JP2004103646A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2004103646A
JP2004103646A JP2002259858A JP2002259858A JP2004103646A JP 2004103646 A JP2004103646 A JP 2004103646A JP 2002259858 A JP2002259858 A JP 2002259858A JP 2002259858 A JP2002259858 A JP 2002259858A JP 2004103646 A JP2004103646 A JP 2004103646A
Authority
JP
Japan
Prior art keywords
type impurity
photoelectric conversion
semiconductor layer
conversion element
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002259858A
Other languages
English (en)
Inventor
Noriaki Suzuki
鈴木  教章
Maki Saito
斎藤  牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Fujifilm Microdevices Co Ltd
Original Assignee
Fujifilm Microdevices Co Ltd
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Microdevices Co Ltd, Fuji Photo Film Co Ltd filed Critical Fujifilm Microdevices Co Ltd
Priority to JP2002259858A priority Critical patent/JP2004103646A/ja
Publication of JP2004103646A publication Critical patent/JP2004103646A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】例えば多数の光電変換素子を備えた固体撮像素子において光電変換素子の集積度を高めると、解像度は向上するものの感度が低下する。
【解決手段】n型不純物半導体層と、その上に形成されたp型不純物半導体層とを備えた光電変換素子を作製するにあたって、n型不純物半導体層に、相対的に小さな原子半径を有する第1のn型不純物と、相対的に大きな原子半径を有する第2のn型不純物とを含有させる。
【選択図】    図6

Description

【0001】
【発明の属する技術分野】
本発明は、光電変換素子ならびに光電変換素子を用いた半導体装置およびその製造方法に関する。
【0002】
【従来の技術】
光電変換素子は、従来より、太陽電池や固体撮像素子等の半導体装置に広く利用されている。特に近年では、エリア・イメージセンサまたはリニア・イメージセンサとして用いられる固体撮像素子への利用が増加している。
【0003】
例えばエリア・イメージセンサとして用いられる固体撮像素子では、半導体基板の一表面に多数個の光電変換素子が複数行、複数列に亘って行列状に配置される。これらの光電変換素子に光が入射すると、当該光電変換素子に電荷が蓄積される。
【0004】
固体撮像素子は、個々の光電変換素子に蓄積された電荷を読み出し、これらの電荷に基づいて出力信号を生成する。多くの固体撮像素子では、各光電変換素子に蓄積された電荷に基づいて出力信号を生成することができる出力信号生成部が、光電変換素子と一緒に1つの半導体基板に集積される。
【0005】
出力信号生成部は、その構成によって2つのタイプに大別することができる。1つは、CCD(電荷結合素子)型固体撮像素子での出力信号生成部のように、光電変換素子に蓄積された電荷を1種または2種の電荷転送素子によって電荷検出回路まで転送し、ここで出力信号を生成するタイプの出力信号生成部である。前記の電荷転送素子は、CCDによって構成される。
【0006】
他の1つは、MOS(金属・酸化物・半導体)型固体撮像素子での出力信号生成部のように、トランジスタを介して光電変換素子と信号線とを接続し、光電変換素子に蓄積された電荷に応じて前記の信号線に発生する電圧信号または電流信号を検出して出力信号を生成するタイプの出力信号生成部である。前記のトランジスタは、光電変換素子と信号線とを所望の時期に電気的に接続するためのスイッチング素子として利用される。
【0007】
いずれのタイプの出力信号生成部を備えた固体撮像素子においても、光電変換素子としては、n型不純物半導体層と、その表層部に形成されたp型不純物半導体層(以下、「p型埋込み層」ということがある。)とを有する埋込み型のフォトダイオードが多用される。n型不純物半導体層は、一般に、半導体基板に設けられたp型不純物半導体層にn型不純物をイオン注入し、その後、このn型不純物を熱拡散させることによって形成される。p型埋込み層は、n型不純物半導体層の表層部にp型不純物をイオン注入し、その後、このp型不純物を熱拡散させることによって形成される。
【0008】
固体撮像素子をエリア・イメージセンサとして利用した撮像機器の解像度は増加の一途を辿っており、その記録画素数は数100万画素を超え、多いものでは600万画素を超える。解像度の向上に伴って、特にエリア・イメージセンサとして利用される固体撮像素子では、光電変換素子の集積度が高まっている。
【0009】
【発明が解決しようとする課題】
固体撮像素子での光電変換素子の集積度を高めると、個々の光電変換素子の平面視上のサイズが小さくなる。個々の光電変換素子に入射する光量が低下する。その結果として、固体撮像素子の感度が低下する。
【0010】
本発明の目的は、複数個の光電変換素子を備え、これらの光電変換素子の集積度を高めても感度を比較的高く保つことが容易な半導体装置を提供することである。
【0011】
本発明の他の目的は、複数個の光電変換素子を備え、これらの光電変換素子の集積度を高めても感度を比較的高く保つことが容易な半導体装置を得ることができる半導体装置の製造方法を提供することである。
【0012】
本発明の更に他の目的は、小型化しても感度を比較的高く保つことが容易な光電変換素子を提供することである。
【0013】
【課題を解決するための手段】
本発明の一観点によれば、(I) 第1のp型不純物半導体層を有する半導体基板と、(II)前記第1のp型不純物半導体層の一表面に形成され、(i) 相対的に小さな原子半径を有する第1のn型不純物と、相対的に大きな原子半径を有する第2のn型不純物とを含むn型不純物半導体層と、(ii)前記n型不純物半導体層上に形成された第2のp型不純物半導体層とを備えた光電変換素子と、(III) 前記半導体基板上に形成され、前記第2のp型不純物半導体層を覆う電気的絶縁膜とを具備した半導体装置が提供される。
