JP2007227437A - 冷却装置 - Google Patents

冷却装置 Download PDF

Info

Publication number
JP2007227437A
JP2007227437A JP2006043723A JP2006043723A JP2007227437A JP 2007227437 A JP2007227437 A JP 2007227437A JP 2006043723 A JP2006043723 A JP 2006043723A JP 2006043723 A JP2006043723 A JP 2006043723A JP 2007227437 A JP2007227437 A JP 2007227437A
Authority
JP
Japan
Prior art keywords
heat
cooling
storage body
heat storage
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006043723A
Other languages
English (en)
Inventor
Yukio Miyaji
幸夫 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2006043723A priority Critical patent/JP2007227437A/ja
Publication of JP2007227437A publication Critical patent/JP2007227437A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】要求される精度で製造することが容易にでき、その製造コストの低減化も図れる冷却装置の提供を課題とする。
【解決手段】発熱体30が取り付けられる吸熱部14と放熱体20が取り付けられる冷却部16とを有する筐体12と、筐体12内に回転可能に設けられ、吸熱部14及び冷却部16に対向する面27が平坦面とされた蓄熱体26と、筐体12内に充填された潤滑用液体Jと、蓄熱体26を回転させる回転駆動機構34と、を備えた冷却装置10とする。
【選択図】図1

