JP2004103079A - ディスクドライブ装置、対物レンズの移送方法 - Google Patents

ディスクドライブ装置、対物レンズの移送方法 Download PDF

Info

Publication number
JP2004103079A
JP2004103079A JP2002261123A JP2002261123A JP2004103079A JP 2004103079 A JP2004103079 A JP 2004103079A JP 2002261123 A JP2002261123 A JP 2002261123A JP 2002261123 A JP2002261123 A JP 2002261123A JP 2004103079 A JP2004103079 A JP 2004103079A
Authority
JP
Japan
Prior art keywords
objective lens
tracking
drive signal
relative speed
kick pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002261123A
Other languages
English (en)
Inventor
Masaomi Nabeta
鍋田 将臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002261123A priority Critical patent/JP2004103079A/ja
Publication of JP2004103079A publication Critical patent/JP2004103079A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

【課題】相対速度を一定に保つシーク(ファインサーチ)の際に、二軸機構を駆動するトラッキングキックパルスの密度の偏りを少なくし、対物レンズのメカ的な位置に関わらず、トラックと二軸機構との相対速度制御性能を確保する。
【解決手段】対物レンズをトラッキング方向に複数トラックにわたって移送させる際に、横切るトラックに対する対物レンズの相対速度を検出し、相対速度が一定になるように移送のための駆動信号(トラッキングキックパルス)を発生させる。また発生された駆動信号について積分処理及び係数演算処理を行ない、駆動信号に、積分及び係数手段の出力を加算して得た加算駆動信号を用いて、二軸機構を駆動して対物レンズをトラッキング方向に移送させる。
【選択図】    図5

