JP2004097855A - 水処理装置 - Google Patents

水処理装置 Download PDF

Info

Publication number
JP2004097855A
JP2004097855A JP2002259120A JP2002259120A JP2004097855A JP 2004097855 A JP2004097855 A JP 2004097855A JP 2002259120 A JP2002259120 A JP 2002259120A JP 2002259120 A JP2002259120 A JP 2002259120A JP 2004097855 A JP2004097855 A JP 2004097855A
Authority
JP
Japan
Prior art keywords
water
electrolytic cell
tank
treatment apparatus
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259120A
Other languages
English (en)
Other versions
JP4162453B2 (ja
Inventor
Yoshihiro Inamoto
稲本 吉宏
Tatsuya Hirota
廣田 達哉
Muneaki Sugimoto
杉本 宗明
Minoru Nakanishi
中西 稔
Minoru Kishi
岸 稔
Naoki Ko
広 直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002259120A priority Critical patent/JP4162453B2/ja
Priority to CNB031561748A priority patent/CN1229283C/zh
Priority to KR10-2003-0061323A priority patent/KR100535787B1/ko
Publication of JP2004097855A publication Critical patent/JP2004097855A/ja
Application granted granted Critical
Publication of JP4162453B2 publication Critical patent/JP4162453B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/46155Heating or cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)