Description

本発明は、主に半導体等の冷却装置に関する。
CPU等の発熱が数十Wの半導体部品を冷却する従来の半導体用冷却装置としては、例えば放熱効果を高めるための複数の環状突部(以下「フィン」という)が周縁部近傍の上面に垂直に立設された円板状の回転ヒートシンクと、その回転ヒートシンクを回転可能に内設する中空状の固定ヒートシンクとを有し、回転ヒートシンクと固定ヒートシンクとの間隙に熱伝導グリスを介在させた構成のものがある(例えば、特許文献1参照)。この半導体用冷却装置は、固定ヒートシンクにも、フィンに対応した中空状の環状突部(以下「中空突部」という)が複数形成されている。
しかし、瞬間的な発熱が数十Wを超えるパワーデバイス等を冷却するためには、中空突部とフィンとの間隙寸法に10μm以下という極めて高い精度が必要とされる。したがって、製造コストが掛かる問題がある。すなわち、固定ヒートシンク内において回転ヒートシンクが回転することから、中空突部内においてフィンが移動することになり、フィン及び固定ヒートシンクの真直度(又は相互の角度:平行度)、更には曲率の精度(真円度)が必要となる。つまり、回転ヒートシンクにあっては、フィンの厚み精度が必要となり、固定ヒートシンクにあっては、フィンを内部に収容する中空突部の内径精度が必要となる。そして、これらの精度は厚み等、比較的小さな寸法内の精度ばかりでなく、中心軸からフィン又は中空突部までの半径等、比較的大きな寸法においても必要となる。
なお、例えば固定ヒートシンクの機械加工においては、近年の優れたコンピューター数値制御旋盤を用いることにより、1μmの精度が得られる。しかしながら、回転ヒートシンクのフィンの高さ及び固定ヒートシンクの中空突部の深さには制限がある。更に、コンピューター数値制御旋盤を用いて固定ヒートシンク及び回転ヒートシンクを1個ずつ作製するのは、極めて製造コストが掛かる。また、フィンを分割して作製した場合においても、組み付け固定する際に、相対的な位置の縦横2軸の位置決め精度及び軸の平行度に対して高精度な調整が必要となる。
特開2004−327884号公報
そこで、本発明は、要求される精度で製造することが容易にでき、その製造コストの低減化も図れる冷却装置を得ることを目的とする。
上記の目的を達成するために、本発明に係る請求項1に記載の冷却装置は、発熱体が取り付けられる吸熱部と放熱体が取り付けられる冷却部とを有する筐体と、前記筐体内に回転可能に設けられ、前記吸熱部及び前記冷却部に対向する面が平坦面とされた蓄熱体と、前記筐体内に充填された潤滑用液体と、前記蓄熱体を回転させる回転駆動機構と、を備えたことを特徴としている。
請求項1に記載の発明によれば、筐体の吸熱部に取り付けられた発熱体から発せられる熱は、潤滑用液体を介して、蓄熱体に伝熱される。そして、その蓄熱体に伝熱されて保持された熱は、蓄熱体が回転することにより、冷却部まで移動し、潤滑用液体を介して、冷却部に取り付けられた放熱体に伝熱され、大気に放熱される。このように、潤滑用液体が熱伝導機能を有し、吸熱部(発熱体)から冷却部(放熱体)までの熱の移動が蓄熱体の回転によって連続的に行われるので、発熱体を効率よく冷却することができる。しかも、筐体内に回転可能に設ける蓄熱体は、吸熱部及び冷却部に対向する面が平坦面とされているので、要求される精度で製造することが容易にでき、その製造コストの低減化も図ることができる。したがって、大量生産にも適応可能となる。
また、請求項2に記載の冷却装置は、請求項1に記載の冷却装置において、前記蓄熱体が、回転軸方向から見て、円形状又は多角形状とされていることを特徴としている。
請求項2に記載の発明によれば、潤滑用液体の僅かな粘性により剪断応力が発生するが、そのときのエネルギー損失を低減することができる。したがって、蓄熱体を高速で回転させることができ、大量の熱を移動させることができる。
また、本発明に係る請求項3に記載の冷却装置は、発熱体が取り付けられる吸熱部と放熱体が取り付けられる冷却部とを有する筐体と、前記筐体内にスライド移動可能に設けられ、前記吸熱部及び前記冷却部に対向する面が平坦面とされた蓄熱体と、前記蓄熱体をスライド移動させる移動機構と、を備えたことを特徴としている。
請求項3に記載の発明によれば、筐体の吸熱部に取り付けられた発熱体から発せられる熱は、蓄熱体に伝熱される。そして、その蓄熱体に伝熱されて保持された熱は、蓄熱体がスライド移動することにより、冷却部まで移動し、冷却部に取り付けられた放熱体に伝熱され、大気に放熱される。このように、吸熱部(発熱体)から冷却部(放熱体)までの熱の移動が蓄熱体の往復スライド移動によって連続的に行われるので、発熱体を効率よく冷却することができる。しかも、筐体内にスライド移動可能に設ける蓄熱体は、吸熱部及び冷却部に対向する面が平坦面とされているので、要求される精度で製造することが容易にでき、その製造コストの低減化も図ることができる。したがって、大量生産にも適応可能となる。
また、請求項4に記載の冷却装置は、請求項1乃至請求項3の何れか1項に記載の冷却装置において、前記蓄熱体が、金属又はセラミックスで構成されていることを特徴としている。