Description

【0001】
【発明の属する技術分野】
本発明は、光ディスク等のディスク記録媒体に対するディスクドライブ装置、及びシークための対物レンズの移送方法に関するものである。
【0002】
【従来の技術】
図4は、従来の光ディスクドライブ装置におけるフォーカスサーボ、トラッキングサーボ及びスレッド移送系の構成例を表している。
光ディスク1は、スピンドルモータ52により、所定の速度で回転されるようになされている。ピックアップ51は、内蔵するレーザダイオードより出射されたレーザ光を、対物レンズ4を介して光ディスク1に照射し、情報を記録または再生する。対物レンズ4は、ピックアップ51内において後述する二軸機構によってフォーカス方向及びトラッキング方向に変位可能に支持されている。
またスレッド機構53が設けられる。スレッド機構53においては、スレッドモータ6が、ギア7を介して、ピックアップ51をスレッドガイド棒5に沿って、光ディスク1の半径方向に移送する。
【0003】
ピックアップ51は、レーザ照射によって得られるディスク1からの反射光をフォトディテクタによって検出し、受光光量に応じた電気信号をマトリクス回路54に供給する。
マトリクス回路54は、ピックアップ51から供給される信号から、フォーカスエラー信号FE、トラッキングエラー信号TEを生成し、サーボ回路61に出力する。
【0004】
サーボ回路61は、フォーカスエラー信号FEに対して所定の処理を施してフォーカス駆動信号を生成し、ピックアップ51における二軸機構のフォーカスコイルに印加して対物レンズ4をフォーカス方向(ディスク盤面に接離する方向)に駆動する。
また、トラッキングエラー信号TEに対して所定の処理を施してトラッキング駆動信号を生成し、ピックアップ51における二軸機構のトラッキングコイルに印加して対物レンズ4をトラッキング方向(ディスク半径方向)に駆動する。
さらにサーボ回路61は、トラッキングエラー信号TEの低域成分をスレッドエラー信号とし、スレッドエラー信号に対応してスレッド駆動信号を生成する。このスレッド駆動信号をスレッドモータ6に供給し、ギア7を介して、ピックアップ51をスレッドガイド棒5に沿って、光ディスク2の半径方向に移送させる。
【0005】
図5は、サーボ回路61における、トラッキングサーボとスレッドサーボ、及びシーク移送(ファインサーチ)のための回路構成を表している。
トラッキングエラー信号TEは、ローブーストフィルタ(LBF)22に入力され、低域が高域に較べてエンファシスされた後、ハイブーストフィルタ(HBF)41で位相進み補償が行われ、加算器23、アンプ24を介して、トラッキングサーボ駆動信号としてトラッキングドライバ26に出力される。トラッキングドライバ26はトラッキングサーボ駆動信号に基づいて二軸機構のトラッキングコイルに電力印加を行う。これにより通常の記録再生時のトラッキングサーボが行われる。
【0006】
また、通常の記録再生時におけるスレッドサーボを実現するために、ローブーストフィルタ22が出力するトラッキングエラー信号について、その低域成分をローパスフィルタ27で抽出してスレッドエラー信号とする。
スレッドエラー信号は、ローブーストフィルタ28により、低域が高域に較べてエンファシスされてスレッドドライブ制御部39に供給される。スレッドドライブ制御部39は、供給された信号に対応して、ピックアップ51をスレッドガイド棒5に沿って光ディスク1の外周方向または内周方向に駆動するためのスレッドキックパルスを生成し、アンプ40を介して出力する。スレッドドライバ32は供給されたスレッドキックパルスに応じてスレッドモータ6に対する電力印加を行う。
【0007】
また、サーボ回路61には、ファインサーチを行うための構成として、トラバース生成部33,相対速度検出部34,トラッキングキックパルス生成部35,加算器23、トラッキングキックパルス計数部36が設けられる。
なお、本明細書においてファインサーチとは、移送時の相対速度を一定に保ちながらピックアップ51を1トラックずつ外周方向または内周方向にジャンプする動作を繰り返し、所定の数(例えば10乃至1000トラック)だけ移送して、所望のトラックをサーチする動作を意味する。
【0008】
トラバース生成部33は、トラッキングエラー信号TEを基準レベル(ゼロレベル)と比較した比較出力としてのトラバース信号TRVを出力する。
相対速度検出部34は、入力されたトラバース信号TRVの立ち上がりエッジと立ち下がりエッジを検出し、そのエッジの間隔からピックアップ51の移送速度を判定し、判定結果をトラッキングキックパルス生成部35に出力する。
トラッキングキックパルス生成部35は、相対速度検出部34からの信号に対応してトラッキングキックパルス、即ちピックアップ51をディスク外周方向に駆動するためのパルスまたはディスク内周方向に駆動するためのパルスを生成し、加算器23に出力する。
トラッキングキックパルス計数部36は、トラッキングキックパルスを計数してスレッドドライブ制御部29に指示を出力する。
【0009】
図6のタイミングチャートを参照して、ファインサーチを行う場合の動作について説明する。
いま、図示しない例えばマイクロコンピュータなどから、所定の本数だけ外周のトラックへのファインサーチが指令されたとすると、トラッキングキックパルス生成部35は、対物レンズ4をディスク外周方向に1トラック分だけジャンプさせるために、図6(D)に示すようなトラッキングキックパルスを出力する。
なおトラッキングキックパルスとしては、正極性の信号が対物レンズ4を光ディスク1の外周方向に移送させる信号であり、負極性の信号が対物レンズ4を光ディスク1の内周方向へ移送させる信号であるとする。
【0010】
従って、外周へのファインサーチの場合、図6(D)のように正の極性のキックパルスがトラッキングキックパルス生成部35から出力される。このキックパルスは、加算器23、アンプ24を介して、トラッキングドライバ26に供給され、トラッキングドライバ26からさらにピックアップ51に供給される。これにより、ピックアップ51の対物レンズ4が1トラックだけ外周方向にジャンプされる。同様の動作が所定の数のトラックをジャンプするまで連続して行われる。
【0011】
このような場合、マトリクス回路54から供給されるトラッキングエラー信号TEは、図6(A)に示すように、トラックジャンプを行う毎に、正弦波状に変化する。このトラッキングエラー信号を0レベルと比較して生成されたトラバース信号TRVは、図6(B)に示すように、トラッキングエラー信号のゼロクロス点において、立ち上がりまたは立ち下がりエッジを有する矩形波の信号となる。
相対速度検出部34は、このトラバース信号TRVの立ち上がりエッジと立ち下がりエッジを検出し、図6(C)に示すような、エッジ検出信号を生成する。そして、相対速度検出部34はさらに、このエッジ検出信号の間隔Tを計測し、この間隔Tが予め設定してある所定の基準値(目標速度に相当する値)より大きいか否かを判定する。すなわち、その周期(ファインサーチの速度)を判定する。そして相対速度検出部34は、間隔Tが基準値より大きい場合(ファインサーチ速度が基準速度より遅い場合)、例えば正の極性の信号を出力し、一方、間隔Tが基準値より小さい場合(ファインサーチ速度が基準の速度より速い場合)、負の極性の信号を出力する。
【0012】
トラッキングキックパルス生成部35は、ファインサーチの方向に対応して、相対速度検出部34からの判定結果に基づいて、トラッキングキックパルスを生成する。いまの場合、ファインサーチの方向は外周方向であるので、図6(D)に示すように、相対速度検出部34からの信号が正の極性の信号である場合、正の極性のトラッキングキックパルスを発生し、一方、相対速度検出部34からの信号が負である場合、負の極性のトラッキングキックパルスを発生する。
【0013】
すなわち、ファインサーチ速度が基準の速度より遅い場合、トラッキングキックパルスにより、対物レンズ4は、ファインサーチ方向(外周方向)にキックされる。これに対して、ファインサーチ速度が基準の速度より遅い場合、対物レンズ4には、内周方向へのトラッキングキックパルスが供給される。但し、対物レンズ4は、この内周方向へのトラッキングキックパルスにより、実際に内周方向にジャンプされるのではなく、ファインサーチ方向(外周方向)へ連続的にジャンプしている最中であるので、その方向への駆動に対して、ブレーキが付加されることとなる。その結果、ファインサーチの速度が予め設定してある所定の基準速度となるように、サーボがかかることになる。
【0014】
このようなファインサーチの実行中は、例えば図示しないマイクロコンピュータはトラバース信号TRVをカウントして、目的とするトラック数のジャンプを監視しており、目的トラック数のジャンプ完了に応じてファインサーチ動作を終了させる。
【0015】
ところで、ピックアップ51がスレッドガイド棒5上において停止している状態において、対物レンズ4が外周方向に移送されると、ピックアップ51内において対物レンズ4は、その支持機構(二軸機構)内で中央から次第に外周方向にずれていく。
対物レンズ4が二軸機構内で中心から外周方向にずれた状態になったとき、トラッキングキックパルス生成部35が出力するトラッキングキックパルス(図6(D))としては、連続して同一極性のパルスが発生される。