Abstract

【課題】脱窒素処理の効率をこれまでよりも向上して、より効率よく脱窒素処理できるとともに、塩素ガスの発生を抑制することもできる、新規な水処理装置を提供する。
【解決手段】水w1を脱窒素処理するための電解槽11、または電解槽11に水を供給し、かつ処理後の水を電解槽11から排出するための処理水路10に、処理水路10を流れる水w1のpHを測定するためのpHセンサS2を設けるとともに、水に酸性剤L1を供給するための酸性剤供給手段12を設け、電解槽11での電気化学反応時にpHセンサS2の測定値を8以下に維持するために、酸性剤供給手段12から酸性剤L1を供給する。
【効果】電気化学反応時の水のpHを8以下に抑えることによって、脱窒素処理の効率をこれまでよりも向上するとともに、塩素ガスの発生を抑制することができた。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、電気化学反応によって水を脱窒素処理するための水処理装置に関するものである。
【0002】
【従来の技術】
工場廃水や生活排水、地下水等に溶存する硝酸イオン、亜硝酸イオン、アンモニア等の窒素成分は水質汚染の原因物質であることから、これらを除去する必要がある。
上記のうち硝酸イオン、亜硝酸イオン等の酸化態窒素を除去する方法として、従来は、脱窒素菌を用いる生物的脱窒法が知られている。
【0003】
しかし脱窒素菌等の生体触媒は、活動の程度が温度によって左右されるため、生物的脱窒法では、窒素成分の除去能力が季節や天候などによって大きく変動するという問題がある。
そこで生体触媒を用いずに、電気化学反応によって酸化態窒素を除去することが検討された。
例えば特許文献1においては、
・ 電気化学反応によって酸化態窒素を還元する機能を有するカソード側の電極と、対極としてのアノード側の電極との間を陽イオン交換膜で隔ててカソード室とアノード室を形成し、
・ 水を、まずカソード室に導入して、水に含まれる酸化態窒素を還元したのち、
・ アノード室に導いて、先の還元反応で生成したアンモニアを窒素分子に酸化して除去する
装置が提案された。
【0004】
また簡易的に、陽イオン交換膜を省略した装置も提案された。
かかる装置においては、カソード側の電極として、上記のように電気化学反応によって酸化態窒素を還元する機能を有する、例えば真鍮などの電極を用いるとともに、アノード側の電極として、電気化学反応によって、塩素を含む水から次亜塩素酸またはそのイオンを発生させる機能を有する白金−イリジウム電極などを用いる。
【0005】
そして、水道水などの塩素を含む水、あるいは必要に応じて食塩等を加えた水に、電源回路から、両電極を介して直流電流を流すと、下記式(1)〜(4)の電気化学反応を生じて、酸化態窒素を窒素ガスに変換して除去することができる。
(カソード側)
NO +6HO+8e→NH+9OH   (1)
(アノード側)
2Cl→Cl+2e   (2)
O+Cl⇔HClO+H+Cl   (3)
(アノード側+カソード側)
2NH+3HClO→N↑+3HCl+3HO   (4)
【0006】
【特許文献1】
特開平11−347558号公報(第0007欄、図1)
【0007】
【発明が解決しようとする課題】
ところが、上記の電気化学反応を続けると、水のpHがアルカリ側にシフトする傾向にあり、かかるシフトが発生すると、カソード側で、亜硝酸が硝酸に戻る逆反応を生じるため、脱窒素処理の効率が著しく低下するという問題を生じる。
また、水のpHがアルカリ側にシフトすると、アノード側で生成した塩素(Cl)がガス化しやすく、発生した塩素ガスが、電極の、水から露出した部分を腐食するという問題も生じる。また、発生した塩素ガスが系外に漏れるのを防止するために、電極を内蔵した電解槽を厳密なシール構造にしなければならないという問題もある。
【0008】
この発明は、脱窒素処理の効率をこれまでよりも向上して、より効率よく脱窒素処理できるとともに、塩素ガスの発生を抑制することもできる、新規な水処理装置を提供することにある。
【0009】
【課題を解決するための手段および発明の効果】
請求項1記載の発明は、水中での電気化学反応によって酸化態窒素を還元することで、水を脱窒素処理するための電解槽と、この電解槽に水を供給し、かつ処理後の水を電解槽から排出するための処理水路と、処理水路を流れる水のpHを測定するためのpHセンサと、電解槽に供給される水に酸性剤を供給するための酸性剤供給手段と、電解槽での電気化学反応時にpHセンサの測定値を8以下に維持するために、酸性剤供給手段から酸性剤を供給させるための制御手段とを備えることを特徴とする水処理装置である。
【0010】
請求項1の構成によれば、pHセンサで測定した水のpHの測定値に基づいて、酸性剤供給手段から、例えば希硫酸などの酸性剤を断続的もしくは連続的に水に供給することによって、電解槽での電気化学反応時の水のpHがアルカリ側にシフトするのを防止して、脱窒素処理に適した8以下に維持することができる。
このためカソード側で、亜硝酸が硝酸に戻る逆反応が発生するのを防止して、脱窒素処理の効率をこれまでよりも向上することができる。
【0011】
また、pHを8以下に維持しつつ電気化学反応を行うと、塩素ガスの発生を抑制することもできる。したがって、例えば電極の、水から露出した部分の腐食を防止できる上、電極を内蔵した電解槽のシール構造をこれまでよりも簡略化することもできる。
請求項2記載の発明は、処理水路は、電解槽から排出した水を再び電解槽に供給するための循環水路と、水を、循環水路を通して循環させるための循環ポンプとを備えており、上記循環水路に、pHセンサと酸性剤供給手段とを配設したことを特徴とする請求項1記載の水処理装置である。
【0012】
請求項2の構成によれば、水を、循環水路を通して繰り返し、電解槽に供給して脱窒素処理することができる。
このため、例えば通常の水よりも粘度の高い、混ざりにくい工場廃水などであっても、循環水路を繰り返し通過させることによって強制的にかく拌しながら脱窒素処理できるため、処理の効率をさらに向上することができる。
請求項3記載の発明は、循環水路の途中に、電解槽で処理した水を貯留するための貯水槽を配設するとともに、電解槽を、当該槽内が常時水で満たされて、電気化学反応によって発生する塩素ガスが貯留しない構造に形成したことを特徴とする請求項2記載の水処理装置である。
【0013】
請求項3の構成によれば、塩素ガスによる電極の腐食を、より確実に防止することができる。
請求項4記載の発明は、pHセンサを、循環水路の、貯水槽の下流側で、かつ電解槽の上流側に配設したことを特徴とする請求項3記載の水処理装置である。
請求項4の構成によれば、電解槽での電気化学反応時に電極間を流れる電流の影響を極力排除して、pHセンサによって、より正確な水のpHを測定することができる。
【0014】
請求項5記載の発明は、酸性剤供給手段を、循環水路の、電解槽の下流側で、かつ貯水槽の上流側に配設したことを特徴とする請求項4記載の水処理装置である。
請求項5の構成によれば、酸性剤供給手段から供給した酸性剤を、貯水槽を通すことで、水とより均一に混合した状態で、当該貯水槽の下流側に配設したpHセンサに供給することができる。したがってpHセンサによって、より正確な水のpHを測定することができる。
【0015】
請求項6記載の発明は、制御手段は、一定時間ごとに電気化学反応を停止した状態で、pHセンサによって水のpHを測定し、この測定値に基づいて、酸性剤供給手段から酸性剤を供給させることを特徴とする請求項1記載の水処理装置である。
