請求項6から請求項7いずれか1記載の電子部品用ヒートシンクとしたものであり、円柱部材が等方的熱拡散に有利な半球状あるいは円錐状あるいは円錐台形状をしているため、受熱した熱を効率よく伝熱部で拡散することができ、ヒートシンク全体にすみやかに熱を伝えることが出来るので、放熱効率を向上させることが出来るという作用を有する。
【0030】
(実施の形態1)
以下、本発明の実施の形態について、図1及び図2を用いて説明する。
【0031】
図1は本発明の実施の形態1の電子部品用ヒ−トシンクの全体斜視図で(a)(b)は同一のヒートシンクを異なる角度から斜視したものである。次に、図2は図1に示すヒ−トシンクの側面を示す部分断面図、である。図1及び図2において、1はヒートシンク、2はヒートシンク1に配設されたフィンで、このフィン2は複数個が設けられている。3は、フィン2を配する伝熱部であり、4は、ヒートシンク1の製作の基材となる伝熱部と複数の放熱フィン部を有する金属構成体よりも熱伝導率が高い円柱部材である。また5は、伝熱部3の下部方向に設けられた発熱体である。ここで発熱体としては、IC、LSI、MPU等の半導体やトランジスタ等の発熱する電子部品である。ここでは発熱体をMPU5として説明する。また、6は発熱体であるMPU5の発熱面であり、この発熱面6に接して熱を受熱する伝熱部3の受熱面を7とした。さらに、8はヒートシンク1と円柱部材4の界面に存在する銀、亜鉛などの金属含有接着剤、酸化物、窒化物を含有するシリコーン系接着剤などからなる熱伝導材である。
【0032】
以上の様に構成されたヒートシンクについて詳細に説明する。
【0033】
図1において、伝熱部3の断面形状は、発熱体に対接する受熱面を底辺とする略三角形状もしくは、略台形状にすれば伝熱に効率よく、また、重量の軽減にも効果的である。また、この伝熱部3にはフィン2が設けられており、図1中のフィン2は伝熱部3より2方向にほぼ水平に突出するように設けられた場合を示している。しかしながら、突出方向はこの2方向に限定されるものではなく、あらゆる方向に突出してもかまわない。また、その角度も水平方向に限定されるものではなく、例えば伝熱部3の斜面より鉛直方向へ突出してもかまわない。ここでは、代表的なものとして図1に示されるような突出方向及び角度のものについて説明する。
【0034】
一般に小さな発熱体に対接した放熱機器では、熱が受熱面から等方的材料の内部に流入すると半球体状の温度分布を持って拡散する傾向にある、したがって理想的なヒートシンク形状は、半球体状の伝熱部と伝熱部の中心の発熱源を起点とした放射状に多数の放熱フィンを形成する事が最も放熱特性が高いと考えられる。しかし、このような構成では、実際の形状が使えない形状や大きさとなったり、製造コストが極端に高いなど、性能以外の様々な問題が出てくる。また従来のプレート型やピン型のヒートシンクでは、前述の通り、発熱体からの熱は、発熱体自体が伝熱部に比べて非常に小さく接触面積が狭いことが原因で、発熱体直上近傍の放熱フィンには集中的に熱が伝わり易く、周辺部の放熱フィンには相対的に熱が伝わりにくいという傾向があり、結果的に放熱フィン全体が有効に機能していない場合が多い。
【0035】
これらに対して本発明のようなヒートシンクの構成をとれば、熱伝達と放熱特性が優れ、かつ小型の冷却装置を実現することができるのである。
【0036】
図1及び図2に示した本実施の形態1のヒートシンクでは、発熱体であるMPU5の熱は、発熱面6と対接した伝熱部3の底面すなわち受熱面7上の円柱部材4の露出部にて受熱され、円柱部材4を介して伝熱部3の底面から垂直方向、水平方向など全方向へ立体的に拡散することになる。この場合、伝熱部3は図2に示されるように、その断面形状が略三角形状であるため、従来のプレート型やピン型のヒートシンクの平板状の伝熱部に比べれば遙かに大きな範囲で安定した半球体状温度分布を実現することができている。また、本発明の場合この半球体状温度分布の中心となる部分に、例えば銅といった高い熱伝導率を有する円柱部材4が配置されているため、円柱部材4が存在しない場合に比べ、より効率よく大きな範囲に熱を拡散することができる。さらに、その円柱部材4が受熱面7に露出部を有しているため、発熱体であるMPU5から放散される熱を、他部材を介することなく直接に円柱部材4に伝えることができる。それ故、損失少なくMPU5からの熱を受熱できるわけである。続いて、この熱は円柱部材4を中心とした半球体状温度分布を持つわけであるが、図1(b)に示されるように、円柱部材4の露出部形状が円形状であるため、等方的熱伝導に有利にはたらき、効率よく受熱面7上のから伝熱部3の全体、そして放熱フィンとして機能するフィン2の範囲に伝熱され、広がり、同じサイズであれば従来のヒートシンクよりも遙かに高い放熱特性が得られることになる。このように、形状においても伝熱に優れているうえに、構造においても伝熱部3の内部に円柱部材4が設けられているため、更に伝熱の効率が高まっている。