トラッキングキックパルス計数部36は、同一極性のトラッキングキックパルスが所定数以上連続した場合、制御信号をスレッドドライブ制御部29に出力し、スレッドドライブ制御部29は、この制御信号に対応して、スレッドキックパルス(図6(E))を発生する。このスレッドキックパルスが、アンプ30、スレッドドライバ32を介して、スレッドモータ6に供給される。これにより、スレッドモータ6が回転され、ギア7を介して、ピックアップ51が光ディスク1の外周方向に移送される。
【0016】
以上のようファインサーチ時は、対物レンズ4が1トラックずつ外周方向にジャンプされる動作が繰り返され、また対物レンズ4が、二軸機構の中心から外周方向にずれた状態になった場合には、ピックアップ51全体が外周方向に移送される。
【0017】
ここで、ピックアップ51の基本的な構成とファインサーチ時における基本的な動作について述べる。
図7は、ピックアップ51の対物レンズ4が本体67の中心に位置する状態を表している。本体67は、スレッドガイド棒5に沿って、スレッドモータ6により移動される。
この本体67には、二軸機構を形成するベース66が固定されており、ベース66には、4本(図7には2本だけが示されている)のサスペンションワイヤ65により、レンズ保持部61が、トラッキング方向(図中上下方向)と、フォーカス方向(図7において紙面と垂直な方向)に、移動自在に支持されている。レンズ保持部61のベース66から離れた位置には、対物レンズ4が取り付けられており、ベース66に近い位置には、ボビン62が取り付けられている。ボビン62には、フォーカスコイル63とトラッキングコイル64が巻回されている。これらのフォーカスコイル63とトラッキングコイル64に磁界を印加するように、マグネット68と69が本体67に固定されている。
【0018】
フォーカスコイル63にフォーカス駆動信号を供給すると、対物レンズ4(レンズ保持部61)がフォーカス方向に駆動される。このとき、サスペンションワイヤ65は、図7において紙面と垂直な方向に折り曲げられる。
また、トラッキングコイル64に、例えば正の極性のトラッキング駆動信号を供給すると、図8に示すように、対物レンズ4(レンズ保持部61)が外周方向に移動する。このとき、サスペンションワイヤ65は、図中上方向に折り曲げられる。
同様に、トラッキングコイル64に、負の極性のトラッキング駆動信号を供給すると、図9に示すように、対物レンズ4(レンズ保持部61)が内周方向に移動する。このとき、サスペンションワイヤ65は、図において下方向に折り曲げられる。
【0019】
その結果、図8に示すように、対物レンズ4が外周方向に移動している場合には、サスペンションワイヤ65により、対物レンズ4には内周方向に戻ろうとする付勢力が作用する。また逆に図9に示すように、対物レンズ4が内周方向に移動している場合には、サスペンションワイヤ65により、対物レンズ4に対して、外周方向に戻ろうとする付勢力が与えられることになる。これに対して、図7に示すように、対物レンズ4が本体67の中心に位置する場合には、サスペンションワイヤ65による外周方向または内周方向への付勢力は発生しない。
【0020】
従って、所定の速度でファインサーチを実行した場合、対物レンズ4が、図7に示すように、本体67の中心に位置する状態においては、図10に示すように、対物レンズ4をサーチ方向へジャンプさせるトラッキングキックパルスと、サーチ方向と逆方向へジャンプさせるブレーキパルスとが、交互に発生するようになる。
これに対して、例えば図8に示すように、外周方向にファインサーチした結果、対物レンズ4の位置が本体67の中心から外周方向にずれた状態になると、サスペンションワイヤ65がファインサーチ方向に対するブレーキ力として作用するようになるので、ブレーキ力を付与するためのトラッキングキックパルスは不要となり、図11に示すように、トラッキングキックパルスとしては、ファインサーチ方向(外周方向)へ対物レンズ4をジャンプさせるためのキックパルスが連続して発生する。
同様に、図9に示すように、内周方向にファインサーチした結果、対物レンズ4が本体67に対して内周方向にずれた状態になると、サスペンションワイヤ65が対物レンズ4を外周方向に戻すように作用するので、ブレーキのためのトラッキングドライブキックパルスが不要となり、トラッキングドライブキックパルスとしては、図12に示すように、連続的にファインサーチ方向(内周方向)に対物レンズ4を駆動するためのパルスが発生する。
【0021】
従って、上述したように、トラッキングキックパルス計数部36は、同一極性のトラッキングキックパルスが例えば所定回数連続した場合、制御信号をスレッドドライブ制御部29に出力し、スレッドドライブ制御部29がスレッドキックパルスを発生することで、対物レンズ4の中心からのズレを補正しつつ、ファインサーチを続行できるものとなる。
【0022】
【発明が解決しようとする課題】
ところで、上記図7〜図9の対物レンズ位置状態、及びそれに対応した図10〜図12のトラッキングキックパルス極性から理解できるように、ファインサーチ実行により、徐々に対物レンズ4がずれていくと、発生されるトラッキングキックパルスは図13に示すように変化していく。
【0023】
上述の通り、
・相対速度<目標速度→加速トラッキングキックパルス(正極性パルス電圧)
・相対速度>目標速度→減速トラッキングキックパルス(負極性パルス電圧)
としてトラッキングキックパルスが発生されることで、移送速度が定速制御されるものであるが、相対速度情報は通常、二軸機構における対物レンズ位置情報を含まない。
【0024】
二軸機構は一種のバネであるから、図8又は図9のようにメカセンターから離れた位置状態で保持するには、一定のDC電圧をかけておく必要がある。
このため、相対速度に対応したトラッキングキックパルスでファインサーチ動作を行うと、動作中に対物レンズ位置がメカセンターから離れていくにつれて、その位置状態を保持するためのDC電圧を、トラッキングキックパルスの密度で稼ぐことが必要になる。従って、例えば対物レンズ位置が変位していくと、図11のように正極性のトラッキングキックパルスが連続して発生される(パルス密度が高くなる)。
このため図13に示すように、対物レンズ4がずれていくにしたがって、発生される一方の極性のトラッキングキックパルスは徐々に密度が高くなる。この場合、正極性パルス密度が高く負極性パルス密度が低くなっている。
【0025】
しかしながらこのように駆動パルス密度に偏りがあると、真に追従したいはずのトラックと2軸機構との相対速度変化(DC成分ではなく、ある程度高い周波数で発生する)に対して追従することができない場合がある。この場合、ついには速度制御が破綻し、最悪の場合シーク動作は失敗に終わる。
【0026】
また、このため相対速度誤差がある程度偏っても速度制御が破綻しないように、高域の制御が破綻しない範囲でDC駆動力も確保できるような丁度良い2軸駆動電圧(キックパルス電圧)を選ぶ必要があり、設計が困難でもあった。
【0027】
【課題を解決するための手段】
そこで本発明は、ディスク上のトラックと対物レンズ(二軸機構)の相対速度を一定に保つシーク(ファインサーチ)の際に、二軸機構を駆動するトラッキングキックパルスの密度の偏りを少なくし、対物レンズのメカ的な位置に関わらず、トラックと二軸機構との相対速度制御性能を確保することを目的とする。
【0028】
このために本発明のディスクドライブ装置は、データの書込又は読出のために、ディスク記録媒体に対するレーザ照射及び反射光検出を行うとともに、レーザ光照射端となる対物レンズを支持機構により少なくともトラッキング方向に変位可能に支持しているヘッド手段と、上記対物レンズをトラッキング方向に複数トラックにわたって移送させる際に、上記ディスク記録媒体上で横切るトラックに対する上記対物レンズの相対速度を検出し、上記相対速度が一定になるように上記移送のための駆動信号を発生させる駆動信号発生手段と、上記駆動信号発生手段で発生された駆動信号について積分処理及び係数演算処理を行う積分及び係数手段と、上記駆動信号発生手段で発生された駆動信号に、上記積分及び係数手段の出力を加算して得た加算駆動信号を用いて、上記支持機構を駆動して上記対物レンズをトラッキング方向に移送させる移送駆動手段とを備えるようにする。
また上記駆動信号発生手段は、上記相対速度と所定の目標速度の比較結果に基づいて、上記駆動信号として、上記対物レンズの移送を加速又は減速させるキックパルスを発生させる。
【0029】
本発明の対物レンズの移送方法は、データの書込又は読出のために、ディスク記録媒体に対するレーザ照射及び反射光検出を行うとともに、レーザ光照射端となる対物レンズを支持機構により少なくともトラッキング方向に変位可能に支持しているヘッド手段において、上記対物レンズをトラッキング方向に複数トラックにわたって移送させる際に、上記ディスク記録媒体上で横切るトラックに対する上記対物レンズの相対速度を検出し、上記相対速度が一定になるように上記移送のための駆動信号を発生させ、上記発生された駆動信号について積分処理及び係数演算処理を行ない、上記発生された駆動信号に、上記積分及び係数手段の出力を加算して得た加算駆動信号を用いて、上記支持機構を駆動して上記対物レンズをトラッキング方向に移送させる。
また上記駆動信号は、上記相対速度と所定の目標速度の比較結果に基づいて、上記対物レンズの移送を加速又は減速させるキックパルスとする。
