JP2004095604A - Metallized film capacitor - Google Patents

Metallized film capacitor Download PDF

Info

Publication number
JP2004095604A
JP2004095604A JP2002250888A JP2002250888A JP2004095604A JP 2004095604 A JP2004095604 A JP 2004095604A JP 2002250888 A JP2002250888 A JP 2002250888A JP 2002250888 A JP2002250888 A JP 2002250888A JP 2004095604 A JP2004095604 A JP 2004095604A
Authority
JP
Japan
Prior art keywords
vapor deposition
electrode
deposition electrode
film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002250888A
Other languages
Japanese (ja)
Inventor
Kohei Shioda
塩田 浩平
Toshiharu Saito
斎藤 俊晴
Hiroki Takeoka
竹岡 宏樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002250888A priority Critical patent/JP2004095604A/en
Publication of JP2004095604A publication Critical patent/JP2004095604A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/015Special provisions for self-healing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/145Organic dielectrics vapour deposited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallized film capacitor which has a small decline in capacity at the time of self-heating. <P>SOLUTION: The metallized film capacitor comprises a first evaporated electrode 1 and a second evaporated electrode 2. The first evaporated electrode 1 comprises divided electrodes which are divided into a lattice-like arrangement by division slits, and a fuse constituted of the divided electrodes connected in parallel to each other. The second evaporated electrode 2 has no division slits. A value of a film resistance of a capacity formation section 2a of the second evaporated electrode 2 is set higher than that of the first evaporated electrode 1 to materialize the metallized film capacitor with a small decline in capacity. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器、電気機器や産業機器に用いられる金属化フィルムコンデンサに関するものである。
【0002】
【従来の技術】
一般にフィルムコンデンサは、金属箔を電極に用いるものと、誘電体フィルム上に設けた蒸着金属を電極に用いるものとに大別される。そして、なかでも蒸着金属を電極(以下、蒸着電極)とする金属化フィルムコンデンサは、金属箔のものに比べて電極の占める体積が小さく小型軽量化が図れることと、蒸着電極特有の自己回復性能(絶縁欠陥部で短絡が生じた場合に、短絡のエネルギーで絶縁欠陥部周辺の蒸着電極が蒸発・飛散して絶縁化し、コンデンサの機能が回復する性能)により絶縁破壊に対する信頼性が高いことから、従来から広く用いられている。
【0003】
近年、金属化フィルムコンデンサにおいて、蒸着電極を分割スリットにより格子状に分割し、各分割電極をヒューズで並列に接続した格子状の分割電極を用いることが提唱されている。すなわち、前述の自己回復時の短絡電流により絶縁欠陥部を取りまくヒューズを溶断する、自己保安機能を蒸着電極に設けたものである。ヒューズにより確実に絶縁欠陥部を電気的に切り離せることから、金属化フィルムコンデンサの信頼性をさらに向上し、高電位傾度化(誘電体フィルム1μmあたりの電圧を高めること)を図ることができるとされている。
【0004】
例えば、特開平4−225508号公報では、分割スリットの自由端を丸く形成した格子状の分割電極を用いることにより、分割電極の無い金属化フィルムコンデンサに比べて2倍の電位傾度が達成できると提唱されている。また、特開平5−132291号公報では、格子状の分割電極からなる金属化フィルムコンデンサで、各単位コンデンサの蒸着面積を10〜1000mmとした場合に電位傾度130〜350V/μmの金属化フィルムコンデンサが実現できると提唱されている。
【0005】
しかしながら、従来の格子状の分割電極からなる金属化フィルムコンデンサは、ヒューズ機能により自己保安機能は得られるものの、分割スリットの無いコンデンサに比べて、電圧印加時の容量減少が大きいことが問題となっていた。
【0006】
この要因は、前述の自己回復に伴う蒸着電極の蒸発・飛散は、一般に1mm程度の面積であるのに対して、ヒューズにより切り離される単位コンデンサの面積は桁違いに大きく、正常に自己回復できた場合にも1個の単位コンデンサ全体として回路から切り離されるために容量減少が増大してしまうためである。
【0007】
このようなコンデンサの容量減少の増大問題は、単位コンデンサの面積を自己回復時の蒸発・飛散の面積程度にまで小さくすることができれば解決される。しかし、特開平5−132291号公報に記載されるように、分割スリットによる無効面積(容量に寄与しない面積)が増大することと、電極を格子状に分割する加工技術上の制約から、10mm程度が下限であるため、分割電極を有しない金属化フィルムコンデンサに比べて少なくとも10倍の容量減少が発生してしまうことが課題となっていた。
【0008】
【発明が解決しようとする課題】