また請求項7記載の発明は、処理水路は、pHセンサを配設した位置の近傍に接地部を設けたことを特徴とする請求項1記載の水処理装置である。
【0016】
請求項6、7の構成によれば、電解槽での電気化学反応時に電極間を流れる電流の影響を極力排除して、pHセンサによって、より正確な水のpHを測定することができる。
請求項8記載の発明は、電解槽内にヒータを設けるか、または処理水路の、電解槽より下流側に、ヒータを内蔵した加熱槽を配設し、当該ヒータによって、電気化学反応中または反応後の水を加熱することで、電気化学反応によって発生するアンモニア性窒素を気化させて水から除去することを特徴とする請求項1記載の水処理装置である。
【0017】
請求項8の構成によれば、特に陽イオン交換膜式の装置において、電気化学反応によって発生するアンモニア性窒素を加熱によって気化させて反応系から逐次、除去できるため、電気化学反応を、よりスムースに進行させることができ、脱窒素処理の効率をさらに向上することができる。また、加熱温度を一定に設定しておけば、気温等に応じて水の温度が変化した場合でも、処理の効率を一定に維持することができる。しかも陽イオン交換膜式の装置では、アンモニア性窒素を除去するための有効塩素成分を加える等の必要がなくなるため、装置を簡略化することもできる。
【0018】
請求項9記載の発明は、ヒータを設けた電解槽または加熱槽に、気化したアンモニア性窒素を窒素ガスに変換するための触媒と、排気のためのファンとを備えた排気路を接続したことを特徴とする請求項8記載の水処理装置である。
請求項9の構成によれば、刺激臭のあるアンモニア性窒素を無臭の窒素ガスに変換して排気できるため、環境衛生上、好ましい。
【0019】
【発明の実施の形態】
図1は、この発明の一実施形態にかかる水処理装置1を、例えば工場等において、廃水タンク2中に貯留した水w1をドレンDに排水する設備に組み込んだ構造を簡略化して示す図である。
図の例の水処理装置1は、廃水タンク2から水w1を取り込んで、電解槽11で脱窒素処理したのち、ドレンDに排水するための処理水路10を有する。
【0020】
また電解槽11は、反応容器となる函状の筐体11aと、この筐体11aの上部開口を閉じる蓋体11bと、筐体11aの外側に一体に形成した、筐体11aからオーバーフローした余剰の水を受けるための外容器11cとを有する。
このうち筐体11aには、その底部に、脱窒素処理した水w1をドレンDへ排出するための、処理水路10の下流側に相当する排水路10bを接続してある。排水路10bを、上記のように筐体11aの底部に接続しておくと、当該筐体11aの底部に、工場廃水中に含まれる固形分などが澱んだり沈殿したりするのを防止して、脱窒素処理の効率を向上できる。
【0021】
また蓋体11bには、廃水タンク2から水w1を供給するための、処理水路10の上流側に相当する給水路10aを接続してあるとともに、槽内の水位を測定するための水位センサS1と、水w1に通電して、電気化学反応によって脱窒素処理するための電極11dと、水w1のpHを測定するためのpHセンサS2とを配設してある。
また蓋体11bには、酸性剤供給手段12の酸性剤槽12aに貯留した、希硫酸などの酸性剤L1を電解槽11に供給するための供給水路12bと、エアーポンプPaによって送り込んだ空気を細かな気泡にして、電極11d間に送り出すための送気管13と、電気化学反応によって発生するガスを、ブロワBMの排気力によって電解槽11外へ排出するための排気管14とを接続してある。
【0022】
このうち送気管13を通して、電極11d間に細かな気泡を送り出すようにすると、とくにカソード側の電極11dの表面へのスケールの付着を防止できるため、電極11dの寿命を延長するとともに、脱窒素処理の効率を向上することができる。
また酸性剤供給手段12の供給水路12bには、酸性剤槽12aに貯留した酸性剤L1を一定量ずつ、電解槽11に供給するための定量ポンプPbを配設してある。
【0023】
外容器11cには、当該外容器11cにオーバーフローした水をドレンDに排水するための排水路10cを接続してある。
電解槽11は、この例では、陽イオン交換膜を省略した方式を採用しており、前述した式(1)〜(4)の電気化学反応によって脱窒素処理するために、電極11dのうちカソード側の電極として真鍮などの電極と、アノード側の電極として白金−イリジウム電極などとを組み合わせてある。
【0024】
給水路10aには、水w1を、廃水タンク2から電解槽11に供給するためのポンプP1と、配管10aを開閉するためのモーター弁V1とをこの順に配設してある。
また給水路10aには、モーター弁V1と電解槽11との間の合流点J1に、促進剤供給手段15の供給水路15bを接続してある。
促進剤供給手段15は、前述した式(1)〜(4)の電気化学反応を行う際に必要な塩素イオンを供給するために、電解槽11に供給される水w1に促進剤L2を添加するためのもので、供給水路15bには定量ポンプPcを配設してある。また図において符合15cは、促進剤槽15aに水を供給するための給水路、符号15dは、促進剤槽15aからオーバーフローした余剰の水をドレンDに排水するための排水路である。さらに符号S3は、給水路15cを通して促進剤槽15aに供給する水の量を制御すべく、その水位を検知するための水位センサである。
【0025】
促進剤供給手段15は、促進剤槽15aに、食塩等の塩素を含む水溶性の化合物を収容しておき、給水路15cを通して、一定の水位となるように供給した水によって化合物を溶解して、飽和濃度またはそれに近い高濃度の促進剤L2を生成するとともに、生成した促進剤L2を、定量ポンプPcを駆動させることによって一定量ずつ、供給水路15bを通して電解槽11に供給するためのものである。
【0026】
なおアノード側の電極として、前述した白金−イリジウム電極などではない、塩素を含む水から次亜塩素酸またはそのイオンを発生させる機能を有しない電極を用いる場合、促進剤供給手段15は、食塩水等の塩素イオンを含む溶液ではなく、前記式(4)の反応でアンモニア性窒素と反応する次亜塩素酸イオンを含む溶液、例えば次亜塩素酸ナトリウム水溶液などを供給するようにすればよい。あるいはまた、前述した白金−イリジウム電極などを用いて、食塩水等を電解反応させて次亜塩素酸イオンを発生させる装置を促進剤供給手段15として用いることもできる。
【0027】
排水路10bには、電解槽11から水w1を排出するためのポンプP2と、配管10bを開閉するためのモーター弁V2とをこの順に配設してある。
図2は、図1の水処理装置1の、電気的な構成を示すブロック図である。
図に見るように水処理装置1は、電解槽11の電極11dに通電制御しつつ、装置を構成する各部を作動させる制御手段としての制御部30を備えている。
水位センサS1、pHセンサS2、および水位センサS3の出力は、制御部30へ与えられる。制御部30内には、各種動作のタイミングを規定するためのタイマ31と、各種動作の基準となる初期値などを登録したメモリ32とを設けてある。
【0028】
制御部30は、各センサS1〜S3の出力、タイマ31によって規定したタイミング、並びにメモリ32に記録した初期値などに基づいて種々の演算を行い、それに基づいて制御信号をドライバ33へ与える。そしてドライバ33は、与えられる信号に基づいて電極11dへの通電制御を行い、かつポンプP1、P2、エアーポンプPa、定量ポンプPb、Pc、ブロワBM、モーター弁V1、V2の駆動制御を行う。