【0030】
以上の構成の本発明によれば、駆動信号(トラッキングキックパルス)の積分値と二軸機構(支持機構)の特性に合わせた適切な係数を掛けた値を、駆動信号のバイアス値として使用することになり、このバイアス成分によって二軸機構のDC駆動力を得る。つまり対物レンズ位置を保持する駆動力を得る。
換言すれば、駆動信号の密度(トラッキングキックパルス密度)の偏り、すなわち駆動電圧の積分値に或る係数をかけた電圧を、駆動信号にDC的に加算することにより、二軸機構における対物レンズのメカ的な移動を上記DC成分で補正し、駆動信号のパルス密度の偏りを少なくする。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態として、光ディスクに対応して記録再生を行うディスクドライブ装置(記録再生装置)及びそのファインサーチのための構成及び動作について説明していく。説明は次の順序で行う。
1.ディスクドライブ装置の構成
2.サーボ系の構成
3.移送動作
4.変形例
【0032】
1.ディスクドライブ装置の構成
図1に本例のディスクドライブ装置の構成を示す。
ディスク1は例えば相変化方式でデータの記録を行う光ディスクであるとする。またディスク上にはウォブリング(蛇行)されたグルーブが形成され、このグルーブが記録トラックとされる。グルーブのウォブリングによってはいわゆるADIP情報としてアドレス情報などが埋め込まれている。
【0033】
このようなディスク1は、図示しないターンテーブルに積載され、記録/再生動作時においてスピンドルモータ52によって一定線速度(CLV)で回転駆動される。
そして光学ピックアップ(光学ヘッド)51によってディスク1上のグルーブトラックのウォブリングとして埋め込まれたADIP情報の読み出しがおこなわれる。
また記録時には光学ピックアップ51によってトラックにユーザーデータがフェイズチェンジマークとして記録され、再生時には光学ピックアップによって記録されたフェイズチェンジマークの読出が行われる。
【0034】
ピックアップ51内には、レーザ光源となるレーザダイオードや、反射光を検出するためのフォトディテクタ、レーザ光の出力端となる対物レンズ、レーザ光を対物レンズを介してディスク記録面に照射し、またその反射光をフォトディテクタに導く光学系(図示せず)が形成される。
レーザダイオードは、例えば波長405nmのいわゆる青色レーザを出力するものとされる。また光学系によるNAは0.85である。
【0035】
ピックアップ51内において対物レンズは二軸機構によってトラッキング方向及びフォーカス方向に移動可能に保持されている。
またピックアップ51全体はスレッド機構53によりディスク半径方向に移動可能とされている。
即ち図7〜図9で説明したように、ピックアップ51において対物レンズ4が二軸機構によって保持される。また図4で説明したように、スレッド機構53としてはスレッドモータ6,ギア7,スレッドガイド棒5が設けられ、スレッドモータ6の駆動によりピックアップ51がディスク半径方向に移動される。
【0036】
またピックアップ51におけるレーザダイオードはレーザドライバ63からのドライブ信号(ドライブ電流)によってレーザ発光駆動される。
【0037】
ディスク1からの反射光情報はフォトディテクタによって検出され、受光光量に応じた電気信号とされてマトリクス回路54に供給される。
マトリクス回路54には、フォトディテクタとしての複数の受光素子からの出力電流に対応して電流電圧変換回路、マトリクス演算/増幅回路等を備え、マトリクス演算処理により必要な信号を生成する。
例えば再生データに相当する高周波信号(再生データ信号)、サーボ制御のためのフォーカスエラー信号、トラッキングエラー信号などを生成する。
さらに、グルーブのウォブリングに係る信号、即ちウォブリングを検出する信号としてプッシュプル信号を生成する。
【0038】
マトリクス回路54から出力される再生データ信号はリーダ/ライタ回路55へ、フォーカスエラー信号及びトラッキングエラー信号はサーボ回路61へ、プッシュプル信号はウォブル回路58へ、それぞれ供給される。
【0039】
リーダ/ライタ回路55は、再生データ信号に対して2値化処理、PLLによる再生クロック生成処理等を行い、フェイズチェンジマークとして読み出されたデータを再生して、変復調回路56に供給する。
変復調回路56は、再生時のデコーダとしての機能部位と、記録時のエンコーダとしての機能部位を備える。
再生時にはデコード処理として、再生クロックに基づいてランレングスリミテッドコードの復調処理を行う。
またECCエンコーダ/デコーダ57は、記録時にエラー訂正コードを付加するECCエンコード処理と、再生時にエラー訂正を行うECCデコード処理を行う。
再生時には、変復調回路56で復調されたデータを内部メモリに取り込んで、エラー検出/訂正処理及びデインターリーブ等の処理を行い、再生データを得る。
ECCエンコーダ/デコーダ57で再生データにまでデコードされたデータは、システムコントローラ60の指示に基づいて、読み出され、AV(Audio−Visual)システム120に転送される。
【0040】
グルーブのウォブリングに係る信号としてマトリクス回路54から出力されるプッシュプル信号は、ウォブル回路58において処理される。ADIP情報としてのプッシュプル信号は、ウォブル回路58においてADIPアドレスを構成するデータストリームに復調されてアドレスデコーダ59に供給される。
アドレスデコーダ59は、供給されるデータについてのデコードを行い、アドレス値を得て、システムコントローラ10に供給する。
またアドレスデコーダ9はウォブル回路8から供給されるウォブル信号を用いたPLL処理でクロックを生成し、例えば記録時のエンコードクロックとして各部に供給する。
【0041】
記録時には、AVシステム120から記録データが転送されてくるが、その記録データはECCエンコーダ/デコーダ57におけるメモリに送られてバッファリングされる。
この場合ECCエンコーダ/デコーダ57は、バファリングされた記録データのエンコード処理として、エラー訂正コード付加やインターリーブ、サブコード等の付加を行う。
またECCエンコードされたデータは、変復調回路56においてRLL(1−7)PP方式の変調が施され、リーダ/ライタ回路55に供給される。
記録時においてこれらのエンコード処理のための基準クロックとなるエンコードクロックは上述したようにウォブル信号から生成したクロックを用いる。
【0042】
エンコード処理により生成された記録データは、リーダ/ライタ回路55で記録補償処理として、記録層の特性、レーザー光のスポット形状、記録線速度等に対する最適記録パワーの微調整やレーザドライブパルス波形の調整などが行われた後、レーザドライブパルスとしてレーザードライバ63に送られる。
レーザドライバ63では供給されたレーザドライブパルスをピックアップ51内のレーザダイオードに与え、レーザ発光駆動を行う。これによりディスク1に記録データに応じたピット(フェイズチェンジマーク)が形成されることになる。
【0043】
なお、レーザドライバ63は、いわゆるAPC回路(Auto Power Control)を備え、ピックアップ51内に設けられたレーザパワーのモニタ用ディテクタの出力によりレーザ出力パワーをモニターしながらレーザーの出力が温度などによらず一定になるように制御する。記録時及び再生時のレーザー出力の目標値はシステムコントローラ60から与えられ、記録時及び再生時にはそれぞれレーザ出力レベルが、その目標値になるように制御する。
【0044】
サーボ回路61は、マトリクス回路54からのフォーカスエラー信号、トラッキングエラー信号から、フォーカス、トラッキング、スレッドの各種サーボドライブ信号を生成しサーボ動作を実行させる。
即ちフォーカスエラー信号、トラッキングエラー信号に応じてフォーカスドライブ信号、トラッキングドライブ信号を生成し、ピックアップ51内の二軸機構のフォーカスコイル、トラッキングコイルを駆動することになる。これによってピックアップ51、マトリクス回路54、サーボ回路61、二軸機構によるトラッキングサーボループ及びフォーカスサーボループが形成される。
【0045】
またサーボ回路61は、システムコントローラ60からのトラックジャンプ指令(ファインサーチ指令)に応じて、トラッキングサーボループをオフとし、トラッキングキックパルスを生成し、後述するように連続したトラックジャンプ動作によるシークを実行させる。
【0046】
またサーボ回路61は、トラッキングエラー信号の低域成分として得られるスレッドエラー信号や、システムコントローラ60からのアクセス実行制御などに基づいてスレッドドライブ信号を生成し、スレッド機構53を駆動する。スレッド機構53には、図示しないが、ピックアップ51を保持するメインシャフト、スレッドモータ、伝達ギア等による機構を有し、スレッドドライブ信号に応じてスレッドモータを駆動することで、ピックアップ51の所要のスライド移動が行なわれる。
【0047】
スピンドルサーボ回路62はスピンドルモータ2をCLV回転させる制御を行う。
スピンドルサーボ回路62は、ウォブル信号に対するPLL処理で生成されるクロックを、現在のスピンドルモータ52の回転速度情報として得、これを所定のCLV基準速度情報と比較することで、スピンドルエラー信号を生成する。