上記従来技術の問題点に鑑み、本発明が解決しようとする課題は、自己回復時における容量減少を少なくした金属化フィルムコンデンサを提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明の金属化フィルムコンデンサは、分割スリットにより格子状に分割された複数の分割電極および各分割電極を並列接続するヒューズを有する誘電体フィルムの第1蒸着電極と、分割スリットを有していない誘電体フィルムの第2蒸着電極とを具備した金属化フィルムコンデンサで、第2蒸着電極の容量形成部の膜抵抗値を第1蒸着電極より高くしたものである。
【0010】
すなわち、第2蒸着電極の膜抵抗値を高くすることにより、膜厚を薄くして自己回復性能を向上しているため、通常の自己回復時には第1蒸着電極に設けたヒューズが溶断することなく、コンデンサの機能を回復することができる。さらに、過電圧等で過大な電気ストレスが加わり、自己回復性能だけではコンデンサの機能を回復できない場合に、第1蒸着電極に設けたヒューズが溶断して絶縁欠陥部を切り離して、絶縁を回復することができる。従って、結果として容量減少を低減できることになる。
【0011】
また本発明は、第2蒸着電極の容量形成部における膜抵抗値は、第1蒸着電極の容量形成部の1.5倍〜5.0倍が望ましい。1.5倍未満では、第2蒸着電極の自己回復時のエネルギーが大きくなるため、第1蒸着電極に設けたヒューズが溶断する場合が発生する。また、5倍を超えると、コンデンサの誘電損失(tanδ)が増大する場合がある。
【0012】
なお、膜抵抗値の値は特に限定するものではないが、第1蒸着電極の容量形成部の膜抵抗値は、3〜10Ωが望ましい。第1蒸着電極は、ヒューズを形成しているために、膜抵抗値において3Ω以下ではヒューズとしての感度が鈍くなる。また10Ω以上では、感度が過敏になり、第2蒸着電極で正常に自己回復した時にも誤動作する場合が発生する。
【0013】
第2蒸着電極の容量形成部の膜抵抗値は、12〜30Ωが望ましい。12Ω以下では自己回復のエネルギーが大きくなるため、正常に自己回復した場合にも第1蒸着電極に設けたヒューズが溶断する場合が発生する。また30Ω以上では、コンデンサの誘電損失(tanδ)が増大する場合がある。
【0014】
また本発明は、少なくとも第2蒸着電極を、メタリコン部とコンタクトする端部の膜抵抗値が容量形成部よりも低いヘビーエッジ構造に形成することが望ましい。これは、第2蒸着電極の端部まで抵抗値が高いと、コンデンサの誘電損失が悪化したり、充放電特性が低下したりするためである。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて説明する。
【0016】
(実施の形態1)
図1は、本発明の金属化フィルムコンデンサの断面図、図2、図3は本発明の金属化フィルムコンデンサに用いた金属化フィルムの平面図である。図1において、例えばポリプロピレンフィルム等の誘電体フィルム3の片面上にアルミニウムを蒸着した第1蒸着電極1は、容量形成部1aと、メタリコン部5とのコンタクト部1bから構成され、かつ図2に示すように分割スリット6により四角形の格子状に分割された分割電極9と、各分割電極9を並列接続するヒューズ7とを有する。
【0017】
また、例えばポリプロピレンフィルム等の誘電体フィルム8の片面全体にアルミニウムを蒸着した第2蒸着電極2は、容量形成部2aと、メタリコン部5とのコンタクト部2bから構成され、分割スリットは有しておらない。また、第2蒸着電極2の容量形成部2aの膜抵抗値は、図1に示すように膜厚を第1蒸着電極1aより薄くして第1蒸着電極1aの膜抵抗値よりも高く設定している。
【0018】
また、少なくとも第2蒸着電極2は、第2蒸着電極の端部まで抵抗値が高いと、コンデンサの誘電損失が悪化したり、充放電特性が低下したりするので、これを解消するため、メタリコン部5とコンタクトする端部2bの膜抵抗値が容量形成部2aよりも低いヘビーエッジ構造に形成している。なお、4は絶縁マージンである。
【0019】
次に、本発明の実施の形態からなる金属化フィルムコンデンサの特性例を説明する。まず、コンデンサの過電圧下における特性を調べるために、次の金属化フィルムコンデンサを製造した。
【0020】
本発明品1は、図1に示すように第1蒸着電極1を有する誘電体フィルム3と第2蒸着電極2を有する誘電体フィルム8を積層したコンデンサ素子の両側にメタリコン部5を形成した構成からなり、第1蒸着電極1の膜抵抗値を容量形成部1aにおいて6Ω、第2蒸着電極2の膜抵抗値を容量形成部2aにおいて12Ωとした金属化フィルムコンデンサである。
【0021】
比較例1は、図1〜図3に示す構成からなり、第1蒸着電極1および第2蒸着電極2の膜抵抗値を、それぞれの容量形成部1a、2aともに6Ωとした金属化フィルムコンデンサである。
【0022】
比較例2は、第1および第2の蒸着電極がいずれも分割スリットが無く、第1蒸着電極1および第2蒸着電極2の膜抵抗値を、それぞれ容量形成部1a、2aともに6Ωとした金属化フィルムコンデンサである。
【0023】
なお、上記製造した各金属化フィルムコンデンサは、いずれも容量80μF、定格電圧600VDCであり、誘電体フィルム3および誘電体フィルム8としては3.5μm厚みのポリプロピレンフィルムを、また蒸着電極の金属としてはアルミニウムを用いた。さらに、本発明品1および比較例1における各分割電極9の面積は200mmとし、ヒューズ7の幅は0.5mmとした。
【0024】
このようにして製造した各コンデンサに、周囲温度85℃で過電圧試験を行った。過電圧は800VDCから開始し、1時間ごとに100VDCずつ昇圧して試験中の容量変化率を測定した。結果を図4に示す。本発明品1のコンデンサは、比較例1に比べて過電圧下でも容量減少が小さく、しかも比較例1と同様に自己保安機能が動作してオープン状態で容量0となった。比較例2は、1300VDCまでは最も容量変化率が小さかったが、1400VDCでショートし、電圧印加不能となった。この結果から明らかなように、本発明品1からなるコンデンサは自己保安機能を有し、しかも容量減少を小さくできた。
【0025】
次に、本発明における第2蒸着電極2の膜抵抗値とコンデンサ特性の関係を調べるために、図1〜図3に示す構成からなるコンデンサにおいて、第1および第2蒸着電極1、2の容量形成部1a、2aの膜抵抗値を変えて、次の(表1)に示す本発明品2〜7のコンデンサを製造した。なお、いずれのコンデンサも本発明品1と同様に容量80μF、定格電圧600VDCであり、誘電体フィルム3および8としては3.5μm厚みのポリプロピレンフィルムを、また蒸着電極の金属としてはアルミニウムを用いた。さらに、本発明品2〜7のコンデンサも本発明品1と同様に各分割電極9の面積は200mmとし、ヒューズ7の幅は0.5mmとした。さらに、メタリコン部5とのコンタクト部1b、2bの膜抵抗値はいずれも3Ωとした。
【0026】
このようにして製造したコンデンサの1kHzにおける初期容量とtanδを測定した後、85℃で900VDC(定格電圧の1.5倍)の電圧を1000時間印加し、初期容量に対する容量変化率を測定した。結果を(表1)に示す。
【0027】
【表1】