【0029】
制御部30による、水処理装置1の、通常運転時の制御の一例を、以下に示す。
まず水処理装置1の運転を開始すると、制御部30は、水位センサS1によって、電解槽11内の水位を測定する。
次に、電解槽11の水位があらかじめ設定した下限値以下である場合には、モーター弁V2を閉じ、かつポンプP2を停止させた状態で、モーター弁V1を開くとともにポンプP1を駆動して、水w1を、廃水タンク2から電解槽11に送る。また随時、定量ポンプPcを駆動して、促進剤L2を促進剤槽15aから電解槽11に送る。
【0030】
そして、電解槽11内の水位があらかじめ設定した上限値まで上昇した時点でモーター弁V1を閉じるとともにポンプP1を停止した後、エアーポンプPaを駆動させて、送気管13を通して、電極11d間に細かな気泡を送り出すとともに、ブロワBMを駆動させて、排気管14を通して排気を行いながら、電極11dに通電する。
そうすると、前記式(1)〜(4)の電気化学反応によって水w1を脱窒素処理することができる。
【0031】
またこの間、制御部30は、pHセンサS2によって電解槽11内の水w1のpHを継続的に測定しながら、酸性剤供給手段12から酸性剤L1を供給して、pHの調整を行う。
そして、例えばタイマ31によって規定した処理の時間が経過した時点で電極11dへの通電を停止するとともに、エアーポンプPaとブロワBMとを停止した後、モーター弁V2を開くとともにポンプP2を駆動することによって、脱窒素処理した水w1をドレンDに排水する。
【0032】
また制御部30は、上記の流れとは別に、水位センサS3によって、促進剤槽15a内の促進剤L2の水位を検知しており、検知した水位があらかじめ設定した下限値以下になった時点で、図示しない給水栓を開いて、給水路15cを通して水を供給して、促進剤槽15a内の促進剤L2の水位を常に一定の範囲に維持する働きもする。
制御部30によるpH調整の流れの一例を、図3に示す。
【0033】
ステップSP1で装置の運転を開始すると、制御部30は、あらかじめメモリ32に記録した、pH値の上限値と下限値とを読み込むとともに、pHセンサS2によるpHの測定を開始する(ステップSP2)。
なおpHの上限値は、前述した理由で8に限定される。またpHの下限値は6であるのが好ましい。pHが6未満の領域では、ごく少量の酸性剤の添加によってpHが急激に変動し、pHの制御が容易でないためである。
【0034】
次にステップSP3に進んで、制御部30は、pHの測定値が上限値以下(pH≦8)であるか否かを判定し、pHが上限値以下である場合はステップSP4に進んで、pHの測定値が下限値以上(pH≧6)であるか否かを判定する。
そしてpHが下限値以上である場合はステップSP5に進んで、装置のオペレータなどによって運転終了が選択されるまで、ステップSP3〜SP5を繰り返す。そしてステップSP5で装置の運転終了が選択されると、ステップSP6に進んで装置の運転を終了する。
【0035】
しかし電気化学反応を続けると、前述したように水のpHがアルカリ側にシフトする、つまりpHが増加する傾向にある。
このためステップSP3で、pHが上限値を超える(pH>8)と判定した場合、制御部30は、ステップSP7に進んで、酸性剤供給手段12の定量ポンプPbを駆動して、酸性剤槽12aから、供給水路12bを通して酸性剤を電解槽11に供給する操作を開始する。そしてステップSP5で装置の運転終了が選択されない間はステップSP3に戻って、pHが上限値以下(pH≦8)になるまでステップSP3→SP7→SP5を繰り返す。
【0036】
またpHが上限値以下(pH≦8)になると、制御部30は、次にステップSP4に進んで、pHが下限値以上(pH≧6)であるか否かを判定し、pHが下限値以上であり、かつステップSP5で装置の運転終了が選択されない間は、ステップSP3→SP4→SP5を繰り返す。
さらにステップSP4でpHが下限値未満(pH<6)であると判定した場合、制御部30は、ステップSP8に進み、定量ポンプPbを停止して、酸性剤の供給を停止する。
【0037】
pHが下限値未満であり、かつステップSP5で装置の運転終了が選択されない間は、ステップSP3→SP4→SP8→SP5を繰り返す。また、電気化学反応を続けることで水のpHが上昇して、pHが下限値以上になると、制御部30は、pHが下限値以上であり、かつステップSP5で装置の運転終了が選択されない間は、ステップSP3→SP4→SP5を繰り返す。そして、さらにpHが上昇して上限値を超えると、制御部30は、再びステップSP7に進んで、水に酸性剤を添加する。
【0038】
以上の操作を繰り返すことによって、電解槽11内の水w1のpHを8以下、好ましくは6〜8の範囲に維持しつつ電気化学反応を継続することができる。
なお、電解槽11での電気化学反応時に電極11d間を流れる電流の影響を極力排除して、pHセンサS1によって、より正確な水のpHを測定することを考慮すると、以上の操作は、一定時間ごとに電気化学反応を停止した状態で、pHセンサによって水のpHを測定し、この測定値に基づいて行うのが好ましい。
【0039】
その具体的な方法としては、
一定時間ごとに電気化学反応を停止した状態で測定したpH値をそのまま利用する方法の他、
一定時間ごとに電気化学反応を停止した状態で測定したpH値に基づいて現在のpH値を補正して利用する方法を採用することもできる。
図4は、この発明の他の実施形態にかかる水処理装置1を、同様に廃水タンク2中に貯留した水w1をドレンDに排水する設備に組み込んだ構造を簡略化して示す図である。
【0040】
図の例の水処理装置1の、先の図1の例との相違点は、
水処理水路10に、電解槽11から排出した水を再び電解槽11に供給するための循環水路10dを設けた点と、
この循環水路10dの途中に、循環ポンプP3と、pHセンサS2とを配設した点と
この循環水路10dに、酸性剤供給手段12の供給水路12bを接続した点
である。その他の部分は図1の例と同じであるので、同一個所に同一符号を付して説明を省略する。また、図の例ではエアーポンプPaと送気管13とを省略しているが、省略せずに設置しても構わない。
【0041】
循環水路10dは、電解槽11の筐体10aの底部から出て、循環ポンプP3、モーター駆動式の三方弁V3、pHセンサS2、および酸性剤供給手段12の供給水路12bとの合流点J2を介して、電解槽11の蓋体11bに至るように接続してある。
循環水路10dを、上記のように筐体11aの底部に接続しておくと、循環水路10dを流れる水流によって筐体11a内をも強制的にかく拌して、その底部に、工場廃水中に含まれる固形分などが澱んだり沈殿したりするのを防止して、脱窒素処理の効率を向上できる。
【0042】
またpHセンサS2を、上記のように酸性剤供給手段12の供給水路12bとの合流点J2より上流側に配設しておくと、循環水路10dを循環して、酸性剤と水とが十分に混合された状態でのpHを測定することができるため、pHの測定精度を向上することができる。
また廃水タンク2からの給水路10aは、上記循環水路10dの、供給水路12bの合流点J2の下流側の合流点J3に接続してあり、ドレンDへの排水路10bは、上記三方弁V3に接続してある。
【0043】
給水路10aと排水路10bとをともにこのように接続すると、電解槽11への水の入口をおよび出口をそれぞれ1つずつとして、電解槽11の構造を簡略化できる。