請求項4に記載の発明によれば、発熱体から発せられる熱を速やかに取り込むことができる。したがって、短時間で高熱となる発熱量の変化に対しても充分に対応することができる。
また、請求項5に記載の冷却装置は、請求項1乃至請求項4の何れか1項に記載の冷却装置において、前記筐体の吸熱部及び冷却部が、金属又はセラミックスで構成されていることを特徴としている。
請求項5に記載の発明によれば、発熱体から発せられる熱を速やかに吸熱することができるとともに、蓄熱体に取り込んだ熱を速やかに放熱することができる。したがって、短時間で高熱となる発熱量の変化に対しても充分に対応することができる。
以上、何れにしても本発明によれば、要求される精度で製造することが容易にでき、その製造コストの低減化も図れる冷却装置を提供することができる。
以下、本発明の最良な実施の形態について、図面に示す実施例を基に詳細に説明する。まず、本発明に係る冷却装置10の第1実施例について図1を基に説明する。図1で示すように、筐体12は、セラミックス製又は金属製(例えば銅製)の中空円柱状に形成され、一方の平面上(以下「上面12A」という)には、後述する吸熱部14及び冷却部16が設けられている。筐体12の板厚Dは、吸熱部14及び冷却部16においては、熱抵抗を小さくするために、5mm以下とすることが望ましいが、構造を支えるために必要な筐体12の板厚Dは、吸熱部14及び冷却部16以外では、0.1mm以上とすることが望ましい。したがって、この場合、筐体12の板厚Dは、0.1mm≦D≦5mmとすることが望ましい。
吸熱部14は、筐体12の上面12Aに、絶縁板18(例えば窒化アルミニウム)が接合され、更に、その絶縁板18上に、例えば銅製の配線板19が接合されて構成されている。これらの接合は、銅−窒化アルミニウムの直接接合、即ち窒化アルミニウムの表面を酸化し、酸化アルミニウムと銅の化合物を用いる接合の他、蝋付け等により行うことができる。そして、その配線板19上に、発熱体としてのパワーデバイス30が半田付け等によって取り付けられている。なお、絶縁板18は、電気的な絶縁性の観点からは厚い方がよいが、熱抵抗の観点からは薄い方がよく、この場合の絶縁板18の厚さEは、0.1mm≦E≦1.0mmとすることが実用的である。
冷却部16は、筐体12の上面12Aに、吸熱部14と最も離れるように、例えば180度反対側に、放熱体20が半田付け又は蝋付け等によって取り付けられて構成されている。放熱体20は、例えば基部21に複数の突条部(以下「フィン」という)22が突設されて構成されたり、冷却ブロック24(図4参照)等で構成される。そして、筐体12内には、平板状の蓄熱体26が回転可能に設けられており、後述するように、潤滑用の液体(例えば純水等)Jが充填されている。
蓄熱体26は、セラミックス製又は金属製(例えば銅製)であり、少なくとも吸熱部14及び冷却部16に対向する表面(以下「上面27」という)が平坦面とされた円板状(又は多角板状)に形成されている。そして、蓄熱体26の中心には、回転軸28が固着されており、回転軸28は、図2(A)で示すようなモーター34等の回転駆動機構と連結されている。これにより、蓄熱体26は、筐体12内において、一方向に回転駆動可能となる構成である。
また、吸熱部14及び冷却部16に対向する(近接する)蓄熱体26の上面27の精度(平坦度)は、1μm以下とされている。この平坦度は、例えば、次のようにして得られる。すなわち、蓄熱体26の上面27を、汎用のフライス盤等を用いて、10μm程度の普通公差で加工した後、ラップ盤(平坦度0.1μm、表面粗さ0.005μm)を用いて加工(研磨)する。これにより、上面27が平坦度1μm、表面粗さ0.05μmとされた蓄熱体26を得ることができる。なお、より大量に、かつ低コストで加工するためには、ダイカスト成型により所定厚さの円板状の蓄熱体26を作製し、その上面27を上記ラップ盤によって加工(研磨)すればよい。
また、蓄熱体26の外径(直径)Rは任意であるが、少なくともパワーデバイス30の縦又は横の長さよりも、その半径r(=R/2)が大きいことが望ましく、冷却装置10を設置しようとする箇所のスペースによって上限が定められる。本実施例では、蓄熱体26の外径Rを300mmとしている。更に、蓄熱体26の厚さ(高さ)Hは、材料とされた金属の熱伝導率・比熱・比重の他、速度(角速度×半径)が関係するため、冷却しようとするパワーデバイス30の発熱量に対して、制御したいパワーデバイス30の最高温度や冷却部16の温度を考慮して最適化する必要がある。
例えば、パワーデバイス30が1個だけ搭載され、その大きさが約1cm×1cmで、発熱量が400Wの場合、蓄熱体26の速度Vは、約40cm/sであることが望ましい。蓄熱体26の速度Vは、毎分25回転以上で回転することにより、その外周上(外径R:R=300mm)に、V=約40cm/s以上を得ることができる。そして、蓄熱体26の厚さ(高さ)Hは、5mm以上であることが望ましい。蓄熱体26の厚さ(高さ)Hが5mm未満であると、蓄熱体26の熱容量が発熱量に対して足りず、熱の移動が遅くなり、パワーデバイス30の温度が上昇する原因となって好ましくない。