またデータ再生時においては、リーダ/ライタ回路55内のPLLによって生成される再生クロック(デコード処理の基準となるクロック)が、現在のスピンドルモータ52の回転速度情報となるため、これを所定のCLV基準速度情報と比較することでスピンドルエラー信号を生成することもできる。
そしてスピンドルサーボ回路62は、スピンドルエラー信号に応じて生成したスピンドルドライブ信号を出力し、スピンドルモータ62のCLV回転を実行させる。
またスピンドルサーボ回路62は、システムコントローラ60からのスピンドルキック/ブレーキ制御信号に応じてスピンドルドライブ信号を発生させ、スピンドルモータ2の起動、停止、加速、減速などの動作も実行させる。
【0048】
以上のようなサーボ系及び記録再生系の各種動作はマイクロコンピュータによって形成されたシステムコントローラ60により制御される。
システムコントローラ60は、AVシステム120からのコマンドに応じて各種処理を実行する。
【0049】
例えばAVシステム120から書込命令(ライトコマンド)が出されると、システムコントローラ60は、まず書き込むべきアドレスにピックアップ51を移動させる。そしてECCエンコーダ/デコーダ57、変復調回路56により、AVシステム120から転送されてきたデータ(例えばMPEG2などの各種方式のビデオデータや、オーディオデータ等)について上述したようにエンコード処理を実行させる。そして上記のようにリーダ/ライタ回路55からのレーザドライブパルスがレーザドライバ63に供給されることで、記録が実行される。
【0050】
また例えばAVシステム120から、ディスク1に記録されている或るデータ(MPEG2ビデオデータ等)の転送を求めるリードコマンドが供給された場合は、まず指示されたアドレスを目的としてシーク動作制御を行う。即ちサーボ回路61に指令を出し、シークコマンドにより指定されたアドレスをターゲットとするピックアップ51のアクセス動作を実行させる。
その後、その指示されたデータ区間のデータをAVシステム120に転送するために必要な動作制御を行う。即ちディスク1からのデータ読出を行い、リーダ/ライタ回路55、変復調回路56、ECCエンコーダ/デコーダ57におけるデコード/バファリング等を実行させ、要求されたデータを転送する。
【0051】
なお、これらのフェイズチェンジマークによるデータの記録再生時には、システムコントローラ60は、ウォブル回路58及びアドレスデコーダ59によって検出されるADIPアドレスを用いてアクセスや記録再生動作の制御を行う。
【0052】
ところで、この図1の例は、AVシステム120に接続されるディスクドライブ装置としたが、本発明のディスクドライブ装置としては例えばパーソナルコンピュータ等と接続されるものとしてもよい。
さらには他の機器に接続されない形態もあり得る。その場合は、操作部や表示部が設けられたり、データ入出力のインターフェース部位の構成が、図40とは異なるものとなる。つまり、ユーザーの操作に応じて記録や再生が行われるとともに、各種データの入出力のための端子部が形成されればよい。
もちろん構成例としては他にも多様に考えられ、例えば記録専用装置、再生専用装置としての例も考えられる。
【0053】
2.サーボ系の構成
図1におけるディスクドライブ装置において、フォーカスサーボ、トラッキングサーボ及びスレッド移送系の構成は、上述した図4と同様となるため、ここでの重複説明は避ける。
【0054】
図1のサーボ回路61における、トラッキングサーボとスレッドサーボ、及びシーク移送(ファインサーチ)のための回路構成を図2に示す。
マトリクス回路54から供給されるトラッキングエラー信号TEは、A/D変換器21でデジタルデータに変換された後、DSP10に入力される。
【0055】
DSP10においては、入力されたデジタルデータとしてのトラッキングエラー信号TEは、ローブーストフィルタ(LBF)22で、低域が高域に較べてエンファシスされた後、ハイブーストフィルタ(HBF)41で位相進み補償が行われ、加算器23、アンプ24を介して、トラッキングサーボ駆動信号として出力される。そしてD/A変換器25でアナログ信号に変換された後(PWMやPDMなども含む)、トラッキングドライバ26に供給される。トラッキングドライバ26はトラッキングサーボ駆動信号に基づいて二軸機構のトラッキングコイルに電力印加を行う。これにより通常の記録再生時のトラッキングサーボが行われる。
【0056】
また、通常の記録再生時におけるスレッドサーボを実現するために、ローブーストフィルタ22が出力するトラッキングエラー信号について、その低域成分をローパスフィルタ27で抽出してスレッドエラー信号とする。
スレッドエラー信号は、ローブーストフィルタ28により、低域が高域に較べてエンファシスされてスレッドドライブ制御部39に供給される。スレッドドライブ制御部39は、供給された信号に対応して、ピックアップ51をスレッドガイド棒5に沿って光ディスク1の外周方向または内周方向に駆動するためのスレッドキックパルスを生成し、アンプ40を介して出力する。このスレッドキックパルスはD/A変換器31でアナログ信号に変換されてスレッドドライバ32に供給される。スレッドドライバ32は、供給されたスレッドキックパルスに応じてスレッドモータ6に対する電力印加を行う。
【0057】
またサーボ回路61におけるDSP10には、ファインサーチを行うための構成として、トラバース生成部33,相対速度検出部34,トラッキングキックパルス生成部35,加算器39,23、積分回路37,アンプ38、トラバースカウント部40が設けられる。
【0058】
トラバース生成部33は、トラッキングエラー信号TEを基準レベル(ゼロレベル)と比較した比較出力としてのトラバース信号TRVを出力する(図6(A)(B)参照)。
相対速度検出部34は、入力されたトラバース信号TRVの立ち上がりエッジと立ち下がりエッジを検出し、そのエッジの間隔からピックアップ51の移送速度を判定し、判定結果をトラッキングキックパルス生成部35に出力する。
トラッキングキックパルス生成部35は、相対速度検出部34からの信号に対応してトラッキングキックパルス、即ちピックアップ51をディスク外周方向に駆動するためのパルスまたはディスク内周方向に駆動するためのパルスを生成する。
【0059】
相対速度検出部34,トラッキングキックパルス生成部35の処理は図5で説明した従来例と同様であり、即ち相対速度検出部34は、トラバース信号TRVの立ち上がりエッジと立ち下がりエッジを検出し、図6(C)に示すような、エッジ検出信号を生成する。そして、相対速度検出部34はさらに、このエッジ検出信号の間隔Tを計測し、この間隔Tが予め設定してある所定の基準値(目標速度に相当する値)より大きいか否かを判定する。すなわち、その周期(ファインサーチの速度)を判定する。そして相対速度検出部34は、間隔Tが基準値より大きい場合(ファインサーチ速度が基準速度より遅い場合)、例えば正の極性の信号を出力し、一方、間隔Tが基準値より小さい場合(ファインサーチ速度が基準の速度より速い場合)、負の極性の信号を出力する。
トラッキングキックパルス生成部35は、ファインサーチの方向に対応して、相対速度検出部34からの判定結果に基づいて、トラッキングキックパルスを生成する。外周方向へのファインサーチを行う場合、図6(D)に示すように、相対速度検出部34からの信号が正の極性の信号である場合に正の極性のトラッキングキックパルスを発生し、一方、相対速度検出部34からの信号が負である場合に負の極性のトラッキングキックパルスを発生する。
【0060】
本実施の形態の場合、トラッキングキックパルス生成部35から出力されるトラッキングキックパルスは、加算器39及び積分回路37に供給される。
積分回路37は、例えば所定期間、例えば過去N回のキックパルスの積分値を出力する。
出力された積分値にはアンプ38にで係数αが乗算される。係数αとは、二軸機構の特性に合わせて設定された値である。
そしてアンプ38の出力は加算器39に供給される。
従って、加算器39では、トラッキングキックパルス生成部35から出力されるトラッキングキックパルスに、アンプ38の出力が加算される。つまり、トラッキングキックパルスに対して、トラッキングキックパルスを積分し係数αが掛けられた値がバイアス値(DC成分)として加算されることになる。
【0061】
この加算器39の加算結果が、加算器23、アンプ24を介してトラッキング駆動信号として出力され、D/A変換器25,トラッキングドライバ26を介して二軸機構を駆動するものとなり、これによってファインサーチ動作が実行される。
【0062】
なお、トラバースカウント部40は、トラバース信号TRVをカウントして、スレッドドライブ制御部29に指示を出力する。
スレッドドライブ制御部29は、トラバースカウント値に基づいてスレッドキックパルスを発生する。このスレッドキックパルスが、アンプ30、D/A変換器31,スレッドドライバ32を介して、スレッドモータ6に供給される。これにより、スレッドモータ6が回転され、ギア7を介して、ピックアップ51が光ディスク1の外周方向に移送される。
この動作により、ファインサーチ時において、対物レンズ4が、二軸機構の中心から外周方向(又は内周方向)にずれた状態になった場合に、ピックアップ51全体が外周方向(又は内周方向)に移送される。