Figure 2004095604
【0028】
(表1)より明らかなように、第2蒸着電極2の容量形成部2aの膜抵抗値を、第1蒸着電極1の容量形成部1aより高くしたものは、比較例1に比べて容量減少が小さかった。中でも、第2蒸着電極2の容量形成部2aの膜抵抗値を、第1蒸着電極1の容量形成部1aの膜抵抗値が1.5倍から5倍とした場合にtanδも容量減少も小さくなり、さらに良好な結果を得た。
【0029】
なお、本実施の形態では、図1のような四角形状からなる格子状の分割電極9を例として説明したが、本発明はこれに限定されるものではなく、他の形状例えば菱形状や六角形状、三角形状の分割電極を格子状に配列しても本実施の形態と同様の結果が得られた。
【0030】
また、本実施の形態では、ヒューズ7の位置を分割電極9の各辺の真中に設けたが、角または頂点に設けてもよい。
【0031】
さらに、本実施の形態では、誘電体フィルム3および8としてポリプロピレンフィルムを用いて説明したが、他のフィルムにおいても本実施の形態と同様の結果が得られた。また、本実施の形態では、蒸着電極の金属としてアルミニウムを用いた場合を説明したが、亜鉛等の他の金属においても本実施の形態と同様の効果を確認した。また、誘電体フィルム3および8として、それぞれ2枚以上のフィルムを重ねて、さらに高い定格電圧を設定したような場合にも、本実施の形態と同様の効果を得た。
【0032】
また、本実施の形態では第1蒸着電極1と第2蒸着電極2はそれぞれ別の誘電体フィルム3および8の上に形成したが、例えば第1蒸着電極1および第2蒸着電極2を誘電体フィルム3の表と裏に形成して、未蒸着の誘電体フィルムと重ねて積層または巻回する構成にした場合にも本実施の形態と同様の効果を得ることができた。
【0033】
【発明の効果】
以上のように本発明の請求項1記載の金属化フィルムコンデンサによれば、第1蒸着電極、第2蒸着電極、および少なくとも2枚の誘電体フィルムを具備したコンデンサ素子の両側にメタリコン部を形成したものにあって、前記第1蒸着電極は分割スリットにより分割されて格子状に配列された複数の分割電極と前記分割電極を並列に接続したヒューズとを有し、前記第2蒸着電極は分割スリットが無く、その容量形成部の膜抵抗値を前記第1蒸着電極より高くしたもので、容量減少の小さい金属化フィルムコンデンサを実現することができる。
【0034】
また本発明の請求項2記載の金属化フィルムコンデンサによれば、前記第2蒸着電極の容量形成部が、第1蒸着電極の容量形成部より膜厚が薄いことから、容量減少の小さい金属化フィルムコンデンサを実現することができる。
【0035】
また本発明の請求項3記載の金属化フィルムコンデンサによれば、前記第2蒸着電極の容量形成部における膜抵抗値が、第1蒸着電極の容量形成部における膜抵抗値の1.5倍〜5.0倍であることから、容量減少が小さく、しかも誘電損失の低い良好な金属化フィルムコンデンサを実現することができる。
【0036】
また本発明の請求項4記載の金属化フィルムコンデンサによれば、少なくとも第2蒸着電極は、メタリコン部とコンタクトする端部の膜抵抗値が容量形成部よりも低いヘビーエッジ構造にしていることから、容量減少が小さく、しかも誘電損失の低い良好な金属化フィルムコンデンサを実現することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1における金属化フィルムコンデンサの断面図
【図2】同実施の形態1における金属化フィルムコンデンサに使用した金属化フィルムの第1蒸着電極の平面図
【図3】同実施の形態1における金属化フィルムコンデンサに使用した金属化フィルムの第2蒸着電極の平面図
【図4】同実施の形態1における金属化フィルムコンデンサと比較例1、2のコンデンサとの過電圧特性図
【符号の説明】
1  第1蒸着電極
1a、2a 容量形成部
1b、2b コンタクト部
2  第2蒸着電極
3、8  誘電体フィルム
5 メタリコン部
6 分割スリット
7  ヒューズ
9  分割電極[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a metallized film capacitor used for electronic equipment, electric equipment and industrial equipment.
[0002]
[Prior art]
In general, film capacitors are roughly classified into those using a metal foil for an electrode and those using a deposited metal provided on a dielectric film for an electrode. In particular, metallized film capacitors that use deposited metal as an electrode (hereinafter referred to as a deposited electrode) are smaller in volume and lighter in weight than those made of metal foil, and have the self-healing performance unique to deposited electrodes. (If a short circuit occurs at an insulation defect, the deposition electrode around the insulation defect evaporates and scatters due to the energy of the short circuit to insulate, and the capacitor function is restored.) Has been widely used.
[0003]
In recent years, in a metallized film capacitor, it has been proposed to use a grid-like divided electrode in which a deposition electrode is divided into a lattice by a dividing slit and each divided electrode is connected in parallel by a fuse. That is, a self-protection function is provided in the deposition electrode for blowing the fuse surrounding the insulation defect portion by the short-circuit current at the time of the self-recovery described above. Since the insulation defective portion can be reliably separated electrically by the fuse, the reliability of the metallized film capacitor can be further improved and the potential gradient can be increased (voltage per 1 μm of the dielectric film can be increased). Have been.
[0004]
For example, in Japanese Patent Application Laid-Open No. 225508/1992, by using a grid-like split electrode in which the free ends of the split slits are rounded, it is possible to achieve a potential gradient that is twice that of a metallized film capacitor having no split electrodes. Has been proposed. Japanese Patent Application Laid-Open No. 5-132291 discloses a metallized film capacitor having a grid-like divided electrode, wherein the potential gradient is 130 to 350 V / μm when the deposition area of each unit capacitor is 10 to 1000 mm 2. It is proposed that a capacitor can be realized.
[0005]
However, although the conventional metallized film capacitor consisting of grid-shaped split electrodes can provide a self-protection function by the fuse function, there is a problem in that the capacitance is greatly reduced when a voltage is applied compared to a capacitor without a split slit. I was
[0006]
This is due to the fact that the evaporation / scattering of the deposition electrode due to the self-healing described above generally has an area of about 1 mm 2 , whereas the area of the unit capacitor separated by the fuse is extremely large, and the self-healing can be performed normally. Also in this case, since the single unit capacitor is separated from the circuit as a whole, the capacity decrease increases.
[0007]
Such a problem of an increase in the capacity of the capacitor can be solved if the area of the unit capacitor can be reduced to about the area of evaporation and scattering during self-recovery. However, as described in Japanese Patent Application Laid-Open No. 5-132291, 10 mm 2 is required due to the increase in the ineffective area (area that does not contribute to the capacitance) due to the split slit and the processing technology for dividing the electrodes into a grid. Since the degree is the lower limit, there has been a problem that the capacitance is reduced at least 10 times as compared with a metallized film capacitor having no split electrode.
[0008]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In view of the above-mentioned problems of the related art, an object of the present invention is to provide a metallized film capacitor in which a decrease in capacitance during self-recovery is reduced.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the metallized film capacitor of the present invention is a first deposition electrode of a dielectric film having a plurality of divided electrodes divided in a grid by a divided slit and a fuse connecting each divided electrode in parallel, A metallized film capacitor comprising a dielectric film second vapor deposition electrode having no split slit, wherein the film resistance of the capacitance forming portion of the second vapor deposition electrode is higher than that of the first vapor deposition electrode.
[0010]
That is, since the self-healing performance is improved by reducing the film thickness by increasing the film resistance value of the second vapor deposition electrode, the fuse provided on the first vapor deposition electrode does not blow during normal self-healing. , The function of the capacitor can be restored. Furthermore, when excessive electric stress is applied due to overvoltage or the like, and the function of the capacitor cannot be recovered only by the self-recovery performance, the fuse provided on the first vapor deposition electrode is blown to cut off the insulation defect and restore the insulation. Can be. Therefore, as a result, the capacity reduction can be reduced.
[0011]
Further, in the present invention, it is desirable that the film resistance value in the capacity forming portion of the second vapor deposition electrode is 1.5 to 5.0 times that of the capacity forming portion of the first vapor deposition electrode. If it is less than 1.5 times, the energy at the time of self-recovery of the second vapor deposition electrode becomes large, so that the fuse provided on the first vapor deposition electrode may be blown. If it exceeds five times, the dielectric loss (tan δ) of the capacitor may increase.
[0012]
The value of the film resistance is not particularly limited, but the film resistance of the capacitance forming portion of the first vapor deposition electrode is desirably 3 to 10Ω. Since the first vapor deposition electrode forms a fuse, the sensitivity as a fuse is reduced when the film resistance value is 3Ω or less. If the resistance is 10Ω or more, the sensitivity becomes excessively high, and a malfunction may occur even when the second self-recovering electrode normally recovers.
[0013]
The film resistance value of the capacitance forming portion of the second vapor deposition electrode is desirably 12 to 30Ω. If the resistance is 12Ω or less, the self-recovery energy becomes large, so that even when the self-recovery is performed normally, the fuse provided on the first deposition electrode may be blown. If it is 30Ω or more, the dielectric loss (tan δ) of the capacitor may increase.
[0014]
Further, in the present invention, it is preferable that at least the second vapor deposition electrode is formed in a heavy edge structure in which a film resistance value of an end portion in contact with the metallikon portion is lower than that of the capacitance forming portion. This is because if the resistance value is high up to the end of the second vapor deposition electrode, the dielectric loss of the capacitor is deteriorated and the charge / discharge characteristics are deteriorated.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
(Embodiment 1)
FIG. 1 is a sectional view of a metallized film capacitor of the present invention, and FIGS. 2 and 3 are plan views of a metallized film used for the metallized film capacitor of the present invention. In FIG. 1, for example, a first deposited electrode 1 in which aluminum is deposited on one surface of a dielectric film 3 such as a polypropylene film is composed of a capacitance forming portion 1a and a contact portion 1b with a metallikon portion 5, and is shown in FIG. As shown in the figure, a divided electrode 9 divided into a rectangular lattice by a divided slit 6 and a fuse 7 for connecting the divided electrodes 9 in parallel are provided.
[0017]
The second vapor-deposited electrode 2 in which aluminum is vapor-deposited on one entire surface of a dielectric film 8 such as a polypropylene film is composed of a capacitance forming portion 2a and a contact portion 2b with a metallikon portion 5, and has a split slit. I don't. Further, as shown in FIG. 1, the film resistance value of the capacity forming portion 2a of the second vapor deposition electrode 2 is set to be higher than the film resistance value of the first vapor deposition electrode 1a by making the film thickness smaller than that of the first vapor deposition electrode 1a. ing.
[0018]
Further, at least the second vapor deposition electrode 2 has a high resistance value up to the end of the second vapor deposition electrode, so that the dielectric loss of the capacitor is deteriorated and the charge / discharge characteristics are deteriorated. The end portion 2b in contact with the portion 5 has a heavy edge structure in which the film resistance value is lower than that of the capacitance forming portion 2a. 4 is an insulation margin.
[0019]
Next, an example of characteristics of the metallized film capacitor according to the embodiment of the present invention will be described. First, the following metallized film capacitors were manufactured in order to examine the characteristics of the capacitors under overvoltage.
[0020]
As shown in FIG. 1, the product 1 of the present invention has a configuration in which a metallikon portion 5 is formed on both sides of a capacitor element in which a dielectric film 3 having a first vapor deposition electrode 1 and a dielectric film 8 having a second vapor deposition electrode 2 are laminated. This is a metallized film capacitor in which the film resistance value of the first vapor deposition electrode 1 is 6Ω in the capacitance forming section 1a and the film resistance value of the second vapor deposition electrode 2 is 12Ω in the capacitance forming section 2a.
[0021]
Comparative Example 1 has a configuration shown in FIGS. 1 to 3 and is a metallized film capacitor in which the film resistance value of the first vapor deposition electrode 1 and the second vapor deposition electrode 2 is 6Ω for each of the capacitance forming portions 1a and 2a. is there.
[0022]
In Comparative Example 2, the first and second deposition electrodes did not have any split slits, and the film resistance values of the first and second deposition electrodes 1 and 2 were 6Ω for both the capacitance forming portions 1a and 2a, respectively. Film capacitor.
[0023]
Each of the manufactured metallized film capacitors had a capacity of 80 μF and a rated voltage of 600 VDC, and a dielectric film 3 and a dielectric film 8 were made of a 3.5 μm thick polypropylene film. Aluminum was used. Further, the area of each divided electrode 9 in the product 1 of the present invention and the comparative example 1 was 200 mm 2, and the width of the fuse 7 was 0.5 mm.
[0024]
Each capacitor thus manufactured was subjected to an overvoltage test at an ambient temperature of 85 ° C. The overvoltage was started from 800 VDC, and the voltage was increased by 100 VDC every hour, and the capacity change rate during the test was measured. FIG. 4 shows the results. The capacitor of the product 1 of the present invention exhibited a smaller capacity reduction even under overvoltage as compared with the comparative example 1, and the self-protection function was operated similarly to the comparative example 1 to make the capacity 0 in the open state. Comparative Example 2 had the smallest capacity change rate up to 1300 VDC, but short-circuited at 1400 VDC, making it impossible to apply a voltage. As is clear from the results, the capacitor made of the product 1 of the present invention has a self-protection function, and the decrease in the capacitance can be reduced.
[0025]
Next, in order to investigate the relationship between the film resistance value of the second vapor deposition electrode 2 and the capacitor characteristics in the present invention, the capacitance of the first and second vapor deposition electrodes 1 and 2 in the capacitor having the configuration shown in FIGS. The capacitors of the present invention products 2 to 7 shown in the following (Table 1) were manufactured by changing the film resistance values of the formation portions 1a and 2a. Each of the capacitors had a capacity of 80 μF and a rated voltage of 600 VDC as in the case of the product 1 of the present invention. . Further, in the capacitors of the present invention products 2 to 7, similarly to the present invention product 1, the area of each divided electrode 9 was 200 mm 2, and the width of the fuse 7 was 0.5 mm. Further, the film resistance values of the contact portions 1b and 2b with the metallikon portion 5 were all 3Ω.
[0026]
After measuring the initial capacity and tan δ at 1 kHz of the capacitor thus manufactured, a voltage of 900 VDC (1.5 times the rated voltage) was applied at 85 ° C. for 1000 hours, and the rate of change in the capacity with respect to the initial capacity was measured. The results are shown in (Table 1).
[0027]
[Table 1]
Figure 2004095604
[0028]
As is clear from Table 1, when the capacitance value of the capacitance forming portion 2a of the second vapor deposition electrode 2 is higher than that of the capacitance forming portion 1a of the first vapor deposition electrode 1, the capacitance decreases as compared with Comparative Example 1. Was small. Above all, when the film resistance of the capacitance forming portion 2a of the second vapor deposition electrode 2 is 1.5 to 5 times the film resistance of the capacitance forming portion 1a of the first vapor deposition electrode 1, both tan δ and the capacitance decrease are small. And better results were obtained.
[0029]
In the present embodiment, a grid-like divided electrode 9 having a rectangular shape as shown in FIG. 1 has been described as an example. However, the present invention is not limited to this, and other shapes such as a diamond shape and a hexagonal shape are used. The same result as in the present embodiment was obtained even when the divided electrodes having a triangular shape were arranged in a grid.
[0030]
Further, in the present embodiment, the position of the fuse 7 is provided in the middle of each side of the divided electrode 9, but may be provided at a corner or a vertex.
[0031]
Further, in the present embodiment, a polypropylene film has been described as dielectric films 3 and 8, but the same results as in the present embodiment were obtained with other films. Further, in this embodiment, the case where aluminum is used as the metal of the vapor deposition electrode has been described. However, the same effect as in this embodiment was confirmed with other metals such as zinc. Further, the same effects as in the present embodiment were obtained when two or more films were stacked as the dielectric films 3 and 8, respectively, and a higher rated voltage was set.
[0032]
Further, in the present embodiment, the first vapor deposition electrode 1 and the second vapor deposition electrode 2 are formed on different dielectric films 3 and 8, respectively. The same effect as in the present embodiment could be obtained also when the film 3 was formed on the front and back surfaces and laminated or wound on an undeposited dielectric film.
[0033]
【The invention's effect】
As described above, according to the metallized film capacitor according to claim 1 of the present invention, the metallicon portions are formed on both sides of the capacitor element including the first vapor-deposited electrode, the second vapor-deposited electrode, and at least two dielectric films. Wherein the first vapor deposition electrode has a plurality of divided electrodes divided by a dividing slit and arranged in a grid and a fuse in which the divided electrodes are connected in parallel, and the second vapor deposited electrode is divided Since there is no slit and the film resistance value of the capacitance forming portion is higher than that of the first vapor deposition electrode, a metallized film capacitor with a small capacitance decrease can be realized.
[0034]
Further, according to the metallized film capacitor according to claim 2 of the present invention, since the capacitance forming portion of the second vapor deposition electrode is thinner than the capacitance forming portion of the first vapor deposition electrode, the metallization with a small capacitance decrease is achieved. A film capacitor can be realized.
[0035]
Further, according to the metallized film capacitor according to claim 3 of the present invention, the film resistance value of the capacitance forming portion of the second vapor deposition electrode is 1.5 times or more the film resistance value of the capacitance forming portion of the first vapor deposition electrode. Since it is 5.0 times, it is possible to realize a good metallized film capacitor with a small decrease in capacitance and a low dielectric loss.
[0036]
Further, according to the metallized film capacitor according to claim 4 of the present invention, at least the second vapor deposition electrode has a heavy edge structure in which the film resistance at the end contacting the metallikon portion is lower than the capacitance forming portion. It is possible to realize a good metallized film capacitor having a small capacitance reduction and a low dielectric loss.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a metallized film capacitor according to a first embodiment of the present invention. FIG. 2 is a plan view of a first vapor deposition electrode of a metallized film used for the metallized film capacitor in the first embodiment. FIG. 4 is a plan view of a second vapor-deposited electrode of a metallized film used for the metallized film capacitor according to the first embodiment. FIG. Characteristic diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 1st vapor deposition electrode 1a, 2a Capacity formation part 1b, 2b Contact part 2 2nd vapor deposition electrode 3, 8 Dielectric film 5 Metallicon part 6 Division slit 7 Fuse 9 Division electrode

Claims (4)

第1蒸着電極、第2蒸着電極、および少なくとも2枚の誘電体フィルムを具備したコンデンサ素子の両側にメタリコン部を形成したものにあって、前記第1蒸着電極は分割スリットにより分割されて格子状に配列された複数の分割電極と前記分割電極を並列に接続したヒューズとを有し、前記第2蒸着電極は分割スリットが無く、その容量形成部の膜抵抗値を前記第1蒸着電極より高くしてなる金属化フィルムコンデンサ。A capacitor element having a first vapor deposition electrode, a second vapor deposition electrode, and at least two dielectric films, on both sides of which a metallikon portion is formed, wherein the first vapor deposition electrode is divided by a dividing slit to form a grid. A plurality of divided electrodes arranged in a matrix and a fuse in which the divided electrodes are connected in parallel, the second vapor-deposited electrode has no divided slit, and the film resistance value of the capacitance forming portion is higher than that of the first vapor-deposited electrode. Metallized film capacitors. 第2蒸着電極の容量形成部は、第1蒸着電極の容量形成部より膜厚を薄くしてなる請求項1記載の金属化フィルムコンデンサ。2. The metallized film capacitor according to claim 1, wherein the capacitance forming part of the second vapor deposition electrode has a smaller thickness than the capacitance forming part of the first vapor deposition electrode. 第2蒸着電極の容量形成部における膜抵抗値が、第1蒸着電極の容量形成部における膜抵抗値の1.5倍〜5.0倍である請求項1または2のいずれかに記載の金属化フィルムコンデンサ。3. The metal according to claim 1, wherein a film resistance value in the capacity forming portion of the second vapor deposition electrode is 1.5 to 5.0 times a film resistance value in the capacity forming portion of the first vapor deposition electrode. 4. Chemical film capacitor. 少なくとも第2蒸着電極は、メタリコン部とコンタクトする端部の膜抵抗値が容量形成部よりも低いヘビーエッジ構造に形成してなる請求項1から3のいずれかに記載の金属化フィルムコンデンサ。The metallized film capacitor according to any one of claims 1 to 3, wherein at least the second vapor-deposited electrode is formed in a heavy edge structure in which the film resistance value at the end contacting the metallikon portion is lower than the capacitance forming portion.
JP2002250888A 2002-08-29 2002-08-29 Metallized film capacitor Pending JP2004095604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250888A JP2004095604A (en) 2002-08-29 2002-08-29 Metallized film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250888A JP2004095604A (en) 2002-08-29 2002-08-29 Metallized film capacitor