また、逆に蓄熱体26を極端に厚くしても、熱の移動は過渡現象であり、熱拡散方程式で表されるように伝達速度が有限である(物性により限界がある)ため、熱が蓄熱体26全体に瞬時に伝わることはなく、表面(上面27)から有限の距離に留まる。そのため、熱の移動はさほど速くならない。したがって、蓄熱体26を極端に厚くすることは、重量や体積をいたずらに増加させるだけで、材料の無駄となって好ましくない。
定性的には、パワーデバイス30の発熱量が大きいときは、蓄熱体26の速度(角速度×半径)、材料となる金属固有の熱伝導率、蓄熱体26の熱容量(比熱×比重×体積:この場合は、おおよそ「パワーデバイス30の設置面積×蓄熱体26の厚さ」が体積の目安となる)を大きくする必要がある。また、刻々と変化する発熱量に合わせて、蓄熱体26の回転速度が可変する場合(発熱量が小さいときは遅く、発熱量が大きいときは速く)は、想定される発熱量の最大値や定常値を考慮して、蓄熱体26の回転速度の範囲や外径(直径)R・厚さ(高さ)H等を最適化する必要がある。
また、上記したように、筐体12内(筐体12と蓄熱体26の間)には、熱伝導も兼ねる潤滑用の液体Jが充填されている。この潤滑用液体Jは、熱伝導性の高い液体であればよく、本実施例では、純水が用いられている。熱伝導性の高い液体としては、通常は純水が用いられるが、水にエチレングリコール等を添加したものや、更にリン酸塩等の防錆剤を添加してなるLLC(Long Life Coolant:冷却水)等を用いることもできる。但し、吸熱部14の近辺で水温が120℃を超えるような場合には、加圧下においても水が蒸発し、気泡が発生するため、熱伝導が阻害される。そのため、この場合には、より高い沸点の液体(例えばエチレングリコール100%では、沸点198℃が得られる)又は潤滑油を用いることが望ましい。
また、筐体12及び蓄熱体26の材料として挙げられる銅は、純銅の他、無酸素銅(C−1020)、タフピッチ銅(C−1100)等の熱伝導性に優れる合金材料、あるいは銅とモリブデンの複合材又は銅とタングステンの複合材等を用いることができる。また、他の熱伝導率の高い金属、例えばアルミニウム、銀等も用いることができる。つまり、材料となる金属としては、銅、アルミニウム、タングステン、モリブデン等であり、セラミックスとしては、窒化アルミニウム、酸化アルミニウム、酸化ベリリウム、シリコン、シリコンカーバイド並びに、これらの混合物又はクラッド材(例えばCu−Mo、Cu−W、Al−SiC、Cu−Ni−Cu)等を用いることができる。
以上のような構成の冷却装置10において、次に、その作用について説明する。絶縁板18及び配線板19を介して筐体12の吸熱部14に取り付けられたパワーデバイス30から発せられる熱は、潤滑用液体Jを介して、上面27が平坦化された蓄熱体26に伝熱される。そして、その蓄熱体26に伝熱されて保持された熱は、蓄熱体26が回転軸28を中心に回転することにより、冷却部16まで移動し、潤滑用液体Jを介して、放熱体20を構成するフィン22に伝熱され、そのフィン22により、大気に放熱される。このように、吸熱部14(パワーデバイス30)から冷却部16(放熱体20)までの熱の移動が、蓄熱体26の回転によって連続的に行われるので、パワーデバイス30が効率よく冷却される。
例えば、蓄熱体26が、毎分25回転とされている場合、1周するのに要する時間は2.36秒である。したがって、発熱時間が、例えば2秒である場合には、蓄熱体26が1周する前に、発熱は終了する。換言すると、最初に過熱された蓄熱体26の箇所が再びパワーデバイス30(吸熱部14)に到達する前に、発熱は終了する。この場合、蓄熱体26の冷却は、次の発熱が起こるまでに完了するので、冷却部16の冷却(放熱)能力は小さくてもよい。つまり、この場合には、冷却部16には放熱体20を設けずに平板のままとするか、設けたとしても比較的小さなフィン22を取り付けるだけで充分となる。
しかし、パワーデバイス30の発熱が400Wといった大きな発熱で、かつ発熱時間が2.36秒を超える場合には、最初に過熱された蓄熱体26の箇所が充分に冷却されないうちに、再びパワーデバイス30(吸熱部14)に到達することになるため、蓄熱体26の温度が初期よりも上昇してしまう。つまり、この場合には、冷却(放熱)性能が小さくなり、パワーデバイス30の温度が高くなってしまう。
そこで、この場合には、図2(A)で示すような空冷ファン32を設け、その空冷ファン32によって、冷却部16(放熱体20)を強制冷却し、蓄熱体26の温度を充分に低減できるようにすることが望ましい。例えば、設置面積が12cm×12cmとされた基部21上に、板厚0.6mmのアルミニウム製フィン22を1.6mmピッチで配列して取り付けた放熱体20の場合、空気温度が50℃以下のときには、50L/s以上の風量を与えれば、蓄熱体26の温度を65℃前後に保つことができる。
ここで、本発明に係る冷却装置10をインナー・ローター式イン・ホイール・モーターに組み込んだ場合について説明する。図2(A)で示すように、冷却装置10は、その筐体12の周面部が支持部材42を介してベース40に支持固定されている。そして、蓄熱体26の回転軸28は、回転駆動機構としてのモーター34に接続されている。また、そのモーター34から図示しない変速機構を介して接続される回転軸36は、タイヤホイール38に直接接続されている。更に、冷却部16を冷却する空冷ファン32がベース40に固定配置されている。