【0063】
以上のようにDSP10において形成されるトラッキングサーボ、スレッドサーボ、ファインサーチ動作に関する処理は、システムコントローラ60によって制御される。
【0064】
3.移送動作
上記図2の構成によりファインサーチ動作としての移送、即ち速度制御を伴うシーク動作が行われるが、上記のようにトラッキングキックパルスに対しては、トラッキングキックパルスを積分し係数αを乗算したバイアス電圧が加算されるものとなる。
【0065】
速度制御を伴うシーク動作をする場合は、目標とする相対速度が設計上決まっており、上記構成により、
・相対速度<目標速度→加速トラッキングキックパルス(正極性パルス電圧)
・相対速度>目標速度→減速トラッキングキックパルス(負極性パルス電圧)
としてトラッキングキックパルスが発生される。
ここで便宜的に、正極性のトラッキングキックパルス電圧=+P[V]、負極性のトラッキングキックパルス電圧=−P[V]とする。
【0066】
キックパルス電圧+P[V]、−P[V]は、二軸機構が現在位置及び現在速度から加速するため、及び減速するための電圧として決定している。すなわち、2軸のメカセンターからのずれを保持するための情報は含まれていない。
既に説明したように、従来技術では、このキックパルスをそのまま二軸機構を駆動するパルスとしていたため、二軸機構(対物レンズ)の位置ずれを保持する電圧はパルスの密度で補正されるというしくみとなっていた。
一方、本実施の形態の場合は、二軸機構を駆動するパルスは、
トラッキングキックパルス+∫キックパルス
とされる。
∫キックパルスとは、積分回路37及びアンプ38において積分処理及び係数αの乗算が行われることで得られたトラッキングキックパルスのDC電圧成分である。
そしてこの∫キックパルス(DC電圧)の部分で二軸機構のメカ的位置を保持し、トラッキングキックパルス部分で相対速度制御を行い、相対速度制御の性能を落とさずにシークを行うものである。
【0067】
図3に、ファインサーチ実行により、徐々に対物レンズ4がずれていった際の、トラッキングキックパルス+∫キックパルスとしての駆動信号の様子を示している。
対物レンズ位置がメカセンターからずれていくに従って、トラッキングキックパルスに対して斜線部として示す∫キックパルス成分が加えられる。即ち正極性及び負極性のトラッキングキックパルスに対して∫キックパルスによるDC成分が加算された電圧値が生成され、このような駆動パルスによって二軸機構が駆動されるものとなる。
例えば対物レンズ4の位置がメカセンターから「a」だけずれた状態では、「a」のずれ状態を維持するための電圧Vaがトラッキングキックパルスに加算され、また対物レンズ4の位置がメカセンターから「b」だけずれた状態では、「b」のずれ状態を維持するための電圧Vbがトラッキングキックパルスに加算されるものとなる。
言い換えれば、トラッキングキックパルスのセンター電位(0V)が対物レンズ位置状態に応じてVa・・Vbとオフセットされていくと見ることもできる。
【0068】
そしてこのような∫キックパルスによるDC成分は、各時点での対物レンズ位置状態を維持するための駆動力となる。
従って本例の場合、トラッキングキックパルスの密度を高くすることで対物レンズ位置状態を維持する駆動力を得ることは不要となる。このため図3と図13を比較してもわかるように、本例では正極性と負極性のトラッキングキックパルスのパルス密度に偏りはさほど発生しない。
トラッキングキックパルス密度の偏りを少なくできることで、二軸機構(対物レンズ)のメカ的な位置状態に関わらず、トラックと二軸機構との相対速度制御性能を確保することが可能となり、より安定して相対速度制御を行うシーク(ファインサーチ)が実現できる。
又従って、設計の際のキックパルス電圧の選定も自由度が高くなる。
【0069】
そして、安定したファインサーチ動作が実現できることから、シーク可能距離を伸ばすことができ、また二軸機構がメカセンターにない状態からファインサーチ動作を行っても、シーク失敗の確率を減らすことができる。
また、二軸機構の低域感度により、あるメカ的オフセットを維持するためのDC電圧は変化するが、本例では相対速度制御シークで使用する駆動電圧(トラッキングキックパルス)の結果をフィードバックして使用しているため、二軸機構の低域感度固体差による効果の差はない。同様の理由で、環境温度変化による二軸機構の低域感度変化があっても上記効果を維持できる。
【0070】
4.変形例
本発明は上記実施の形態に限らず、多様な変形例が考えられる。
上述したトラッキングキックパルスの積分及び係数乗算で得る∫キックパルスとしてのバイアス電圧については、積分処理は例えば過去N回のトラッキングキックパルスの積分を行うとしたが、シーク開始から現在までの全てのキックパルスの積分値を算出するようにしてもよい。
又は、前回のトラッキングキックパルスのα倍としてもよい。
【0071】
また上記実施の形態では、相対速度一定化制御のためには、相対速度と目標速度の大小のみ比較し、トラッキングキックパルス生成部35では、その比較結果により特定の電圧(+P、−P)のトラッキングキックパルスを発生させるようにしたが、相対速度誤差に応じてトラッキングキックパルスを制御しても良い。
即ち、相対速度検出部34は、相対速度と目標速度の差分値(相対速度誤差)を検出してトラッキングキックパルス生成部35に供給し、トラッキングキックパルス生成部35は、差分値に応じて発生するトラッキングキックパルスの電圧を変化させるようにするものである。或いは、相対速度誤差に応じてパルス幅を変化させて制御する例も考えられる。
このようなトラッキングキックパルス発生方式の場合でも、トラッキングキックパルスの積分及び係数乗算で得たバイアス値を加算する本発明は有効である。
【0072】
さらに、相対速度制御のためにトラッキングキックパルスを用いる例で説明してきたが、パルスではなく、リニアな制御電圧を用いる場合でも、本発明が適用できる。
【0073】
【発明の効果】
以上の説明から理解されるように本発明によれば、ファインサーチとしての対物レンズ移送を行う際には、駆動信号(トラッキングキックパルス)の積分値と二軸機構(支持機構)の特性に合わせた適切な係数を掛けた値を、駆動信号のバイアス値として使用し、このバイアス成分によって二軸機構のDC駆動力を得ることで対物レンズ位置を保持する駆動力を得るようにしている。即ち、駆動信号の密度(トラッキングキックパルス密度)の偏りである駆動電圧の積分値に或る係数をかけた電圧を、駆動信号にDC的に加算することにより、二軸機構における対物レンズのメカ的な移動を上記DC成分で補正し、駆動信号のパルス密度の偏りを少なくできる。
これによって二軸機構のメカ的な位置状態に関わらず、トラックと二軸機構との相対速度制御性能を確保することが可能となり、より安定して相対速度制御を行うシーク(ファインサーチ)が実現できるという効果がある。
【0074】
またこのため、ファインサーチによるシーク可能距離を伸ばすことができる。
また二軸機構(対物レンズ)がメカセンターにない状態からファインサーチを行っても、シーク失敗の確率を減らすことができる。
【0075】
また、二軸機構の低域感度により、あるメカ的オフセットを維持するためのDC電圧は変化するが、本発明では相対速度制御のための駆動信号(トラッキングキックパルス)の結果をフィードバックして使用しているため、二軸機構の低域感度固体差による差は生じない。
同様の理由で、環境温度変化による二軸機構の低域感度変化があっても本発明は有効である。
【図面の簡単な説明】
【図1】本発明の実施の形態のディスクドライブ装置のブロック図である。
【図2】実施の形態のサーボ系の要部のブロック図である。
【図3】実施の形態のシーク時のキックパルスの説明図である。
【図4】従来例及び実施の形態のサーボ系の説明図である。
【図5】従来のサーボ系のブロック図である。
【図6】従来例及び実施の形態のシーク時の動作波形の説明図である。
【図7】ピックアップの構造の説明図である。
【図8】ピックアップの構造の説明図である。
【図9】ピックアップの構造の説明図である。
【図10】図7のピックアップ状態に対応するキックパルスの説明図である。
【図11】図8のピックアップ状態に対応するキックパルスの説明図である。
【図12】図9のピックアップ状態に対応するキックパルスの説明図である。
【図13】従来のシーク時のキックパルスの説明図である。
【符号の説明】
1 ディスク、4 対物レンズ、10 DSP、21 A/D変換器、22,28 ローブーストフィルタ、23,39 加算器、24,30,38 アンプ、25,31 D/A変換器、26 トラッキングドライバ、27 ローパスフィルタ、29 スレッドドライブ制御部、32 スレッドドライバ、33 トラバース生成部、34 相対速度検出部、35 トラッキングキックパルス生成部、36 トラッキングキックパルス計数部、37 積分回路、51 ピックアップ、52 スピンドルモータ、53 スレッド機構、54 マトリクス回路、55 リーダ/ライタ回路、56 変復調回路、57 ECCエンコーダ/デコーダ、58 ウォブル回路、59 アドレスデコーダ、60 システムコントローラ、61 サーボ回路、62 スピンドルサーボ回路、63 レーザドライバ、120 AVシステム