【0014】
本発明の他の観点によれば、(i) 第1のp型不純物半導体層を有する半導体基板と、(ii)前記第1のp型半導体層の一表面に形成された光電変換素子とを具備した半導体装置の製造方法であって、(A)前記半導体基板を用意する工程と、(B)前記第1のp型不純物半導体層上に電気的絶縁膜を形成する工程と、(C)前記光電変換素子を配置しようとする領域上に開口部を有するマスクを前記電気的絶縁膜上に配置し、前記開口部から前記電気的絶縁膜を介して、相対的に小さな原子半径を有する第1のn型不純物と、相対的に大きな原子半径を有する第2のn型不純物とをイオン注入する工程と、(D)熱処理によって前記第1のn型不純物と第2のn型不純物と活性化させてn型不純物半導体層を形成する工程と
を含む半導体装置の製造方法が提供される。
【0015】
n型不純物半導体層を形成するにあたって、そのベースとなる半導体層に相対的に原子半径の小さなn型不純物と、相対的に原子半径の大きなn型不純物とを添加することにより、格子歪を緩和させることができる。
【0016】
結果的に、光電変換素子を構成するn型不純物半導体層に上述のように2種類のn型不純物を添加することにより、その感度を向上させることができる。
【0017】
例えば固体撮像素子のように多数個の光電変換素子を備えた半導体装置において、個々の光電変換素子を上述のように構成することにより、光電変換素子の集積度を高めた場合でも比較的高い感度を保つことが容易になる。
【0018】
【発明の実施の形態】
図1は、第1の実施例による固体撮像素子100での光電変換素子10、第1の電荷転送素子(以下、「垂直電荷転送素子」という。)20、読み出しゲート30、第2の電荷転送素子(以下、「水平電荷転送素子」という。)40、および電荷検出回路50の平面配置を概略的に示す。同図においては図示を省略しているが、個々の光電変換素子10の上方には、所定の層を介してマイクロレンズが1個ずつ配置されている。
【0019】
図示の固体撮像素子100はエリア・イメージセンサとして利用される固体撮像素子であり、この固体撮像素子100では、半導体基板1の一表面に多数個の光電変換素子10が複数行、複数列に亘って画素ずらし配置されている。実際の固体撮像素子での光電変換素子10の総数は、例えば数10万個〜数100万個である。
【0020】
ここで、本明細書でいう「画素ずらし配置」とは、奇数番目に当たる光電変換素子列中の各光電変換素子に対し、偶数番目に当たる光電変換素子列中の光電変換素子の各々が、光電変換素子列内での光電変換素子のピッチの約1/2、列方向にずれ、奇数番目に当たる光電変換素子行中の各光電変換素子に対し、偶数番目に当たる光電変換素子行中の光電変換素子の各々が、光電変換素子行内での光電変換素子のピッチの約1/2、行方向にずれ、光電変換素子列の各々が奇数行または偶数行の光電変換素子のみを含むような、多数個の光電変換素子の配置を意味する。「画素ずらし配置」は、多数個の光電変換素子を複数行、複数列に亘って行列状に配置する際の一形態である。
【0021】
上記の「光電変換素子列内での光電変換素子のピッチの約1/2」とは、1/2を含む他に、製造誤差、設計上もしくはマスク製作上起こる画素位置の丸め誤差等の要因によって1/2から外れてはいるものの、得られる固体撮像素子の性能およびその画像の画質からみて実質的に1/2と同等とみなすことができる値をも含むものとする。上記の「光電変換素子行内での光電変換素子のピッチの約1/2」についても同様である。
【0022】
光電変換素子10の各々は埋込み型のpnフォトダイオードによって構成され、平面視上、例えば八角形を呈す。光電変換素子10に光が入射すると、この光電変換素子10に電荷が蓄積される。
【0023】
個々の光電変換素子10に蓄積された電荷を電荷検出回路50へ転送するために、1つの光電変換素子列に1つずつ、この光電変換素子列に沿って垂直電荷転送素子20が配置される。
【0024】
垂直電荷転送素子20の各々はCCDによって構成される。各垂直電荷転送素子20は、半導体基板1に形成された1本のn型チャネル23(以下、「垂直電荷転送チャネル23」という。)と、半導体基板1上に第1の電気的絶縁膜(図示せず。)を介して形成されて垂直電荷転送チャネル23を平面視上横切る第1〜第5垂直転送電極25a〜25eとを有する。
【0025】
第1垂直転送電極25aは各光電変換素子行の下流側に1本ずつ配置され、第2垂直転送電極25bは各光電変換素子行の上流側に1本ずつ配置される。最も下流の第1垂直転送電極25aの下流側に第3〜第5垂直転送電極25c〜25eがこの順番で並列に配置される。
【0026】
なお、本明細書では、光電変換素子10から電荷検出回路50へ転送される電荷の移動を1つの流れとみなして、個々の部材等の相対的な位置を、必要に応じて「何々の上流」、「何々の下流」等と称して特定するものとする。
【0027】
垂直電荷転送素子20の各々は、例えば8相の駆動信号φV1〜φV8によって駆動されて、電荷転送を行う。図1には、8相の駆動信号φV1〜φV8のうちの4つ駆動信号φV1、φV3、φV5およびφV7を、読み出しパルスが重畳されるタイミングの違いからそれぞれA、Bの2種類に更に分けて供給する際の配線例を示す。
【0028】
光電変換素子10から垂直電荷転送素子20への電荷の読み出しを制御するために、1つの光電変換素子10に1つずつ、読み出しゲート30が隣接配置される。個々の読出ゲート30は、半導体基板1に形成された読出ゲート用チャネル領域(図示せず。)と、このチャネル領域を平面視上覆う第1垂直転送電極25aの一領域とを含む。図1においては、読出しゲート30の位置を判りやすくするために、各読出しゲート30にハッチングを付してある。
【0029】
第1垂直転送電極25aに読み出しパルス(電位は例えば15V程度)を供給すると、この第1垂直転送電極25aに対応する光電変換素子10の各々から、各垂直電荷転送素子20へ電荷が読み出される。光電変換素子10から垂直電荷転送素子20への電荷の読出しは、光電変換素子行単位で行われる。
【0030】
光電変換素子行単位で各垂直電荷転送素子20へ読み出された電荷は、各垂直電荷転送素子20によって同じ位相の下に水平電荷転送素子40へ転送される。
【0031】
水平電荷転送素子40もCCDによって構成される。この水平電荷転送素子40は、半導体基板1に形成されて光電変換素子行方向に延在するn型チャネル43(以下、「水平電荷転送チャネル43」という。)と、半導体基板1上に前述した第1の電気的絶縁膜を介して形成されて水平電荷転送チャネル43を平面視上横切る複数本の転送電極(以下、「水平転送電極」という。)とを有する。
【0032】
図示の水平電荷転送素子40は、駆動信号φH1〜φH2によって駆動される2相駆動型CCDによって構成されている。この水平電荷転送素子40での水平電荷転送チャネル43は、n型不純物半導体層とn 型不純物半導体層とを、下流側から上流側に向かってこの順番で繰り返し配置した構成を有する。1個の垂直電荷転送素子20に、n型不純物半導体層とn 型不純物半導体層とが2つずつ対応する。各n型不純物半導体層上および各n 型不純物半導体層上に、水平転送電極が1本ずつ配置される。