すなわち、単一の材料の場合その材料の持つ固有の物性値すなわち熱伝導率により伝熱の効率の限界が決定してしまうが、さらに高い伝熱効率の期待できる材料よりなる熱伝導体を複合することで、その伝熱効率の限界を超えることができるわけである。そのため、効率よく広い範囲に熱が拡散し、周辺部のフィン2も放熱に十分機能することができる。さらに、図1(b)に示されるように、円柱部材4が、受熱面7よりも突出することにより、受熱面7と伝熱部3に具備されたフィン2との間にすきまが存在することになる。このすきまが存在することにより、ヒートシンクのフィン間を通過する冷却風の流れが阻害されにくく、充分な冷却風量が確保できるため、効率の良い放熱が行われることになる。なお、突出量は受熱面7より0.0005mm以上で3mm以下の範囲が好ましい。
【0037】
また、これらのヒートシンクでは、フィン2の端面や伝熱部3の下部の角には面取りを施すことが好ましく、この角部の面取りによって欠け等による屑の発生を防止できる。もし角部に鋭い部分を有していると、電子部品上にヒートシンクを実装する際に他の部品などに接触して他の部品などを破壊してしまう可能性も生じる。さらに角部により屑が発生すると、屑は導体であるため配線などの上に落ちる事によって、短絡などを起こしてしまうことになり、電子機器の動作不良等の原因になる可能性がある。
【0038】
さらに、ヒートシンク1のMPU5と相対する受熱面6の上にシルクスクリーン技法などで所定の厚さにグリス状の熱伝導材8を塗布し、MPU5とヒートシンク1は、それぞれ発熱面6と受熱面7で熱伝導材8を挟み込み発熱面6と受熱面7とが相対し、円柱部材4の受熱面7上の露出部が発熱面6に合致するように位置合わせし、クリップ等のばねやねじ締結による加圧を行うことにより熱伝導材8を介してMPU5とヒートシンク1を固定すれば、発熱面6と受熱面7の間の熱抵抗を減少させ、大変効率よくMPU5の熱をヒートシンク1に伝えることができる。また、ここで円柱部材4の受熱面7上の露出部形状が円形状であるため、位置合わせの際回転による位置ずれが発生しにくいといった、効果も期待できる。
【0039】
以上のように、本実施の形態では、ヒートシンク1の受熱面7上の露出部が発熱面6に合致するように位置合わせしているため、受熱面7がMPU5からの熱を直接受熱し、円柱部材4を起点として熱拡散が行われるため、効率よく伝熱部3に熱を拡散でき、さらに放熱フィン2へ、その熱を伝えることができるわけである。
【0040】
次にフィン2の構成についてであるが、図1のように伝熱部3の斜面に対して直上方向に配設される複数の溝と伝熱部3の斜面に対して平行で長手方向に配設される複数のスリットの交差する2方向のスリットを加工等によって設けることによりフィン2を伝熱部3と一体に形成することができる。この時、各方向のスリットの深さは任意でありどちらかが深くてもあるいは、ほぼ同一の深さであってもかまわない。またそれぞれのスリットで異なってもかまわない。図1には、それぞれのスリット深さがほぼ異なる深さの例を示しているが、この例に限定するものではない。また、フィン2は図1に示す様に交差する2方向のスリットが存在するように周期的に配設した方が放熱性や生産性の面で有利である。また、このようにフィン2をピン状にすることによりヒートシンク1を発熱体5に装着するため、クリップ等により押圧する際にフィン2を構成するスリットが存在するため、ヒートシンク1全体の緩やかな変形が期待でき、より発熱体5に密着しやすく、また装着後の温度変化等によりヒートシンク1に発生する応力をフィン部で緩和することができ受熱面6の状態が変化しにくいという効果も期待できる。
【0041】
伝熱部3とフィン2を一体に形成すると、生産性が良くなり、しかも伝熱部3とフィン2との間に熱抵抗となる部分が存在しないため、伝熱効率が良くなる。
【0042】
また、フィン2の形状としては、図1に示されているように四角柱状とすることによって、フィン2の実装密度などを高めることができ、放熱性を向上させることができる。
【0043】
また、本実施の形態では、フィン2の太さが先端から伝熱部3に近づくに従って太くなる形状としたが、例えば、フィン2の太さはほぼ一定の形状や、フィン2の太さが先端から伝熱部3に近づくに従って細くなる形状や、フィン2の中間部分が他の部分よりも太い形状、細い形状でも良い。
【0044】
また、フィン2に形成された角部に面取りなどを施すことによって、上述と同様に欠け等によって生じる屑の発生などを防止できる。
【0045】
また、ヒートシンク1をなす金属構成体の材料としては、100℃における熱伝導率が100W/m・K以上の材料で構成することが好ましい。具体的材料としては、アルミニウム,マグネシウム合金を代表とする材料などを用いることができる。本実施の形態では、加工性やコスト面を考慮して、アルミニウム単体か、アルミニウムを主材料とする合金等から構成した。このように、本実施の形態のヒートシンク1にアルミ合金などを材料として用いれば、一般的な押出成形により形成することができ、被削性の良い材料であるため、特別な機械加工を行わないで済ませることができ、容易に金属構成体を得ることができる。