Claims (4)

  1. データの書込又は読出のために、ディスク記録媒体に対するレーザ照射及び反射光検出を行うとともに、レーザ光照射端となる対物レンズを支持機構により少なくともトラッキング方向に変位可能に支持しているヘッド手段と、
    上記対物レンズをトラッキング方向に複数トラックにわたって移送させる際に、上記ディスク記録媒体上で横切るトラックに対する上記対物レンズの相対速度を検出し、上記相対速度が一定になるように上記移送のための駆動信号を発生させる駆動信号発生手段と、
    上記駆動信号発生手段で発生された駆動信号について積分処理及び係数演算処理を行う積分及び係数手段と、
    上記駆動信号発生手段で発生された駆動信号に、上記積分及び係数手段の出力を加算して得た加算駆動信号を用いて、上記支持機構を駆動して上記対物レンズをトラッキング方向に移送させる移送駆動手段と、
    を備えたことを特徴とするディスクドライブ装置。
  2. 上記駆動信号発生手段は、上記相対速度と所定の目標速度の比較結果に基づいて、上記駆動信号として、上記対物レンズの移送を加速又は減速させるキックパルスを発生させることを特徴とする請求項1に記載のディスクドライブ装置。
  3. データの書込又は読出のために、ディスク記録媒体に対するレーザ照射及び反射光検出を行うとともに、レーザ光照射端となる対物レンズを支持機構により少なくともトラッキング方向に変位可能に支持しているヘッド手段において、上記対物レンズをトラッキング方向に複数トラックにわたって移送させる際に、
    上記ディスク記録媒体上で横切るトラックに対する上記対物レンズの相対速度を検出し、
    上記相対速度が一定になるように上記移送のための駆動信号を発生させ、
    上記発生された駆動信号について積分処理及び係数演算処理を行ない、
    上記発生された駆動信号に、上記積分及び係数手段の出力を加算して得た加算駆動信号を用いて、上記支持機構を駆動して上記対物レンズをトラッキング方向に移送させることを特徴とする対物レンズの移送方法。
  4. 上記駆動信号は、上記相対速度と所定の目標速度の比較結果に基づいて上記対物レンズの移送を加速又は減速させるキックパルスであることを特徴とする請求項3に記載の対物レンズの移送方法。
JP2002261123A 2002-09-06 2002-09-06 ディスクドライブ装置、対物レンズの移送方法 Withdrawn JP2004103079A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002261123A JP2004103079A (ja) 2002-09-06 2002-09-06 ディスクドライブ装置、対物レンズの移送方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002261123A JP2004103079A (ja) 2002-09-06 2002-09-06 ディスクドライブ装置、対物レンズの移送方法

Publications (1)

Publication Number Publication Date
JP2004103079A true JP2004103079A (ja) 2004-04-02

Family

ID=32261587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002261123A Withdrawn JP2004103079A (ja) 2002-09-06 2002-09-06 ディスクドライブ装置、対物レンズの移送方法

Country Status (1)

Country Link
JP (1) JP2004103079A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344311A (ja) * 2005-06-09 2006-12-21 Sony Corp サーボ制御装置及びサーボ制御方法、並びに光ディスク記録再生装置
JP2009156911A (ja) * 2007-12-25 2009-07-16 Sanyo Electric Co Ltd 振動補償制御回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344311A (ja) * 2005-06-09 2006-12-21 Sony Corp サーボ制御装置及びサーボ制御方法、並びに光ディスク記録再生装置
JP2009156911A (ja) * 2007-12-25 2009-07-16 Sanyo Electric Co Ltd 振動補償制御回路

Similar Documents

Publication Publication Date Title
JP2004095106A (ja) ディスクドライブ装置、フォーカスバイアス及び球面収差調整方法
JP2006277777A (ja) 再生装置、レイヤジャンプ方法
JP2004103079A (ja) ディスクドライブ装置、対物レンズの移送方法
JP4264653B2 (ja) 光ディスク装置、フォーカスバイアス及び球面収差補正値調整方法
JP2004079030A (ja) ディスクドライブ装置、アドレス検出方法
JP4192667B2 (ja) 二値化回路、二値化方法、光ディスク装置
JP5311881B2 (ja) 光学的記録再生装置
JP4207660B2 (ja) ディスクドライブ装置、デジタルフィルタ、フィルタ計算方法
JP4218409B2 (ja) 光ディスク装置、シーク速度制御方法
JP4211774B2 (ja) 光ディスク再生装置
KR100370519B1 (ko) 디스크형 기록 매체의 재생 장치
JP3849833B2 (ja) 光ディスク装置
JP4168538B2 (ja) フィードバックサーボ回路、及びディスクドライブ装置
JP3945219B2 (ja) ディスク装置及びその制御方法
JP2011008887A (ja) 再生装置、レーザ駆動電源電圧生成方法
JP2000090443A (ja) ディスクドライブ装置
JP2009193641A (ja) 光学的記録再生装置
JP2007179702A (ja) 光ディスクの焦点制御装置
JP2004063020A (ja) 光ディスク駆動装置、フォーカス制御装置およびフォーカス制御方法
JP2002298381A (ja) 省電力型記録媒体ドライブ装置および記録媒体ドライブ装置のスレッド移送方法
JP2005259312A (ja) 記録装置、記録方法
JP2009199666A (ja) 光ディスク装置
JP2004095107A (ja) ディスクドライブ装置、サーボゲイン調整方法
JP2007220207A (ja) 光ディスク装置
JP2005310329A (ja) 光記録媒体、再生装置、トラッキングサーボ方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050804

Free format text: JAPANESE INTERMEDIATE CODE: A621

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070613