さて、図示しないドライバー回路から送られた制御信号が、吸熱部14に設置されたパワーデバイス30(例えばIGBT)のゲート電極に達すると、ON/OFF動作が行われ、バッテリーから供給された直流電流が交流電流に変換されて、モーター34が駆動する。すなわち、直流電圧パルスのデューティー比(ON時間の比率)を変えることで電圧をコントロールするPWM(Pulse Width Modulation)によって、モーター34の電流が制御され、モーター34が駆動する。なお、3相式PWMでモーター34を駆動するためには、IGBT及びダイオードを各6個内蔵するインバーターモジュールにより、直流電流を3相交流電流に変える必要がある。その場合、冷却装置10を6個、軸方向に並設すればよい。
こうして、モーター34が回転駆動すると、冷却装置10の蓄熱体26及びタイヤホイール38が回転し、上記と同様にして、パワーデバイス30が効率よく冷却される。なお、冷却部16には、フィン22を有する放熱体20が設置され、その放熱体20は、空冷ファン32によって強制冷却される。したがって、短時間に高発熱となるパワーデバイス30でも充分に冷却することができる。また、図2(A)においては、パワーデバイス30が1個しか示されていないが、設置面積に余裕があり、蓄熱体26の直径Rを大きくできるときには、図2(B)で示す変形例のように、その円周方向にパワーデバイス30と放熱体20を交互に並設してもよい(図示のものは各3個とされている)。
また更に、インナー・ローター式イン・ホイール・モーターと同様に、本発明に係る冷却装置10をアウター・ローター式イン・ホイール・モーターに組み込むことも容易である。すなわち、アウター・ローター(タイヤ側)に対するインナー・ステーターにおいて、そのインナー・ステーター内に中空を形成し、その中空内に本発明に係る冷却装置10を設置することは容易である。
次に、本発明に係る冷却装置10の第2実施例について図3を基に説明する。なお、第1実施例と同等の部材には同じ符号を付して、その説明は省略する。この第2実施例では、冷却部16を、筐体12の上面12Aではなく内部に設けている。すなわち、図3で示すように、筐体12内に、フィン22を有する放熱体20を設置し、その放熱体20の基部21を蓄熱体26の平坦とされた上面27に対向させている。
筐体12は、放熱体20を収容できるように、その一部が略矩形箱状に突出するように形成されており、その突出部13の側面には、潤滑用液体Jの供給口13Aと排出口13Bが形成されている。したがって、フィン22の周りも熱伝導性の高い潤滑用液体Jで満たされることになり、供給口13A及び排出口13Bを介して、その潤滑用液体Jが筐体12の内部と外部とで循環可能になっている。
このような構成の冷却装置10によれば、上記第1実施例のようにして蓄熱体26から放熱体20へ移動した熱は、放熱体20のフィン22から潤滑用液体Jへ移動する。そして、それによって熱せられた潤滑用液体Jは、排出口13Bから筐体12の外部へ排出され、筐体12の外部に設けられた図示しないラジエーター等よって冷却された後、再び供給口13Aから筐体12の内部へ供給される。したがって、フィン22を効率よく冷却することができ、結果的に、パワーデバイス30を効率よく冷却することができる。なお、ラジエーター等は、冷却装置10やモーター34、エンジン等から離隔した雰囲気温度の低い場所に配置することが望ましい。これによれば、潤滑用液体Jを効率よく冷却することができる。
次に、本発明に係る冷却装置10の第3実施例について図4を基に説明する。なお、第1実施例及び第2実施例と同等の部材には同じ符号を付して、その説明は省略する。この第3実施例では、蓄熱体26が直方体(四角柱状)とされ、その上面27の平坦度が1μmとされている。そして、その蓄熱体26は、例えば円運動を往復運動に変換する移動機構により、筐体12の長手方向(図示の左右方向)に往復スライド移動可能となるように構成されている。
すなわち、例えば図4で示すように、円運動する動力(例えばモーターやエンジン等)に連結したクランクシャフトのクランクピン部44に、コネクティングロッド46の一端が枢支連結され、そのコネクティングロッド46の他端が蓄熱体26の一端部に枢支連結されている。したがって、クランクピン部44が図示の矢印方向に回転することにより、蓄熱体26が図示の左右方向にスライド移動可能になる。
また、筐体12の上面12Aには、吸熱部14と冷却部16が設けられており、吸熱部14には、絶縁板18及び配線板19を介してパワーデバイス30が取り付けられている。また、冷却部16は、吸熱部14(パワーデバイス30)を挟んで左右両側に設けられており、冷却ブロック24で構成された放熱体20が取り付けられている。なお、この第3実施例では、筐体12内に潤滑用の液体Jが充填されない。
このような構成の冷却装置10によれば、まず、図4(A)で示すように、蓄熱体26の中央部26Aは、吸熱部14においてパワーデバイス30から熱を受け取り、図示の左方向に移動する。そして、図4(B)で示すように、熱を受け取った中央部26Aは、左側の冷却部16まで移動し、その冷却部16上の冷却ブロック24に熱を伝熱する。熱が伝熱された冷却ブロック24は、その熱を大気へ放熱する。そして、このとき、蓄熱体26の右端部26Bは、吸熱部14においてパワーデバイス30から熱を受け取る。
その後、蓄熱体26は、図示の右方向に移動し、図4(C)で示すように、熱を受け取った右端部26Bが、右側の冷却部16に達すると、その冷却部16上の冷却ブロック24に熱を伝熱する。熱が伝熱された冷却ブロック24は、その熱を大気へ放熱する。そして、このとき、蓄熱体26の中央部26Aは、吸熱部14において再びパワーデバイス30から熱を受け取る。その後、蓄熱体26は、図示の右方向に更に移動し、図4(D)で示すように、熱を受け取った中央部26Aが、右側の冷却部16に達すると、その冷却部16上の冷却ブロック24に熱を伝熱する。熱が伝熱された冷却ブロック24は、その熱を大気へ放熱する。そして、このとき、蓄熱体26の左端部26Cは、吸熱部14においてパワーデバイス30から熱を受け取る。
その後、蓄熱体26は、図示の左方向へ移動し、熱を受け取った左端部26Cが、左側の冷却部16に達すると、その冷却部16上の冷却ブロック24に熱を伝熱する。熱が伝熱された冷却ブロック24は、その熱を大気へ放熱する。そして、このとき、蓄熱体26の中央部26Aは、吸熱部14において再びパワーデバイス30から熱を受け取る。以降、このような往復スライド移動を蓄熱体26が連続して繰り返し行うことにより、パワーデバイス30が効率よく冷却される。なお、円運動を往復運動に変換する移動機構は、図示のものに限定されるものではなく、例えば図示しないカム等による移動機構も採用可能である。
以上、説明したように、本発明に係る冷却装置10は、熱伝導媒体として、上面27が平坦面とされた金属製又はセラミックス製の蓄熱体26を用い、その蓄熱体26を回転可能又は往復スライド移動可能に構成したので、パワーデバイス30から発せられる熱を速やかに取り込むことができ、かつ、その取り込んだ熱を連続的に放熱することができる。したがって、2秒という短い時間で300W以上の高発熱になるなどの発熱量の変化に対しても、回転速度やスライド移動速度を速くするなどして、充分に対応することができ、パワーデバイス30を効率よく冷却することができる。
例えば、蓄熱体26の初期温度が65℃で、吸熱部14の筐体12の間隙を5μmにした冷却装置10の場合、パワーデバイス30が400Wで2秒間の発熱を行ったときには、パワーデバイス30の最表面の温度が約180℃となった。通常の水冷式冷却装置の場合では、パワーデバイス30の最表面が300℃以上になることから、本発明に係る冷却装置10は遥かに高い冷却能力を有することが判る。
また、金属製品又はセラミックス製品の機械的加工精度は、表面が平坦なものに対しては、平坦度:1μm〜10μmが容易に得られるため、筐体12との近接面である上面27が平坦な形状をしている蓄熱体26を製造しやすい。つまり、金属製又はセラミックス製で、その上面27が平坦面とされた蓄熱体26を用いる本発明に係る冷却装置10は、製造実施が容易で、低コスト化にも寄与でき、大量生産にも容易に適応可能である。
また、本発明が対象とする大発熱量のパワーデバイス30に対して充分な冷却能力を得るためには(パワーデバイス30から発せられる熱を速やかに蓄熱体26に伝えるためには)、筐体12と蓄熱体26との間に存在する潤滑用液体Jの層を薄くし(蓄熱体26と筐体12の間隙を小さくし)、熱抵抗を減らすことが必要である。このため、潤滑用液体Jの層の厚さは50μm以下、できれば10μm以下にすることが望ましい。本発明に係る冷却装置10では、上記のように蓄熱体26の上面27が平坦面とされているため、筐体12への組み付けにおいて、潤滑用液体Jの層の厚さを50μm以下にすることが簡単にできる。
なお、第1実施例及び第2実施例で説明した冷却装置10では、固定ヒートシンクである筐体12と回転ヒートシンクである蓄熱体26との間の領域(隙間)に存在する潤滑用液体Jの僅かな粘性により剪断応力が発生する。しかしながら、蓄熱体26は、回転軸28方向から見て円形状又は多角形状とされているので、そのエネルギー損失は小さい。特に定常速度で蓄熱体26を回転させるときには、慣性運動のため、剪断応力以外のエネルギー損失は、軸受けや回転駆動機構(モーター34)に働く摩擦力のみとなり、極めて小さい。したがって、蓄熱体26を高速で回転させることができ、大量の熱を移動させることができる。
本発明に係る第1実施例の冷却装置を示す概略側断面図 (A)本発明に係る第1実施例の冷却装置がインナー・ローター式イン・ホイール・モーターに組み込まれた場合を示す概略斜視図、(B)本発明に係る第1実施例の冷却装置の変形例を示す概略斜視図 本発明に係る第2実施例の冷却装置を示す概略側断面図 本発明に係る第3実施例の冷却装置を示す概略側断面図
符号の説明
10 冷却装置
12 筐体
14 吸熱部
16 冷却部
18 絶縁板
19 配線板
20 放熱体
22 フィン
24 冷却ブロック
26 蓄熱体
27 上面(面)
28 回転軸
30 パワーデバイス(発熱体)
32 空冷ファン
34 モーター(回転駆動機構)
J 潤滑用液体