【0046】
次に、円柱部材4の材料としては、金属構成体の材料として選ばれた単体材料や合金材料よりも熱伝導率の高い、銅,銀あるいは金の材料単体か、あるいは合金などを用いることができる。円柱部材4は、円柱形状とすることで金属構成体に埋め込む場合、例えば、圧入にて配置固定する場合のはめあい設計が容易になる。また、加工も旋盤による旋削により成形が可能なため、特殊な加工機を使用することなく容易に円柱部材4を得ることができる。さらに、この時、円柱部材4の側面の面粗度を最大高さで規定した場合、0.0005mm以上、0.01mm以下の範囲とすることにより、円柱部材4を圧入する際に金属構成体との間でいずれかの金属が削られることがおこりにくく、それにより削り取られた部分や削り取られた金属片の介在により双方の間ですきまが発生することなく、密着度よく金属構成体に円柱部材4を配置固定することができる。なお、この面粗度は旋盤による旋削により容易に得ることができるため、円柱部材4の成形時に同時に加工が可能であり特殊な加工機を必要としない。
【0047】
実際にヒートシンクを作製し、その性能を測定してみた。ヒートシンクは、上記材料グループから熱伝導率の異なるアルミニウムと銅の2種類の材料を選定し、金属構成体をアルミニウムにて、円柱部材は、銅により作製した。なお、銅は金属構成体材料のアルミニウムよりも高い熱伝導率を有しており円柱部材として適当である。試作したヒートシンクは、前記アルミニウムの金属構成体に銅円柱を埋め込むことによりヒートシンクを作製したものの他に、全てをアルミニウム単体にて作製したもの、同様に銅単体のものの、合計3種類とした。ヒートシンクをなす金属構成体の形状は、押し出し成形工法により成形し、メタルソウによるフライス加工にてスリット部を形成した。また、アルミニウムと銅の複合は、アルミニウム単体で製作したヒートシンクの伝熱部に、エンドミルによるフライス加工にて穴部を形成し、この穴に旋削にて成形した直径25mm、長さ6.7mmの銅円柱を埋め込んだ。この時、穴内径と銅円柱直径の関係はしまりばめの関係になるように加工し、熱伝導材8を塗布した後にプレスによる圧入にて、埋め込みをおこなった。
【0048】
このようにして、試作したヒートシンクの性能を測定してみた。性能測定は、稼動しているMPU実機にヒートシンクを搭載して冷却を行いMPU表面の温度と雰囲気温度、及びMPU消費電力より得られる値である熱抵抗を性能を示す指標として採用した。熱抵抗は、熱移動に対して、熱の流れ難さを示す値であり、熱抵抗が小さいほど熱伝導、放熱に優れたヒートシンクと言うことができる。試作した3種類のヒートシンクの熱抵抗をそれぞれ測定したところ、銅単体のヒートシンク、アルミニウムのヒートシンクに銅円柱を埋め込んだヒートシンク、アルミニウム単体のヒートシンクの順に熱抵抗が小さい結果であった。具体的には、熱抵抗比で表すならば、アルミニウム単体のヒートシンクを1とした場合、アルミニウムのヒートシンクに直径25mm、長さ6.7mmの大きさの銅円柱を埋め込んだものが0.87、銅単体のヒートシンクが0.80の関係であった。更に重量比では、同様に1:1.1:3.0となり、銅といった高熱伝導材を金属構成体の一部分のみに複合することで、重量をあまり増加させること無く性能向上が可能であることが確認された。
【0049】
(実施の形態2)
以下、本発明の実施の形態2について、図3、図4、図5(a),(b)、図6および図7を用いて説明する。
【0050】
実施の形態2では、ヒートシンクの製造における基材となる伝熱部と、複数の放熱フィン部と、を有する金属金属構成体を押出成形工法により製作した場合について説明を行う。
【0051】
図3は本発明の実施の形態2におけるヒートシンクの製造方法における第1の工程を示す模式図、図4は図3における押出ダイスの正面図、図5は本発明の実施の形態3におけるヒートシンクの製造方法における第2の工程を示す上面図および正面図、図6は本発明の実施の形態3におけるヒートシンクの製造方法における第3の工程を示す正面図、図7は穴部底部の貫通穴を示す模式図である。
【0052】
図3、図4、図5(a),(b)、図6及び図7に示すように、この実施の形態2のヒートシンク1は、実施の形態1におけるヒートシンク1と同一である。従って、ヒートシンク1同じ構成にかかる部材については、同一の符号を付してその詳しい説明を省略する。それぞれの図において、9は金属構成体、10は押出ダイス、11は押出ダイスの穴部、12は成形される金属素材、13はスリット加工に用いるメタルソウ、14はスリット加工治具、15は金属構成体9の伝熱部3に施した穴部、16はプレス圧入治具、17は油圧プレス機の一部、18は貫通穴である。
【0053】
以上のような構成によりヒートシンク1を製造する場合について説明を行う。
【0054】
まず、第1の工程として押出成形により伝熱部と、複数の放熱フィン部と、を有する金属金属構成体9に金属を成形する。押出成形は、図3に示されるように金属構成体9の断面と同一形状の穴部11を放電加工等により施された押出ダイス10に、熱間で金属素材12をこの穴部11に通過させることにより成形を行うわけであるが、押出ダイス10の加工の際に図3に示すように金属構成体9の断面と同一形状となるように加工を行う。すなわち図4に示すように押出ダイスの穴部11の形状が金属構成体9の断面と同一形状となるように予め形成した。なお、押出ダイス10の材料としては熱間ダイス鋼材を使用した。次に、金属構成体9の素材となる金属には、アルミニウム合金のA6063S材を用いた。本合金は、Al−Mg−Si系の合金であり、代表的な押出用合金である。特に押出性に優れ、複雑な断面形状の形材が得られ、耐食性、表面処理性も良好という特徴を有し、本製造方法に適当である。しかし、押出成形が可能であれば他材でも問題はない。例えば、純アルミニウム系のA1050材は押出成形が可能であるが軟らかく変形に注意が必要である反面、熱伝導性に優れるという特徴を有しておりヒートシンク用材料としては適当である。また、本製造方法を適用することができる。
【0055】
押出成形は、図3に示すような構成で押出ダイス10に金属素材12を押し付けるが、金属素材12は一般的にビレットと呼ばれる円柱状の形状で供給される。押出成形は、まず金属素材12(例えば、A6063S素材ビレット)を予備加熱のため誘導加熱により480℃まで加熱し、その後1800トンの押出圧を有する押出機にて、押出速度30〜40m/minで若干の張力を加えながら押出ダイス10を通過させ押出成型を行い。ヒートシンク1の基材となる金属構成体9を成形した。この後、押出成形された長尺の金属構成体9を所定の長さに切断した。
【0056】
続いて、金属構成体9へピンフィンを形成する第2の工程について説明する。ピンフィンの形成は、図5(a)に示すように、金属構成体9の押出方向に対し所定のピッチ及び角度、例えば90度にスリットを加工すればよく、また、支柱部の断面形状を三角形に加工するならば、図5(b)に示すように、金属構成体9を所定の角度にスリット加工治具14を用いて傾けた状態でスリットを加工することによりピンフィンを容易に形成することが可能である。例えば切削幅2mmのメタルソウ13を用いたフライス盤により所定のピッチ、例えばピッチを4mmとなるように切削加工を施しスリット加工を行えば、切り残し部が幅2mmのピンフィンとなるため、容易にピンフィン形成が可能である。また、軸剛性の高い横型フライス盤を用い、複数のメタルソウ13を所定のピッチに組み合わせた刃物による一括加工、すなわちマルチ化を図れば大幅に工数を低減することができ、さらに生産性よく加工を行うことができる。なお、金属構成体9の放熱フィン部のみでも、放熱フィンとしては有効であるが、前記第2の工程により、更にピンフィンを形成すれば、より放熱面積を拡大することができ、また同時に軽量化をも達成することができるため非常に好ましい。
【0057】
次に、金属構成体9の受熱面7より伝熱部3に円柱部材4である銅部材を挿入するための、穴部15を加工する。銅を挿入した際、銅部材と穴部15にすきまが存在すると大きな熱抵抗となるため、すきまを無くして熱的に、そして、挿入した銅部材が脱落せぬように、機械的にも強固に挿入固定される必要がある。そのため、双方のはめあいの関係は、しまりばめの関係となるように設計し加工を行うことが好ましい。例えば、円柱部材4として直径φ25の円柱状の銅部材を用いる場合、はめあいは穴の公差域クラスH7と軸の公差域クラスr6のしまりばめの関係になるように設計した。すなわち、穴部直径をφ25.00mmからφ25.21mmに、銅部材の直径をφ25.28mmからφ25.41mmとなるように加工を行った。この時、銅部材側面の加工面の面粗度を最大高さで規定した場合、0.0005mm以上、0.01mm以下に加工することが好ましい。面粗さがあまり粗いと、銅部材挿入時に金属構成体9との間でいずれかの金属が削られることがおこりやすく、それにより削り取られた部分や削り取られた金属片の介在により双方の間ですきまが発生しやすく密着度の低下という不具合が発生しやすくなる。同様に、穴部側面についても面粗度を最大高さで0.0005mm以上、0.01mm以下に加工することがさらに好ましい。次に、銅部材の高さについては、伝熱部3の断面形状が図2に示されるような一部が垂直に立ち上がる略三角形で、受熱面にあたる部分を底辺とし、底辺の長さが41mmで、垂直に立ち上がった部分1.5mmを含む三角形の高さが15mmの場合、銅部材の伝熱部3への銅部材の挿入量を最大とするためには、銅部材の高さを6.7mmとする必要がある。そのために、穴部15の深さを同様に6.7mmとした。その後、第3の工程として、伝熱部3の穴部15へ銅部材を挿入するわけだが、双方がしまりばめの関係であるため、図6に示すように、プレス圧入治具16により穴部15と銅部材の位置合わせと、銅部材挿入時の銅部材のガイドを行いつつ、油圧プレス機17を用い圧入にて銅部材を挿入する。