また三方弁V3は、上記の位置に設けることによって、電解槽11内の水の、循環水路11dを通しての循環と、排水路10bを通してのドレンDへの排水との切替手段として機能させることができる。
【0044】
図の例の水処理装置1の電気的な構成は、前記図2のうちポンプP2を循環ポンプP3に、またモーター弁V2を三方弁V3に変更するとともに、エアーポンプPaを省略したこと以外は同様である。
制御部30による、水処理装置1の、通常運転時の制御の一例を、以下に示す。
まず水処理装置1の運転を開始すると、制御部30は、水位センサS1によって、電解槽11内の水位を測定する。
【0045】
次に、電解槽11の水位があらかじめ設定した下限値以下である場合には、三方弁V3を循環水路10d側に開き、かつ循環ポンプP3を停止させた状態で、モーター弁V1を開くとともにポンプP1を駆動して、水w1を、廃水タンク2から電解槽11に送る。また随時、定量ポンプPcを駆動して、促進剤L2を促進剤槽15aから電解槽11に送る。
そして、電解槽11内の水位があらかじめ設定した上限値まで上昇した時点でモーター弁V1を閉じるとともにポンプP1を停止した後、循環ポンプP3を駆動させて、電解槽11内の水を循環水路10dを通して循環させるとともに、ブロワBMを駆動させて、排気管14を通して排気を行いながら、電極11dに通電する。
【0046】
そうすると、前記式(1)〜(4)の電気化学反応によって水w1を脱窒素処理することができる。
またこの際には、例えば通常の水よりも粘度の高い、混ざりにくい工場廃水などであっても、循環水路10dを繰り返し通過させることによって強制的にかく拌しながら脱窒素処理できるため、処理の効率を向上することができる。
そして、例えばタイマ31によって規定した処理の時間が経過した時点で電極11dへの通電を停止するとともに、循環ポンプP3とブロワBMとを停止した後、三方弁V3を排水路10b側に開くとともに、再び循環ポンプP3を駆動することによって、脱窒素処理した水w1をドレンDに排水する。
【0047】
またこの間、制御部30は、前記と同様にpHセンサS2によって水w1のpHを継続的に測定しながら、酸性剤供給手段12から酸性剤L1を供給して、pHの調整を行う。制御の流れは図3に示したとおりである。
また制御部30は、やはり前記と同様に、水位センサS3の測定結果に基づいて、給水路15cを通して水を供給することで、促進剤槽15a内の促進剤L2の水位を常に一定の範囲に維持する働きもする。
【0048】
図5は、この発明の他の実施形態にかかる水処理装置1を、やはり廃水タンク2中に貯留した水w1をドレンDに排水する設備に組み込んだ構造を簡略化して示す図である。
図の例の水処理装置1の、先の図4の例との相違点は、
循環水路10dの、もとの電解槽11の位置に、電極を有しない以外は同様に構成した貯水槽16を配設した点と、
電解槽11を、例えば循環水路10dを構成する配管の一部となる管路部材内に電極11dを組み込むなどして、槽内が常時水で満たされて、電気化学反応によって発生する塩素ガスが貯留しない構造に形成した点と、
かかる電解槽11を、循環水路10dの、pHセンサS2と、酸性剤供給手段12の供給水路12bとの合流点J2との間に配設した点と、
そして循環水路10dの、pHセンサS2の前後に接地部ETを設けた点である。その他の部分は図4の例と同じであるので、同一個所に同一符号を付して説明を省略する。
【0049】
貯水槽16は、函状の筐体16aと、この筐体16aの上部開口を閉じる蓋体16bと、筐体16aの外側に一体に形成した、筐体16aからオーバーフローした余剰の水を受けるための外容器16cとを有する。
筐体16aには、その底部に循環水路10dを接続してある。このように接続しておくと、循環水路10dを流れる水流によって筐体16a内をも強制的にかく拌して、その底部に、工場廃水中に含まれる固形分などが澱んだり沈殿したりするのを防止して、脱窒素処理の効率を向上できる。
【0050】
また蓋体16bには、循環水路10dと、電気化学反応によって発生するガスを、ブロワBMの排気力によって貯水槽16外へ排出するための排気管14とを接続してあるとともに、槽内の水位を測定するための水位センサS1を配設してある。
さらに外容器16cには、当該外容器16cにオーバーフローした水をドレンDに排水するための排水路10cを接続してある。
【0051】
電解槽11は、前記のように循環水路10dを構成する配管の一部となる管路部材内に電極11dを組み込むなどして、槽内が常時水で満たされて、電気化学反応によって発生する塩素ガスが貯留しない構造に形成してある。
したがって、塩素ガスによる電極11dの腐食を、より確実に防止することができる。なお電気化学反応によって発生した塩素ガスや窒素ガスは、循環水路10dを通して貯水槽16に送られ、ブロワBMの排気力によって、排気管14を通して貯水槽16外へ排出される。
【0052】
またこの例では、電解槽11を図の位置に配設することによって、pHセンサS2を、循環水路10dの、貯水槽16の下流側でかつ電解槽11の上流側に配設するとともに、酸性剤供給手段12の供給水路12bの合流点J2を、循環水路10dの、電解槽11の下流側で、かつ貯水槽16の上流側に配設したことになる。
このように構成すると、電解槽11での電気化学反応時に電極間を流れる電流の影響を極力排除するとともに、酸性剤供給手段12から供給した酸性剤L1を、貯水槽16を通すことで水とより均一に混合した状態で、pHセンサS2に供給できるため、当該pHセンサS2によって、より正確な水のpHを測定することができる。
【0053】
また図の例では、前記のように循環水路10dの、pHセンサS2の前後に接地部ETを設けてあるため、このことによっても、電解槽11での電気化学反応時に電極間を流れる電流の影響を極力排除して、pHセンサS2によって、より正確な水のpHを測定することができる。
接地部ETの構造としては、例えば循環水路10dを構成する配管の一部となる管路部材内に、チタニウムなどで形成した筒状の接地部材を固定して、接地のための配線を接続したり、該当部分の管路部材自体に接地のための配線を接続したりすればよい。また単に、接地のための配線を接続したチタニウムなどの金属棒を、循環水路10d内に挿入するだけでもよい。
【0054】
図の例の水処理装置1の電気的な構成は、前記図4のものと全く同様である。
制御部30による、水処理装置1の、通常運転時の制御の一例を、以下に示す。
まず水処理装置1の運転を開始すると、制御部30は、水位センサS1によって、貯水槽16内の水位を測定する。
次に、貯水槽16の水位があらかじめ設定した下限値以下である場合には、三方弁V3を循環水路10d側に開き、かつ循環ポンプP3を停止させた状態で、モーター弁V1を開くとともにポンプP1を駆動して、水w1を、廃水タンク2から貯水槽16に送る。また随時、定量ポンプPcを駆動して、促進剤L2を促進剤槽15aから貯水槽16に送る。
【0055】
そして、貯水槽16内の水位があらかじめ設定した上限値まで上昇した時点でモーター弁V1を閉じるとともにポンプP1を停止した後、循環ポンプP3を駆動させて、貯水槽16内の水を循環水路10dを通して循環させるとともに、ブロワBMを駆動させて、排気管14を通して排気を行いながら、電解槽11の電極11dに通電する。
そうすると、前記式(1)〜(4)の電気化学反応によって水w1を脱窒素処理することができる。
【0056】