【0033】
1個の垂直電荷転送素子20に対応する4本の水平転送電極のうち、下流側の2本が共通結線されて駆動信号φH2の供給を受け、上流側の2本が共通結線されて駆動信号φH1の供給を受ける。図1においては、個々の水平転送電極の図示を省略し、水平転送電極全体の輪郭形状を概略的に示してある
水平電荷転送素子40は、2相の駆動信号φH1〜φH2によって駆動されて、各垂直電荷転送素子20から受け取った電荷を電荷検出回路50へ順次転送する。
【0034】
電荷検出回路50は、水平電荷転送素子40から転送された電荷を検出して信号電圧を生成し、この信号電圧を増幅して信号を生成する。
【0035】
この電荷検出回路50は、例えば、アウトプットゲートを介して水平電荷転送素子の出力端に電気的に接続されるフローティングディフュージョン領域(以下、「FD領域」と略記する。)と、このFD領域をソース領域とするリセットトランジスタと、FD領域に接続されたフローティングディフュージョンアンプ(以下、「FDA」と略記する。)とを用いて構成することができる。FDAは、水平電荷転送素子40からFD領域に転送された電荷をFD領域の電位変動に基づいて検出して信号電圧を生成し、この信号電圧を増幅して信号を生成する。この信号が、固体撮像素子100からの出力信号となる。
【0036】
上述した各読み出しゲート30、各垂直電荷転送素子20、水平電荷転送素子40、および電荷検出回路50は、出力信号生成部を構成する。
【0037】
図2は、図1に示したII−II線に沿った固体撮像素子100の断面構造を概略的に示す。同図には、図1において図示を省略したマイクロレンズ等も示されている。図2に示した構成要素のうち、既に図1に示した構成要素については図1で用いた参照符号と同じ参照符号を付してその説明を省略する。
【0038】
図示のように、半導体基板1は、n型シリコン基板1aと、その一表面に形成されたp 型不純物半導体層1bとを有する。p 型不純物半導体層1bはp型不純物を含有したシリコンによって構成され、n型シリコン基板1aの一表面にp型不純物をイオン注入した後に熱処理を施すことによって、あるいは、p型不純物を含有したシリコンをn型シリコン基板1aの一表面上にエピタキシャル成長させることによって形成される。
【0039】
以下の説明においては、同じ導電型を有する不純物半導体層間での不純物濃度の大小を区別するために、不純物濃度が相対的に低いものから順番に、p 型不純物半導体層、p型不純物半導体層、p 型不純物半導体層、あるいはn 型不純物半導体層、n型不純物半導体層、n 型不純物半導体層と表記する。また、p 型不純物半導体層1bをエピタキシャル成長法によって形成する場合以外、全ての不純物半導体層は、イオン注入とその後の熱処理とによって形成されたものである。
【0040】
光電変換素子10は、p 型不純物半導体層1bの所定箇所にn型不純物半導体層10aを設け、このn型不純物半導体層10aの表層部をp 型不純物半導体層10bに転換することによって形成された埋込み型のフォトダイオードによって構成される。n型不純物半導体層10aは、電荷蓄積領域として機能する。
【0041】
各光電変換素子10(n型不純物半導体層10a)における図1での右斜め下側縁部に沿って、p型不純物半導体層30aが1つずつ配置される。このp型不純物半導体層30aは、読出ゲート30用のチャネル領域30a(以下、「チャネル領域30a」という。)として利用される。
【0042】
必要に応じて、個々の垂直電荷転送チャネル23の下方にも、p型不純物半導体層が配置される。
【0043】
チャネルストップ領域CSが、チャネル領域30aの形成箇所を除いた光電変換素子10の平面視上の周囲、各垂直電荷転送チャネル23の平面視上の周囲、および水平電荷転送チャネル43の平面視上の周囲に形成される。このチャネルストップ領域CSは、例えばp 型不純物半導体層によって構成される。
【0044】
第1の電気的絶縁層5が、半導体基板1上に配置される。第1の電気的絶縁層5は、例えば、熱酸化膜5aと、ONO膜5bとによって構成される。各光電変換素子10上に熱酸化膜5aが配置され、垂直転送電極25a〜25eの下方にあたる領域および水平転送電極(図示せず。)の下方にあたる領域にはONO膜5bが配置される。
【0045】
熱酸化膜5aの膜厚は、概ね10〜30nmである。ONO膜5bは、例えば、膜厚が20〜70nm程度のシリコン酸化膜(熱酸化膜)と、膜厚が30〜80nm程度のシリコン窒化膜と、膜厚が10〜50nm程度のシリコン酸化膜との積層膜である。
【0046】
垂直転送電極25a〜25eの各々および水平転送電極の各々は例えばポリシリコンによって構成される。図示の例では、各垂直転送電極25a〜25eは所謂重ね合わせ転送電極構造をなす。各垂直転送電極25aおよび第4垂直転送電極25dの線幅方向の縁部が、隣り合う光電変換素子同士の平面視上の間において、隣り合う他の転送電極の線幅方向の縁部に重なる。個々の転送電極は、例えば熱酸化膜等の電気的絶縁膜IFによって覆われる。水平転送電極についても同様である。
【0047】
各垂直電荷転送素子20、水平電荷転送素子40(図1参照)、および各光電変換素子10の上方には、第2の電気的絶縁膜60、光遮蔽膜65、層間絶縁膜70、パッシベーション膜75、第1の平坦化膜80、色フィルタアレイ85、第2の平坦化膜90、およびマイクロレンズ95がこの順番で順次配置される。
【0048】
第2の電気的絶縁層60は、例えばシリコン酸化物によって形成されて、光遮蔽膜65とその下の各種の電極との電気的な分離を十分なものとする。
【0049】
光遮蔽膜65は、タングステン、アルミニウム、クロム、チタン、モリブデン等の金属材料や、これらの金属の2種以上からなる合金材料によって形成されて各垂直電荷転送素子20および水平電荷転送素子40を覆い、光電変換素子10以外の領域で無用の光電変換が行われるのを防止する。この光遮蔽膜65は、個々の光電変換素子10の上方に開口部65aを1つずつ有する。個々の光電変換素子10表面において開口部65a内に平面視上位置する領域が、この光電変換素子10における光入射面となる。
【0050】
垂直電荷転送素子20用の駆動信号が供給される配線や水平電荷転送素子40用の駆動信号が供給される配線を、光遮蔽膜65の材料とは異なる材料によって形成する場合には、図示のように、層間絶縁膜70が形成される。この層間絶縁膜70は、例えばシリコン酸化膜によって構成され、垂直転送電極25a〜25eと前記の配線との短絡、および水平転送電極と前記の配線との短絡を防止する。前記の配線を光遮蔽膜65の材料と同じ材料によって形成する場合には、層間絶縁膜70を省略する代わりに第2の電気的絶縁膜60を厚膜化して、当該第2の電気的絶縁層を層間絶縁膜として利用することも可能である。
【0051】