この時、穴部15の内面と円柱状の銅部材側面の接触する部分に銀、亜鉛などの金属含有接着剤、酸化物、窒化物を含有するシリコーン系接着剤などからなる熱伝導材8を予め塗布しておくことが好ましい。こうすることにより、圧入の際の潤滑及び穴部と銅部材の真円度あるいは面性状の違いによりすきまが生じた場合に、そのすきまは、塗布した熱伝導材により充填され、すきまの存在による熱抵抗の増加を防止できると同時に、圧入時の潤滑も期待できる。また、穴部15の底部に小径の貫通穴18を施し、圧入時に介在する空気を除くための空気抜き穴として利用することが好ましい。穴を施すことにより、銅とアルミの間、特に銅円柱の端面と穴部底面の間に空気が存在することによる双方の部材の接触不良による、熱抵抗増加を防止することができる。この貫通穴は、別工程で加工してもよいが、図7に示すように銅部材挿入のための穴部を伝熱部に施す際に、この穴部を深めに加工することにより、伝熱部のフィン配置面に貫通穴18を同時に施すことができ、工数低減に効果的である。また、銅部材の高さを穴部15深さよりも高く加工し、圧入の際にこの部分を治具などによって保持すれば、挿入時の傾きを防止することができ好ましい。この場合、圧入完了時に銅部材が伝熱部より突出するが、この部分はそのままでもよいし、所定の突出量までフライス盤等により加工してもよい。
【0058】
以上のように、本実施の形態では、金属構成体9の伝熱部3に穴部15を施し、前記穴部に円柱形状の円柱部材4を圧入により配置固定し、さらにその際に伝熱部3の穴部15の内面と円柱形状の円柱部材4の接触面に銀、亜鉛などの金属含有接着剤、酸化物、窒化物を含有するシリコーン系接着剤などからなる熱伝導材8を介在させたため、金属構成体9の伝熱部3すなわちヒートシンク1の伝熱部3に円柱部材4を熱的にも機械的にも強固に配置固定でき、さらに双方の間には熱伝導材8が介在するため、万一微少なすきまが存在したとしても、熱伝導材8により充填されるため、熱抵抗が増加することなく、熱伝導材8を介してヒートシンク1の伝熱部3を円柱部材4に密着度よく固定することができる。このため、発熱体のMPU5から発生した熱をヒートシンク1に熱伝導性よく伝えることができ、MPU5を効率よく冷却することができるヒートシンクを簡便に得ることができる電子部品用ヒートシンクの製造方法が得られる。
【0059】
(実施の形態3)
以下、本発明の実施の形態3について、図8および図9を用いて説明する。
【0060】
本発明の実施の形態3におけるヒートシンクの製造方法における第1の工程および第2の工程は、実施の形態2における工程と同一のため、ここでは、詳しい説明を省略する。次に、図8は本発明の実施の形態3におけるヒートシンクの製造方法における第3の工程を示す模式図であり、図9は本発明の実施の形態3におけるヒートシンクの製造方法における第3の工程を示す部分断面図である。
【0061】
図8、図9に示すように、この実施の形態3のヒートシンク1は、実施の形態1におけるヒートシンク1と同一である。従って、ヒートシンク1同じ構成にかかる部材については、同一の符号を付してその詳しい説明を省略する。
【0062】
以上のような構成によりヒートシンク1を製造する場合について説明を行う。
【0063】
第1及び第2の工程を経て金属構成体9より複数のピンフィンを有するヒートシンク1を形成した後、ヒートシンク1の伝熱部3に一方の端部が半球状である円柱部材4を摩擦熱を利用して配置固定する第3の工程について述べる。摩擦熱を利用して異種材料、例えばアルミニウムと銅を接合する技術は、一般には摩擦溶接あるいは摩擦圧接と称される接合方法であり、まず、接合する一方の部材、例えば銅をモータにより回転させて他方の非回転側の部材であるアルミニウムに所定の圧力で接触させることにより摩擦発熱をさせ、続いて所定の時間経過後、回転を急激に止め更に高い圧力を加えて接合を行うブレーキ方式と呼ばれる方式。あるいは、銅をモータにて回転させるのは同様だが、アルミニウムとの接触前にモータからの動力をたち、フライホイール等により惰性で回転を継続させながら、アルミニウムに接触させ最初から大きな圧力をかけてエネルギ全てを熱に変え接合し、自然停止させるイナーシャ方式と呼ばれる方式とがある。本発明の場合、いずれの方式を用いても問題はない。一般に、摩擦溶接は2つの同種あるいは異種金属の端面を接合させることに用いられる技術であるが、本発明の材料の組合わせの場合、銅とアルミニウムには硬度差があり、銅の方がアルミニウムよりも硬度が高いためアルミニウムへ予め穴部を施すことなく、アルミニウムの中に銅を埋め込むかたちで溶接すなわち接合させることが可能である。具体的には、銅を回転させてアルミニウムへ所定の圧力で接触させれば圧力に応じて銅がアルミニウム中へ埋まりこんでいくわけである。その後、回転を止め更に高い圧力をくわえるか、もしくは、接触当初より高い圧力をかけながら回転を自然停止させることで溶接が完了する。