またこの際には、例えば通常の水よりも粘度の高い、混ざりにくい工場廃水などであっても、循環水路10dを繰り返し通過させることによって強制的にかく拌しながら脱窒素処理できるため、処理の効率を向上することができる。
そして、例えばタイマ31によって規定した処理の時間が経過した時点で電極11dへの通電を停止するとともに、循環ポンプP3とブロワBMとを停止した後、三方弁V3を排水路10b側に開くとともに、再び循環ポンプP3を駆動することによって、脱窒素処理した水w1をドレンDに排水する。
【0057】
またこの間、制御部30は、前記と同様にpHセンサS2によって水w1のpHを継続的に測定しながら、酸性剤供給手段12から酸性剤L1を供給して、pHの調整を行う。制御の流れは図3に示したとおりである。
また制御部30は、やはり前記と同様に、水位センサS3の測定結果に基づいて、給水路15cを通して水を供給することで、促進剤槽15a内の促進剤L2の水位を常に一定の範囲に維持する働きもする。
【0058】
図6は、この発明の他の実施形態にかかる水処理装置1を、やはり廃水タンク2中に貯留した水w1をドレンDに排水する設備に組み込んだ構造を簡略化して示す図である。
図の例の水処理装置1の、先の図1の例との相違点は、
排水路10bの、電解槽11とポンプP2との間に、モーター弁V4と、ヒータH1を内蔵した加熱槽17とをこの順に配設した点と、
促進剤供給手段15を省略した点と、
電解槽11の外容器11cを省略した代わりに、加熱槽17に外容器17cを形成し、この外容器17cに排水路10cを接続した点と、
排気管14を加熱槽17に配設した点と、
この排気管14の途中に、アンモニア性窒素を窒素ガスに変換するための触媒CTを配設した点である。その他の部分は図1の例と同じであるので、同一個所に同一符号を付して説明を省略する。
【0059】
また、かかるヒータH1による、アンモニア性窒素の除去効果は、前述したように特に陽イオン交換膜式の装置において有効であるので、図の例では電解槽11として、記載を省略しているが、電極11dのうちカソード側の電極としての真鍮などの電極と、アノード側の電極とを、陽イオン交換膜で隔てた方式を採用している。
水の流れは、先に記載したようにまずカソード側で、水に含まれる酸化態窒素を還元し、次いでアノード側で、先の還元反応で生成したアンモニア性窒素を窒素分子に酸化して除去した後、加熱槽17に送るようにしてもよいし、カソード側で酸化態窒素を還元した水と、アノード側を通過した水とを混合して加熱槽17に送るようにしてもよい。
【0060】
加熱槽17は、函状の筐体17aと、この筐体17aの上部開口を閉じる蓋体17bと、前記のように筐体17aの外側に一体に形成した、筐体17aからオーバーフローした余剰の水を受けるための外容器17cとを有する。
筐体17aには、その底部に排水路10bを接続してある。このように接続しておくと、当該筐体17aの底部に、工場廃水中に含まれる固形分などが澱んだり沈殿したりするのを防止して、脱窒素処理の効率を向上できる。
【0061】
また蓋体17bには、排水路10bと、水を加熱することでアンモニア性窒素を気化させて水から除去するためのヒータH1と、気化したアンモニア性窒素をブロワBMの排気力によって加熱槽17外へ排出するための排気管14とを接続してあるとともに、水温を一定に保つためのサーミスタS4を配設してある。
ブロワBMの排気力によって加熱槽17外へ排出されたアンモニア性窒素は、排気管14の途中に設けた触媒CTによって窒素に変換されて装置外に排出される。なお触媒による変換反応を促進するためには、当該触媒CT自体を加熱するか、もしくは排気管14を通過するアンモニア性窒素を加熱する手段を、排気管14に設けておくのが好ましい。
【0062】
図の例の水処理装置1の電気的な構成は、前記図2に、ヒータH1と、モーター弁V4とを追加したこと以外は同様である。
制御部30による、水処理装置1の、通常運転時の制御の一例を、以下に示す。
まず水処理装置1の運転を開始すると、制御部30は、水位センサS1によって電解槽11内の水位を測定する。
【0063】
次に、電解槽11の水位があらかじめ設定した下限値以下である場合には、モーター弁V4を閉じた状態で、モーター弁V1を開くとともにポンプP1を駆動して、水w1を、廃水タンク2から電解槽11に送る。
そして、電解槽11内の水位があらかじめ設定した上限値まで上昇した時点でモーター弁V1を閉じるとともにポンプP1を停止した後、エアーポンプPaを駆動させて、送気管13を通して、電極11d間に細かな気泡を送り出しながら、電極11dに通電する。
【0064】
そうすると、前記式(1)〜(4)の電気化学反応によって水w1を脱窒素処理することができる。
またこの間、制御部30は、pHセンサS2によって電解槽11内の水w1のpHを継続的に測定しながら、酸性剤供給手段12から酸性剤L1を供給して、pHの調整を行う。
そして、例えばタイマ31によって規定した処理の時間が経過した時点で電極11dへの通電を停止するとともに、エアーポンプPaを停止した後、モーター弁V2を閉じ、かつポンプP2を停止させた状態で、モーター弁V4を開いて、水w1を、電解槽11から加熱槽17に送る。
【0065】
そしてモーター弁V2、V4を閉じるとともにポンプP2を停止させ、なおかつブロワBMを駆動させて、排気管14を通して排気を行いながら、ヒータH1に通電して水w1を加熱する。サーミスタS4によって設定する加熱の温度は60℃前後が最適である。
これにより、水w1中のアンモニア性窒素を気化させ、さらに排気管14中の触媒CTの機能によって窒素ガスに変換した後、大気中等に放出することができる。
【0066】
このあと、例えばタイマ31によって規定した処理の時間が経過した時点でヒータH1への通電を停止するとともに、ブロワBMを停止した後、モーター弁V2を開くとともにポンプP2を駆動することによって、脱窒素処理した水w1をドレンDに排水する。
なおヒータH1を、電解槽11内に配設して加熱槽17を省略することもできる。しかし電解槽11内で行う電気化学反応は、水温が低いほどスムースに進行するので、図の例のように電解槽11と、ヒータH1を内蔵した加熱槽17とを別に設けるのが好ましい。
【0067】
この発明は、以上で説明した実施形態に限定されるものでなく、各請求項記載の範囲内において、種々の変更が可能である。
【図面の簡単な説明】
【図1】この発明の一実施形態にかかる水処理装置を、例えば工場等において、廃水タンク中に貯留した水をドレンに排水する設備に組み込んだ構造を簡略化して示す図である。
【図2】上記例の水処理装置の、電気的な構成を示すブロック図である。
【図3】上記例の水処理装置における、水のpH調整の流れを示すフローチャートである。
【図4】この発明の他の実施形態にかかる水処理装置を、やはり工場等において、廃水タンク中に貯留した水をドレンに排水する設備に組み込んだ構造を簡略化して示す図である。
【図5】この発明のさらに他の実施形態にかかる水処理装置を、工場等において、廃水タンク中に貯留した水をドレンに排水する設備に組み込んだ構造を簡略化して示す図である。
【図6】この発明のさらに他の実施形態にかかる水処理装置を、工場等において、廃水タンク中に貯留した水をドレンに排水する設備に組み込んだ構造を簡略化して示す図である。
【符号の説明】
1 水処理装置
10 処理水路
11 電解槽
12 酸性剤供給手段
S2 pHセンサ
L1 酸性剤
w1 水
30 制御部