パッシベーション膜75は、例えばシリコン窒化膜等によって構成されて、その下の部材を保護する。
【0052】
第1の平坦化膜80はフォトレジスト等の有機材料によって形成されて、色フィルタアレイ85を形成するための平坦面を提供する。
【0053】
色フィルタアレイ85は、カラー撮影用の固体撮像素子に配置される。白黒撮影用の固体撮像素子では、色フィルタアレイを省略することができる。カラー撮影用の単板式固体撮像素子では、原色系または補色系の色フィルタアレイが利用される。図2においては1個の青色フィルタ85Bと1個の緑色フィルタ85Gとが示されている。
【0054】
第2の平坦化膜90はフォトレジスト等の有機材料によって形成されて、マイクロレンズ95を形成するための平坦面を提供する。
【0055】
マイクロレンズ95は、1つの光電変換素子10に1つずつ対応して配置される。これらのマイクロレンズ95は、例えば、透明樹脂(フォトレジストを含む。)層をフォトリソグラフィ法等によって所定形状に区画した後、熱処理によって各区画の透明樹脂層を溶融させ、表面張力によって角部を丸め込ませた後に冷却することによって得られる。1つの区画が1つのマイクロレンズ95に成形される。
【0056】
次に、実施例による固体撮像素子の製造方法を、図3〜図7を参照しつつ説明する。以下の説明は、図1、図2に示した固体撮像素子100と同様の構造を有する固体撮像素子を製造する場合を例にとり、図1または図2で用いた参照符号を引用しつつ行う。
【0057】
図3(A)に示すように、n型シリコン基板1aの一表面に熱酸化膜110を形成し、このn型シリコン基板1aに熱酸化膜110を介意してp型不純物をイオン注入した後に熱処理を行って、n型シリコン基板1aと、その一表面に形成されたp 型不純物半導体層1bとを有する半導体基板1を得る。
【0058】
図示の例では、p型不純物としてホウ素Bがイオン注入されている。
【0059】
図3(B)に示すように、所定形状を有する第1のレジストマスク115を熱酸化膜110上に配置し、第1のレジストマスク115側から第1のn型不純物を半導体基板1にイオン注入して、半導体基板1に未加熱のn 型チャネルを形成する。
【0060】
図示の例では、第1のn型不純物としてリンPがイオン注入されている。
【0061】
第1のレジストマスク115は、各垂直電荷転送チャネル23の形成位置に平面視上対応する箇所、および水平電荷転送チャネル43(図1参照)の形成位置に平面視上対応する箇所にそれぞれ開口部OP1を有する。各開口部OP1の下方に、未加熱のn 型チャネルが形成される。同図には、垂直電荷転送チャネル23の元となる未加熱のn 型チャネル23Lが示されている。
【0062】
図3(C)に示すように、第1のレジストマスク115を残したまま、第1のレジストマスク115側から第2のn型不純物を半導体基板1にイオン注入して、図3(B)の工程で作製した未加熱のn 型チャネルそれぞれを未加熱のn型チャネルにする。
【0063】
図示の例では、第2のn型不純物としてヒ素Asがイオン注入されている。図3(C)には、垂直電荷転送チャネル23用のn型チャネル23Rが示されている。
【0064】
この後、第1のレジストマスク115を剥離し、熱処理を行って、未加熱のn型チャネルそれぞれに含まれるn型不純物を活性化させる。垂直電荷転送チャネル23の各々と、水平電荷転送チャネル43用のn型チャネルが得られる。
【0065】
図4(A)に示すように、所定形状を有する第2のレジストマスク120を熱酸化膜110上に配置し、第2のレジストマスク120側からp型不純物を半導体基板1にイオン注入する。
【0066】
第2のレジストマスク120は、チャネルストップ領域CS(図2参照)の形成位置に平面視上対応する箇所に開口部OP2を有する。
【0067】
図示の例では、p型不純物としてホウ素Bがイオン注入されている。
【0068】
このイオン注入によって、チャネルストップ領域CS(図2参照)の元となる未加熱のp 型不純物半導体層CSLが形成される。
【0069】
図4(B)に示すように、図4(A)に示した第2のレジストマスク120を第3のレジストマスク125に代え、更にp型不純物をイオン注入する。
【0070】
図示の例では、p型不純物としてホウ素Bがイオン注入されている。
【0071】
第3のレジストマスク125は、各光電変換素子10の形成位置に平面視上対応する箇所、および読み出しゲート30用の各チャネル領域30a(図2参照)の形成位置に平面視上対応する箇所それぞれに開口部OP3を有する。
【0072】
このイオン注入によって、各光電変換素子10の形成位置に平面視上対応する箇所、および各チャネル領域30aの形成位置に平面視上対応する箇所にそれぞれ未加熱のp型不純物半導体層130Lが形成される。
【0073】
この後、第3のレジストマスク125を剥離し、熱処理を行って、図4(A)に示した工程で形成した未加熱のp 型不純物半導体層CSL中のp型不純物、および、図4(B)に示した工程で形成した未加熱のp型不純物半導体層130Lそれぞれに含まれるp型不純物を活性化させる。チャネルストップ領域CSおよびp型不純物半導体層130が得られる。
【0074】
図4(C)に示すように、半導体基板1上にONO膜135、第1ポリシリコン層140、および第4のレジストマスク145をこの順番で積層する。
【0075】
ONO膜135は、熱酸化によってシリコン酸化膜を形成し、その上に例えば化学的気相蒸着法(CVD)によってシリコン窒化膜を堆積させ、その上に例えばCVDによってシリコン窒化膜を堆積させることによって形成することができる。このONO膜135が後にパターニングされて、図2に示したONO膜5bになる。
【0076】
第1ポリシリコン層140は、例えばCVDによって形成される。この第1ポリシリコン層140が後にパターニングされて、所謂重ね合わせ転送電極構造をなす下側の転送電極、例えば図1に示した各第2垂直転送電極25bならびに第3垂直転送電極25cおよび第5垂直転送電極25eになる。また、電荷検出回路50(図1参照)についての説明の中で述べたアウトプットゲート用のゲート電極やリセットトランジスタのゲート電極も、第1ポリシリコン層140をパターニングすることによって形成することができる。
【0077】
第4のレジストマスク145は、第1ポリシリコン層140から形成される上述の各種の電極の形成位置に平面視上対応する領域上に配置される。
【0078】
図5(A)に示すように、第1ポリシリコン層140を例えば反応性イオンエッチング(RIE)によってパターニングして所定の電極を形成した後、第4のレジストマスク145を剥離する。同図には1本の第2垂直転送電極25bが示されている。
【0079】
この後、第1ポリシリコン層140のパターニングによって形成した電極それぞれの表面に例えば熱酸化によって電気的絶縁膜IF(図2参照)を形成する。次いで、水平電荷転送チャネル43の形成位置に平面視上対応する箇所に開口部を有するレジストマスクを配置し、n型不純物をイオン注入する。その後、レジストマスクを剥離し、イオン注入したn型不純物を熱処理によって活性化する。