【0064】
このいずれかの方式による摩擦溶接にて、銅とアルミニウムの接合を行った後にフライス加工等の機械加工にて銅の不要部分や銅の埋没に伴って押出されたアルミニウムの変形部分他の除去を行い、整形、面出しを行い、アルミニウム製のヒートシンク1の伝熱部3に銅を複合したヒートシンク1を得る事ができる。
【0065】
実際に、イナーシャ方式による摩擦溶接にて試作を行った。まず、図8に示されるように予め円柱部材4である銅部材のアルミニウムへ接合する側の端部に球面加工を施す。本試作の場合、直径25mm、長さ100mmの無酸素銅の棒材の端部にR12.5mmの球面加工を施した。しかしながら、銅棒材の端部の加工形状は、アルミニウムへ接触し加圧される際に圧力が集中する形状であれば、球面形状だけでなく円錐形状や円錐台形状でもかまわない。その後に、摩擦溶接機に端部へ加工を施した銅部材およびヒートシンク1をセットした。この時、銅部材を回転側にセットし、毎分4000回転の回転を加え所定の回転数に達した後に、動力をたちフライホイールによる慣性にて回転を持続させた。つづいて、15MPaの圧力にてヒートシンク1および銅部材を接触させ、摩擦により回転が停止するまで、加圧をつづけ溶接を行った。溶接は、図9(a)に示すようにヒートシンク1の伝熱部3に円柱部材4である銅部材の半球部分約12.5mmが埋まりこむ形で完了した。また、銅棒材の端部の加工形状を、円錐形状や円錐台形状とした場合は、図9(b)あるいは図9(c)に示されるような状態にて溶接が完了する。なお、銅の埋没に伴って押出されたアルミニウムの変形部分他は図示していない。
【0066】
このように、摩擦溶接工法を用いれば銅部材といった円柱部材4をヒートシンク1の伝熱部3に密着度よく固定することができる。これは、溶接部が真空状態で溶接が行われるためであり、熱的にも機械的にも双方が完全に密着しているため、発熱体のMPU5から発生した熱をヒートシンク1に熱伝導性よく伝えることができ、MPU5を効率よく冷却することができる。また、ヒートシンク1の伝熱部3に溶接のための下準備が不要なため工数も低減できる効果が期待できる生産性の高い電子部品用ヒートシンクの製造方法を得ることができる。
【0067】
【発明の効果】
本発明の請求項1乃至5に記載の電子部品用ヒートシンクの製造方法は、金属構成体より熱伝導率の高い円柱部材のヒートシンクの伝熱部への複合をプレスによる圧入や摩擦による溶接といった簡便で安定的な方法を用いることにより、高性能のヒートシンクを生産性高く作製できる電子部品用ヒートシンクの製造方法を得られる。
【0068】
また、請求項6乃至9に記載の電子部品用ヒートシンクによれば、ヒートシンクの伝熱部に複合された円柱部材の露出面の形状が円形状であるため伝熱部のおける伝熱効率がたかく、半導体装置や電子部品など発熱体からの熱を効率よくヒートシンク全体に導くことができる。あるいは円柱部材が金属構成体の受熱面よりも突出しているため、ヒートシンク内を流れる冷却風の流れが阻害されにくく、高い放熱特性を有する電子部品用ヒートシンクが得られる。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態1の電子部品用ヒ−トシンクの全体斜視図
(b)本発明の実施の形態1の電子部品用ヒ−トシンクの別角度の全体斜視図
【図2】本発明の実施の形態1の電子部品用ヒ−トシンク付き半導体装置の側面を示す部分断面図
【図3】本発明の実施の形態2のヒートシンクの製造方法における第1の工程を示す模式図
【図4】本発明の実施の形態2のヒートシンクの製造方法における押出ダイスの正面図
【図5】(a)本発明の実施の形態2におけるヒートシンクの製造方法における第2の工程示す上面図
(b)本発明の実施の形態2におけるヒートシンクの製造方法における第2の工程示す正面図
【図6】本発明の実施の形態2におけるヒートシンクの製造方法における第3の工程示す正面図
【図7】穴部底部の貫通穴を示す模式図
【図8】本発明の実施の形態3のヒートシンクの製造方法における第3の工程を示す模式図
【図9】本発明の実施の形態3のヒートシンクの製造方法における第3の工程を示す部分断面図
【図10】(a)従来のヒートシンクの構成を示す斜視図
(b)従来のヒートシンクの構成を示す斜視図
【図11】(a)従来のヒートシンクによるファンとを組み合わせた冷却装置の構成を示す上面図
(b)従来のヒートシンクによるファンとを組み合わせた冷却装置の構成を示す側面図
【符号の説明】
1 ヒートシンク
2 フィン
3 伝熱部
4 円柱部材
5 発熱体(MPU)
6 発熱面
7 受熱面
8 熱伝導材
9 金属構成体
10 押出ダイス
11 穴部
12 金属素材
13 メタルソウ
14 スリット加工治具
15 穴部
16 プレス圧入治具
17 一部
18 貫通穴
30 プレート状フィン
31 ピン状フイン
32 ベースプレート
33 MPU
34 冷却ファン
35 空気流入面