Claims (9)

  1. 水中での電気化学反応によって酸化態窒素を還元することで、水を脱窒素処理するための電解槽と、この電解槽に水を供給し、かつ処理後の水を電解槽から排出するための処理水路と、処理水路を流れる水のpHを測定するためのpHセンサと、電解槽に供給される水に酸性剤を供給するための酸性剤供給手段と、電解槽での電気化学反応時にpHセンサの測定値を8以下に維持するために、酸性剤供給手段から酸性剤を供給させるための制御手段とを備えることを特徴とする水処理装置。
  2. 処理水路は、電解槽から排出した水を再び電解槽に供給するための循環水路と、水を、循環水路を通して循環させるための循環ポンプとを備えており、上記循環水路に、pHセンサと酸性剤供給手段とを配設したことを特徴とする請求項1記載の水処理装置。
  3. 循環水路の途中に、電解槽で処理した水を貯留するための貯水槽を配設するとともに、電解槽を、当該槽内が常時水で満たされて、電気化学反応によって発生する塩素ガスが貯留しない構造に形成したことを特徴とする請求項2記載の水処理装置。
  4. pHセンサを、循環水路の、貯水槽の下流側で、かつ電解槽の上流側に配設したことを特徴とする請求項3記載の水処理装置。
  5. 酸性剤供給手段を、循環水路の、電解槽の下流側で、かつ貯水槽の上流側に配設したことを特徴とする請求項4記載の水処理装置。
  6. 制御手段は、一定時間ごとに電気化学反応を停止した状態で、pHセンサによって水のpHを測定し、この測定値に基づいて、酸性剤供給手段から酸性剤を供給させることを特徴とする請求項1記載の水処理装置。
  7. 処理水路は、pHセンサを配設した位置の近傍に接地部を設けたことを特徴とする請求項1記載の水処理装置。
  8. 電解槽内にヒータを設けるか、または処理水路の、電解槽より下流側に、ヒータを内蔵した加熱槽を配設し、当該ヒータによって、電気化学反応中または反応後の水を加熱することで、電気化学反応によって発生するアンモニア性窒素を気化させて水から除去することを特徴とする請求項1記載の水処理装置。
  9. ヒータを設けた電解槽または加熱槽に、気化したアンモニア性窒素を窒素ガスに変換するための触媒と、排気のためのファンとを備えた排気路を接続したことを特徴とする請求項8記載の水処理装置。
JP2002259120A 2002-09-04 2002-09-04 水処理装置 Expired - Fee Related JP4162453B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002259120A JP4162453B2 (ja) 2002-09-04 2002-09-04 水処理装置
CNB031561748A CN1229283C (zh) 2002-09-04 2003-09-02 水处理装置
KR10-2003-0061323A KR100535787B1 (ko) 2002-09-04 2003-09-03 물 처리장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002259120A JP4162453B2 (ja) 2002-09-04 2002-09-04 水処理装置