【0080】
図3(C)に示した工程の後に形成されていた水平電荷転送チャネル43用のn型チャネルの所定箇所にn 型不純物半導体層が形成され、水平電荷転送チャネル43が得られる。
【0081】
このとき、n型不純物としては例えばホウ素が使用される。
【0082】
図5(B)に示すように、ONO膜135の露出面上および電気的絶縁膜IFを覆う第2ポリシリコン層を例えばCVDによって堆積させ、その上に第5のレジストマスク155を配置する。
【0083】
第2ポリシリコン層150が後にパターニングされて、所謂重ね合わせ転送電極構造をなす上側の転送電極、例えば図1に示した各第1垂直転送電極25aおよび第4垂直転送電極25dになる。また、電荷検出回路50を構成する電極のうちで、第1ポリシリコン層140のパターニングによって形成しなかった電極がある場合には、この電極も第2ポリシリコン層150のパターニングによって形成される。
【0084】
第5のレジストマスク155は、第2ポリシリコン層150から形成される上述の各種の電極の形成位置に平面視上対応する領域上に配置される。
【0085】
この後、第2ポリシリコン層150を例えば反応性イオンエッチングによってパターニングして所定の電極を形成した後に第5のレジストマスク155を剥離し、第6のレジストマスク(図示せず。)を形成する。
【0086】
第6のレジストマスクは、光電変換素子10を形成しようとする領域に平面視上対応する箇所に開口部を有する。
【0087】
第6のレジストマスクをエッチングマスクとして用いてONO膜150をパターニングする。図2に示したONO膜5bが得られると共に、光電変換素子10を形成しようとする領域に平面視上対応する箇所に、p型不純物半導体層130の表面が露出する。
【0088】
図5(C)に示すように、第2ポリシリコン層150のパターニングによって形成した電極それぞれの表面に例えば熱酸化によって電気的絶縁膜IFを形成すると共に、p型不純物半導体層130の露出面に熱酸化膜5a(図2参照)を形成する。同図には、第2ポリシリコン層150のパターニングによって形成した電極のうち、1本の第1垂直転送電極25aのみが示されている。
【0089】
図6(A)に示すように、第7のレジストマスク160を配置した後、第1のn型不純物をイオン注入する。
【0090】
図示の例では、第1のn型不純物としてリンPがイオン注入されている。
【0091】
第7のレジストマスク160は、光電変換素子10を形成しようとする領域に平面視上対応する箇所に開口部OP4を有する。
【0092】
このイオン注入によって、p型不純物半導体層130のうちで開口部OP4の下方に位置する領域が未加熱のn 型不純物半導体層165Rに転換する。転換せずに残ったp型不純物半導体層130が読み出しゲート30用のチャネル領域30aとなる。
【0093】
図6(B)に示すように、第7のレジストマスク160を残したまま、第2のn型不純物をイオン注入する。
【0094】
図示の例では、第2のn型不純物としてヒ素Asがイオン注入されている。
【0095】
このイオン注入によって、n 型不純物半導体層165の各々が未加熱のn型不純物半導体層170Rになる。
【0096】
図6(A)に示した工程でのリンPのドーズ量と、図6(B)に示した工程でのヒ素Asのドーズ量との比は、1:8〜8:1の範囲内にすることが好ましく、リンPのドーズ量とヒ素Asのドーズ量との合計は、1×1011/cm 以上、1×1013/cm 未満にすることが好ましい。
【0097】
図6(C)に示すように、第7のレジストマスク160を剥離し、その後に熱処理を行って、未加熱のn型不純物半導体層170Rそれぞれに含まれるn型不純物を活性化させる。これにより、n型不純物半導体層170が得られる。
【0098】
各n型不純物半導体層170は、後に表層部をp 型不純物半導体層に転換されて、図2に示したn型不純物半導体層10aになる。
【0099】
図7(A)に示すように、第8のレジストマスク175を配置した後、p型不純物をイオン注入する。
【0100】
図示の例では、p型不純物としてホウ素Bがイオン注入されている。
【0101】
第8のレジストマスク175は、光電変換素子10を形成しようとする領域に平面視上対応する箇所に開口部OP5を有する。
【0102】
このイオン注入によって、n型不純物半導体層170の表層部が未加熱のp 型不純物半導体層180Rに転換する。個々のn型不純物半導体層170のうちでp 型不純物半導体層180Rに転換しなかった領域が、光電変換素子10のn型不純物半導体層10aとなる。
【0103】
図7(B)に示すように、第8のレジストマスク175を剥離し、その後に熱処理を行って、未加熱のp 型不純物半導体層170Rそれぞれに含まれるp型不純物を活性化させる。
【0104】
各n型不純物半導体層10a上に1つずつp 型不純物半導体層10bが形成され、所定個の光電変換素子10が得られる。
【0105】
この後、図2に示した第2の電気的絶縁膜60、光遮蔽膜65、層間絶縁膜70、パッシベーション膜75、第1の平坦化膜80、色フィルタアレイ85、第2の平坦化膜90、およびマイクロレンズ95をこの順番で順次配置することによって、固体撮像素子100が得られる。
【0106】
第2の電気的絶縁層60およびパッシベーション膜75は、例えばCVDによって形成される。
【0107】
光遮蔽膜65は、例えば、所望の金属層または合金層をCVDや物理的気相蒸着法(PVD)によって堆積し、その上に所定形状のレジストマスクを配置し、このレジストマスクをエッチングマスクとして用いて前記の金属層または合金層を所定形状にパターニングすることよって形成される。
【0108】
第1の平坦化膜80および第2の平坦化膜90は、例えばフォトレジスト等の有機材料をスピンコートすることによって形成される。
【0109】
色フィルタアレイ85は、例えば、顔料もしくは染料を含有させた樹脂(カラーレジン)を複数色(例えば赤色、緑色、および青色の3色)用意し、これらの樹脂の層をフォトリソグラフィ法等の方法をによって所定箇所に順次形成することによって作製することができる。
【0110】
マクロレンズ95の形成方法は、図2を用いた説明の中で述べた通りである。
【0111】
次に、第2の実施例による固体撮像素子について説明する。
【0112】
図8(A)は、第2の実施例による固体撮像素子の主要部を概略的に示す。同図に示す固体撮像素子200は、エリア・イメージセンサとして利用されるMOS型固体撮像素子である。図8(A)においては図示を省略しているが、この固体撮像素子200は、第1の実施例による固体撮像素子沿い100と同様に、光遮蔽膜、層間絶縁膜、パッシベーション膜、第1の平坦化膜、色フィルタ、第2の平坦化膜、マイクロレンズ等を備える。
【0113】
固体撮像素子200では、半導体基板201の一表面に複数行、複数列に亘って多数個の光電変換素子210が正方行列(行数と列数とが異なる場合を含む。)状に配置される。1個の光電変換素子210に1つずつ、図示を省略したスイッチング回路が接続される。