Claims (8)

  1. 受熱面を底辺とする略三角形状もしくは略台形状の断面形状をなす伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、前記伝熱部の前記受熱面側から、部分的に貫通した穴部を形成して、前記穴部内に、銀や亜鉛等の金属を含有する接着剤、もしくは酸化物や窒化物を含有するシリコーン系の接着剤からなる熱伝導層を介在させ、前記金属構成体よりも熱伝導率が高い円柱部材を圧入することにより配置固定することを特徴とする電子部品用ヒートシンクの製造方法。
  2. 受熱面を底辺とする略三角形状もしくは略台形状の断面形状をなす伝熱部と、複数の放熱フィン部と、を有する金属構成体を作製し、前記伝熱部の前記受熱面側から部分的に貫通した穴部を形成して、前記穴部内に、前記金属構成体よりも熱伝導率が高く、側面の面粗度が最大高さで、0.0005mm以上で、0.01mm以下である円柱部材を圧入することにより配置固定することを特徴とする電子部品用ヒートシンクの製造方法。
  3. 金属構成体としてアルミニウム系合金を用い、円柱部材として熱的な線膨張率が前記アルミニウム系合金よりも低い銅を用い、前記円柱部材の圧入時に加熱を行うことを特徴とする請求項1および2に記載の電子部品用ヒートシンクの製造方法。
  4. 受熱面を底辺とする伝熱部と複数の放熱フィン部とを有する金属構成体を作製し、前記金属部材よりも熱伝導率が高く、一端面が半球形状もしくは円錐形状もしくは円錐台形状の先端部を有する円柱部材を作製し、前記金属構成体もしくは前記円柱部材のいずれか一方を高速で回転させながら前記受熱面と前記先端部を接触させ、双方を加圧する際に発生する摩擦熱を利用して前記金属構成体と前記円柱部材を接合させることを特徴とする電子部品用ヒートシンクの製造方法。
  5. 金属構成体としてアルミニウム系合金を用い、円柱部材として融点が前記アルミニウム系合金よりも高い銅を用い、前記金属構成体と前記円柱部材の接触時に加熱を行うことを特徴とする請求項4に記載の電子部品用ヒートシンクの製造方法。
  6. 請求項1から請求項5いずれか1記載の電子部品用ヒートシンクの製造方法により作製され、円柱部材の露出面の形状が円形状となることを特徴とする電子部品用ヒートシンク。
  7. 請求項1から請求項5いずれか1記載の電子部品用ヒートシンクの製造方法により作製され、円柱部材が金属構成体の受熱面よりも突出していることを特徴とする電子部品用ヒートシンク。
  8. 円柱部材の少なくとも一方の端部もしくは全体の形状が半球状あるいは円錐状あるいは円錐台であることを特徴とする請求項6から請求項7いずれか1記載の電子部品用ヒートシンク。
JP2002262408A 2002-09-09 2002-09-09 電子部品用ヒートシンクの製造方法 Expired - Fee Related JP3937984B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002262408A JP3937984B2 (ja) 2002-09-09 2002-09-09 電子部品用ヒートシンクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002262408A JP3937984B2 (ja) 2002-09-09 2002-09-09 電子部品用ヒートシンクの製造方法