Publications (1)

Publication Number Publication Date
JP2004095604A true JP2004095604A (en) 2004-03-25

Family

ID=32057601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250888A Pending JP2004095604A (en) 2002-08-29 2002-08-29 Metallized film capacitor

Country Status (1)

Country Link
JP (1) JP2004095604A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250833A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Dc metallized film capacitor
JP2009206224A (en) * 2008-02-27 2009-09-10 Panasonic Corp Metallized film capacitor
WO2012042835A1 (en) * 2010-09-27 2012-04-05 ダイキン工業株式会社 Film capacitor and method for producing film capacitor
JP2013004853A (en) * 2011-06-20 2013-01-07 Mitsubishi Shindoh Co Ltd Manufacturing method of metal deposition film for film capacitor
US8353779B2 (en) 2004-09-21 2013-01-15 Hitachi, Ltd. Support structure for bolting components of drive shaft via mounting member
JP2014049711A (en) * 2012-09-04 2014-03-17 Nichicon Corp Metalization film capacitor
JP2017191823A (en) * 2016-04-12 2017-10-19 ニチコン株式会社 Metalized film capacitor
WO2021024565A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Film capacitor
WO2021024564A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Film capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8353779B2 (en) 2004-09-21 2013-01-15 Hitachi, Ltd. Support structure for bolting components of drive shaft via mounting member
JP2007250833A (en) * 2006-03-16 2007-09-27 Matsushita Electric Ind Co Ltd Dc metallized film capacitor
JP2009206224A (en) * 2008-02-27 2009-09-10 Panasonic Corp Metallized film capacitor
WO2012042835A1 (en) * 2010-09-27 2012-04-05 ダイキン工業株式会社 Film capacitor and method for producing film capacitor
JP2012074413A (en) * 2010-09-27 2012-04-12 Daikin Ind Ltd Film capacitor, and method of manufacturing the same
JP2013004853A (en) * 2011-06-20 2013-01-07 Mitsubishi Shindoh Co Ltd Manufacturing method of metal deposition film for film capacitor
JP2014049711A (en) * 2012-09-04 2014-03-17 Nichicon Corp Metalization film capacitor
JP2017191823A (en) * 2016-04-12 2017-10-19 ニチコン株式会社 Metalized film capacitor
WO2021024565A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Film capacitor
WO2021024564A1 (en) * 2019-08-08 2021-02-11 株式会社村田製作所 Film capacitor
JPWO2021024564A1 (en) * 2019-08-08 2021-02-11
JPWO2021024565A1 (en) * 2019-08-08 2021-02-11
JP7301974B2 (en) 2019-08-08 2023-07-03 株式会社村田製作所 Film capacitor
JP7301975B2 (en) 2019-08-08 2023-07-03 株式会社村田製作所 Film capacitor

Similar Documents

Publication Publication Date Title
JP3914854B2 (en) Metalized film capacitor, inverter smoothing capacitor and automotive capacitor using the same
WO2008026526A1 (en) Metallization film capacitor
JP3328477B2 (en) Capacitor
JP3870932B2 (en) Metallized film capacitors
JP3870875B2 (en) Deposition film, film capacitor using the film, and inverter device using the capacitor
JP2004095604A (en) Metallized film capacitor
JP2006286988A (en) Metallization film capacitor
JP2007103534A (en) Metallization film capacitor
JP2013219094A (en) Metalization film capacitor
JPH09199371A (en) Metallized film capacitor
JP3454043B2 (en) Metallized film capacitors
JPH08288171A (en) Metallized film capacitor
JP2004363431A (en) Metalized film capacitor
JP2004200588A (en) Metallized film capacitor
JP2001510637A (en) High energy density capacitor film and capacitor made therefrom
JP5647402B2 (en) Metallized film capacitors
JPH10308323A (en) Metalized film capacitor
JP3935561B2 (en) Metallized film capacitors
JP2005093516A (en) Metallized film capacitor and inverter power source circuit
JP2006286987A (en) Metallization film capacitor
JPH02285618A (en) Metallized plastic film capacitor
JPH09283366A (en) Capacitor
JP2004095605A (en) Metallized film capacitor and its manufacturing method, and inverter apparatus using the same
JP2003178931A (en) Thin-film capacitor and foil therefor
JP4296532B2 (en) Deposition film for capacitor and capacitor using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070509

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070615

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091118