Claims (5)

  1. 発熱体が取り付けられる吸熱部と放熱体が取り付けられる冷却部とを有する筐体と、
    前記筐体内に回転可能に設けられ、前記吸熱部及び前記冷却部に対向する面が平坦面とされた蓄熱体と、
    前記筐体内に充填された潤滑用液体と、
    前記蓄熱体を回転させる回転駆動機構と、
    を備えたことを特徴とする冷却装置。
  2. 前記蓄熱体が、回転軸方向から見て、円形状又は多角形状とされていることを特徴とする請求項1に記載の冷却装置。
  3. 発熱体が取り付けられる吸熱部と放熱体が取り付けられる冷却部とを有する筐体と、
    前記筐体内にスライド移動可能に設けられ、前記吸熱部及び前記冷却部に対向する面が平坦面とされた蓄熱体と、
    前記蓄熱体をスライド移動させる移動機構と、
    を備えたことを特徴とする冷却装置。
  4. 前記蓄熱体が、金属又はセラミックスで構成されていることを特徴とする請求項1乃至請求項3の何れか1項に記載の冷却装置。
  5. 前記筐体の吸熱部及び冷却部が、金属又はセラミックスで構成されていることを特徴とする請求項1乃至請求項4の何れか1項に記載の冷却装置。
JP2006043723A 2006-02-21 2006-02-21 冷却装置 Pending JP2007227437A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006043723A JP2007227437A (ja) 2006-02-21 2006-02-21 冷却装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006043723A JP2007227437A (ja) 2006-02-21 2006-02-21 冷却装置

Publications (1)

Publication Number Publication Date
JP2007227437A true JP2007227437A (ja) 2007-09-06

Family

ID=38548996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006043723A Pending JP2007227437A (ja) 2006-02-21 2006-02-21 冷却装置

Country Status (1)

Country Link
JP (1) JP2007227437A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004953A (ja) * 2011-06-22 2013-01-07 Denso Corp 電子制御装置
WO2017026194A1 (ja) * 2015-08-07 2017-02-16 株式会社フジクラ レーザシステム及びレーザ装置の冷却方法
CN107076524A (zh) * 2014-09-30 2017-08-18 株式会社电装 蓄热单元以及蓄热系统
CN113028871A (zh) * 2021-03-15 2021-06-25 上海交通大学 开式吸附储热系统及控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013004953A (ja) * 2011-06-22 2013-01-07 Denso Corp 電子制御装置
CN107076524A (zh) * 2014-09-30 2017-08-18 株式会社电装 蓄热单元以及蓄热系统
CN107076524B (zh) * 2014-09-30 2019-05-07 株式会社电装 蓄热单元以及蓄热系统
WO2017026194A1 (ja) * 2015-08-07 2017-02-16 株式会社フジクラ レーザシステム及びレーザ装置の冷却方法
JP2017037890A (ja) * 2015-08-07 2017-02-16 株式会社フジクラ レーザシステム及びレーザ装置の冷却方法
CN113028871A (zh) * 2021-03-15 2021-06-25 上海交通大学 开式吸附储热系统及控制方法
CN113028871B (zh) * 2021-03-15 2022-01-11 上海交通大学 开式吸附储热系统及控制方法

Similar Documents

Publication Publication Date Title
US7667969B2 (en) Pump structures integral to a fluid filled heat transfer apparatus
US6876550B2 (en) Active heat sink for high power microprocessors
US8988881B2 (en) Heat exchanger device and method for heat removal or transfer
Yang et al. Liquid metal enabled combinatorial heat transfer science: toward unconventional extreme cooling
JP3767192B2 (ja) 電動機及びそれを用いたヒートシンク装置
US9071098B2 (en) Centrifugal heat dissipation device and motor using same
WO2014049805A1 (ja) 冷却システム、及びそれを用いた電気機器
CN101160035A (zh) 散热器和冷却设备
JP2007227437A (ja) 冷却装置
JP2018517869A (ja) 回転ファンブレード部の表面冷却効果を利用した冷却ファン
JP2007336670A (ja) 水冷式回転電気機械
KR20120002299U (ko) 복수의 열전도 파이프를 구비한 방열 장치
JP2017038489A (ja) 電動機冷却装置
US20040035556A1 (en) Heat-dissipating device with dissipating fins drivable to move within and ambient fluid
JP2017192285A (ja) 回転機および回転機を備えた車両
JP2004251474A (ja) 電子機器の冷却装置
CN110026818B (zh) 电主轴热电冷却装置控制系统
WO2016084900A1 (ja) ヒートパイプ及び回転機械の冷却機構
JP6092972B1 (ja) 複数のスイッチング素子を備える工作機械のモータ駆動装置
CN105736419A (zh) 风扇
JP4795307B2 (ja) 放熱構造体
JP4715406B2 (ja) ダイレクトドライブモータ
JP2001179573A (ja) モータ内蔵主軸台における主軸冷却構造
JP6741993B2 (ja) 放熱装置
CN110958809B (zh) 一种对流增强的相变材料散热装置