【0114】
1つの光電変換素子列に1本ずつ、この光電変換素子列に沿って出力信号線230が配置され、これらの出力信号線230に1つずつ、負荷トランジスタ240が接続される。各出力信号線230は、信号生成部250に接続される。
【0115】
光電変換素子210に光が入射すると、この光電変換素子210に電荷が蓄積される。図示を省略したスイッチング回路の動作を適宜制御することにより、光電変換素子210に蓄積された電荷に応じた大きさの電気信号を、対応する出力信号線230に発生させることができる。この電気信号は信号生成部250によって検出され、所定の出力信号に変換されて出力される。この出力が、固体撮像素子200の出力となる。
【0116】
個々の光電変換素子210に接続されたスイッチング回路の動作を光電変換素子行単位で制御するために、行読み出し走査部260と行リセット走査部265とが半導体基板1に配置される。
【0117】
行読み出し走査部260は、各スイッチング回路の動作を制御して、光電変換素子210とこれに対応する出力信号線230との電気的な接続を制御する。行リセット走査部265は、各スイッチング回路の動作を制御して、光電変換素子210に蓄積された電荷の掃き出し動作を制御する。
【0118】
これらの制御に必要な信号を伝達するために、図示を省略した行選択信号線およびリセット信号線が、それぞれ、1行の光電変換素子行に1本ずつ対応して配置される。また、1行の光電変換素子行もしくは1列の光電変換素子列に1本ずつ対応して、電源電圧供給線が配置される。各スイッチング回路は、これらの信号線および供給線にも電気的に接続可能である。
【0119】
制御部270が半導体基板201上に配置されて、信号生成部250、行読み出し走査部260、および行リセット走査部265の動作を制御する。
【0120】
図8(B)は、スイッチング回路の一例を示す。同図に示すスイッチング回路220は、出力用トランジスタ221、行選択用トランジスタ222、およびリセット用トランジスタ223を含む。これらのトランジスタは、例えばMOS型トランジスタである。
【0121】
出力用トランジスタ221と行選択用トランジスタ222とが直列に接続され、出力用トランジスタ221のゲートに光電変換素子210が、行選択用トランジスタ222のゲートに行選択信号線224が接続される。出力用トランジスタの残りの一端が電源電圧供給線225に接続され、行選択用トランジスタ222の残りの一端が出力信号線230に接続される。
【0122】
リセット用トランジスタ223は、出力用トランジスタ221と光電変換素子210とを接続する配線226に接続されると共に、電源電圧供給線225にも接続され、そのゲートにはリセット信号線227が接続される。
【0123】
各スイッチング回路220、各出力信号線230、各負荷トランジスタ240、信号生成部250、行読み出し走査部260、および行リセット走査部265は、出力信号生成部を構成する。
【0124】
行読み出し走査部260から行選択信号線224に読み出し信号が供給されると、この行選択信号線224に接続されている行選択用トランジスタ222がオンになる。出力用トランジスタ221と、これに対応する出力信号線230とが電気的に接続される。
【0125】
出力用トランジスタ221のゲートに印加される電圧の値は、この出力用トランジスタ221に接続されている光電変換素子10に蓄積された電荷に応じて変化する。したがって、出力用トランジスタ221に流れるドレイン電流の大きさも、光電変換素子210に蓄積された電荷に応じて変化する。結果的に、行選択用トランジスタ222がオンになると、光電変換素子210に蓄積された電荷に応じた電気信号が出力用信号線230に発生する。
【0126】
行リセット走査部265からリセット信号線227にリセット信号が供給されると、このリセット信号線227に接続されているリセット用トランジスタ223がオンになる。このリセット用トランジスタ223に対応する光電変換素子210が電源電圧供給線225に接続され、光電変換素子210に蓄積されていた電荷が電源電圧供給線225に排出される。
【0127】
上述した構成を有する固体撮像素子200においても、各光電変換素子210の構成を、前述した第1の実施例による固体撮像素子100での光電変換素子10の構成と同様にすることによって、感度の向上が期待される。光電変換素子210を高集積化して固体撮像素子200の解像度を向上させたときでも、素子全体の感度を比較的高く保つことが容易になるものと期待される。
【0128】
次に、第3の実施例による固体撮像素子について説明する。
【0129】
図9は、第3の実施による固体撮像素子での光電変換素子、電荷転送素子、読み出しゲート、電荷検出回路、および掃き出しドレインの平面配置を概略的に示す。同図に示した構成要素のうち、図1に示した構成要素と共通するものについては図1で用いた参照符号と同じ参照符号を付してその説明を省略する。
【0130】
同図に示す固体撮像素子300は、白黒およびカラー撮影用のリニア・イメージセンサとして利用される固体撮像素子であり、この固体撮像素子300では、半導体基板1の一表面に多数個の光電変換素子10が4列に亘って配置される。
【0131】
個々の光電変換素子10に1つずつ対応して、半導体基板1に読み出しゲート用のチャネル領域が形成される。1列の光電変換素子列に対応する読み出しゲート用のチャネル領域の各々は、半導体基板1上に電気的絶縁膜を介して配置された1本の読み出しゲート電極335によって平面視上覆われて、読み出しゲート30を構成する。各読み出しゲート30の動作は、読み出しゲート電極335に供給される駆動信号φR1、φR2、φR3、またはφR4によって制御される。図9においては、読み出しゲート30の位置を判りやすくするために、個々の読み出しゲート30にハッチングを付してある。
【0132】
1列の光電変換素子列に1つずつ、この光電変換素子列に沿って電荷転送素子340が配置される。個々の電荷転送素子340は、例えば、1つ光電変換素子10あたり4本の転送電極を有する2相駆動型のCCDによって構成される。
【0133】
電荷転送素子340の各々は、読み出しゲート30を介して、対応する光電変換素子10に電気的に接続可能である。各電荷転送素子340の出力端に、電荷検出回路50が1つずつ接続される。
【0134】
各読み出しゲート30、各電荷転送素子340、および各電荷検出回路50は、出力信号生成部を構成する。
【0135】
1列の光電変換素子列に1つずつ、この光電変換素子列に沿ってドレイン領域360が配置される。個々のドレイン領域360は、例えば、半導体基板1に形成されたn 型不純物添加領域によって構成される。1つのドレイン領域360と、これに対応する光電変換素子列との間には、チャネル領域が介在する。このチャネル領域は、半導体基板1上に電気的絶縁膜を介して配置された1本の掃き出しゲート電極365によって平面視上覆われて、掃き出しゲートを構成する。各掃き出しゲートの動作は、掃き出しゲート電極365に供給される駆動信号φD1、φD2、φD3、またはφD4によって制御される。
【0136】
図示の固体撮像素子300では、上側の3列の光電変換素子列に蓄積された電荷に基づいて、カラー画像用の出力信号が生成される。1列の光電変換素子列の上方に赤色の色フィルタが配置され、他の1列の光電変換素子列の上方に緑色の色フィルタが配置され、残りの1列の光電変換素子列の上方に青色の色フィルタが配置される。これらの光電変換素子列に対応する各電荷転送素子340は、2相の駆動信号φ1、φ2によって駆動されて、光電変換素子10から読み出した電荷を対応する電荷検出回路50へ転送する。
【0137】
残りの1列の光電変換素子列に蓄積された電荷は、白黒画像用の出力信号の生成に使用される。この光電変換素子列の上方には、例えば、カラー撮影に使用される色フィルタに相当する単色の着色層、または、この着色層に代わる透明層が配置される。当該光電変換素子列に対応する電荷転送素子340は、2相の駆動信号φ3、φ4によって駆動されて、各光電変換素子10から読み出した電荷を対応する電荷検出回路50へ転送する。
【0138】
なお、リニア・イメージセンサとして使用される固体撮像素子では、多くの場合、光遮蔽膜が設けられない。また、多くの場合、固体撮像素子の上方に集光素子が配置されない。光遮蔽膜やマイクロレンズは、必要に応じて設けられる。マイクロレンズに代えて、1列の光電変換素子列に1個ずつシリンドリカルレンズが配置されることもある。
【0139】
上述した構成を有する固体撮像素子300は、第1の実施例による固体撮像素子100についての説明の中で述べた光電変換素子10を備えているので、固体撮像素子100と同様に感度が向上するものと期待される。光電変換素子10を高集積化して固体撮像素子300の解像度を向上させたときでも、素子全体の感度を比較的高く保つことが容易になるものと期待される。
【0140】
光電変換素子の構成を除いた他の構成は、種々変更可能である。例えば、エリア・イメージとして使用される固体撮像素子は、CCD型であるかMOS型であるかを問わず、図8に示したように多数個の光電変換素子を複数行、複数列に亘って正方行列状に配置したものであってもよい。
【0141】
また、エリア・イメージとして使用されるCCD型固体撮像素子で垂直電荷転送素子として利用する電荷転送素子は、1行の光電変換素子行に1本、または3本以上の転送電極を有するものであってもよい。水平電荷転送素子として利用する電荷転送素子は、1つの垂直電荷転送素子あたり2本以上の転送電極を配置することによって構成可能である。
【0142】
垂直電荷転送素子や水平電荷転送素子を何相の駆動信号で駆動するかは、1行の光電変換素子行に対応する垂直転送電極の数、または1つの垂直電荷転送素子に対応する水平転送電極の数や、垂直電荷転送素子または水平電荷転送素子の駆動方法等に応じて、適宜選定可能である。リニア・イメージセンサとして利用される固体撮像素子での電荷転送素子についても同様である。
【0143】
リニア・イメージセンサとして使用される固体撮像素子での光電変換素子列の数は、その用途に応じて適宜選定可能である。
【0144】
CCD型の固体撮像素子において電荷転送素子(CCD)を構成するn型チャネルは、n型不純物を1種類のみ添加することによって形成してもよい。
【0145】
以上説明した光電変換素子の構成は、光電変換素子を備えた種々の半導体装置に適用可能である。
【0146】
その他、種々の変更、改良、組み合わせ等が可能であることは、当業者に自明であろう。
【0147】
【発明の効果】
以上説明したように、本発明よれば、感度の高い光電変換素子、およびこの光電変換素子を備えた半導体装置が提供される。この半導体装置を例えば固体撮像素子とした場合には、光電変換素子の高集積化によって解像度を高めたときでも、固体撮像素子の感度を比較的高く保つことが容易になる。
【図面の簡単な説明】
【図1】第1の実施例による固体撮像素子での光電変換素子、第1の電荷転送素子、読み出しゲート、第2の電荷転送素子、および電荷検出回路の平面配置を示す概略図である。
【図2】図1に示したII−II線に沿った固体撮像素子の断面構造を示す概略図である。
【図3】図3(A)〜図3(C)は、それぞれ、実施例による固体撮像素子の製造工程の一部を概略的に示す断面図である。
【図4】図4(A)〜図4(C)は、それぞれ、実施例による固体撮像素子の製造工程の他の一部を概略的に示す断面図である。
【図5】図5(A)〜図5(C)は、それぞれ、実施例による固体撮像素子の製造工程の更に他の一部を概略的に示す断面図である。
【図6】図6(A)〜図6(C)は、それぞれ、実施例による固体撮像素子の製造工程の更に他の一部を概略的に示す断面図である。
【図7】図7(A)〜図7(B)は、それぞれ、実施例による固体撮像素子の製造工程の更に他の一部を概略的に示す断面図である。
【図8】図8(A)は、第2の実施例による固体撮像素子の主要部を示す概略図であり、図8(B)は、図8(A)に示した固体撮像素子において個々の光電変換素子に1つずつ接続されているスイッチング回路を示す回路図である。
【図9】第3の実施による固体撮像素子での光電変換素子、電荷転送素子、読み出しゲート、電荷検出回路、および掃き出しドレインの平面配置を示す概略図である。
【符号の説明】
1…半導体基板、  1a…n型シリコン基板、  1b…p型不純物半導体層、10…光電変換素子、10a…n型不純物半導体層、  10b…p 型不純物半導体層、  20…第1の電荷転送素子(垂直電荷転送素子)、  23…n型チャネル(垂直電荷転送チャネル)、  25a〜25e…第1〜第5垂直転送電極、  30…読み出しゲート、  40…第2の電荷転送素子(水平電荷転送素子)、  50…電荷検出回路、  100…固体撮像素子、  210…光電変換素子、220…スイッチング回路、  230…出力信号線、  250…信号生成部、  300…固体撮像素子、  340…電荷転送素子。

Claims (12)

  1. 第1のp型不純物半導体層を有する半導体基板と、
    前記第1のp型不純物半導体層の一表面に形成され、(i) 相対的に小さな原子半径を有する第1のn型不純物と、相対的に大きな原子半径を有する第2のn型不純物とを含むn型不純物半導体層と、(ii)前記n型不純物半導体層上に形成された第2のp型不純物半導体層とを備えた光電変換素子と、
    前記半導体基板上に形成され、前記第2のp型不純物半導体層を覆う電気的絶縁膜と
    を具備した半導体装置。
  2. 前記第1のn型不純物および前記第2のn型不純物それぞれの濃度ピークが、前記n型不純物半導体層の厚さ方向の表面から離れた位置にある請求項1に記載の半導体装置。
  3. 前記n型不純物半導体層が、前記第1のn型不純物および前記第2のn型不純物それぞれの濃度ピークの出現位置よりも前記第2のp型半導体層に近いところで、前記第1のn型不純物の濃度と前記第2のn型不純物の濃度とがほぼ重なる領域を有する請求項1または請求項2に記載の半導体装置。
  4. 前記第1のp型不純物半導体層がp型シリコンによって形成され、
    前記第1のn型不純物がリン(P)であり、
    前記第2のn型不純物がヒ素(As)である請求項1〜請求項3のいずれか1項に記載の半導体装置。
  5. 前記光電変換素子を複数個有し、該複数個の光電変換素子が前記第1のp型不純物半導体の一表面に少なくとも1列に形成され、
    さらに、前記光電変換素子の各々に蓄積された電荷に基づいて出力信号を生成することができる出力信号生成部を有する請求項1〜請求項4のいずれか1項に記載の半導体装置。
  6. 前記出力信号生成部が、1列の光電変換素子列に1つずつ対応して配置された第1の電荷転送素子を有する請求項5に記載の半導体装置。
  7. 前記複数個の光電変換素子が、前記第1のp型不純物半導体層の一表面に複数行、複数列に亘って行列状に配置され、
    前記出力信号生成部が、さらに、1列の光電変換素子列に1つずつ対応して配置された前記第1の電荷転送素子の各々に電気的に接続可能な第2の電荷転送素子と、該第2の電荷転送素子の出力端に電気的に接続可能な電荷検出回路とを有する請求項6に記載の半導体装置。
  8. (i) 第1のp型不純物半導体層を有する半導体基板と、(ii)前記第1のp型半導体層の一表面に形成された光電変換素子とを具備した半導体装置の製造方法であって、
    (A)前記半導体基板を用意する工程と、
    (B)前記第1のp型不純物半導体層上に電気的絶縁膜を形成する工程と、
    (C)前記光電変換素子を配置しようとする領域上に開口部を有するマスクを前記電気的絶縁膜上に配置し、前記開口部から前記電気的絶縁膜を介して、相対的に小さな原子半径を有する第1のn型不純物と、相対的に大きな原子半径を有する第2のn型不純物とをイオン注入する工程と、
    (D)熱処理によって前記第1のn型不純物と第2のn型不純物と活性化させてn型不純物半導体層を形成する工程と
    を含む半導体装置の製造方法。
  9. さらに、(E)前記電気的絶縁膜を介して前記n型不純物半導体層それぞれの表層部にp型不純物を添加して第2のp型不純物半導体層を形成する工程を含む請求項8に記載の半導体装置の製造方法。
  10. 前記第1のn型不純物および前記第2のn型不純物それぞれの濃度ピークを、前記n型不純物半導体層の厚さ方向の表面から離れた位置に形成する請求項8または請求項9に記載の半導体装置の製造方法。
  11. 前記n型不純物半導体層に、前記第1のn型不純物の濃度と前記第2のn型不純物の濃度とがほぼ重なる領域を、前記第1のn型不純物および前記第2のn型不純物それぞれの濃度ピークの出現位置よりも前記第2のp型半導体層に近いところに形成する請求項10に記載の製造方法。
  12. 前記第1のn型不純物がリン(P)であり、前記第2のn型不純物がヒ素(As)である請求項8〜請求項11のいずれか1項に記載の半導体装置の製造方法。
JP2002259858A 2002-09-05 2002-09-05 半導体装置およびその製造方法 Pending JP2004103646A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259858A JP2004103646A (ja) 2002-09-05 2002-09-05 半導体装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259858A JP2004103646A (ja) 2002-09-05 2002-09-05 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2004103646A true JP2004103646A (ja) 2004-04-02

Family

ID=32260741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259858A Pending JP2004103646A (ja) 2002-09-05 2002-09-05 半導体装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2004103646A (ja)

Similar Documents

Publication Publication Date Title
JP3742775B2 (ja) 固体撮像素子
US7271836B2 (en) Solid state image pickup device capable of draining unnecessary charge and driving method thereof
JP4777496B2 (ja) 固体撮像素子
JP5963450B2 (ja) 撮像装置および撮像システム
JP4777798B2 (ja) 固体撮像装置とその駆動方法
US20110086460A1 (en) Solid-state image pickup element, solid-state image pickup device and production method therefor
KR101176263B1 (ko) 고체촬상소자, 고체촬상장치 및 그 제조방법
JP2003209241A (ja) 固体撮像素子
JP2003229550A (ja) 固体撮像素子およびその製造方法
JP3795808B2 (ja) 固体撮像素子およびこれを用いた撮像装置
JP4867226B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2004103646A (ja) 半導体装置およびその製造方法
KR101274794B1 (ko) 고체촬상소자, 고체촬상장치 및 그 제조방법
JP4010446B2 (ja) 電荷転送装置および固体撮像素子
JP4004833B2 (ja) 固体撮像素子の駆動方法および撮像装置
JP4867309B2 (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP4249349B2 (ja) 固体撮像装置
JP2002319667A (ja) 固体撮像素子およびその製造方法
JP5311666B2 (ja) 固体撮像素子の製造方法
JP2006019756A (ja) 固体撮像素子
JP2005032756A (ja) 固体撮像装置の製造方法及び固体撮像装置
JP2010103540A6 (ja) 固体撮像素子、固体撮像装置及びその製造方法
JP2005044850A (ja) 固体撮像装置
JP2007134431A (ja) 固体撮像装置およびその製造方法、並びにカメラ
JP2007048895A (ja) 固体撮像装置及び固体撮像装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401