Publications (3)

Publication Number Publication Date
JP2004103758A true JP2004103758A (ja) 2004-04-02
JP2004103758A5 JP2004103758A5 (ja) 2005-11-04
JP3937984B2 JP3937984B2 (ja) 2007-06-27

Family

ID=32262462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002262408A Expired - Fee Related JP3937984B2 (ja) 2002-09-09 2002-09-09 電子部品用ヒートシンクの製造方法

Country Status (1)

Country Link
JP (1) JP3937984B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319142A (ja) * 2005-05-12 2006-11-24 Sanyo Denki Co Ltd 発熱体冷却装置及びヒートシンク
JP2010502930A (ja) * 2006-09-08 2010-01-28 フィンザイムズ・インストゥルーメンツ・オサケユキテュア サーマルサイクリングに関する機器及び方法
KR101494174B1 (ko) 2014-10-20 2015-02-24 에이엠티 주식회사 클립 장착기
JP2020009868A (ja) * 2018-07-06 2020-01-16 日立オートモティブシステムズ株式会社 半導体モジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104263A (ja) * 1989-09-19 1991-05-01 Fujitsu Ltd 半導体装置の製造方法およびその実施に用いる放熱部品
JPH03295260A (ja) * 1989-12-29 1991-12-26 Sumitomo Electric Ind Ltd 熱伝導性および寿命が改善された放熱フィン
JPH0595054U (ja) * 1992-05-26 1993-12-24 安藤電気株式会社 Ic用ヒートシンク
JPH06200919A (ja) * 1992-11-06 1994-07-19 Audi Ag 内燃機関の組立式クランク軸の製造方法およびそのクランク軸
JPH10125826A (ja) * 1996-10-24 1998-05-15 Hitachi Ltd 半導体装置及びその製法
JP2000081029A (ja) * 1998-09-07 2000-03-21 Hitachi Ltd スピンドルモータ
JP2001326307A (ja) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd 電子部品用ヒートシンクおよびその製造方法
JP2002079383A (ja) * 2000-09-04 2002-03-19 Nippon Light Metal Co Ltd 接合方法および接合ツール

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03104263A (ja) * 1989-09-19 1991-05-01 Fujitsu Ltd 半導体装置の製造方法およびその実施に用いる放熱部品
JPH03295260A (ja) * 1989-12-29 1991-12-26 Sumitomo Electric Ind Ltd 熱伝導性および寿命が改善された放熱フィン
JPH0595054U (ja) * 1992-05-26 1993-12-24 安藤電気株式会社 Ic用ヒートシンク
JPH06200919A (ja) * 1992-11-06 1994-07-19 Audi Ag 内燃機関の組立式クランク軸の製造方法およびそのクランク軸
JPH10125826A (ja) * 1996-10-24 1998-05-15 Hitachi Ltd 半導体装置及びその製法
JP2000081029A (ja) * 1998-09-07 2000-03-21 Hitachi Ltd スピンドルモータ
JP2001326307A (ja) * 2000-05-18 2001-11-22 Matsushita Electric Ind Co Ltd 電子部品用ヒートシンクおよびその製造方法
JP2002079383A (ja) * 2000-09-04 2002-03-19 Nippon Light Metal Co Ltd 接合方法および接合ツール

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006319142A (ja) * 2005-05-12 2006-11-24 Sanyo Denki Co Ltd 発熱体冷却装置及びヒートシンク
JP2010502930A (ja) * 2006-09-08 2010-01-28 フィンザイムズ・インストゥルーメンツ・オサケユキテュア サーマルサイクリングに関する機器及び方法
US8962306B2 (en) 2006-09-08 2015-02-24 Thermo Fisher Scientific Oy Instruments and method relating to thermal cycling
US9718061B2 (en) 2006-09-08 2017-08-01 Thermo Fisher Scientific Oy Instruments and method relating to thermal cycling
KR101494174B1 (ko) 2014-10-20 2015-02-24 에이엠티 주식회사 클립 장착기
JP2020009868A (ja) * 2018-07-06 2020-01-16 日立オートモティブシステムズ株式会社 半導体モジュール

Also Published As

Publication number Publication date
JP3937984B2 (ja) 2007-06-27

Similar Documents

Publication Publication Date Title
JP3303870B2 (ja) ヒートシンクとその製造方法およびそれを用いた冷却装置
JP2001196511A (ja) ヒートシンクとその製造方法およびそれを用いた冷却装置
JP2794154B2 (ja) ヒートシンク
US8756810B2 (en) Board-shaped heat Dissipating method of manufacturing
JP2009099878A (ja) ヒートシンク及びその製造方法
JP2002237555A (ja) フィン付ヒートシンク
US20140151012A1 (en) Heat sink with staggered heat exchange elements
US20010055199A1 (en) Heat sink
JP3847561B2 (ja) 電子機器部品用ヒートシンク及びその製造方法
US6862183B2 (en) Composite fins for heat sinks
US5777259A (en) Heat exchanger assembly and method for making the same
JP2007180453A (ja) ヒートシンク冷却装置
KR20130111035A (ko) 진동세관형 히트파이프 방열핀을 접착한 히트싱크
JP2008198967A (ja) ヒートシンク、その製造方法およびヒートシンクファン
JP2005026642A (ja) 熱交換器
JP2006114688A (ja) ヒートシンク
JP3937984B2 (ja) 電子部品用ヒートシンクの製造方法
US20050189099A1 (en) Heat exchange device
CN110323140B (zh) 具有微槽-褶皱的微通道换热器芯体的制造方法和换热器
JP2003188320A (ja) 電子部品用ヒートシンクおよびその製造方法
JP2002184922A (ja) 複合型放熱部材
JP2008294281A (ja) 半導体装置及び半導体装置の製造方法
US6636423B2 (en) Composite fins for heat sinks
JP2007227437A (ja) 冷却装置
JP2001102506A (ja) ヒートシンク及びその製造方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050817

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070319

LAPS Cancellation because of no payment of annual fees