Publications (2)

Publication Number Publication Date
JP2004097855A true JP2004097855A (ja) 2004-04-02
JP4162453B2 JP4162453B2 (ja) 2008-10-08

Family

ID=32260252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259120A Expired - Fee Related JP4162453B2 (ja) 2002-09-04 2002-09-04 水処理装置

Country Status (3)

Country Link
JP (1) JP4162453B2 (ja)
KR (1) KR100535787B1 (ja)
CN (1) CN1229283C (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105012A (ja) * 2006-09-27 2008-05-08 Kobelco Eco-Solutions Co Ltd アンモニア性窒素含有排水の処理方法及び処理装置
JP2017225924A (ja) * 2016-06-22 2017-12-28 株式会社デンソー 排水処理方法および排水処理装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508857B1 (ko) * 2003-06-30 2005-08-17 재단법인 포항산업과학연구원 폐수 중의 암모니아 제거설비
CN104203836B (zh) * 2012-03-28 2017-03-22 大金工业株式会社 电解装置以及具备该电解装置的温度调节供水机
JP6318444B2 (ja) * 2014-02-13 2018-05-09 三菱重工環境・化学エンジニアリング株式会社 海水電解システム及び電解液注入方法
CN110078178A (zh) * 2019-05-10 2019-08-02 浙江浙能嘉华发电有限公司 一种高浓度含氨废水循环电解处理工艺及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105012A (ja) * 2006-09-27 2008-05-08 Kobelco Eco-Solutions Co Ltd アンモニア性窒素含有排水の処理方法及び処理装置
JP2017225924A (ja) * 2016-06-22 2017-12-28 株式会社デンソー 排水処理方法および排水処理装置
WO2017221619A1 (ja) * 2016-06-22 2017-12-28 株式会社デンソー 排水処理方法および排水処理装置

Also Published As

Publication number Publication date
CN1229283C (zh) 2005-11-30
KR100535787B1 (ko) 2005-12-12
JP4162453B2 (ja) 2008-10-08
CN1488585A (zh) 2004-04-14
KR20040021548A (ko) 2004-03-10

Similar Documents

Publication Publication Date Title
JP3906088B2 (ja) 水処理装置
JP4671743B2 (ja) アンモニア性窒素含有廃水の電解処理方法及び装置
JP3530511B2 (ja) 窒素処理方法及び窒素処理システム
US7300592B2 (en) Water treatment device
JP4040028B2 (ja) 有機物と窒素化合物を含む被処理水の処理方法及び処理システム
JP2003230883A (ja) 排水処理方法及び排水処理装置
JP2015208735A (ja) 排ガスの処理方法及び処理装置
EP1367026A1 (en) Drain treating method, drain treating device and drain treating system
KR20020089520A (ko) 질소 처리 방법 및 질소 처리 시스템
US7241373B2 (en) Nitrogen treating method
JP2004097855A (ja) 水処理装置
JP4111896B2 (ja) 水処理方法及び水処理装置
JP4408706B2 (ja) 窒素除去方法および装置
JP4349842B2 (ja) 水処理装置
JP2004097950A (ja) 排水処理装置及び排水処理システム
JP4349862B2 (ja) 水処理装置
US20050067275A1 (en) Water treatment apparatus that can reduce water treatment time
JP2019076814A (ja) 水処理システム、水処理システムの電極腐食抑制方法及び電極腐食抑制装置
JP2005144368A (ja) 有機性廃棄物処理システム
JP2008105012A (ja) アンモニア性窒素含有排水の処理方法及び処理装置
JP4024087B2 (ja) 有機性廃水の処理方法
JP2005000824A (ja) 窒素処理方法
KR100754119B1 (ko) 수 처리 장치
JP2004016868A (ja) 排水処理方法及び排水処理装置
JP2006015237A (ja) 水処理装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees